Although photovoltaic power plants are suitable local energy sources in Micro Grid environments, when large plants are involved, partial shading and inaccurate modelling of the plant can affect both the design of the Micro Grid as well as the energy management process that allows for lowering the overall Micro Grid demand towards the main grid. To investigate the issue, a Photovoltaic Plant simulation model, based on a real life power plant, and an energy management system, based on a real life Micro Grid environment, have been integrated to evaluate the performance of a Micro Grid under partial shading conditions. Using a baseline energy production model as a reference, the energy demand of the Micro Grid has been computed in sunny and partial shading conditions. The experiments reveal that an estimation based on a simplified PV model can exceed by 65% the actual production. With regards to Micro Grid design, on sunny days, the expected costs, based on a simplified PV model, can be 5.5% lower than the cost based on the double inverter model. In single cloud scenarios, the underrating can reach 28.3%. With regard to the management process, if the energy yield is estimated by means of a simplified PV model, the actual cost can be from 17.1% to 21.5% higher than the theoretical cost expected at design time.

Energy management with support of PV partial shading modelling in Micro Grid environments / Severini, Marco; Principi, Emanuele; Fagiani, Marco; Squartini, Stefano; Piazza, Francesco. - In: ENERGIES. - ISSN 1996-1073. - ELETTRONICO. - 10:4(2017), p. 453. [10.3390/en10040453]

Energy management with support of PV partial shading modelling in Micro Grid environments

SEVERINI, MARCO
;
PRINCIPI, EMANUELE;FAGIANI, MARCO;SQUARTINI, STEFANO;PIAZZA, Francesco
2017-01-01

Abstract

Although photovoltaic power plants are suitable local energy sources in Micro Grid environments, when large plants are involved, partial shading and inaccurate modelling of the plant can affect both the design of the Micro Grid as well as the energy management process that allows for lowering the overall Micro Grid demand towards the main grid. To investigate the issue, a Photovoltaic Plant simulation model, based on a real life power plant, and an energy management system, based on a real life Micro Grid environment, have been integrated to evaluate the performance of a Micro Grid under partial shading conditions. Using a baseline energy production model as a reference, the energy demand of the Micro Grid has been computed in sunny and partial shading conditions. The experiments reveal that an estimation based on a simplified PV model can exceed by 65% the actual production. With regards to Micro Grid design, on sunny days, the expected costs, based on a simplified PV model, can be 5.5% lower than the cost based on the double inverter model. In single cloud scenarios, the underrating can reach 28.3%. With regard to the management process, if the energy yield is estimated by means of a simplified PV model, the actual cost can be from 17.1% to 21.5% higher than the theoretical cost expected at design time.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/249946
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact