In this work, three-terminal ballistic junctions, made of three-branch graphene nanoribbons (GNRs), are considered and simulated at the nanometric scale. The analysis is carried out by a scattering matrix approach, in a discrete formulation optimized for GNR devices. The ballisticity and the scattering properties of the junction contribute to the nonlinear behaviour, as, in fact, a sinusoidal voltage between two GNR branches results in a non-sinusoidal current at the third branch. The inputoutput characteristic is hardly predictable at the nanoscale, as it depends on several cooperating factors, namely the potential distribution and the geometry of the junction. Several numerical examples are shown to illustrate the above concepts

Nanoscale Simulation of Three-contact Graphene Ballistic Junctions / Mencarelli, Davide; Pierantoni, Luca; Rozzi, Tullio; Coccetti, Fabio. - In: NANOMATERIALS AND NANOTECHNOLOGY. - ISSN 1847-9804. - ELETTRONICO. - 4:1(2014), pp. 1-5. [10.5772/58547]

Nanoscale Simulation of Three-contact Graphene Ballistic Junctions

MENCARELLI, Davide;PIERANTONI, Luca;
2014-01-01

Abstract

In this work, three-terminal ballistic junctions, made of three-branch graphene nanoribbons (GNRs), are considered and simulated at the nanometric scale. The analysis is carried out by a scattering matrix approach, in a discrete formulation optimized for GNR devices. The ballisticity and the scattering properties of the junction contribute to the nonlinear behaviour, as, in fact, a sinusoidal voltage between two GNR branches results in a non-sinusoidal current at the third branch. The inputoutput characteristic is hardly predictable at the nanoscale, as it depends on several cooperating factors, namely the potential distribution and the geometry of the junction. Several numerical examples are shown to illustrate the above concepts
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/225716
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact