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Crypto price discovery through

correlation networks ∗

Paolo Giudici † Gloria Polinesi

Abstract

We aim to understand the dynamics of crypto asset prices and, specifically,

how price information is transmitted among different bitcoin market ex-

changes, and between bitcoin markets and traditional ones.

To this aim, we hierarchically cluster bitcoin prices from different ex-

changes, as well as classic assets, by enriching the correlation based Mini-

mum Spanning Tree method with a preliminary filtering method based on

the Random Matrix approach.

Our main empirical findings are that: i) bitcoin exchange prices are posi-

tively related with each other and, among them, the largest exchanges, such

as Bitstamp, drive the prices; ii) bitcoin exchange prices are not affected

by classic asset prices, but their volatilities are, with a negative and lagged

effect.
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1 Introduction

The research literature on crypto currencies is relatively new, but is con-

stantly growing. After the seminal technical paper of Nakamoto (2008),

the paper by Dwyer (2015) examines the economics and financial proper-

ties of cryptocurrencies, and the paper by Corbet et al. (2018b) provides

a systematic review of the literature that has been developed after 2008 on

cryptocurrencies as financial assets.

Within such literature, a relevant stream of research concerns the study

of the dynamics of cryptocurrency market prices, either from an endogenous

viewpoint or in relationship with other ”classic” market prices. While some

papers investigate this issue from a univariate statistical approach, focusing

on bitcoin prices, very few consider a multivariate statistics viewpoint, which

deals with the interconnectedness among crypto prices and between crypto

prices and classic prices.

A noticeable exception is the paper by Corbet et al. (2018a), who analyses

the relationships among alternative cryptocurrencies: Bitcoin, Litecoin and

Ripple, and show that they are strongly interconnected, demonstrating sim-

ilar patterns of returns and volatility. A related paper is Ciaian et al. (2018)

who analyse the relationship between the bitcoin and sixteen alternative coin

prices, and found that they are indeed interdependent, but independent from

exogenous factors. Corbet et al. (2018a) also analyse interdependence be-

tween crypto prices and a variety of other financial assets such as gold, bonds

and stocks. They found that the volatility of cryptoassets is substantially

higher than that of traditional assets, and that cryptocurrencies are rather

isolated from other assets, thus showing a diversification benefit. Dyhrberg

(2016) and Bouri et al. (2017) reach similar conclusions, thus confirming that

cryptocurrencies are rather isolated from classical assets. Note however that

the same authors conclude that such isolation emerges in the short run, but

not in the long run and, thus, the evidence on the ”diversification benefit” is

not conclusive.

Understanding price interconnectedness is important not only to describe

2

relationships between different asset prices, but also to understand whether

prices in different markets quickly react to each other or, in other words,

whether markets are efficient. The paper by Brandvold et al. (2015) is

the first one that addresses this question, studying the price discovery pro-

cess in bitcoin markets, by means of the econometric methodologies of Has-

brouck (1995) and Gonzalo & Granger (1995). Using data from seven ex-

changes, in the period from April 2013 to February 2014, they find that

Mtgox (bankrupting shortly after the sampled period) and BTC-e are the

price setters. Pagnottoni et al. (2018) extends their analysis to the period

January 2014 to March 2017, and found an increased role of Chinese ex-

changes. A related work is the paper of Urquhart (2016) who specifically

analyzes whether bitcoin markets are efficient, using price return data from

August 2010 through July 2016: they cannot confirm the efficient market

hypothesis. However, another study (Nadarajah & Chu, 2017) reveals that

a power transformation of bitcoin returns can be concluded as ”weakly effi-

cient” and, thus, the evidence on bitcoin market efficiency is not conclusive.

Our contribution is to develop a novel multivariate statistical model to

study cryptocurrency price dynamics, aimed at acquiring further empirical

evidence on whether bitcoin prices from different exchanges are strongly in-

terrelated, as in an integrated and efficient market, following the paper by

Brandvold et al. (2015); but also whether such interactions are affected

by ”exogenous” prices of classical assets, as in the paper of Corbet et al.

(2018a). In other words, we aim to answer, with the same multivariate sta-

tistical model, the question of whether the bitcoin, whose capitalisation is

now substantial, is still an investment diversifier and the question of whether

the markets where bitcoin are traded are efficiently integrated.

Besides shedding more light on the diversification and efficiency property

of bitcoin prices, we extend Corbet et al. (2018a), Brandvold et al. (2015),

and the related papers, by modelling price interconnectedness with corre-

lation network models, as in the recent paper of Giudici and Abu-Hashish

(2018). However, differently from the previous authors, instead of insert-
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ing correlation networks into a Vector Autoregressive model, which requires

strong distributional assumptions, we follow a non parametric clustering

model, based on the minimum spanning tree (MST) approach proposed by

Mantegna (1999). The MST approach will be extended with a preliminary

random matrix filtering, that improves its interpretability.

The paper is organized as follows: Section 2 contains our proposed model;

Section 3 presents the available data; Section 4 the empirical application of

the proposed model to the data; Section 5 contains some concluding remarks.

2 Proposal

In this section we present our methodological contribution: a clustering

method for market prices, based on the minimum spanning tree approach

proposed by Mantegna, empowered by the random matrix approach.

Mantegna (1999) proposed the Minimum Spanning Tree (MST) to detect

the hierarchical organization of stock prices in financial markets, using their

correlation matrix. Spelta and Arayuo (2012) further qualified the MST as

a network structure between a group of nodes, representing different time

series, whose edges minimise the pairwise distances between each pair of

nodes. In other words, an MST can be seen as a parsimonious representation

of a network model, in which sparseness replaces completeness.

More formally, consider N financial assets, for which we observe the cor-

responding price time series: (Pi, i = 1, . . . , N), each of which is a vector of

prices observed in T different time periods: Pi = (Pi(t), t = 1, . . . , T ). From

the price time series we can obtain N return time series, (Ri, i = 1, . . . , N),

as follows:

Ri(t) = logPi(t)− logPi(t− 1).

From the return time series we can calculate the correlation matrix C,

whose elements Cij are defined by:

Cij =
E(RiRj)− E(Ri)E(Rj)

σ(Ri)σ(Rj)
,
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where E() indicates the mean value and σ() the standard deviation of each

return time series.

From the correlation matrix C we can then calculate the distance between

any two assset returns, dij, as follows:

dij =
√

2− 2 ρij,

a function which ranges between (0, 2), with dij = 0 when ρij = 1 and dij = 2

when ρij = −1. It assumes that, for any pair of asset return time series, the

higher the correlation, the lower the distance.

Let then D = (dij, i = 1, . . . , N ; j = 1, . . . , N) be a matrix which contains

all pairwise distances. We can associate to the distance matrix a network

G = (V,W ), with vertices V that correspond to the N asset return time

series and with connection weights W between them which correspond to

the N(N−1)
2

pairwise distances dij.

The Minimum Spanning Tree (MST) proposed by Mantegna (1999) is

based on the distance matrix D. It reduces the number of weights that can

connect the N nodes, from N(N−1)
2

to N−1. It does so through a hierarchical

clustering algorithm which associates to each node only another one, that is

minimally distant from it, under the constraint of avoiding loops between

groups of nodes.

We remark that the network structure simplification induced by a mini-

mum spanning tree may be too drastic, especially if based on random noise

rather than on actual distances between nodes. To overcome this problem,

in this paper we suggest to preprocess the correlation matrix and, therefore,

the distance matrix, before applying the Minimum Spanning Tree method.

The necessity to improve the MST representation was pointed out by

Tumminello et al. (2005), who introduced the Planar Maximally Filtered

Graph (PMFG), which preserves the hierarchical structure of the MST, but

with a more complex structure. Indeed, given a set of N time series, a MST

contains N − 1 links whereas a PMFG contains 3(N − 2) links.

Here we aim to improve the MST without enriching its structure but,

rather, working on its input: the distance matrix. To achieve this goal, we
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employ the Random Matrix Theory approach (RMT), proposed by Onnela

et al. (2004) and Tola et al. (2008), pre-processing the correlation matrix by

removing the noise contained in it.

The rationale behind the random matrix theory approach is to employ

each empirical eigenvalue (λk, k = 1, . . . , N) obtained from the correlation

matrix C, as a test statistic for the null hypothesis that the correlation

matrix is a random Wishart matrix C ′ = 1
T
AAT , where A is a N × T matrix

containing N time series of length T , whose elements are independent and

identically distributed ”white noise” random variables, with zero mean and

unit variance.

To actually implement the test, we need a statistical distribution. Marchenko

and Pastur (1967) showed that, under the null hypotheses, λ1 = . . . = λN =

λ, and that the asymptotic density of λ, for a fixed Q = T
N

≥ 1, as N → ∞

and T → ∞, is given by:

f(λ) =
T

2π

√

(λ+ − λ)(λ− λ−)

λ

where λ ∈ (λ−, λ+), with λ+ = σ2 + 1
Q
+
√

1
Q
and λ− = 1 + 1

Q
−

√

1
Q
.

From the above density, it follows that, when λk ≥ λ+, the null hypotheses

is rejected, as the k-th empirical eigenvalue cannot be an eigenvalue from a

random Wishart matrix.

From an operational viewpoint, if the eigenvalues are ordered from the

largest to the smallest, we can retain only those that exceed λ+ and recon-

struct the correlation matrix, through singular value decomposition, using

only the eigenvectors corresponding to them. Doing so, as suggested by

Plerou et al. (2002) we ”filter” the correlation matrix.

From an empirical viewpoint, Miceli and Susinno (2004) show that, when

the random matrix approach is applied as outlined before, the minimum

spanning tree leads to a grouping of assets that better correspond to ”typ-

ical” investment strategies. Our aim is different: we would like to verify

whether the application of the RMT on the correlation matrix between bit-

coin exchange and classical market prices produces a minimum Spanning Tree

6

that can shed light on what drives bitcoin prices: endogenous or exogenous

factors.

3 Data

In this Section, we describe the analysed data.

We consider, without loss of generality, the most important cryptocur-

rency: the bitcoin, whose relative price will be taken with respect to the US

dollar. With no further loss of generality, and to reduce volatility issues, we

consider daily prices, obtained at the end of the day.

Our first research question is to assess whether bitcoin prices in different

exchange markets are correlated with each other, thus exhibiting ”endoge-

nous” price variations. To understand this question, we have chosen a set of

representative exchange markets, for which price data is available, in a suffi-

ciently long period of time. Specifically, we have selected eight exchange mar-

kets, representative of different geographic locations, which represent about

60% of the total daily volume trades. They are reported in Table 1, along

with the corresponding market shares. For each exchange market, we have

collected daily data for a time period that goes from May, 18th, 2016, to

April 30th, 2018.

[Table 1 about here]

Our second research question is to understand whether bitcoin price varia-

tions can also be explained by exogenous classical market prices. To evaluate

this issue, we have obtained daily data on some of the most important asset

prices: Gold, Oil and SP500; as well as on the exchange rates USD/Yuan and

USD/Eur. Similarly to what done for bitcoin prices, we have considered, as

daily price, the market closing price. When jointly considering bitcoin and

”standard” markets, one issue to be solved is that, while Bitcoins are traded

24 hours per day and 7 days per week, standard markets have closing times
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and days. We have overcome this issue keeping standard market prices con-

stant at the last closing time, during market closure.

Figure 1 presents the time evolution of the Bitcoin prices, in the consid-

ered time period.

[Figure 1 about here]

From Figure 1 note the well known 2017 rise in Bitcoin prices, from a

minimum of about 430 dollars per bitcoin to a maximum of almost 20,000

dollars, followed by a high volatility in 2018. Note the slight differences

between prices, which shows that bitcoin prices in different market exchanges

are not perfectly aligned. To better understand the latter finding, some

summary statistics on the considered data are presented in Table 2.

[Table 2 about here]

Table 2 confirms the slight differences in bitcoin prices along the consid-

ered market exchanges: the means and the standard deviations are slightly

different, and more so are the extreme statistics. With respect to classical

assets, such as Gold and Oil, the volatility of bitcoin prices is much higher:

respectively, about 80 and 1400 times higher. Even with respect to SP500,

the volatility of Bitcoin prices is about 20 times higher. Instead, exchange

rates are, as well known, much less volatile than bitcoin prices. These re-

sults are in line with the available literature (see e.g. Corbet et al., 2016b).

Finally, looking at the last column in Table 2 note that bitcoin prices have

values of kurtosis quite similar among each other, and lower than those of

the classical assets,

4 Empirical findings

The aim of this section is to apply our proposed model to verify whether

bitcoin prices from different exchanges are strongly interrelated with each

8



other and whether such ”endogenous” interactions are affected by ”exoge-

nous” prices of classical assets.

Figure 2 presents, by means of a heatmap, all pairwise correlations be-

tween the considered asset prices, in the considered time period. Positive cor-

relations are marked in blue, and negative correlations in red, with stronger

colors indicating higher correlations (in absolute values).

[Figure 2 about here]

From Figure 2 note that the correlations between different exchange prices

are quite high, revealing that markets are highly correlated and synchronized,

resulting in a strong endogenous driver of price variation. On the other hand,

correlations with ”real” asset prices, such as gold and oil, are low, a result

in line with the literature, that considers bitcoins as potential diversification

assets (see e.g. Corbet et al., 2018a). However, the correlation with the

SP500 index is positive and those with the exchange rates are negative, a

result that seems to conflict with the reference literature.

To better understand the implications of Figure 2, Giudici and Abu-

Hashish (2018) analysed similar bitcoin price data using partial correlation

networks. This because pairwise correlation may be inflated by correlations

that may arise from a common relationship with third variables. Their em-

pirical findings show that bitcoin prices on one hand, and ”classic” asset

prices on the other hand, form two rather distinct clusters of connections,

which are are highly interconnected inside. They also show the high cen-

trality of two of the largest bitcoin exchanges: Bitfinex and Bitstamp, which

thus emerge as ”price setters”. They also find that the link between the two

clusters is given by the Hitbtc exchange, which is affected both by standard

asset prices and by other exchange market prices.

Here we take a different approach to improve the empirical findings that

can be obtained from the correlation matrix in Figure 2. We derive the

Minimum Spanning Tree of the correlation matrix, introduced in Section 2.

The obtained MST is shown in Figure 3.
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[Figure 3 about here]

From Figure 3 note that Bitfinex and Bitstamp have a pivotal role, as

found in Giudici and Abu-Hashish (2018). However, the MST reveals more

insights. For example, it shows that, while Bitfinex is ”closer” to real financial

assets, such as Gold, SP500 and Oil, Bitstamp is more related with exchange

rates. In addition, Hitbtc separates Bitfinex from Gold. Note also that

smaller exchanges are more peripheral.

Indeed, the advantage of MST models, with respect to correlation net-

work models, is that they provide a ”hierarchical” split of the prices (nodes),

showing them in order of distances (weights), calculated from their correla-

tions. Table 3 reports the weights corresponding to the application of the

MST algorithm to the considered data.

[Table 3 about here]

From Table 3, note that the ”closest” nodes are those between bitcoin

price exchanges, as expected: their pairwise connections correspond to the

first seven edges of the MST. The following edge is placed between the two

exchange rates, then between SP500 and oil. Last, the procedure finds three

edges that break the ”separation” between crypto and classical asset prices:

the first one relates Hitbtc with Gold; the second one Gemini with SP500; the

last one UsdYuan with Kraken. These latter results are quite meaningful, as

they characterise the ”local” behaviour of specific exchanges, a phenomena

already found in Giudici and Abu-Hashish (2018).

We now verify whether the application of the Random Matrix Theory

approach, before implementing the Minimal Spanning Tree, can extract fur-

ther empirical findings from the correlation matrix. The results are shown

in Figure 4.

[Figure 4 about here]

From figure 4 note that the filtered MST provides a graphical structure

that is simpler then that obtained in 3, without the application of RMT
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filtering. On one hand, bitcoin exchange prices form a ”star” configuration,

with Bitstamp at the center, confirming its role of price setter; while Bitfinex,

probably because of its relatively high volatility, is not found to be central.

On the other hand, all classic asset prices are separated from bitcoin prices,

pointing towards a ”diversification benefit” of bitcoins with respect to them,

a result fully in line with the existing literature. Note also that the MST

well separates the role of ”real” assets, such as SP500, Oil and Gold, from

”financial” assets such as the exchange rates.

To summarise, filtering the correlation matrix with the random matrix

approach leads to a Minimum Spanning Tree that, with respect to the un-

filtered one, is simpler and which leads to empirical findings that: i) do not

indicate a significant correlation between crypto prices and exogenous price

drivers, from classical markets, consistently with the literature; ii) indicate

that exchange prices have a strong endogenous source, which specifically

come from the largest and least volatile exchanges, such as Bitstamp.

We can draw more interpretation examining the distance weights corre-

sponding to the joint application of the RMT and MST, in Table 4.

[Table 4 about here]

Comparing Table 4 with Table 3, the previously discussed findings are

confirmed. Again the seven closest pairs of nodes concern bitcoin exchange

prices, indicating a strong presence of endogeneus price variation; in addition,

in Table 4, all pairs contain the Bitstamp node, indicating its centrality. A

further difference is that the connections between crypto prices and classic

prices reduce to two, and they both involve Hitbtc. This result is more in

line with what obtained in Giudici and Abu-Hashish (2018) about the role

of Hitbtc as a ”separator” between classic and crypto assets.

To assess the robustness of our empirical findings, we now verify whether

the found tree structure is stable over time. For this purpose, Figure 5

shows the MST obtained in each of nine one-year rolling periods, after the

application of RMT. The first one starts from 18/05/2016, the following are

shifted ahead by one month, until the eigth one which starts on 18/02/2017.
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[Figure 5 about here]

Figure 5 shows that the MST configuration is quite stable over time,

particularly from the third period onwards, as all graphs show a configuration

similar to the ”static” one in Figure 4. From a theoretical viewpoint, we

remark that, when random matrix theory is applied before the application

of the minimal spanning tree the results are stabilized, as RMT filters out

noise. In fact, comparing the different time periods in Figure 5, the spanning

trees do not change sensibly, even during bubble periods. We have indeed

applied the test for crypto bubbles suggested in Cheah and Fry (2015) and

Hafner (2018), obtaining that the december 2017 period shows a significant

bubble. However, Figure 5 shows that the two correlation networks at the

bottom of Figure 5, which fully contain the bubble period, do not show an

evident structural change.

We have conducted a further robustness test on the time dynamics of our

results. From Table 2 the kurtosis observed for the bitcoin prices is smaller

than that of classical assets, and this may justify the use of an unconditional

variance. We have however assumed that the unconditional variance is dif-

ferent from the realised one and we have calculated pairwise correlations not

among returns, as before, but among volatilities, to see what could drive the

volatility dynamics, rather than the price dynamics.

In particular, we have postulated the existence of a negative correlation

between the realised macroeconomic volatility and the realised volatility of

bitcoin prices, as suggested by Conrad, Custovic and Ghysels (2018). These

authors report that the two months lagged SP500 realised volatility may be a

useful predictor for the bitcoin volatility. Following this suggestion, we have

calculated the pairwise correlations between all bitcoin exchange volatilities,

and all classical assets volatilities (lagged by two months), and reported them

in Figure 8.

[Figure 8 about here]
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From Figure 8, note that the correlation between classic assets and bit-

coins is constant across different exchanges. In particular, the bitcoin volatil-

ity is negatively correlated with that of the SP500 index. This indicates a

further, important, empirical finding: the volatility of classic asset prices

negatively affects the volatility of bitcoin prices, with a delay.

This result, that confirms Conrad, Custovic and Ghysels (2018) can be

better seen in Figure 9, which reports in the same graph the realised volatil-

ities of the Bitcoin Bitstamp price and for the SP500 index In the figure,

both voltilities have been normalised, being the volatility of the bitcoin price

much higher (10 times more on average).

[Figure 9 about here]

From Figure 9 the two months lagged effect of the volatility of the SP500

index on the bitcoin price volatility of the Bitstamp exchange, is evident.

Similar results hold for all other exchange prices, consistently with the found

price setter nature of the Bitstamp exchange.

As a last robustness exercise on our empirical findings, we compare, on

the same data, our method with the Planar Maximally Filtered Graph and

with the Granger causality network, suggested in Billio et al. (2012). Figure

8 and 9 give the results from the application of these two methodologies.

[Figure 8 about here]

[Figure 9 about here]

Figure 9 and 8 show that, as expected, the Granger causality network

graph and the Planar maximally filtered graph are more connected than our

Minimal Spanning tree graphs. They also show that the connections found

with the MST are also significant present in the Planar Maximally Filtered

Graph and in the Granger causality network graph. Upon comparison with

Giudici and Abu-Hashish (2018) the same connections are also present in

their partial correlation graph. All these findings lead to the conclusion
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that the relationships found by our MST graphs are consistently found using

other methods and, therefore, the interpretation drawn upon their findings

are quite robust.

5 Conclusions

We have proposed a new statistical model for the explanation of what drives

the bitcoin prices. The model is based on the correlation matrix between

the observed returns, which is first filtered from noise, applying the Random

matrix theory and, then, employed to derive a clustering structure among

prices, applying the Minimum Spanning Tree.

Our main methodological contribution consists in the combination of the

random matrix theory approach with the minimum spanning tree approach,

and in their application to the determination of the bitcoin price drivers.

Our empirical findings show that bitcoin prices from different exchanges

have a strong endogenous driver of variation: they are highly interrelated,

as in an efficiently integrated market, consistently with the literature. In

addition, we found that the largest and least volatile exchanges (such as

Bitstamp) are the most important price setters. Our results also confirm the

literature in showing that bitcoin prices are unrelated with classical market

prices, thus bringing further support to the ”diversification benefit” property

of crypto assets. In addition, we found that the volatility of classic assets

affects negatively, and with a time lag, the volatility of bitcoin prices.

Finally, our empirical findings are robust, with respect to the considera-

tion of different time periods, that also include bubbles, and are consistent

with those obtained from different methodologies aimed at measuring inter-

connectdness between market prices.

We believe that the main beneficiaries of our results may be regulators

and supervisors, aimed at preserving financial stability, as well as investors of

crypto assets, who should be protected against the negative sides of fintech

innovations (higher risks) while keeping their positive sides (lower costs and
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better user experience). For a general discussion of this point see also Giudici

(2018).

Future work requires acquiring more data, on other bitcoin exchanges,

and on other crypto assets, to further assess the validity of the obtained

conclusions, and possibly obtain further findings. From a methodological

viewpoint, it may be worth considering modelling assets returns with gener-

alised extreme value distrutions (as in Calabrese and Giudici, 2015), which

can take high volatility into account; or with Bayesian models (as in Figini

and Giudici, 2011), which can incorporate expert information into the model.

It would also be importna to consider the implications of our results in terms

of asset allocation.
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Figures and Tables

Table 1: Exchange markets by daily trading volumes

Exchange Market share

Bitfinex 42%

Coinbase 6%

Bitstamp 5%

Hitbtc 3%

Gemini 2%

itBit 1%

Kraken 0.5%

Bittrex 0.5%

Note: The considered market exchanges, by daily trade volume market shares.

Data taken from https://cryptocoincharts.info/markets/info
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Table 2: Summary statistics

Price Mean St. Dev. Min Max Kurtosis

Bitfinex Bitcoin 3899.56 4274.46 435.61 19187.12 3.22

Coinbase Bitcoin 3919.05 4318.98 438.38 19650.01 3.22

Bitstamp Bitcoin 3899.04 4286.02 439.62 19187.78 2.50

HitBtc Bitcoin 3916.19 4297.17 436.36 19095.30 3.77

Gemini Bitcoin 3910.38 4306.36 437.57 19475.90 2.90

ItBit Bitcoin 3907.13 4300.32 438.61 19357.97 2.67

Kraken Bitcoin 3890.18 4272.55 433.50 19356.91 2.05

Bittrex Bitcoin 3893.83 4269.89 421.11 19261.10 2.53

Gold 1275.57 52.34 1128.42 1366.38 7.02

Oil 48.67 3.16 39.51 54.45 18.98

SP500 2414.78 212.308 2000.54 2872.87 11.86

USDYuan 6.67 0.19 6.26 6.96 4.85

USDEur 0.88 0.04 0.80 0.96 4.53

Note: Summary statistics for bitcoin and classic asset prices. Means, standard

deviations, minimum and maximum values are all expressed in dollars.
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Figure 1: The time series plot of Bitcoin prices.
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Figure 2: Correlation matrix between prices.
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Figure 3: Minimum spanning tree between prices.
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Figure 4: Minimum spanning tree between prices, after randommatrix theory

filtering.

weight

1 btc coinbase btc gemini 0.207968897069462

2 btc bitfinex btc gemini 0.252298438331244

3 btc bitstamp btc itbit 0.279684526027965

4 btc bitstamp btc bitfinex 0.314896774631822

5 btc bitfinex btc hitbtc 0.380165409259575

6 btc bitfinex btc bittrex 0.458640635735809

7 btc kraken btc bitstamp 0.596065889298915

8 usdeur usdyuan 0.989859235886413

9 sp500 oil 1.23032152766612

10 gold btc hitbtc 1.35470479294313

11 btc gemini sp500 1.3728902044797

12 usdyuan btc kraken 1.3951809819423

Table 3: Adjacency matrix from MST.
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Figure 5: Time evolution of the the minimum spanning tree.
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weight

1 btc gemini btc bitstamp 0.288433056210555

2 btc bitstamp btc bitfinex 0.292594189179681

3 btc coinbase btc bitstamp 0.292645290798001

4 btc bitstamp btc itbit 0.359144767683509

5 btc hitbtc btc bitstamp 0.39147736801806

6 btc bitstamp btc bittrex 0.440520251858754

7 btc kraken btc bitstamp 0.600090764365521

8 usdeur usdyuan 0.759135861596123

9 sp500 oil 1.14667657820831

10 oil gold 1.2914392737851

11 gold btc hitbtc 1.35598797995048

12 usdyuan btc hitbtc 1.39185686202477

Table 4: Adjacency matrix from RMT+MST.
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Figure 6: Volatility correlation plot.
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Figure 7: Realised volatilities for SP500 (blue) and Bitcoin Kraken (red),

normalised.

Figure 8: Planar maximally filtered graph
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Figure 9: Interconnectedness graph obtained from the application of Granger

causality networks.
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