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Abstract— The application of millimeter Wave (mmWave) Radar sensors for people
monitoring raised a lot of interest in the context of Active Assisted Living (AAL),

especially since the processing of Radar signals can provide interesting informa-
tion about the observed subjects. Correct recognition of the ongoing behavior,
however, cannot disregard the location of the subject. Detection approaches, based (m]
on Constant False Alarm Rate (CFAR) algorithms, sometimes fail to correctly
identify the location of targets within the observed scenario, especially in complex
environments such as indoor situations. This paper proposes the use of a mmWave
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Multiple Input Multiple Output (MIMO) Radar in combination with a You Only Look &

Once (YOLO) neural network-based algorithm for the detection and localization of

Combine information

moving targets in indoor environments by processing all the data cube information ("1

at the same time. Results are validated through experimental tests which involve

subjects walking in linear or random mode, different Radar configurations, and different indoor environments. By
exploiting at the same time information such as the angle, Doppler, and range distance of the target, the proposed
approach proves to be very effective in the examined scenarios. Experimental results will be discussed in this work

to demonstrate the effectiveness of the proposed method.

Index Terms— Classification, FMCW Radar, people detection, target recognition, YOLO

[. INTRODUCTION

The ability to identify and recognize moving people in a
sequence of images (optical or derived from other sensors) is
crucial to successfully tracking, and identifying them and their
activities, and in general, understanding human behavior in
indoor applications. Indoor surveillance is important not only
for security reasons but also for health monitoring purposes.
Collecting information about a moving target within a room,
in fact, allows detecting possible falls [1]-[4], or monitoring
activities of daily living for the purpose of assessing a person’s
level of autonomy in performing these actions independently.

The problem of indoor surveillance can be approached in
different ways and with different types of sensors. The most
common solutions make use of RGB cameras. These methods,
however, present some problems and limitations; for example,
they are affected by poor illumination of the detection area
and may also present some privacy concerns [5]-[7], while
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adverse indoor conditions like smoke presence can affect their
detection capability [8]-[10].

The problem of privacy and poor illumination can be
overcome by using an RGB-D sensor, which provides a depth
image less prone to release confidential information. The pri-
vacy issue is addressed but at the expense of a limitation on the
maximum detectable distance. Sensors able to preserve privacy
and reach longer detection distances are Lidars. Their usage
is becoming common in vision applications of autonomous
systems as they can provide depth images with very high
resolution [11], [12], but they present some critical issues. In
fact, Lidars rely on light emission, and in an indoor situation
are unable to be used if smoke is present such as in case of
fire. They are also very expensive with respect to other types
of sensors.

Radar systems are a powerful alternative to the sensors
previously cited. They can perform detection at greater dis-
tances than other sensors, reaching, for example in the case of
automotive Radar, distances up to 30 m in short-range config-
uration, or greater than 200 m for the long-range one [13]-
[15]. Compared with Lidars and RGB cameras, Radar sensors
thus have several advantages, including greater achievable
range, being less expensive than Lidars and high-resolution
RGB cameras, and can work in the presence of smoke or in
general in difficult optical vision situations. Thanks to these
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characteristics, Radars can be used for indoor target detection
and applications such as activity recognition and AAL [16]-
[19].

A. State-of-the-art

Modern commercial automotive Radar sensors widely ex-
ploit the frequency range from 77 to 81 GHz, mainly because
the automotive market uses the W-Band for their Radar
systems [20]. Thanks to advances in this field, there are many
development boards on the market designed for automotive,
which can be used also for indoor applications [20], [21]. The
detection, identification, and localization of targets is a relevant
research field in Radar applications. To detect a target in
general and also in indoor environments, a classical approach
consists of the use of Constant False Alarm Rate (CFAR)
thresholds on Radar processed signals [22]. However, their
performance degrades rapidly in not homogeneous environ-
ments, which represent the most common situation, so, in most
cases, the CFAR algorithm fails to give a correct solution to
complex identification tasks [23]-[25]. CFAR algorithms have
been modified and improved over time proposing different
solutions, such as Cell Averaging (CA) CFAR or Ordered Sort
(OS) CFAR [26]. Other algorithms have also been developed
recently, such as Comp-CFAR [27], or CFAR based on log
[28]. All current CFAR algorithms perform target detection
via a reference window and process the data contained therein.
The reference window is usually adopted to estimate the
average interference power representing the range-Doppler
side. This is used to obtain the detection threshold, which
should be set high enough to limit the false alarm rate to
an acceptable small percentage, but using reference windows
reduces the efficiency of target detection. The main purpose
of the CFAR is to define a threshold and all values above
will be considered as a target. Many CFAR-based techniques
have been proposed with the purpose of not only revealing a
target but also classifying them [29], [30]. Unfortunately, these
methods are very sensible to the configuration of the CFAR
and must be calibrated. A more general approach must work
without calibration of the algorithm, and this is one of the
tasks of the methodology proposed in this work.

With the progressive advancement in the performance of
machine learning (ML) algorithms, data collected by the Radar
can be processed as images and used to improve traditional
Radar techniques. Experimental results [31], [32] demonstrate
that the ML approach exhibits high robustness with respect
to CFAR thresholds in noisy electromagnetic environments.
Initially, the main ML techniques used for image classification
were based on Convolutional Neural Network (CNN)s [31].
Today, real-time methods for target recognition such as YOLO,
a network called the ‘“single pass network”, are preferred
in conditions where the latency of the algorithm is rele-
vant. YOLO reduces processing time compared to other ML
techniques. The network was created for object recognition
on images or videos, like in [33], and was later applied to
Radar signals. In [34], a MIMO Radar able to exploit a bi-
dimensional array is used to obtain an image similar to one
obtained from an RGB sensor. Detection and classification of

the target, which can be a person, a fence, or a road sign,
are performed by applying a YOLO neural network using the
combination of the sensors. The results show that the use of
Radar helps the YOLO network in dark conditions or when
the lens of the camera is dirty but the problem of privacy
remains open. The obtained results also show that the Radar
systems without the joint usage of the camera can reach 84%
of accuracy in classification. Authors in [35] show how YOLO
achieves good results on range-Doppler maps using vehicles
as a target. These maps are obtained from the processing
of the Radar signals and make it possible to measure the
target’s velocity and range distance from the sensor. Range-
Doppler maps are also used in [36], where a YOLO neural
network is applied for the classification of three different
targets (pedestrians, vehicles, and bikes). In [37], [38], authors
apply YOLO to range-angle Radar images and demonstrate
the possibility of applying deep learning algorithms to high-
resolution Radar sensor data, particularly in the range-angle
domain. Furthermore, they show that the use of YOLO instead
of CNN improves classification performance.

Range-azimuth maps are notoriously difficult to analyze be-
cause of noise, especially in indoor conditions [39]. These
maps are subject to reflection problems and multipath, espe-
cially if the target of interest is a pedestrian that has a low
Radar Cross Section (RCS). A method named Deep Image
Prior (DIP) is proposed for denoising the range-azimuth map
in [39]. This method is based on ML, but it is used to help the
application of CFAR thresholds. In [40], the authors propose a
method that exploits not only the range-azimuth map but also
the range-Doppler map to improve the performance. Range
and Doppler information is also considered in [41] to simplify
detection on range-azimuth maps. In this article, Jiang et al.
test the functioning of a CNN, by relating it to conventional
methods. However, the data in this experiment are simulated
and not tested in real environments.

B. Main work contribution

In this work, the proposed method makes use of a mmWave
W-Band MIMO Radar together with a ML-based detection
and localization technique for indoor target recognition and
localization. By exploiting all the information from Radar
signal processing (i.e., angle, Doppler, and range), it is possible
to detect a moving person in an indoor scenario. The approach
first uses the YOLO on range-Doppler maps, and then we
apply YOLO to Doppler-azimuth maps. The information ob-
tained from the dual use of the network will be combined
to locate the pedestrian on the range-angle map. The main
novelty compared to the current state of the art is the use of
the three axes of the Radar data cube. Including the Doppler-
azimuth map in the processing, make it possible to better
detect and locate the target in the range-azimuth map. This
is possible thanks to the MIMO capabilities of the Radar
used, which increase the angular resolution performances. In
addition, unlike CFAR, the proposed approach can be applied
directly on Radar images and does not require the use of
thresholds or any kind of pre-calibration.

The rest of the paper is organized as follows. Section II de-
scribes the Frequency Modulated Continuous Wave (FMCW)
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Radar used and its basic operating principles. Section III intro-
duces the main concepts concerning YOLO and the processing
of the proposed method is explained. Section IV describes the
experimental tests performed and the results derived from the
application of the proposed algorithm. Conclusions are drawn
in Section V.

II. RADAR SYSTEM AND SIGNAL PRE-PROCESSING
A. FMCW Radar

The sensor used is a Texas Instruments mmWave Radar
FMCW, equipped with 12 transmitters and 16 receivers [42].
A basic block scheme of an FMCW Radar is depicted in Fig. 1.

Low Noise
Amplifier

«
Tx anteTnna I: k}
D) T

Rx antenna [s]

Chirp Synthesizer

Y
A

[HzJI

Mixer Is]
IF signal

Received chirp

Fig. 1. Radar block scheme: the transmitted signal is generated by the
Chirp synthesizer; the reflected back signal is collected by the receiver
antenna and the mixer performs the mixing between them to obtain the
IF signal.

Thanks to the MIMO technology, it is possible to obtain an
azimuth virtual array of 86 elements with a field of view of
120°, leading to an angular resolution of 1.4°. The operating
principle of the FMCW Radar is based on the transmission
of chirp signals. In the case of the sensor used, the chirp is
linearly modulated, and in particular, the device generates only
chirps with a positive slope called “Up-Chirps”. From Fig. 1 is
possible to see that the transmitted signal is reflected back by
any targets in the scene and received by the receiving antenna.
At this point, the mixer performs the multiplication between
the transmitted and the received signals which results in the
intermediate frequency (IF) signal called also the beat signal.
The transmitted and received signals and the IF signal are
depicted in Fig. 2 for the simple case of a single target in the
scene.

The chirp signal has a starting frequency fs;qrt of 77 [GHz]
and a stop frequency f¢op, Which depends on the configuration
of the Radar. The maximum usable Bandwidth is 4 [GHz]
and the value depends on the slope of the chirp and the time
tehirp. The time that the transmitted chirp takes to go from the
initial frequency fs:.r+ to the final frequency fs:op is called the
chirp time and is indicated with ¢.4,.,. The difference between
the transmitted chirp and the received chirp is indicated as
A;. Only in the time window called ¢,,er1qp the IF signal
will be sampled by the Analog to Digital Converter (ADC).
The velocity and distance of the target can be measured by
processing the samples of IF signals. As mentioned above,
the Radar used is equipped with MIMO technology, and to
estimate the Angle of Arrival (AoA) @ it is necessary to use
at least two receiver antennas.

Transmitted signal
Received signal

Frequency [Hz]

A Beat signal
fslop ffffffffffffffffffffffffffffffffffffffffffffffffff -
I
2
E
3
=
fstart ‘ ‘ ‘ ‘ >
‘_’3 H—Ni—’l Time [s]
At ! 3 tidle ! tramp 3
IF frequency |- - - a:—: }—i
0 : ‘ : ‘ >
toverlap Time [s]
Fig. 2. Transmitted, received chirp and IF signal. In the case of only

one target the IF signal is sinusoidal with only one frequency.

Each receiver antenna has a dedicated ADC that samples
the related IF signal. This can be called “spatial sampling” and
the angular information can be obtained from the processing
of these samples. The signal transmitted by the Tx antenna
is reflected by a target that has an angle 6 with respect
to the Radar antenna boresight and is received by the two
antennas R, and R,,; the relative signals are received from
two different paths, which corresponds to a phase difference.
At this point, the AoA € can be estimated as
ar(;812n(A¢)\) ’ 0

wd
where Ay their phase difference between the two received
signals, A the wavelength and d the distance between the
receiver antennas [43].

With the considered MIMO FMCW Radar, it is possible to
calculate the position of the target with respect to the Radar
position and also their relative velocity. The limits of the
obtainable measurements depend on the device configuration.
The configuration must be customized for the testing area
where the measurements are conducted.

9:

B. Radar signal pre-processing

The Radar system used in this work can be configured with
a specific software provided by Texas Instruments, namely
mmWave studio used to set the configuration parameters [44].
The main parameters to be set for this work are:

o tiqie: it is the time from one chirp transmission to another.
Is used to restore the internal ramp generator from one
transmission to another;

e lrqmp: chirp time duration. This parameter affects the
used Radar Bandwidth;

e fsampling: is the sampling frequency of the beat signal;

o fstart: 18 the starting frequency of the chirp;

e napc: number of samples in each chirp;

e Tchirp: NUmMber of chirp in each frame;

e loveriap: time over which the beat signal is sampled. De-
pends on the number of samples n 4 pc and the sampling
time;

The operating mode of the device is to group the transmissions
in a frame. Each frame is composed of a certain number
of chirp transmissions that can be set with the parameter
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Nehirp- Bach transmitted chirp will produce an IF signal
sampled with a configurable number of samples indicated with
napc. Considering only one couple transmitter-receiver and
one frame, the so-called Fast-Time/Slow-Time matrix can be
obtained by placing side-by-side the sample vectors of each
chirp. This process is depicted in Fig. 3.

Frequency [Hz]

N
IF signal | IF Signal} IF Signalp IF Sig“al“cmrp
frequency : : : :
‘l : >
— A Slow-Time [s]
5
-0
E Complex
= . IF Signal
Sample
=
I
>
Slow-Time [s]
Fig. 3. Radar IF signal samples organization: Fast-Time/Slow-Time

map.

The Fast-Time axis contains the samples of one chirp
transmission and is composed of napc samples, while the
Slow-Time axis contains samples of different chirps and is
composed of 1.y, elements. Extending the consideration to
multiple couples transmitter-receiver it is possible to obtain
a cube that is called Radar data cube, whose representation
is reported in the left part of Fig. 4. The “Spatial Sampling”
is the sampling along different receivers. All processing to
extract the information about the target is based on this data
organization. A data cube is obtained from each transmitted
frame, so organizing the data in this form is an easy way
to represent and manage the Radar IF signals’ samples. To
obtain the distance of the target from the Radar, its velocity
and AoA, the most simple way is to compute a Fast Fourier
Transform (FFT) along the different axes. For the purposes
of this work, the computation is performed bi-dimensionally,
resulting in the so-called detection maps. These maps are:
« Range-Doppler map, for the computation along the Fast-
Time and the Slow-Time;

« Range-Angular map, for the computation along the Fast-
Time and the Spatial Sampling;

o Doppler-Angular map, for the computation along the
Slow-Time and the Spatial Sampling.

A schematic representation of how the maps are obtained
from the Radar data cube is depicted in Fig. 4.

The conversion of the axis from FFT bins can be done
with the classical Radar FMCW equations but with particular
attention to the Doppler/Velocity axis. The transmission oper-
ating mode with the Radar is the Time Division Multiplexing
(TDM), so this means that all the transmitters must transmit
their signals before transmitting another chirp. Considering the
couple T, and R,,, if R,, receives the transmitted signal
at the time ¢t = 0, the next chirp from the same transmitter
T,, will be received after T = nr, - (tidgie + tramp). The
about equation used for the conversion, on the basis of this

Range [m]

Angle [°]

Range [m]

2
<
£
=
E]
s

Doppler [Hz]

Doppler [Hz]

Angle [°]

Fig. 4.  Extraction of maps from the Radar data cube: range-angle
(green), range-Doppler (yellow), Doppler-angle (white).

consideration of the maximum detectable velocity, is

A A
4T N 4- nr, - (tidle + tramp)’

2

Umazx =

where v,q, is the maximum detectable velocity, A the
center wavelength of the transmitted signal and ng, the
number of active transmitters in the Radar configuration. The
value np, heavily affects the maximum detectable velocity and
this must be taken into consideration when the configuration
parameters are chosen.

IIl. OBJECT DETECTION USING YOLO

The purpose of the proposed method is to detect and localize
a person within a room and to achieve this goal, is possible
to exploit the YOLO network. YOLO is a detection algorithm
that performs predictions on an image in a single run. It makes
use of convolutional networks for the detection of multiple
objects in a single image. This means that in addition to
predicting an object’s class, the neural network is also able
to identify the position of the object inside the image. The
first part of the YOLO network used to extract features is a
convolutional neural network, i.e., a network mainly used for
image classification. This is based on the main concepts of
linear algebra such as matrices. In the first step, the image is
divided into several grids of a certain size B; each grid cell will
detect objects that appear within it with a certain confidence.
To better understand how YOLO works, is possible to refer
to Fig. 5; YOLO takes an input image and outputs a vector,
which contains information about the position and class of the
target to be identified. In particular, the first four elements of
the vector determine the position given by the bounding box,
and contain information about:

« vertex of the element at the top right of the box (x, y);
o width of the element (w);
« height of the element (h).

The remaining part of the output vector gives the probability
that the subject belongs to certain classes (pg, - - - , Pn)-
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YOLO output Bound box
X |- rappresentation
1
T Bound box
1 .
— | predicted
Wl
YOLOV3 e
Detector 1]
P,

| Class scores

Py |1

Fig. 5. Example application of the YOLO on the range-azimuth map.

Confidence is determined using the Intersection over Union
(IoU) method, which is an evaluation metric used to measure
the accuracy of an object detector on a particular dataset. To
apply IoU, it is necessary to have:

« the ground-truth bounding boxes (i.e., the bounding boxes
manually labeled in the test set which specifies where the
object is in the image);

« the bounding boxes provided by the used model.

The IoU is given by the ratio between the overlap area
and the union area; the overlap area is the area between the
predicted bounding box and the ground-truth bounding box,
while the union area corresponds to the area enclosed by both
the predicted bounding box and the ground-truth bounding
box. If the IoU is larger than 75% the prediction is considered
good. When a new input arrives, the YOLO network estimates
the position and class of the object for that input. Several
bounding boxes may be generated for a single ground truth,
and in order to choose which of these is the most important
one, non-maximum suppression (NMS) is used, i.e., only the
one with the highest value is extracted.

The YOLO network is trained on the basis of a dataset
whose labels we already know or, a dataset to which we apply
labels. The labels contain information about the class and the
bound box. Typical parameters used when training a YOLO
model include:

o Learning Rate: it adjusts how quickly the model updates
its weights according to the gradient calculated during
training;

e Mini Batch Size: fixed number of training examples that
is less than the actual dataset;

o Penalty Threshold: detections that overlap by less than
this value are penalized.

o Warm-up period: it represents the period during which
the desired learning rate is to be achieved;

o Augmentation: it allows the model to be trained on dif-
ferent versions of the available data to avoid overfitting.

A. Proposed Method

The YOLO network is first applied to range-Doppler maps.
Once obtained the bounding boxes, we can derive the position
of the person, the assumed speed, and whether is moving
away or towards the Radar. From these bounding boxes, in
particular, we are interested in determining the portion of the
range in which the target is located, as can be seen in Fig.
8(a), where the portion of interest is delimited by x; and
x9. If several bound boxes are predicted, and the case of a
single pedestrian is analyzed, the one with the highest score is

chosen. The process is then applied to azimuth-Doppler maps.
In this case from the bounding boxes we obtain information
about the portion of the angle, delimited by 6; and 65, where
the target is located with respect to the Radar. An example
is reported in Fig. 8(b). This way, we obtain information
about the range and angle of the target, and we can combine
them together in order to cut out the portion of no interest
in the range-azimuth map, as done in Fig. 8(c). This allows
us to clean up the range-azimuth map and improve target
detection by eliminating noise on the map, due, for example,
to multipath or reflections from other objects in the room.
An example of what happens in practice is shown in Fig.
6. Considering a frame extracted from the Radar data cube,
this can be represented using the “grey” colormap and work
by eliminating the background on all sides of the Radar Data
cube. In Fig. 6(a) is possible to see the range-Doppler image of
a moving person. From this map, the resulting velocity of the
target is about 1 [m/s], and approaching the Radar position.
The elongated shape is due to the micro-Doppler effect [45].

As explained in Section III-A, we feed the network with
the range-Doppler and the Doppler-azimuth maps to obtain
the bounding boxes. To emphasize the results, we report the
range-azimuth map in Fig. 6(c), which has not been processed,
while Fig. 6(d) shows the post-processed image.

It is possible to observe that, by applying the proposed
method, most of the noise is removed from the map. The
example just discussed (Fig. 6) is based on the removal of
the background. In order to generalize the proposed approach,
in the following we will proceed using acquisitions without
background removal. This is possible thanks to a colormap that
is called “Colorcube”. In this color scales a specific colormap
is made, this is divided into equal steps and each one contains
the red, green, and blue intensities of a specific color.

By changing the color scales in colorcube, even small differ-
ences in intensity are enhanced and the target can be visualized
in a pronounced mode, furthermore using this colorbar is not
necessary. This is not possible with other scales where there
is a variation of color from maximum to minimum intensity
value, or vice versa. The YOLO network is based on a CNN
network, so having uniform images helps in increasing the
performance, which is why this representation was adopted.
An example of maps represented with “Colorcube” are shown
in Fig. 7, where a range-Doppler image in 7(a) and an azimuth-
Doppler map in 7(b) are reported, respectively. It can be seen
that there are different speed scales and ranges between Fig.6
and Fig. 7 due to idle time value and chosen operating mode
respectively.

B. YOLO parameters

For the tests, is considered a YOLOvV3 and a SqueezeNet
as backbone CNN, since it is the lightest in terms of weight
and number of parameters. SqueezeNet is a pre-trained model
on ImageNet [46], to which is applied layer freezing and
transfer learning. Freezing a layer means that its weights
cannot be changed further. The main advantage of transfer
learning is that it mitigates the problem of insufficient training
data limiting the number of parameters that can be updated
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Fig. 7. Maps visualization with colorbar “Colorcube”: (a) range-Doppler
map, (b) azimuth-Doppler map.

during the training process. In this case, all the layers of
the SqueezeNet are frozen and we train just two CNN-based
“heads” of the YOLO starting from layer 27 to layer 34 and
from layer 56 to the last layer of the SqueezeNet. This choice
is made because layer 62 (“fire-9-concat”) and layer 33 (“fire-
5-concat”) are detection network sources. The parameters
chosen for the network are reported in Table I.

TABLE |
YOLOV3 PARAMETERS.
N_epochs 70
LearningRate 0.001
MiniBatchSize 8
Penalty threshold 0.5
Warm-up Period 500

Input size
Augmentation 1
Augmentation 2
Augmentation 3

227 x 227 x 3 pixel
Color jitter
Random horizontal flip
Random scaling by 10%

In order to avoid overfitting problems, the dataset is aug-
mented before training. The augmentation process includes the
application of random horizontal flipping, random x/y scaling,
and finally the application of jitter color. Jitter color is a

technique that allows to vary the brightness, contrast, hue, and
saturation of the images.

IV. EXPERIMENTAL RESULTS
A. Dataset realization

The experimental tests were conducted at the Department
of Information Engineering (DII) of Universita Politecnica
delle Marche. The test targets are people moving within a
room. Several settings and setups are considered, involving
different Radar positions, different subjects, and different ways
of walking, as discussed in this section. The chosen Radar
parameters are shown in Table II.

TABLE Il

RADAR PARAMETERS.

NADC 500

Nechirp 128
fBandwidth 3.8 [GHz]
fsampling 20000 [kHZ]

N frame 78

fstart 77 [GHz]

tidie 20 [us]

tramp 52 [ps]
Ramp Slope | 76 MHz [ps]
Range max 10 [m]

The Radar system is placed on a stand, and connected to
the control computer and to the power supply. Two initial
acquisitions were made to train the YOLO network: in the
first, the Radar is placed at the height of 950 £ 2 [mm] above
the ground, while during the second acquisition at 1200 £ 2
[mm] above the ground. The room in which the experiments
were conducted is 8500 £ 2 [mm] long. The measurements
are made with a DTAPE laser distance meter (model DT50).
The analyzed cases involve a person walking with two walking
modes during each acquisition:
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Fig. 8. Data processing: (a) detection on range-Doppler map, (b) detection on Doppler-azimuth map, (c) detection range-azimuth map.

o Linear mode, as shown in Fig. 9 (1);

« Random mode, as shown in Fig. 9 (2).
Two different subjects were involved in these training acqui-
sitions.

3 [m]
10 [m]
0 [m]
Fig. 9. Acquisition setup: linear walking mode (1), random walking
mode (2).

As illustrated in Fig. 4, three different types of maps can
be obtained from the Radar Data Cube. Therefore, for each
acquisition obtained 78 images relating to the range-Doppler
side, 78 relating to the azimuth-Doppler side and 78 relating
to the range-Azimuth side. Based on the above, three different
datasets were collected, from an acquisition in which the
subjects move linearly and randomly; acquisitions are made
considering one subject at a time. The realized datasets are
used to train three different YOLOv3 Networks:

e YOLOV3 trained on images derived from range-azimuth

maps;

e YOLOV3 trained on images derived from range-Doppler

maps;

e YOLOvV3 trained on images derived from azimuth-

Doppler maps;
The first network listed is only used later to make a compari-
son, initially focusing on the realization of the algorithm with
the other two networks.

These datasets are divided into two parts, 80% for train-
ing, 20% for validation. Before testing their functionality,
the network is used on an acquisition performed under the
same conditions considered during the training to verify the
efficiency. The algorithm is tested on four different cases,

considering other different subjects. The test set is composed
of the following tests: Nella descrizione dei test va descritta
meglio la differenza di setup rispetto la tabella 2. La question
complex 1x o 2x & una cosa del nostro radar e sarebbe meglio
metterla generica. Vanno inseriti i parametri modificati in
relazione a quelli messi nella tabella. Gli altri 1i possiamo
tralasciare essendo specifici per il nostro radar.

e Test 01: Test on a map obtained from an acquisition in
which a person walks in a linear mode. The Radar is
raised up to 180 [cm] and tilted by 15°.

e Test 02: The room remains unchanged, while the position
and the height of the Radar vary. In addition, there is a
change in the Radar configuration. With this configura-
tion, two different acquisitions are performed, denoted in
the following as ‘Test02 a)’ and ‘Test02 b)’;

e Test 03: Same setting of Tests 01 and 02, Radar posi-
tioned in front of the targets.

o Test 04: Change of environment and Radar configuration.
In order to stress the algorithm more, the last acquisition
is made in the hallway.

TABLE Il
TEST RADAR PARAMETERS.
TestO1 Test02 Test03 Test04
nADC 500 500 500 500
Nehirp 128 128 128 128
fBandwidth 3.8 [GHz] 3.8 [GHz] 3.8 [GHz] 3.8 [GHz]
fsampling 10000 [kHz] | 10000 [kHz] | 10000 [kHz] | 10000 [kHz]
Nframe 78 78 78 78
fstart 77 [GHz] 77 [GHz] 77 [GHz] 77 [GHz]
tidie 20 [ps] 5 [ps] 5 [ps] 5 [ps]
tramp 52 [ps] 52 [us 52 [us 52 [us
Ramp Slope 76 MHz [us] | 76 MHz [ps] | 76 MHz [us] | 76 MHz [us]
Range max 10 [m] 20 [m] 20 [m] 20 [m]

B. Results and discussion

The accuracy of the network is evaluated by considering

precision, recall, and average precision on the validation set.
These metrics are the most widely used to evaluate the Object
Detection algorithm [47]. Precision indicates the model’s
ability to avoid false positive predictions. Recall measures
the ability of the model to avoid false negative predictions.
It indicates the percentage of correctly identified positive
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samples out of the total number of positive samples in the
dataset.

Fig. 10 shows the trend of precision and recall related
to a network trained on the range-Doppler dataset, azimuth-
Doppler dataset, and range-azimuth dataset. From the figure
it can be seen that the results of the network trained on
range-azimuth images are not good, in fact, high precision
values indicate that there are no false positives, while low
recall values indicate the presence of many false negatives.
While high levels of accuracy and precision are achieved
in the other two networks, this means that they are able to
make accurate predictions and have a good ability to correctly
identify positive objects. These results suggest that the model
has a good ability to generalize and is effective in the specific
application for which it was trained.

095r b
=
=]
Z 09+t — range-azimuth (Average Precision = 49 %)
3 — range-Doppler (Average Precision = 90 %)
Q‘: azimuth-Doppler (Average Precision = 94 %)
0.85F b
0.8 I I I I
0 0.2 0.4 0.6 0.8 1
Recall
Fig. 10. YOLO performance relative to validation test: range-azimut

(blue), range-Doppler (red), azimuth-Doppler (yellow).

Using the YOLO network on both sides for indirect de-
tection on the range-azimuth map allows me to decrease the
number of false negatives compared to the network applied
directly on the range-azimuth maps.

To evaluate the performance of the algorithm of the test set
we cannot exploit average precision because the bounding-
boxes on range-azimuth are obtained indirectly using the
YOLOV3 on the other maps. We then count the number
of frames in which the bounding box is correctly detected.
Considering that the total number of frames for all acquisitions
is 78, Table IV shows the number of frames in which the
bounding box is correctly detected in the range-Doppler map
and the number of frames in which detection occurred in
the azimuth-Doppler side in the four different tests under
consideration. The last two columns refer to the number of
frames in which detection is performed on the range-azimuth
side, respectively, using the algorithm to cut range-azimuth
maps and to the number of frames in which detection is
performed.

As can be seen from the table, the application of the YOLO
network on range-Doppler maps gives good results even in
unfavorable situations such as a change of background. Range-
azimuth maps in which only a portion of the range and not
a portion of the angle is identified can be also considered as
good results.

The obtained results testify to the good generalization ability
of the network since the algorithm works properly even in
situations that were not included in the training set initially
used.

TABLE IV
NETWORK PERFORMANGE EVALUATION ON TESTS.
range- azimuth- | range- range
Doppler Doppler azimuth azimuth
(indi- (directly)
rectly)
Test01 78 77 77 33
Test02 a) | 78 73 73 18
Test02 b) | 76 63 63 25
Test03 a) | 70 77 72 20
Test03 b) | 78 73 73 23
Test03 c) | 78 77 77 19
Test04 76 73 70 7

V. CONCLUSIONS

In this paper we have proposed an approach for target
detection and localization based on the joint use of FMCW
Radar and YOLO network. The results show that it is im-
possible to apply YOLO directly on range-azimuth maps, due
to the numerous false negatives that are obtained; to increase
resolution and detection accuracy, we exploited all three sides
of the Radar cube, including range-Doppler, Doppler-azimuth
and range-azimuth maps, withouth background removal. The
focus was on generalizing the approach as much as possible,
working on range-azimuth maps without pre-processing is
difficult so a method is proposed that can use speed to locate
the target. An important aspect of our proposed method is its
superiority over Constant False Alarm Rate (CFAR) thresh-
olds. Unlike CFAR, which requires calibration to determine
the threshold and lacks classification capabilities, our YOLO-
based approach inherently handles classification tasks due to
its convolutional neural network architecture.

By considering experimental tests which included different
Radar configurations, subjects involved and indoor environ-
ments, we have shown the feasibility of the proposed approach
and proven that it is able to achieve a very good detection
precision and a good generalization capability. Future works
will include the application of a Kalman filter to predict the
position of a moving target when the algorithm fails and
skips detection in a frame. The multitarget case will also be
analyzed.
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