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Abstract

This thesis introduces a novel approach to model the coordinated behaviour of fish
robots for underwater exploration. A shoal of three biomimetic vehicles is here con-
sidered, each one with distinct capabilities, to survey an area via predefined paths
covering certain Points of Interest in a cyclical manner. Hence, this formulation
involves diversified and repetitive tasks for each robot. The starting point is the
knowledge of the practical context of marine vehicles, their technologies, and the
theoretical foundations of their mathematical models. Within the theoretical frame-
work, max-plus algebra emerges as a fundamental tool to manage tasks concatena-
tion and synchronization, and thus to effectively model such coordinated activities
during patrols. Among the theoretical basis, the notion of causal controlled invari-
ance for max-plus linear systems is also explored, introducing a new algorithm, based
on the concept of causal projection, to verify the sufficient conditions for a module
to satisfy this property. In other words, it is thus possible to check whether there
is a causal state feedback that makes a module invariant for the closed-loop system.
Through a series of calculations, the representation of the plant as a max-plus linear
system is then obtained, where all variables are based on task-driven rather than
time-driven requirements. This approach also leads to the formalization of this syn-
chronised patrol problem, defined as “Model Matching Problem (MMP)”. An MMP
consists in finding a suitable control law, that forces the obtained plant to behave
in accordance with a preestablished model. In this way, the fish robots of the shoal
can perform their repetitive tasks according to a predefined strategy. The model is
tested in simulation and examples of the resolution of an MMP are given. Finally,
the module resulting from the solution of the MMP is tested with the developed
algorithm to determine whether it is causal controlled invariant.
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Italian title and Abstract

Italian title

Modellazione di un Banco di Veicoli Biomimetici Marini: un Approccio basato

sull’Algebra Max-Plus.

Sommario

Questa tesi introduce un nuovo approccio alla modellazione del comportamento co-

ordinato di pesci robot per l’esplorazione subacquea. Si considera un branco di

tre veicoli biomimetici, ognuno con capacità distinte, per ispezionare un’area con

percorsi predefiniti che coprono dei punti di interesse in modo ciclico. Questa for-

mulazione prevede quindi compiti diversificati e ripetitivi per ciascun robot. Il punto

di partenza è la conoscenza del contesto pratico dei veicoli marini, delle loro tecnolo-

gie e delle basi teoriche dei loro modelli matematici. All’interno del quadro teorico,

l’algebra max-plus emerge come strumento fondamentale per gestire la concate-

nazione e la sincronizzazione dei compiti e dunque per modellare efficacemente tali

attività coordinate durante il pattugliamento. Tra le basi teoriche, si esplora anche la

nozione di invarianza causale controllata per sistemi lineari max-plus, introducendo

un nuovo algoritmo, basato sul concetto di proiezione causale, per verificare le con-

dizioni sufficienti affinché un modulo soddisfi tale proprietà. In altre parole, è così

possibile verificare se esiste una retroazione dello stato causale che renda un modulo

invariante per il sistema ad anello chiuso. Tramite una serie di calcoli, si ottiene la
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rappresentazione del sistema come sistema lineare max-plus, in cui tutte le variabili

sono basate su requisiti guidati dai tasks piuttosto che dal tempo. Tale approccio

porta anche alla formalizzazione di questo problema di pattugliamento sincronizzato

come “Model Matching Problem (MMP)”. Un MMP consiste nel trovare una legge

di controllo che forzi il sistema a comportarsi secondo un modello prestabilito. In

questo modo, i pesci robot possono eseguire i loro compiti secondo una determi-

nata strategia. Il modello è testato in simulazione seguito da esempi di risoluzione

di MMP. Infine, è testato anche il modulo risultante dalla soluzione del MMP per

determinare con l’algoritmo sviluppato se è invariante causale controllato.
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Chapter 1.

Introduction

Max-plus algebra has long been used to model a series of situations, events, and

tasks. It represents a class of discrete algebraic systems, and is known as an efficient

tool for modelling, as linear systems, and analysing timed discrete event systems.

It is used also for performance evaluation and design of networked systems. In

this context, the operations max and plus from conventional algebra are defined as

addition and multiplication, respectively, when it does not introduce ambiguity.

The main focus of this thesis is the modelling of the coordinated behaviour of

various robots within a team of vehicles. Specifically, the application of max-plus

algebra to manage the coordination of vehicles tasked with patrolling specific areas

is investigated.

The research hypothesis suggests then that the integration of max-plus algebra

into the control framework of marine vehicles enhances the efficiency and effective-

ness of patrolling missions, particularly in complex environments. To investigate

this hypothesis, the following research questions are posed: How can max-plus alge-

bra be employed to model coordinated activities of marine vehicles during patrolling

operations? What novel algorithms and methodologies can be developed to optimize

the use of max-plus algebra in enhancing the efficiency and effectiveness of marine

vehicle patrolling missions?
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The objectives of this work are then: (1) To analyse the applicability of max-plus

algebra in modelling marine vehicles during coordinated patrolling operations; (2)

To simulate the obtained plant considering a real scenario involving three fish robots;

(3) To develop and solve a Model Matching Problem (MMP) for the considered plant,

in order to force the max-plus linear plant to generate an output exactly equal to

that of a given model of the same kind; (4) To verify if the MMP is actually feasible,

testing the module resulting from the solution of the MMP, exploiting an algorithm

developed to check its causal controlled invariance, i.e. to verify the existence of a

causal state feedback, that makes a module invariant for a closed-loop system.

Considering the perspective of multi-agent exploration by patrolling vehicles, the

challenges related to this situation in the context of max-plus algebra have been

thoroughly explored. This exploration stems from the need to address two funda-

mental aspects: on one hand, there’s the practical construction of precise models

for vehicles themselves, represented here by fish-like biomimetic robots with Body

and Caudal Fin (BCF) swimming locomotion, and the development of a theoretical

framework to facilitate effective modelling of their behaviour. Regarding the latter

aspect, max-plus algebra stands out as a crucial tool. In fact, the innovative aspect

of this thesis is the application of max-plus algebra to effectively manage the coor-

dination and synchronization of different vehicles’ activities, wherein the patrolling

fish robots become one of many case studies that can be considered.

This thesis represents the three-year doctoral work of the author, initially focused

on a single fish robot’s mathematical model and underwater technologies, to then

apply max-plus algebra in the third year. For this reason, the structure of the thesis

includes these two distinct aspects: the modelling and technologies of an individual

marine vehicle, and the exploration of max-plus algebra and its application in the

control of cooperative vehicles. In fact, in the “State of The Art (SoTA)” Chapter

2 and in “Materials and Methods” Chapter 3, the focus is both on marine vehicles

and in max-plus algebra. This thesis has been structured in this way to clearly
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distinguish the theoretical part of these two chapters from the application of the

max-plus algebra theory to the problem of patrolling, fully presented in Chapter 4.

An overview of the three-year PhD activities is presented in the Fig. 1.1.

Figure 1.1.: Overview of the three-year PhD activities

This work aims to bridge the gap between practical and theoretical aspects, pro-

viding a precise model of patrolling vehicles and leveraging max-plus algebra to

ensure coordinated and efficient behaviour. This combination leads to real-world

environments through sensors providing precise positioning information. Sensors,

like Inertial Measurement Units (IMU), are crucial for subsequent verification pro-

cesses determining the vehicles’ locations. The modelling aspect serves then a dual

purpose: firstly, it can enhance sensor quality through techniques that use a com-

bination of IMU, AHRS (Attitude and Heading Reference System), FOG (Fiber

Optic Gyroscope), etc. Secondly, in simulation scenarios, it aids in predicting and

analysing vehicle displacements, employing mathematical models such as the Fossen

model, presented in Chapter 3.1.2.
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The resolution of coordination challenges using max-plus algebra is here faced

in terms of Model Matching Problem (MMP) and starting from it, the subsequent

steps can be the verification and validation of this solution, either in real marine

environments or simulated scenarios. In this way, the role of this work becomes ev-

ident in connecting theoretical concepts of mathematical models with the practical

implementation in simulations and real environment. This integration is crucial, as

without it, the two facets might seem disconnected, emphasizing the need for a com-

prehensive approach to effectively handle the complexities of coordinated behaviour

in multi-agent patrolling frameworks.

The starting point of this thesis is represented by Chapter 2, that serves as a

comprehensive review of the State of The Art (SoTA), laying the groundwork for

the subsequent research. It examines the current landscape of marine biomimetic

vehicles, delving into their applications, to then address the concept of agent-based

exploration within confined areas. Additionally, it explores the theoretical and prac-

tical underpinnings of max-plus algebra, with focused insights into its modelling and

applications, controlled invariance, and the MMP. Then, following the SoTA contex-

tualization, Chapter 3 delves into the practical aspects of the research. It outlines

various marine vehicles, categorizing their types and focusing on monofin devices.

The mathematical model of the latter is introduced, followed by an overview of the

main navigation technologies for underwater navigation and localization, such as the

already-mentioned IMU and AHRS. The chapter then transitions to the exploration

of max-plus algebra: the basic results concerning this algebra are reported, covering

key theories such as max-plus linear systems, controlled invariance, the MMP and

causality-related concepts. A novel approach with new sufficient conditions of causal

controlled invariance of a module is also presented, through the development of an

algorithm, used for the verification of such conditions. In other words, with this

algorithm, the existence of a causal state feedback, that makes a module invariant

for a closed-loop system, can be checked.
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The crux of the thesis unfolds in Chapter 4, where the problem of patrolling is

addressed. The modelling process is detailed, in order to obtain the representation

of the plant as a max-plus linear system. Simulations of the model are also in-

corporated to enhance the comprehension of the behaviour of the modelled marine

vehicles. The chapter further presents the formalization of the synchronised patrol

problem as Model Matching Problem, with an example of its resolution. Conse-

quently, the module resulting from the solution of this MMP is tested with the

developed algorithm to determine whether it is causal controlled invariant.

The thesis concludes in Chapter 5, where a synthesis of the concepts explored

throughout the work is presented, providing a summary of key findings, contribu-

tions, and implications for the fields of marine biomimetics, agent-based exploration,

and max-plus algebra. A reflection on the results achieved and potential avenues of

future research are also outlined.

Summarizing the novelty and contributions of this PhD thesis, it contributes to

the advancement of knowledge in the following ways:

• It integrates max-plus algebra into the control framework of marine vehicles,

paving the way for enhanced efficiency and effectiveness in patrolling missions.

• The research presents a novel algorithm and methodologies designed to opti-

mize the use of max-plus algebra in marine vehicle patrolling missions, offering

innovative solutions to coordination challenges.

• A solution to the MMP is proposed and tested, providing insights into the

feasibility and effectiveness of leveraging max-plus algebra in real scenarios.

• The development of an algorithm for verifying causal controlled invariance

offers a practical tool for ensuring the stability and reliability of the found

solutions for marine vehicle control systems.

These contributions lay the groundwork for future research and application in the

field of marine robotics and multi-agent systems.
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In conclusion, this work has so far resulted in two publications, one for a French

conference, the “Modélisation des Systèmes Réactifs (MSR ’23)”, outcome of the

period spent abroad, focusing on the algorithm for causal controlled invariance ver-

ification [1], and one publication for “The 34th International Ocean and Polar En-

gineering Conference (ISOPE-2024)” for the modelling part of the cooperating fish

robots [2]. Moreover, the work of this thesis will now be continued within the Project

“MAXFISH: Multi agents systems and Max-Plus algebra theoretical frameworks for

a robot-fish shoal modelling and control” 20225RYMJE, funded by the MUR Pro-

getti di Ricerca di Rilevante Interesse Nazionale (PRIN) Bando 2022.
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Chapter 2.

State of The Art

2.1. State of The Art of Marine Biomimetic Vehicles

Biomimetic robots and vehicles represent a burgeoning field at the intersection of

biology, engineering, and technology and they draw inspiration from nature’s designs

to create devices that mimic the remarkable capabilities of living organisms. This

approach has revolutionized various industries, including transportation, manufac-

turing, and healthcare, and holds immense promise for future advancements. At

the current state of the art, there exist different robots that mimics, for example,

various animals among them quadrupeds, insects, birds, fishes, etc [3,4]. Biomimetic

robots, with their integration of biological characteristics, offer more powerful mo-

tor abilities, cognitive abilities, and delicate control processes. Overall, biomimetic

robots and vehicles hold great potential in various applications, such as narrow space

navigation and eco-friendly environment monitoring [5]. Focusing in this section on

fish-like underwater robots, the starting point is the aim of developing solutions that

mimic the swimming mechanisms of fishes.

An interesting review is the [6], where the characteristics of aerial-aquatic ani-

mals are presented, including an overview of the current marine bioinspired robots

that are both aerial and aquatic, and with a comparison between each bioinspired

robot and its corresponding animal. The design of biomimetic robotic fishes have
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2.1. STATE OF THE ART OF MARINE BIOMIMETIC VEHICLES

evolved over time, with a focus on simplicity and robustness to achieve better swim-

ming performances [7]. Fish swimming capabilities, achieved through millions of

years of evolution, have inspired the development of Autonomous Underwater Ve-

hicles (AUVs), capable of moving similar to biological swimmers. By imitating fish

swimming, the vehicles can improve their flexibility, efficiency, propulsion efficiency,

acceleration, and maneuverability [8, 9]. Most fishes generate thrust by bending

their bodies into a backwards-moving propulsive wave that extends to their caudal

fin: Body and Caudal Fin (BCF) locomotion. In fact, a classification that is widely

employed to diversify the motion of fish is based on the locomotion of the BCF

and the median and paired fin (MPF). The initial form of locomotion entails the

fish bending its body to create a backward propulsive wave, which extends from its

tail up to its caudal fin. The second form of locomotion is similar to BCF loco-

motion, but the bending motion is restricted to the median and paired fins. Both

locomotion mechanisms are further categorized based on the type of movement ob-

served in the propulsive structure. The motion is considered undulatory when there

is a visible waveform along the propulsive structure, while the motion is oscilla-

tory when thrust is generated solely by the oscillation about a fixed point of the

propulsive structure [8]. Within this thesis, the focus will be placed on robots that

use BCF locomotion, since they will be involved for the development of some as-

pects of the work. Starting with the ancestor of almost all biomimetic swimmers,

the RoboTuna [10], created in 1994 by the Massachusetts Institute of Technology

(MIT), has to be mentioned. The reason for choosing tuna fish is that it is one

of the fastest-swimming fish in nature and it can swim at high speeds for a long

time. Another important reason for choosing tuna as a biological inspiration is that

different subspecies of tuna have similar morphology, allowing for easy scalability of

any design for future use as an autonomous underwater vehicle (AUV). It was also

thought that the tuna would allow for a large payload because a large portion of the

body would remain rigid due to its swimming mode. MIT and Draper Laboratories
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2.1. STATE OF THE ART OF MARINE BIOMIMETIC VEHICLES

developed then the vorticity control unmanned underwater vehicle (VCUUV) based

on the success of the RoboTuna project [11]. The VCUUV is an AUV with its own

power supply, designed to resemble a real blue fin tuna but scaled up to 2.4 meters in

length. Then the RoboPike represents the next generation of robotic swimmers from

MIT [12], inspired by the rapid manoeuvring and acceleration abilities of the pike.

Moreover, the Japanese National Maritime Research Institute (NMRI) developed a

series of simplified link-based robotic fish, including the PF-300 sea bream [13]. The

sea bream was chosen for its large side profile area and carangiform swimming style.

The two joints of the sea bream were actuated directly by brushless D.C. servomotors

housed in small pressure vessels. The tail was left in a skeletal state as the propul-

sive force was thought to be generated by the caudal fin. Furthermore, the Tokyo

Institute of Technology created two robotic dolphins as prototypes for a biomimet-

ically propelled AUV. The first dolphin was powered by a pneumatic system, while

the second one used a D.C. servomotor [14, 15]. The Istanbul Technical University

also developed a robotic dolphin AUV prototype to improve propulsion efficiency in

conventional AUVs [16]. Moreover, the University of Essex has implemented a series

of multi-link carangiform and subcarangiform robot swimmers, with the latest being

the G9 [17]. The Bei hang University Robotics Institute also developed robotic fishes

for underwater vehicles. The fishes had a two-joint propulsion module and were ac-

tuated by brushless motors: SPC-II had a fish-like morphology and was useful for

underwater archaeology, whereas SPC-III was constructed like a traditional AUV

but had a BCF tail instead of a propeller [18, 19]. Furthermore, MIT has recently

developed a Soft Robotic Fish called SoFi [20]: this robot has a hydraulic propulsion

system that allows it to move its tail and swim at different speeds. The robot can

also change direction by adjusting the deflection of its tail and the swimming mode

is achieved by pumping water into balloon-like chambers in the fish’s tail. When

one chamber expands, the tail bends to one side, and when water is pushed to the

other channel, the tail bends in the opposite direction. Another interesting work is
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2.2. STATE OF THE ART OF AGENT-BASED EXPLORATION

represented by a bioinspired underwater prototype [21], together with an optimiza-

tion algorithm to establish its dimensions, considering certain constraints. In that

paper, a simulation is also carried out in a fluid to obtain an estimate of forces and

drag coefficient. As regards more recent developments, the work of D. Costa et al.

can be highlighted, in which the authors designed and experimentally validated [22]

a series of bio-inspired vehicles for research purposes: the robot in [23] is driven by

an oscillating plate-shaped such as a caudal fin and hinged to the rigid fore-body.

Since the number of moving parts is minimal, the system is inexpensive and easy to

fabricate and seal. The search for higher propulsive efficiency has improved the de-

sign by moving to the undulating tail presented in [24]. Two alternative oscillatory

movement types can also be identified [25,26], improving locomotion.

2.2. State of The Art of Agent-based Exploration

Agent-based exploration of confined areas has been a topic of significant interest

in recent research. The scenario under consideration pertains to the collaboration

and/or coordination among robots, wherein various vehicles must engage in ex-

changing and sharing information in order to execute a collective mission. Within

the existing body of literature, the management of this particular complexity is

achieved through the implementation of Multi-Agent System (MAS) theory, which

is acknowledged as a tool possessing the capability to effectively address this matter.

This is accomplished by modelling independent components (commonly referred to

as agents) that, when combined, are able to carry out tasks that would otherwise be

unattainable by a solitary entity or would yield inferior results. The so-called MAS

have therefore received considerable attention due to their broad application domain

and flexibility, potential robustness to faults, and the capacity to accomplish com-

plex tasks that a single vehicle cannot efficiently address. Since their inception in the

1980s, MAS have been seen as a collection of agents that interact to coordinate their
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2.2. STATE OF THE ART OF AGENT-BASED EXPLORATION

behaviour. The complexity of the environment in which agents operate necessitates

a modular and distributed approach. There are three approaches to address these

issues: applying principles from software engineering, using cognitive architecture,

or employing MAS [27]. Due to computational and knowledge limitations, no single

agent can successfully manage tasks, making cooperation necessary [28]. Modular-

ity and abstraction are useful concepts in overcoming these difficulties. MAS offers

modularity by developing specialized agents to solve specific problem aspects. Sev-

eral state-of-the-art methods and strategies related to MAS have been proposed in

the past years. Starting with Yan et al., a lidar-based multi-agent exploration ap-

proach was developed to balance the robustness of sub-map merging and exploration

efficiency [29]. Examples of the utilization of the MAS theory can be observed in the

context of energy, as stated in [30] and [31]. These references highlight specific appli-

cations that pertain to the restoration [32] and protection [33] of power systems. A

significant focus has been placed on the development of tailored solutions for micro-

grids, as depicted in references [34] and [35]. The utilization of Multi-Agent Systems

in these scenarios enables the attainment of various advantages, including but not

limited to increased autonomy, reactivity, proactivity, and social ability. Moreover,

the extensive utilization of the MAS theory is closely associated with automation.

Two significant applications can be identified: home automation and robotics. In the

first scenario, MAS has been widely employed to imbue home apparel with intelli-

gence, enabling the distribution and management of diverse resources. For instance,

in the work by [36], the authors effectively harnessed a MAS with a suitable model

to define and oversee a Home Automation System (HAS). Similarly, in [37], a BAC-

net intelligent home supervisor system was implemented through the use of BDI

agents. Furthermore, the management and orchestration of energy requirements in

smart homes have been explored using a multi-agent approach in [38–40]. In the

second scenario, MAS are extensively utilized to coordinate the behaviour of var-

ious components or robots in order to achieve a shared objective that cannot be
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2.2. STATE OF THE ART OF AGENT-BASED EXPLORATION

satisfactorily accomplished by a single entity. Notable tasks in this regard include

navigation [41–43], localization [44,45], exploration and mapping [46,47], search and

rescue [48,49]. The marine environment is one example of an environment that has

benefited from the application of this theory. In truth, there have been numerous

studies conducted to create Multi-Agent Systems (MAS) specifically tailored for un-

derwater and surface vehicles, which typically collaborate with a ground station in

order to navigate this challenging environment. Indeed, these systems must con-

sider various factors among them the reduced visibility, slow communication, and

the highly variable nature of the marine environment. Certain studies have focused

on specific tasks such as mine countermeasures and marine surveillance [50]. Addi-

tionally, specific algorithms have been developed to manage various controls that are

applicable in a multi-agent environment, such as fault detection and robot forma-

tion [51, 52]. Therefore, also referring to underwater missions, various approaches

have been proposed to address the challenges of exploring marine environments.

AUVs (Autonomous Underwater Vehicles) are becoming critical in challenging and

potentially dangerous sea operations. Everyday activities in which groups of AUVs

are employed include, e.g., monitoring, search, exploration, and data collection of

hydrogeology or marine biology. Having a look at the literature, an interesting work

is the [53], in which researchers have designed swarm intelligent systems that draw

inspiration from natural swarms such as bees and slime mould to form integrated

underwater swarm robotic exploration systems. These systems utilize decentral-

ized control inspired by swarm intelligence to explore interesting locations, allocate

robots, and handle failures [54]. A topic related to these aspects is also the path

planning: an interesting review is [55] that deals with the concept of fully autonomy

of underwater devices in dynamic uncertain conditions, presenting the different ap-

proaches and methods to optimize this autonomous path planning problems, with

focus on game-theoretic approaches. A recent work that also needs to be men-

tioned is the [56], where the topic of swarm robotics is deeply presented, focusing

12
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on understanding how to use robot swarms for real-world problems. Another very

interesting paper in this regard is that of A. Marino et al. [57], in which a decentral-

ized coordinated strategy for multirobot patrolling (sampling) missions is presented,

considering three autonomous marine surface robots that, based only on local infor-

mation, compute the next point to visit according to a given performance criteria.

Coming back to the main problem of this work, fish robots as state of the art can be

easily implied to create MAS shoal and study robots team cooperation. The primary

purposes of employing a MAS are to improve the overall capabilities and reduce the

system’s cost exploiting cooperation and coordination among the robots. This can

be used to improve robotic shoal intervention in cases of intrusion detection and

monitoring. Two recent projects are the EU-funded project WiMUST [58], which

aims at developing a system of cooperative AUVs for geotechnical surveying, and

the PNRM (National Military Research Project) DAMPS [59], which focuses on the

employment of an underwater MAS for locating acoustic sources. Deploying multi-

ple robots presents challenges, such as communication, localization, perception, and

coordination, requiring specific methodological approaches. Underwater acoustic

signals exhibit high latency and low bandwidth compared to other communication

devices. Coordination algorithms need to take this into account, properly managing

the exchanged data [60]. When the communication is used for locating a shoal as

a unit, model and actuation of each tasks can be seen as a MAS or considering the

predefined intervention aims. Overall, these advancements in agent-based underwa-

ter exploration contribute to the development of efficient and effective systems for

exploring confined areas. In this context, starting with the problem of multi-agent

exploration, it was decided to investigate the max-plus algebra framework, presented

in the next section, given its potential applications in this field as well.

13
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2.3. State of The Art of Max-Plus Algebra

Max-plus algebra is a class of discrete algebraic systems, that offers the capability

to analyse, and model Timed Discrete Event Systems (TDES) as linear systems,

particularly in scenarios involving synchronization without concurrency. It is known

as an efficient tool for modelling such systems, for performance evaluation and design

of networked systems. In this algebraic system, the operations max and plus from

conventional algebra are defined as addition and multiplication, respectively, when it

does not introduce ambiguity. The inclusion of the max operation should emphasize

the non-linearity inherent in these systems, in a traditional sense. However, having

a specialized algebra that employs these two operations ⊕ (sum) and ⊗ (product)

redefined as max and +, it is possible to effectively model Dynamic Event-Driven

Systems (DEDS) as linear systems. As it will be presented in section 3.2, the max-

plus algebra, which is appropriately named given its operations, does not possess

the same properties as the conventional algebra. Linear systems defined over the

max-plus algebra were introduced by Cohen and co-authors in the middle of the

eighties to model a special class of discrete event systems [61]. Then, the authors

presented further developments in the book [62]. A survey on current and future

perspectives of the max-plus algebra approach in systems and control theory at the

end of the nineties is found in [63], whereas a more recent paper in this regard is

the [64], in which the history of max-plus algebra is presented focusing on the field

of discrete event systems.

2.3.1. Modelling and Application

Although the introduction of the formalism of the max-plus algebra dates back to

the middle eighties, its application has always remained limited to the context of

industrial and manufacturing application - notably, production planning and model

predictive control (e.g., [65–67]). The current application area is new and promising
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due to the specific features of the field addressed, related to the modelling for explo-

ration purposes. From the theoretical point of view, the formalism of the max-plus

algebra has been exploited in connection with the structural approaches to system

and control theory stemming from the geometric approach of [68] and [69]. It has led

to exciting results, particularly the model matching problem [70]. The systems sim-

ulated using the max-plus algebra formalism constitute generally man-made systems

wherein finite resources such as processors, communication channels, or production

machinery are shared among multiple “users”, that can be processes, packets, or

semi-finished products. The purpose is to achieve common objectives, such as par-

allel computation, packet transmission, or completion of a finished product on the

production line. The lack of concurrency suggests that the available resources are

not equal, or alternatively, that the users have been assigned to specific resources in

advance, so as to prevent a situation in which a user can be served indiscriminately

by multiple resources. One notable application of max-plus algebra is its use of as

a foundational technique to develop software capable of analysing and simulating

the evolution of production plants. For instance, the software introduced in [71]

features a graphical interface enabling the composition of a manufacturing plant

by concatenating elementary blocks. The goal is to define the necessary workforce

at each production line stage, aiding designers in the reengineering of production

lines. Another paper, [72], presents simulation and analysis software for electronic

card production lines. The program allows the definition of the whole production

line model by connecting machine models present in a software library. This tool

has been applied by industrial partners to identify bottlenecks and predict human

resource and component supply requirements for real production plants. Addition-

ally, [73] has exploited this algebra to model a Kanban control policy as a linear

system. The Kanban control system, a well-known pull control policy for manufac-

turing systems, employs authorization cards, called Kanbans, to trigger production

when demand arises. The authors employ max-plus algebra to model the control
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policy and synthesize a regulator, reducing work-in-process without compromising

performances. In fact, it has to be said that the application of this framework to

model discrete event systems has primarily found utility in extrapolating useful met-

rics and conducting computations to analyse the expected behaviour of a system in

various scenarios [74]. In urban transportation, instead, [75] developed a suitable

max-plus formalism for urban bus networks, coupled with a procedure to compute

timetables maximizing connections between buses from different lines. In the realm

of semiconductor manufacturing plants, max-plus linear systems can serve to define

schedules and control processes effectively [76–79]. In these cases, time constraints

are crucial for the wafer’s permanence within a processing chamber, as its quality

is significantly impacted by delays after completing processing in high-temperature

and high-pressure conditions. Moreover, the authors of [80] have modelled a net-

worked automation system with a client-server architecture, computing the system

response time through the produced mathematical model and comparing it with

data taken from a laboratory. Furthermore, methodologies for identifying and local-

izing faults within a plant, which can be modelled as a max-plus linear system, have

been presented in [81–83]. Additionally, the paper [84] has delved into the analysis

of the performance of these linear systems when additive inputs are present. This

evolution of max-plus algebra application from traditional manufacturing contexts

to diverse and specialized domains reflects its versatility and adaptability to address

complex system behaviours and requirements.

Another paper with a recent application of max-plus algebra is presented in [85],

in which the scheduling of production systems is considered, with the goal to mini-

mize the total production time. In that work, a result is also expressed in terms of

a switching max-plus linear system.
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Switching Max-Plus Linear Systems

Switching max-plus linear systems come into play when considering changes in event

order or alterations in the system structure. This becomes crucial when factors like

resource processing time or user allocation policies are variable. With these systems

it is possible to overcome limitations in stationary max-plus linear systems, where

concurrency is not possible. If the system structure varies arbitrarily, the plant can

be described as a switching system; whereas, if the variation follows a predetermined

periodic schedule, periodic systems provide a more precise formalization. Although

these concepts are not directly addressed in this thesis, they hold potential for future

advancements.

Expanding the max-plus formalism to the event-varying scenario enables the consid-

eration of more intricate situations involving conflicts resolved based on the current

event’s index. It also allows for the exploration of scenarios where subsequent in-

puts need to follow different paths within the plant. Various approaches, each with

its advantages and limitations, have been proposed for modelling such situations.

In [86], a formalism based on the height of heaps of pieces efficiently compares the

evolution of safe jobshops for different working sequences. Other works adopt a

distinct approach by introducing switching max-plus linear systems. The initial ap-

plication of this formalism can be traced back to [87] for modelling systems that can

switch between different modes of operation, accommodating changes in structure,

breaking synchronization, or modifying the order of events. Since then, switching

max-plus linear systems have found diverse applications. In [88], the Dutch railway

network is modelled as such a system to determine optimal dispatching actions using

model predictive control. The model’s flexibility allows for changes in train order,

breaking connections, splitting joined trains, and changing tracks.

Recently, these systems have been employed to model cube-packing systems in

[66], where different manipulators can be selected for resource handling, considering

possible faults. The study proposes a fault-tolerant control compared to a simpler
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model predictive control strategy. Addressing the problem of controlling a switching

max-plus linear system to meet strict time constraints between certain events, [89]

proposes a causal state feedback. The authors also provide an example applying this

theory to a crossing railway system. In contrast to this, the work of D. Animobono

[90], focuses on studying the structural properties of systems, independent of specific

resource allocation policies treated as exogenous decisions. This approach leads to

control techniques applicable across various resource allocation decisions, facilitated

by the development of a structural geometric approach for switching max-plus linear

systems [91].

Periodic Max-Plus Linear Systems

Talking about periodic max-plus linear systems, they are characterized by event-

varying structural variations occurring periodically, in the event domain, with a

period denoted as ω. These systems offer a valuable formalism for modelling dy-

namic scenarios. One notable application is in resolving conflicts for shared resources

through a periodic allocation scheme. This becomes particularly pertinent in cases

like periodic scheduling of productive plants. In the latter context, the concept of the

Minimal Part Set (MPS) plays a crucial role [92]. This approach proves advantageous

in scenarios with negligible setup times, offering simplicity, predictability, low work-

in-process inventory, and high machine use [93]. Various techniques, incorporating

the max-plus algebra, have been developed for computing efficient periodic sched-

ules across different applications [94]. Practical interest in modelling discrete event

systems subject to periodic structural variations has spurred research in formalizing

the structure of such systems. Early attempts utilized Petri nets instead of max-plus

algebra, [95], even though it is now pretty feasible to convert a Timed Event Graphs

(TEGs) into a max-plus linear system. The max-plus formalism gained prominence

with Lahaye et al.’s work [96], providing tools for modelling repetitive manufac-

turing systems as periodic max-plus linear systems. Transformation procedures into
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equivalent stationary systems, focusing on time instants that are multiples of the sys-

tem period, were there proposed, whereas in [97], the transformation from periodic

max-plus linear systems into Weight-Balanced Timed Event Graphs (WBTEG) was

presented. Other contributions introduced operators for event-varying and time-

varying max-plus linear systems with a cyclic structure [98, 99]. These operators

extended the theory of modelling and control of max-plus systems based on transfer

functions to the periodic case, demonstrating the decomposition of event-varying

systems into stationary and cyclic subsystems. It’s crucial to differentiate these sys-

tems from those with partial synchronization introduced by David et al. [100] and

studied under the hypothesis of periodic synchronization in [101]. The latter sys-

tems have integer daters as input, output, and internal variables, and importantly,

they are time-varying rather than event-varying.

Control Problems

In recent years, control problems related to systems over the max-plus algebra have

gained prominence, particularly in industrial engineering. Various analysis and con-

trol techniques have been developed, with a structural geometric approach for max-

plus linear systems identified as a promising direction [63]. Subsequent efforts by

different authors have produced noteworthy results in this direction [102–105]. Con-

trol challenges in max-plus algebra systems, particularly in industrial engineering,

have spurred the development of various techniques, as comprehensively reviewed

in [106]. One prevalent objective is optimizing input times, determining when to

supply raw components to production machines, to align or pre-empt a predefined

reference signal on the plant’s output. The just-in-time criterion is commonly ap-

plied, aiming to delay the input signal as much as possible without exceeding the

output schedule [107]. Prominent methods originate from the residuation theory

and Model Predictive Control (MPC). Residuation seeks the largest solution to

max-plus inequalities, widely used in the literature for optimal input date compu-
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tations [108,109]. MPC, initially designed for discrete-time linear systems over con-

ventional algebra, minimizes a specific cost function (usually tracking error) within

a prediction horizon. This approach extends to max-plus linear systems [110], pro-

viding the advantage of easily incorporating constraints on input and output daters.

MPC has found practical applications, leading to many variants [111,112]. Efficient

MPC implementation for output tracking is detailed in [113], where the reference is

based on a P-timed event graph. The max-plus algebra optimally divides computa-

tions into offline and online phases, enhancing performance compared to similar im-

plementations. Addressing uncertainties in the time required for internal tasks, [114]

proposes an approach analysing and improving the critical chain of tasks. A signif-

icant distinction in control techniques for max-plus linear systems lies in the need

for an accessible state. Observer-based methods, estimating the internal state, are

employed when knowledge of the internal state is crucial [104, 115]. However, their

effectiveness is limited, offering only upper and lower bounds for the state vector.

A different method, considered by some authors [116], involves estimating a linear

function of the state Wx(k) without knowing the exact value of the state x(k). This

information informs the computation of system feedback. Observer usage proves

valuable when the system faces unmeasurable disturbances, such as human inter-

ventions or process failures [117]. For scenarios with strict time constraints, like a

maximum time distance between two events, [118] proposes a control strategy not

requiring full system state knowledge. This strategy proves applicable under suit-

able and non-restrictive hypotheses for real-world manufacturing systems. In [67],

the authors implemented software generating a SCADA system based on the model

of a max-plus linear plant and a specified control objective, such as disturbance

decoupling, model matching, or observer-based control.
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2.3.2. Controlled Invariance

In the last decades, the concept of controlled invariance, not necessarily causal,

has been extensively studied in the field of dynamic systems within the realm of

systems and control theory. This concept, also known as (A,B)-invariance, has

proven its effectiveness in solving a wide range of classical control problems. For

dynamic systems over a field, the (A,B)-invariance of a subspace is equivalent to

its invariance with at least one static state feedback [68, 69]. However, for systems

with coefficients over rings or semirings, this property is generally not valid, since

in this case, state feedback invariance implies (A,B)-invariance, but the converse is

not always true [103,119].

The notion of (A,B)-invariance has been a cornerstone of the geometric approach

for designing control laws for linear systems since the 1970s [120,121].

Over the years, different authors have extended the application of this geometric

approach to systems over rings [119, 122] and semirings, such as max-plus systems

[103]. Significant work has been done by Conte and Perdon [122] with the concept

of dynamic state feedback invariance for modules over principal rings. Additionally,

in the work by Cardenas et al. [123], inspired by the work of Ito and Inaba [124],

the authors obtained various results for the semiring Rmax, introducing applications

for controlling systems with discrete events subject to time constraints.

Several studies have focused on finding static state feedback to solve problems

defined in terms of constraints or asymptotic behavior [103, 118, 125–131]. Other

works have also addressed observability problems in similar terms [102,104,132–134].

Therefore, controlled invariance has also been addressed in the context of max-

plus linear systems and has proven to be very useful and applicable to various

control problems in such systems, which find applications in several fields, including

graph theory, integer linear programming, production and planning systems, etc. A

notable work is [104], in which the concepts of conditioned and controlled invariant

spaces are extended to linear dynamic systems over max-plus or tropical semirings.
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A duality theorem is there established and used to construct dynamic observers

applied to a manufacturing system. Another paper related to this topic concerns

the synchronization problem of max-plus linear systems, formulated in terms of

controlled invariance and coreachability [135], while other works have examined

static state feedback control laws, but they may not necessarily be linear [130,136].

A particular consideration is that, in the max-plus algebra, static functions are

not necessarily causal, as analyzed by T. Bousch [137] and B. Cottenceau et al. [138].

However, ensuring causality is essential to implement online control laws, as pointed

out in [136], where the double description method by Allamigeon et al. [139, 140]

is employed. Another significant contribution, which may provide another perspec-

tive on causality, is the work of Declerk [141], which deals with causal constraints

and proposes different techniques using predictive control. Finally, another work

worth mentioning is [142], which applies the structural geometric approach to the

Model Matching Problem for positive linear systems, introducing a notion of positive

controlled invariance.

Extension of the Geometric Approach

The geometric approach, rooted in controlled and conditioned invariance, repre-

sents a foundational paradigm within the domain of systems and control theory.

The essence of this approach lies in its foundation on the representation of system

properties through appropriate vector spaces. Initially developed for linear systems

over conventional algebras [68, 69], this approach has provided solutions to vari-

ous control problems, especially the disturbance decoupling problem and the model

matching problem. The geometric approach extended to systems over the max-

plus semiring has been identified as a promising field of research [63]. However,

this generalization is not straightforward due to the distinct properties of max-plus

semimodules compared to vector spaces. Some challenges that emerged have been

addressed by researchers extending the geometric approach to linear systems over
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rings [119, 122, 143]. A pivotal step in extending geometric concepts to max-plus

semirings was taken in [102], introducing reachable and observable semimodules for

max-plus linear systems with coefficients in Zmax. While these semimodules are

not finitely generated in general, they belong to the class of rational semimodules

with the integrity assumption. The geometric approach has traditionally excelled

in solving the Disturbance Decoupling Problem (DDP) over conventional algebra.

However, its transposition to max-plus linear systems [105], presents a different

practical interpretation. In the max-plus algebra, controllers can only slow down

the plant’s operation, and this same effect is also given by disturbance. As a result,

effective compensation for the disturbance becomes challenging, but at most, the

system can be slowed down more than the disturbance would do. Other formula-

tions of the DDP for systems over the max-plus algebra have been proposed and

addressed in [144–149].

2.3.3. Model Matching Problem

The Model Matching Problem (MMP) is a significant problem that also finds a solu-

tion in the geometric approach for linear systems over the conventional algebra. This

problem involves finding a control law that ensures a given plant behaves in accor-

dance with a specified model. Different authors have proposed various formulations

of this problem for max-plus linear systems, with the shared control objective of gen-

erating an output sequence for the plant that anticipates (smaller output than the

model output) or equals that of the model. In other words, the output of the model

is interpreted as a deadline. This perspective has been explored using concepts such

as transfer matrices and formal power series over a dioid. Adaptive output feed-

back control [150] and other alternative representations, as the [151] based on the

(min,+) diod, have also been proposed. Another formulation of the model matching

problem is considered in [109], where the matching condition involves minimizing

the distance between the plant’s output and a reference model while delaying the
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control action. This problem is addressed using residuation theory and the Kleene

star operator. Similar considerations are explored in [152], introducing a three-block

control structure with a precompensation and a feedback action, and in the context

of temporal constraint meeting [125], where the goal is to ensure that the time be-

tween internal events does not exceed a certain threshold.

The approach presented in [90] introduces a new perspective on the solution of a

MMP in which the applied control forces a plant, modelled as a max-plus linear

system, to generate an output exactly equal to that of a given model. The same

approach will be followed in this thesis. This formulation has generalized the classi-

cal MMP [153] to systems with coefficients in an idempotent semiring, rather than

a field, and it has led to new correspondences between max-plus linear systems

and linear systems over the conventional algebra, established through a non-trivial

generalization process. Sufficient conditions for checking the problem’s solvabil-

ity and algorithms for computing solutions, if they exist, have been developed for

stationary [70], switching [91], and periodic [154] max-plus linear systems. These

advancements represent a significant contribution to the current state of the art, par-

ticularly for switching and periodic systems where a structural geometric approach

was lacking [91,154].
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Chapter 3.

Materials and Methods

The use of max-plus algebra as a theoretical framework in this research stems from

the unique challenges posed by confined underwater exploration scenarios. Specifi-

cally, the focus of this study revolves around biomimetic marine vehicles, represented

by fish-like robotic devices. To address the challenges related of underwater explo-

ration involving patrolling fish robots, two main aspects are required: on one hand,

a practical aspect is the construction of the model on the fish robot, while the other

is a theoretical infrastructure that allows the behaviour of the vehicles to be mod-

elled. Consequently, the need arises for advanced technologies and mathematical

formalization, where the latter is the core of the work. Therefore, this chapter deals

with the practical components that support the research, primarily in the context

of marine vehicles and their associated technologies, recognizing their importance in

the broader context of the work. Within the domain of marine vehicles, the research

relies on mathematical models, starting with the classic Fossen model, and modern

devices for navigation, communication and positioning. The Fossen model serves as

a foundational framework to understand marine vehicle dynamics, to be applied to

a monofin fish, that contributes significantly to the understanding of the different

types of monofin devices, that can be used in practice. An example of monofin

device is presented in Fig. 3.1.
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Figure 3.1.: Example of a monofin device (credits: ANcybernetics)

Various navigation technologies need also to be employed, including IMU (Iner-

tial Measurement Unit), AHRS (Attitude and Heading Reference System), DVL

(Doppler Velocity Log), and FOG (Fiber Optic Gyroscope), which are instrumental

for practical implementations. Furthermore, the implementation has to incorpo-

rate vision systems and USBL (Ultra-Short Baseline) technology, essential for data

collection, communication, and positioning, in order to perform tests in real-world

scenarios, such as pools, lakes and open sea. However, while these components are

vital for the practical dimension of the research and the implementation of the work,

it is important to note that the primary focus of this thesis is on theoretical aspects.

For this reason, the second part of this chapter is devoted to the presentation of the

basic concepts and results related to the max-plus algebra.

3.1. Marine Vehicles

Marine vehicles are mechatronic devices specially designed to operate in aquatic

environments, exploring places that often escape human access. Their versatility

allows them to perform a wide range of tasks, from complex seabed mapping oper-

ations to the delicate collection of biological samples. The presence of these robots

is vital in the field of marine exploration and scientific research, as they are able to

reach depths and corners that would otherwise remain unexplored. An interesting

development in the field of underwater robotics is the creation of fish robots, inspired

by the movements and morphology of real fishes. These robots are designed to move
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smoothly and naturally through water, allowing for gentle exploration of the ma-

rine environment. The inspiration taken from nature and marine biology, known as

biomimetics, plays a crucial role in the development of innovative robotic solutions

and robots modelled on the characteristics and behaviour of sea creatures can lead

to more efficient and effective solutions.

3.1.1. Type of Vehicles

To perform underwater explorations, there exist different types of marine vehicles:

the most used are briefly presented here. Starting with the Autonomous Underwater

Vehicles (AUVs), as their name suggests, they are autonomous vehicles without the

need for direct control and can perform pre-programmed missions, such as ocean

mapping or scientific data collection. Another type of devices are the Remotely

Operated Vehicles (ROVs): they are controlled by human operators through cables

and can be used for specific missions, such as monitoring underwater structures or

retrieving objects. Then, there exists also Autonomous Surface Vehicles (ASVs)

represent another important component in marine robotics. They are autonomous

vehicles designed to operate on the water surface. They can be used to support

underwater operations, communicating with AUVs and ROVs, to coordinate complex

tasks. In addition, they can perform monitoring missions from the surface, surveying

the marine environment or providing logistical support for other operations. In this

context, fish robots are considered as AUVs, since they are autonomous during their

patrolling activities.

3.1.2. Mathematical Model of a Monofin Fish

As a starting point, the understanding and implementation of a dynamic model for

marine vehicles’ and their propulsion system, is crucial. A comprehensive model

also allows to create a simulation environment and implement control algorithms

effectively. The Fossen model [155, 156] stands as a significant contribution in this
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regards and it provides a mathematical foundation for analyzing and simulating

the behavior of underwater vehicles. This model forms the basis for further de-

velopments in biomimetic vehicles, enabling a more accurate representation of their

movements in aquatic environments [7]. Inspired by nature, the mathematical model

of a monofin fish offers insights into the propulsion mechanisms of aquatic creatures

and by emulating the swimming patterns and fin movements of fish, this model con-

tributes to the design and control strategies of biomimetic vehicles. It also serves as

a valuable reference for understanding the intricate dynamics involved in underwater

locomotion.

This chapter outlines the development of a six-degrees-of-freedom non-linear dy-

namic model for a fish robot, following Fossen’s theoretical framework [155]. The

model is obtained by transforming into vectorial representation the mathematical

model derived from previous works, where the vehicle body was approximated to a

cylindrical shape with radius R and length L [157,158]. The decision to represent the

equation of motion in vector form aims to leverage the physical characteristics of the

model, reducing the required control coefficients. Additionally, vector-based models

offer computational advantages and facilitate algebraic manipulations, making them

suitable for implementing various control algorithms. This non-linear vector model

can be employed in environments like Simulink for simulation purposes, and with

tools such as Simulink 3D Animation (incorporating the Virtual Reality Toolbox)

that can link Simulink models with MATLAB algorithms to 3D graphical objects in

virtual reality scenes [159].

The kinematic and dynamic equations of motion are now briefly presented, fol-

lowed by the forces and moments generated by a propulsion system of a robotic fish.

For further details, the work from Fossen [156] is highly recommended due to its

completeness.
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Mathematical Model

In order to introduce the analysis to obtain the mathematical model of the system,

the hypothesis considered are that the fish robot is a rigid body assumed of cylin-

drical shape with 6 degrees of freedom (DOF) and the fluid is incompressible and

irrotational. The first step is to introduce both the environmental contributions

that interact with the robot and the physics principles generated by the vehicle’s

movements. A linear system modulation of the problem is adopted, along with the

Newton-Euler equation of motion on the dynamic aspect.

The equation of motion of a marine vehicle can be written in vector form according

to Fossen [155] as:
η̇ = JΘ (η) v (3.1)

Mv̇ + C (v) v +D (v) v + g (η) = τ (3.2)

The involved matrices and vectors and their properties will be described in the

following paragraphs. Before continuing, it is important to state that when analysing

the motion of a marine robot in six degrees of freedom it is convenient to define two

coordinate frames:

• the moving frame {b} is fixed to the body of the craft and its origin Ob is

usually chosen in such a way as to coincide with the vehicle’s centre of gravity.

The motion of the body-fixed frame is described relative to the Earth-centered

one, the North-East-Down (NED) frame

• the NED frame {n}, which can be considered inertial, since the effects of the

Earth’s motion on the vehicle at low speed is negligible.

The suggestion given by this consideration, is that the position and orientation of

the robotic fish should be described relative to the {n}, while the linear and angular

velocities should be expressed in {b}. The notation adopted for the vectors in {b}

and {n} frames for the marine robot are the following:
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• vb
b/n =

uv
w

, linear velocity of the point Ob relative to {n} expressed in {b};

• wb
b/n =

pq
r

, angular velocity of the point Ob relative to {n} expressed in {b};

• pn
b/n =

xy
z

, position of Ob in the {n} frame;

• Θnb =

ϕθ
ψ

, Euler angles between {n} and {b};

Kinematics

The first equation (3.1) describes the relationship between the body-fixed reference

frame {b} placed on the center of buoyancy of the robot and the North East Down

(NED) coordinate system {n}. This relation is about the position η1 = pn
b/n =

[x, y, z]T expressed in meters and orientation η2 = Θnb = [ϕ, θ, ψ]T in radians,

in NED frame and linear and angular velocity (m/s and rad/s) in the body frame

v = [v1, v2]T = [vb
b/n, w

b
b/n]T by adopting the transformation matrix JΘ. So, η

denotes the position and attitude of the vehicle, in which the position vector pn
b/n is

the distance between NED frame and the body-fixed frame expressed in the NED

coordinate frame (n), Θnb is the Euler angles vector and v denotes linear and angular

velocity vector.

The Euler parameters representation is used for the attitude of the robot consisting

of roll (ϕ), pitch (θ), and yaw (ψ) angles. In particular, the first equation becomes

as follows for the position and attitude of the fish robot:

[
η̇1

η̇1

]
=
[
J1(η2) 03×3

03×3 J2(η2)

]
=
[
v1

v2

]
(3.3)

where J1(η2) and J2(η2) are transformation matrices.
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At this point, it has to be said that this representation by Euler angles is very

common thanks to their easy physical interpretation and to the fact that they can

be measured directly by the sensors (gyroscopes). There are, however, some dis-

advantages that arise due to the presence of singular points [160] and since marine

robots could operate near these singularities, this can be a problem. An alternative

to Euler angle representation is the four-parameter method based on unit quaternion

(q), which is an extension of complex numbers. A quaternion unit is defined as:

q =
[
q0 q1 q2 q3

]T
(3.4)

Through a series of calculations, the kinematics equation expressed by means

of the Euler parameters (unit quaternion) can be obtained. Nevertheless, as this

discussion exceeds the confines of this thesis, it has been deemed essential to only

acknowledge their existence, explaining that the Euler parameters representation

can be defined for any valid unit quaternion and singularity is avoided (typical of

a three-parameter representation). For more comprehensive insights, kindly consult

the reference [161].

Dynamics

In general, when the body-fixed frame’s origin (which in this case coincides with the

center of buoyancy, O=CB) does not coincide with the center of gravity (CG), the

general dynamic equation of motion of a rigid body with six degrees of freedom can

be written as follows [155,162]:

MRB v̇ + CRB (v) v = τRB (3.5)

where MRB is the constant inertia matrix of the rigid body, it is symmetric, pos-

itive definite, CRB is a skew-symmetrical parametrization of the rigid body, corre-

sponding to the Coriolis and centripetal matrix, and τRB represents the generalized

vector of external forces (in N), including control and hydrodynamic forces, and

moments (in N m). These forces can be divided in:
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• disturbances by the environment (wind, waves, sea current), here considered
null, since the simulation can refer, at least at the beginning, to the devices
working on an internal pool;

• restoring forces due to gravity and buoyancy forces due to the Archimedes
principles;

• forces related to the added mass due to the surrounding fluid inertia and the
consequent damping induced by the waves thus generated;

• forces and torques generated by the propellers or other actuators present in
the vehicle.

With the forces above described, the equation of motion (3.5) of the marine robot

with 6 degrees of freedom in body-fixed frame can be written, in compact form, as:

(MRB +MA)︸ ︷︷ ︸
M

v̇ + (CRB (v) + CA (v))︸ ︷︷ ︸
C(v)

v +D (v) v + g (η) = τE + τ (3.6)

where M is the inertia matrix including MRB as the inertia matrix of the rigid body

and MA for the added mass; C(v) is the Coriolis and centripetal matrix composed

of CRB(v) for the rigid body and CA(v) for the added mass; D(v) is the total

hydrodynamic and centripetal matrix, g(n) is the vector of restoring (gravitational

and buoyant) forces and moments, τE is the vector of environmental forces and

moments, and τ is the vector of propulsion forces and moments.

Furthermore, by applying the transformation matrix according to the Euler angles,

the restoring forces and moments can be defined in the body-fixed frame as follow:

g (η) =



(W −B) sin θ
− (W −B) cos θ sinϕ
− (W −B) cos θ cosϕ

−ygW cos θ cosϕ+ zgW cos θ sinϕ
zgW sin θ + xgW cos θ cosϕ
−xgW cos θ sinϕ− yGW sin θ


(3.7)

where W represents the weight of the vehicle (in N), B is its buoyancy (in N),

and xg, xg and xg are the distances (in m) between the center of mass and center

of buoyancy in the body-fixed reference frame.
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Remark 1 These mathematical models are very useful to make simulations of the

considered systems. For example, within the European project DiveSafe [163], an in-

teresting work has involved the development of a Digital Twin of a Diver Propulsion

Vehicle (DPV) [164]. The virtual infrastructure was developed to study and test the

buoyancy of the DPV, with and without payloads, prior to the underwater survey.

MATLAB/Simulink (for physical and mathematical models) was there used linked to

Unity (for robot and environment visualization and navigation) and a user interface

was produced to simulate the model, guiding the user in adding payloads to the DPV

and in running the code to recalculate the parameters of the model, also based on the

Fossen model. A similar work can also be carried out in this context by considering

fish robots and making the necessary modifications to the mathematical model.

3.1.3. Navigation Technologies

Navigation technologies are pivotal for ensuring precise control and maneuverability

of marine vehicles. Several sensing systems have to be integrated into the vehicles

to enhance their navigation capabilities in the underwater environment and achieve

their mission objectives. These technologies provide vehicles with the ability to

determine their position and orientation, as well as to track their movement over

time. Accurate and reliable navigation is essential for a wide range of maritime

applications, that can involve fish robots, AUVs, ROVs and ASVs. In this regard, a

good review of the State of The Art for AUV navigation and localization is [165].

The commonly employed technologies are listed as follows.

IMU The IMU, acronym for Inertial Measurement Unit”, is a key component in

robotics in general and especially in the navigation and control of robotic devices.

It is a system that combines several inertial sensors, typically composed of three

accelerometers and three gyroscopes, that measure accelerations, angular velocities

and orientation of an object. The accelerometers measure the vehicle’s acceleration
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in three axes, while the gyroscopes measure the vehicle’s rotation rate in three axes.

It therefore provides valuable information on the position, rotation and movement

of the object on which it is mounted, without depending on external references such

as GPS or fixed landmarks. It is essential for measuring and understanding how

an object moves and is oriented in space, both in terrestrial and underwater envi-

ronments. IMUs are widely used in navigation systems because they are relatively

inexpensive, compact, and reliable. However, IMUs are susceptible to drift, which

can accumulate over time and lead to significant errors in position and orientation.

AHRS An Attitude and Heading Reference System (AHRS) is a navigation device

that combines IMU data with additional sensor data to provide a more accurate

estimate of the vehicle’s attitude and heading. An AHRS typically incorporates data

from magnetometers, which measure the Earth’s magnetic field, and GPS receivers,

which provide position information. AHRSs are more expensive than IMUs, but

they offer improved accuracy and reliability.

DVL A Doppler Velocity Log (DVL) is a navigation device that measures the

vehicle’s velocity relative to the water. A DVL works by emitting sound waves and

measuring the Doppler shift of the reflected waves. DVLs are particularly useful

for underwater vehicles because they provide a direct measure of velocity, even in

the absence of external references. A recent work that evaluates the performance of

IMU and DVL integration in marine navigation is [166].

FOG A Fiber Optic Gyro (FOG) is a type of gyroscope that uses fiber optics

to measure the vehicle’s angular rate. FOGs are more expensive than traditional

gyroscopes, but they offer improved accuracy and reliability. FOGs are becoming

increasingly popular for use in high-performance navigation systems.
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Vision Underwater vehicles equipped with visual sensors, such as cameras or video

cameras, are essential to inspect the underwater environment, being able to cap-

ture photos and videos. This capability enables scientists and operators to extract

valuable information and data in this regard. Furthermore, the sequential images or

video frames obtained from these cameras can be used for the generation of accurate

3D reconstructions. These reconstructions contribute significantly to the creation of

detailed models depicting submerged objects, seabeds, and underwater structures.

Vision-based navigation systems leverage cameras to capture images of the vehicle’s

surroundings, processing them to extract features. These features, ranging from

landmarks to distinctive patterns, are also used to determine the vehicle’s position

and orientation. The popularity of vision-based navigation systems is driven by their

capacity to provide rich and detailed environmental information. The integration of

underwater vision systems with IMUs, for example, is paramount for robots navi-

gating and exploring the marine environment. Together, these tools empower robots

to comprehend their surroundings and interact with them effectively. The synergis-

tic combination of data from IMUs and underwater vision broadens the scope of

applications, spanning scientific research to environmental protection.

USBL Communication in marine environment is a crucial aspect for underwater

robots and successful underwater missions. Since radio waves propagate only to a

very limited extent in water, due to water absorption, other communication modes

and technologies are required to transmit data underwater. Acoustic systems, such

as USBL (Ultra Short BaseLine), allow the position of one or more underwater

robots to be calculated based on the arrival times of acoustic signals sent and re-

ceived. USBL is a key technology for the accurate communication and positioning of

such robots, e.g. for search or recovery work. It plays a vital role in the navigation

and control of marine vehicles, contributing to their efficiency during the explo-

rations. It offers high-precision underwater localization and its integration with

35



3.1. MARINE VEHICLES

other navigation technologies forms a synergistic approach to address the complex-

ities related to the marine environment. The USBL positioning system consists of

a transceiver mounted on a vessel, which utilizes acoustic signals to determine dis-

tances and bearings to tracking targets like AUVs or ROVs. Each target is equipped

with a transponder that responds to the transceiver’s signals with acoustic pulses,

allowing precise calculation of the targets’ positions. An USBL operating scheme,

taken from the EvoLogics website, is shown in Fig. 3.2. This system measures the

time between signal transmission and transponder reply, converting it into distance

using a phase-difference method. Optional instruments, such as an AHRS and/or

a Global Navigation Satellite System (GNSS) receiver, can be used to provide ad-

ditional vessel information, such as orientation and coordinates. The computer, on

the vessel, interfaces with the USBL transceiver and other instruments, connected

to the local network and a dedicated software on it controls the positioning system

to monitor the mission in real-time and exchange data. This acoustic positioning

system offers several advantages, including high accuracy, real-time tracking, and

suitability for both shallow and deep-water environments. Its ability to provide

precise position information makes it valuable for various underwater applications,

such as subsea exploration, pipeline inspection, and AUV missions. In summary, an

USBL system combines acoustic signals, transponders, and optional instruments to

deliver accurate and real-time information on underwater target positions, with the

navigation computer facilitating centralized control.
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Figure 3.2.: USBL operating scheme, www.evologics.de/usbl
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3.2. Max-Plus Algebra Mathematical Framework

Following the state of the art of section 2.3 related to max-plus algebra, its applica-

tions and the concepts of controlled invariance and Model Matching Problem, it is

now possible to explain in detail the theory behind this discrete algebraic system.

Most of the contributions of this chapter are taken from the paper [1], produced

during the doctoral period spent at the Laboratoire des Sciences du Numérique de

Nantes, which led to the discussion of new sufficient conditions for causal controlled

invariance and to the development of an algorithm to verify this property.

The max-plus algebra framework was chosen to develop this work as it has proven

effective in modelling real-world situations. Consequently, it has also demonstrated

to be a valid tool for modelling the context here examined, in which repetitive

patrolling by cooperating underwater devices is considered, especially for marine

areas characterized by predefined Points of Interest (POIs).

Before moving on to the more advanced theory, a small premise is needed about

the elementary operations that can be modelled for Discrete Event Systems (DESs).

Elementary Operations Within a DES, elementary operations include:

• Concatenation: an operation P1 must complete before operation P2 can start.

This applies, for example, to successive production stages along an assembly

line and the operation considered is the ⊗, that represents a sum, e.g. between

the completion time of P1 and the time required by P2, to obtain the time at

which the whole process is completed.

• Synchronization: both tasks can proceed independently, but the entire process

is not considered complete until both P1 and P2 have concluded. In this case,

an example is the production of two components that must be assembled before

leaving a factory and the maximum between the conclusion time of P1 and

that of P2, represents the global completion time. The operation is here ⊕.
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Dater Representation Another concept related to DES is the so called dater rep-

resentation, that represents the predominant approach for modelling a sequence of

events in the max-plus algebra. In the DES that are here considered, events of differ-

ent types occur with a precise timeline and in modelling a situation in which events

of n different types can occur, an n-dimensional dater function d(.) : N → Rn
max,

can be considered, whose value at k ∈ N is a vector d(k) = (d1(k), ..., dn(k))⊤. The

i-th component di(k) indicates the time instant at which an event of the i-th type

occurs for the k-th time. Of course, dater functions must be non-decreasing in order

to have physical meaning, that means d(k + 1) ≥ d(k) for each k ∈ N.

3.2.1. Theoretical Background

By denoting the extended real line as R, the max-plus semiring is defined as the set

Rmax = R ∪ {−∞}. Therefore, Rmax represents the set of real numbers extended

by −∞, and the operations max and plus, with which it is equipped, are denoted

as ⊕ and ⊗, respectively. For any x, y ∈ Rmax, the two operations for addition and

multiplication are defined as follows:

x⊕ y = max(x, y) if x, y ∈ Rmax (3.8)
x⊗ y = x+ y if x, y ∈ Rmax

x⊗−∞ = −∞⊗ x = −∞ if x ∈ Rmax

(3.9)

The neutral element for the operation ⊕ is ϵ = −∞, and the neutral element for

the operation ⊗ is e = 0 ∈ R. In this structure, the ϵ element is absorbent for

multiplication, i.e. x⊗ ϵ = ϵ⊗ x = ϵ for all x ∈ Rmax. Since x⊕ ϵ = ϵ⊕ x = x and

x⊗ e = e⊗ x = x hold for any x ∈ Rmax, we can understand that ϵ and e play the

role of 0 and 1 in conventional algebra.

The operations ⊕ and ⊗ are associative, and multiplication is distributive over

finite sums, meaning that for any a, b, c ∈ Rmax, (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) and

c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b).
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Therefore, Rmax possesses a semi-ring structure. Furthermore, it is important

to note that the operation ⊕ is commutative, and that addition ⊕ is idempotent,

which means that for any a ∈ Rmax, we have a ⊕ a = a. With these properties,

Rmax is referred to as a dioid [62]. Moreover, as in Rmax the operation ⊗ is also

commutative (whereas in general only ⊕ is like this), in this case, thanks to this

additional property, it is referred to as a commutative dioid.

Another dioid is the min-plus semi-ring, defined as the set Rmin = R ∪ {+∞}

equipped with the addition min(a, b) = a⊕′ b and multiplication a+ b = a⊗′ b. The

identity element is +∞, and the unit is 0. The dioids Rmax and Rmin are understood

as the set R∪ {−∞,+∞}, equipped with the operations ⊕,⊗, or ⊕′,⊗′. These two

dioids are complete in the sense that the sums ⊕ and ⊕′, even of an infinite number

of elements, are always well-defined in these sets. Note that the multiplications

⊗′ and ⊗ are different because by convention, we have −∞ ⊗ +∞ = −∞, while

−∞⊗′ +∞ = +∞. Both operations coincide with the usual addition when applied

to real numbers.

The notations ⊕ and ⊗ are extended to vectors and matrices. In fact, Rp×q
max

represents the set of p×q matrices with coefficients in Rmax, where p, q ∈ N. For two

matrices A,B ∈ Rm×n
max , the sum A⊕B is defined as (A⊕B)ij = Aij⊕Bij . If A ∈ Rp×n

max

and B ∈ Rn×m
max , the product A⊗B is defined as (A⊗B)ij = ⊕n

k=1Aik ⊗Bkj . This

product is often denoted as AB.

The null matrix is symbolized by ϵ, and the identity matrix In is an n×n matrix

with diagonal elements as e = 0 and off-diagonal elements as ϵ. Instead, the vector

in which all components are equal to e = 0 is denoted as 0. The notation ⊗ is also

used to represent the external product of a scalar λ ∈ Rmax and a matrix A ∈ Rp×n
max,

defined as (λ⊗A)ij = λ⊕Aij , for i = 1 to p and j = 1 to n.

By replacing, in the notions of vector space or module, the field or ring of scalars

with a semi-ring, one obtains what is called in the literature a semi-module, a mod-
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uloid [62], or simply a module1.

We are particularly interested in the sub-semi-modules of the Cartesian product

Rn
max and finite-type modules generated by a finite family of vectors in Rn

max.

If M ∈ Rn×m
max , we can define ImM = {x ∈ Rn

max | ∃v ∈ Rm
max, x = Mv}. In other

words, ImM is generated by the columns of M . In this regard, an important and

widely discussed result in the literature is due to Butkovič and Hegedüs [167], who

established that the family of finite-type sub-semi-modules of Rn
max coincides with

the family of finite-type cones Cone (C,D) = {x ∈ Rn
max | Cx = Dx}, where C and

D are p × n matrices, for an integer p. This remark is formalized in the following

statement.

Theorem 1 Given a semi-module M ⊂ Rn
max, the following statements are equiv-

alent.

(i) There exists an integer q and a matrix M ∈ Rn×q
max such that M = ImM .

(ii) There exists an integer p and matrices C,D ∈ Rp×n
max such that M = Cone (C,D).

Algorithms for converting between the two representations are introduced in [167],

and they have been refined by Allamigeon et al. [139]. These algorithms were im-

plemented using the max-plus toolbox included in Scicoslab [168], to handle the

examples and simulations presented with this thesis.

Allamigeon et al. [139] also described algorithms for computing generators of max-

plus polyhedra to characterize the set of all vectors x satisfying inequalities of the

form Ax⊕ c ≤ Bx⊕ d. In the following, we will only need the following well-known

result, which characterizes the existence of at least one solution to a monolateral

equation from its greatest sub-solution [62].

1A few years ago, Christophe Reutenauer pointed out to Édouard Wagneur that the term "mod-
ule" is preferable, as the definitions of a module and a semi-module are identical, except for the
fact that the reference set is a ring or a semi-ring. They were discussing the notion of dimen-
sion for these objects and indeed, rings or semi-rings pose the same questions for this type of
property. For this reason, this advice is followed and the terms module or semi-module are used
interchangeably in this thesis.
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Theorem 2 Given integers q and n, along with a matrix A ∈ Rq×n
max and a vector

y ∈ Rq
max, the following statements are equivalent.

(i) There exists a vector x ∈ Rn
max such that Ax = y,

(ii) The equality A⊗ (A−T ⊗′ y) = y is satisfied.

3.2.2. Max-Plus Linear Systems

Another important basic concept is that of max-plus linear system, which is a dy-

namical system whose evolution is guided by the following first recurrence law:

Σ ≡


x(k + 1) = A⊗ x(k)⊕B ⊗ u(k + 1)
y(k) = Cx(k)
x(0) = ϵ

(3.10)

where A ∈ Rn×n
max , B ∈ Rn×m

max and C ∈ Rp×n
max. In this system, k ∈ N represents the

event instance index and the elements x(k) : N → Rn
max, u(k) : N → Rm

max and

y(k) : N→ Rp
max respectively represent the dater of internal events (state vector),

the dater of input events (control input), and the dater of output data of the system,

for integers k > 0.

The solution of the system (3.10) is uniquely determined by the control input u and

the initial condition x (0) ∈ Rn
max. The components of x(k) and u(k) here represent

event daters, such as resource activation or deactivation.

3.2.3. Controlled Invariance

Among the various theoretical concepts behind max-plus linear systems, there are

the notions of invariance, controlled invariance or (A,B)-invariance, and causal con-

trolled invariance. A large amount of theory is available in the literature on these

concepts, as presented in section 2.3.2, and the main definitions are now reported.

Before discussing controlled invariance, it is considered necessary to also mention

the notion of invariance. An invariant semi-module of a system is a semi-module of

the state module such that, if the initial state is contained in that set, then the free
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evolution of the system, that is the evolution of the state with a zero input (u(k) = ϵ

for all k ∈ N), is entirely within it.

Definition 1 (Invariance) Given a max-plus linear system of the form (3.10) we

say that a semi-module V ⊆ X is invariant, or A-invariant, if, for all x ∈ V, Ax ∈ V.

The concept of invariant semi-module can be extended to an arbitrary controllable

input for the system with the notion of controlled invariant semi-module.

Therefore, in this section, some results concerning controlled invariance in Rmax

are presented: specifically, properties (i) and (ii) of Theorem 3 below were stated by

Katz [103], while property (iii) was expressed in [136].

Definition 2 (Controlled Invariance) Given matrices A ∈ Rn×n
max and B ∈ Rn×m

max , a

semi-module M ∈ Rn
max is (A,B)-invariant, or controlled invariant, if ∀x0 ∈ M ,

there exists a control input u such that the unique solution of the system (3.10),

initialized at x0, satisfies x(k) ∈M for k > 0.

Theorem 3 The following properties are satisfied.

(i) A semi-module M ⊂ Rn
max is (A,B)-invariant [103] if and only if:

AM ⊂M ⊖ ImB ,

where M ⊖ ImB is the set {x ∈ Rn
max | ∃b ∈ ImB, x⊕ b ∈M } .

(ii) A semi-module M ⊂ Rn
max generated by a matrix M ∈ Rn×q

max is (A,B)-invariant

[103] if and only if there exist matrices U ∈ Rm×q
max and V ∈ Rq×q

max such that:

A⊗M ⊕B ⊗ U = M ⊗ V.

(iii) A semi-module M ⊂ Rn
max such that M = ImM = Cone (C,D), where M ∈

Rn×q
max and C,D ∈ Rp×n

max is (A,B)-invariant if and only if there exists a matrix U ∈

Rm×q
max such that the following equality holds:

C(AM ⊕BU) = D(AM ⊕BU) .

43



3.2. MAX-PLUS ALGEBRA MATHEMATICAL FRAMEWORK

Property (i) forms the basis of the geometric approach to control, while (ii) and

(iii) form the basis of its algebraic approach. They are established in the same way

as in the case of systems over a field, by constructing the columns of matrices U and

V with initial conditions equal to the columns of M .

In summary, we have seen that the module M = ImM is controlled invariant when

there exist matrices U and V of appropriate dimensions such that AM⊕BU = MV .

Under these conditions, any control law satisfying: u(k) = Uv(k),
x(k) = Mv(k),

for a sequence v(k) ∈ Rq
max, leads to the equalities:

x(k + 1) = AMv(k)⊕BUv(k) = (AM ⊕BU)v(k) = MV v(k) (3.11)

which means that x(k) ∈M for k ≥ 1, if x(1) ∈M . In this case, there exists a

vector v(1) ∈ Rq
max such that x(1) = Mv(1), and the sequences defined by v(k+1) =

V v(k) for k ≥ 2, and u(k) = Uv(k) for k ≥ 1, define a control law that makes the

module M invariant for the closed-loop system.

Definition 3 The module M is static state feedback invariant if there exists a con-

trol law u(k) = f(x(k)) such that the trajectory of the closed-loop system remains

in M during its evolution if x(1) is itself an element of M . In this case, such a

function f is called admissible for M .

Theorem 4 Given a finite type sub-semi module of Rn
max, denoted as M = ImM ,

with M ∈ Rn×q
max, the following two statements are equivalent [136].

(i) M is controlled invariant.

(ii) M is invariant under static state feedback, or static state feedback invariant.

Under these conditions, a maximal admissible state feedback exists and it can be

written as:
u(k) = U ⊗M ♯(x(k)) = U ⊗ (M−T ⊗′ x(k)) ,
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where U is the matrix of properties (ii) and (iii) of the Theorem 3, and M ♯(x(k)) is

defined by:

(M ♯(x(k)))i = (M−T ⊗′ x)i = −
n⊕

j=1
{Mji − xj(k)}, for i = 1 to q.

3.2.4. Model Matching Problem

In this section, the theoretical background of the geometric approach to the Model

Matching Problem (MMP) for max-plus linear systems, as presented in [90], will

be briefly reported. Further details and remarks can be found in the cited work,

where sufficient conditions for checking the problem’s solvability and algorithms for

computing solutions, if they exist, have been developed for stationary [70], switching

[91], and periodic [154] max-plus linear systems. This work will only consider the

case of stationary max-plus systems, since the model developed below is of this type.

This section leads to the solution of a MMP formulated as a problem in which the

applied control forces a max-plus linear plant to generate an output exactly equal

to that of a given model of the same kind. The main definitions are reported below.

Problem 1 (Model Matching Problem [70]) Given a linear max-plus system

ΣP ≡


xP (k) =APxP (k − 1)⊕BPuP (k)

yP (k) =CPxP (k)

xP (0) = ϵ

(3.12)

called the plant, and a linear max-plus system

ΣM ≡


xM (k) =AMxM (k − 1)⊕BMuM (k)

yM (k) =CMxM (k)

xM (0) = ϵ

(3.13)

called the model, with xP : N→ RnP
max, xM : N→ RnM

max, uP : N→ RmP
max, uM : N→

RmM
max and yP , yM : N → Rp

max, the MMP consists in finding, for all possible non-

45



3.2. MAX-PLUS ALGEBRA MATHEMATICAL FRAMEWORK

decreasing input sequences {uM (k)}k∈N of the model, an appropriate non-decreasing

control input sequence {uP (k)}k∈N for the plant, such that the output {yP (k)}k∈N of

this latter equals the output {yM (k)}k∈N of the model, i.e. yP (k) = yM (k) for all

k ∈ N.

In addition to the formulation presented above, a more restrictive MMP is also

introduced, requiring the control signal to be a linear function of the state of the

plant, the state of the model, and the input of the model. In this case, the control

signal can be viewed as a feedback map.

Problem 2 (Feedback Model Matching Problem [70]) Given a plant of the

form (3.12) and a model of the form (3.13), the Feedback Model Matching Prob-

lem (FMMP) consists in finding, for all possible non-decreasing input sequences

{uM (k)}k∈N of the model, two appropriate matrices F ∈ RmP ×(nP +nM )
max and G ∈

RmP ×mM
max such that the control input sequence {uP (k)}k∈N defined by

uP (k) = F

xP (k − 1)

xM (k − 1)

⊕GuM (k) for k ≥ 1 (3.14)

is a solution for the corresponding MMP.

Remark 2 If xP (k), xM (k) and uM (k) are all non-decreasing daters, then the con-

trol input sequence uP (k) defined by (3.14) is also non-decreasing, since in the max-

plus algebra every linear function is monotone, and both the terms in the right-hand

term of equation (3.14) are monotone.

Solution

Given the plant ΣP described by (3.12) and the model ΣM described by (3.13),

the joint internal event dater xE(.) =

 xP (.)

xM (.)

 : N → R(nP +nM )
max is considered,
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together with the related joint dynamics, described by the equation:

xE(k) = AExE(k − 1)⊕B1uP (k)⊕B2uM (k) (3.15)

with AE =

AP ϵ

ϵ AM

, B1 =

BP

ϵ

, B2 =

 ϵ

BM

 and xE(0) = ϵ .

At this point, the control problem expressed in Problem 1 can be reformulated

as that of finding, for any input sequence of the model {uM (k)}k∈N, a control input

sequence for the plant {uP (k)}k∈N that keeps {xE(k)}k∈N inside the output equalizer

subsemimodule K ⊆ R(np+nM )
max defined by

K =

xE =

 xP

xM

 ∈ R(np+nM )
max , such that CPxP = CMxM

 (3.16)

Viewing {uM (k)}k∈N as a disturbance input and {uP (k)}k∈N as a control input,

similarities can be noted with the disturbance decoupling problem over the con-

ventional algebra. In that case the objective is to constrain the state of the joint

dynamics inside the null space of the output matrix. Although the parallelism is

clear, there are some differences discussed in the Remark 4 of [90].

The formulation of the MMP that consists of keeping xE(k) inside the output

equalizer subsemimodule K can be tackled with a structural geometric approach,

obtaining a necessary and sufficient condition for the existence of a solution for the

MMP. Before introducing the theorem, the following definition has to be introduced.

Definition 4 (Non-anticipativeness) We say that a max-plus linear system of

the form 3.10 is non-anticipative if A ≥ In.

Theorem 5 ( [70]) Given a non-anticipative plant ΣP of the form (3.12) and a

non-anticipative model ΣM of the form (3.13), the related MMP is solvable if and

only if for all x ∈ ImB2 = Im

 ϵ

BM

 there exists z ∈ ImB1 = Im

BP

ϵ

 such that
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x⊕z belongs to V∗(K), where V∗(K) is the maximum (AE , B1)-invariant semimodule

contained in the output equalizer semimodule K defined by (3.16).

In this case, the detailed proof is provided [70], since it will be useful for the

development of some parts of the work.
Proof If . By the (AE , B1)-controlled invariance of V∗(K), it follows that given xE(k−1) ∈

V∗(K), there exists u1(k) ∈ RmP
max such that AExE(k − 1) ⊕ B1u1(k) belongs to V∗(K).

Moreover, by hypothesis, given uM (k) ∈ RmM
max, there exists u2(k) ∈ RmP

max such that

B1u2(k) ⊕ B2uM (k) belongs to V∗(K). We can then construct recursively a control input

{uP (k)}k∈N for the dynamics (3.15) as

uP (k) =

u2(1) for k = 1

u1(k)⊕ u2(k)⊕ uP (k − 1) for k > 1
(3.17)

More precisely, we start by taking u2(1) such that B1u2(1)⊕B2uM (1) ∈ V∗(K) and we set

uP (1) = u2(1). Then, we compute xE(1) by means of (3.15), xE(0), uP (1) and uM (1), and

we take u1(2) and u2(2) such that AExE(1)⊕B1u1(2) ∈ V∗(K) and B1u2(2)⊕BMuM (2) ∈

V∗(K). We set uP (2) = u1(2)⊕ u2(2)⊕ uP (1) and we iterate the same procedure increasing

by 1 the index k at each step. Note that the sequence {uP (k)}k∈N, thanks to the presence

of the term uP (k) in the second equation of (3.17), is non decreasing and it gives rise to the

following state evolution

xE(k) =


AExE(0)⊕B1u1(1)⊕B2uM (1) for k = 1

AExE(k − 1)⊕B1u1(k)⊕ (B1u2(k)

⊕B2uM (k))⊕B1uP (k − 1) for k > 1

. (3.18)

In equation (3.18), the term B1uP (k−1) is irrelevant, since, we have xE(k−1) ≥ B1uP (k−

1) and hence, thanks to the assumption of non-anticipativity that implies AE ≥ I, also

AExE(k − 1) ≥ B1uP (k − 1). Then, disregarding this last term, we can show by induction

that the state evolution {xE(k)}k∈N given in (3.18) is contained in V∗(K). In fact, xE(0) =

ϵ belongs to V∗(K). Moreover, by the definition of u1(.) it follows that the summand

(AExE(k−1)⊕B1u1(k)) in the right-hand term of (3.18) is contained in V∗(K) if xE(k−1)

is contained in V∗(K). Finally, the second summand (B1u2(k)⊕B2uM (k)) in the right-hand
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term of (3.18) is contained in V∗(K) by the definition of u2(k). Since V∗(K) ⊆ K, by the

definition of K given in (3.16), it follows that the output {yP (k)}k∈N of the plant generated

by the input {uP (k)}k∈N defined by (3.17) is equal to the output {yM (k)}k∈N of the model

generated by the input {uM (k)}k∈N and the MMP is solved.

Only if . If the condition of the theorem does not hold, there exists an input vector

ūM such that B2ūM ⊕ B1uP /∈ V∗(K) for any uP ∈ RmP
max. Then, for the constant input

uM (k) = ūM for k ∈ N, we have, from (3.15), that xE(1) = AExE(0)⊕B1uP (1)⊕B2uM (1) =

AEϵ⊕B1uP (1)⊕B2ūM = B1uP (1)⊕B2ūM does not belong to V∗(K) for any value uP (1) ∈

RmP
max and also xE(1) ≥ B2ūM . The latter inequality, thank to the fact that AE ≥ I, implies

recursively xE(k) = AExE(k−1)⊕B1uP (k)⊕B2uM (k) = AExE(k−1)⊕B1uP (k)⊕B2ūM =

AExE(k−1)⊕B1uP (k), while the fact that xE(1) does not belong to V∗(K) implies that for

any input {uP (k)}k∈N there exists k̄ ∈ Z such that xE(k̄) = AExE(k̄−1)⊕B1uP (k̄) /∈ K. In

other words, xE(k) cannot be kept indefinitely inside the subsemimodule K and the MMP

cannot be solved.

Remark 3 By analysing the proof of the Theorem 5, it can be realised that the

hypothesis of non-anticipativeness can actually be suppressed, since this condition is

not actually used in the first part of the proof of Theorem 5 [70], where the equalities

3.17 and 3.18 are enough to get AExE(k) ≥ B1up(k), without using the hypothesis

AE ≥ In+1. The second part of the proof cannot be simplified in the same way, but it

is possible to say that the condition of the theorem is at least sufficient to provide a

solution of the MMP, without this hypothesis. The proof was deeply analysed during

the simulations of the MMP of Section 4.2 since the matrix A obtained for the plant

in Section 4.1.3 is non-anticipative, at least in the sense explained in [90]. As a

consequence, the need to obtain an alternative proof for this theorem has emerged to

avoids the condition AE ≥ In+1 and it is provided in Appendix B.

For the feedback version stated in Problem 2, a specialized, more restrictive con-

dition is derived in [70], with the following result.
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Theorem 6 ( [70]) Given a plant ΣP of the form (3.12) and a model ΣM of the

form (3.13) as in Theorem 5, the related FMMP is solvable if and only if there exists

an (AE , B1)-invariant subsemimodule V of feedback type contained in the output

equalizer subsemimodule K such that for all x ∈ ImB2 = Im

 ϵ

BM

 there exists

z ∈ ImB1 = Im

BP

ϵ

 with x⊕ z ∈ V.

Remark 4 ( [90]) The solvability condition for the FMMP given in Theorem 6 is

strictly stronger than the solvability condition for the MMP given in Theorem 5,

since any (A,B)-invariant of feedback type V contained in K is also contained in

V∗(K) due to the maximality of the latter, and V∗(K) is not necessarily of feedback

type. Therefore, the solvability of the FMMP implies the solvability of the MMP and

any solution for the first is a solution also for the second.

Remark 5 In practice, the condition of Theorem 5 can be checked and the elements

u1(k), u2(k) that are needed in (3.17) to construct the control input {uP (k)}k∈N can

be found by solving systems of linear equations that involve the matrices AE, B1, B2

and the generators of V∗(K). The same holds for the condition of Theorem 6 with

the matrices F and G. An example with the computations involved in solving the

FMMP is given in [90].

3.2.5. Causality and Causal Controlled Invariance

In this section, the concept of causal controlled invariance, in the framework of max-

plus linear systems, is explored in depth. This concept is very useful and applicable

to various control problems for such systems, and although it has already been

presented in the literature, it is currently represented, and defined only through

sufficient conditions that allow to verify if a module has this property. In order

to design appropriate control laws for these systems, in which specifications and
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constraints are given in terms of vector space, it is indeed necessary to consider the

concepts of controlled invariance and causal controlled invariance. However, for the

latter no algorithm has so far been designed to test the sufficient conditions already

defined or other equivalent conditions. It is for this reason that, in addition to various

considerations on this topic, a preliminary version of an algorithm is presented within

this work. In this way, it makes possible to check more easily whether a module is

causally controlled invariant or not. We introduce the concept of causal projection

relative to a matrix, which plays a central role in the development of the concepts

that are presented. The described algorithm has been implemented on ScicosLab

software package. It consists in a procedure that is applied recursively to each row

of the matrix under consideration, until convergence is achieved, which is ensured

within a defined number of steps. Some examples are then provided in Appendix A,

to illustrate how the algorithm permits to confirm whether or not a given module is

causally controlled invariant.

Causality and Related Operators

The concept of causality, deeply studied by Bousch [137], stems from the fact that

functions modelling the evolution of discrete event systems not only possess the

classical properties of monotonicity and additive homogeneity, but also generally

have a third property that expresses the causal (i.e., non-anticipative) character of

the transformation.

Max-plus linear operators belong to the class of topical operators, which are for-

mulated using the min, max, and plus operations. A topical function u = ϕ(x) :

Rn
max → Rmax is represented by the infimum (symbol ∧) of max-plus linear functions

or the supremum (symbol ∨) of min-plus linear functions. This means that for a

finitely generated function, there exist integers q, r, and matrices α ∈ Rq×n
max and

51



3.2. MAX-PLUS ALGEBRA MATHEMATICAL FRAMEWORK

β ∈ Rr×n
max such that:

ϕ(x) =
q∨

j=1

n∧
k=1

(αjk + xk) =
r∧

j=1

n∨
k=1

(βjk + xk) . (3.19)

Our interest in topical operators arises from the fact that the control law expressed

in Theorem 4 belongs to this class. Functions of this type are monotonic, i.e., ∀x,

x′ ∈ Rn
max such that x ≤ x′, we have ϕ(x) ≤ ϕ(x′), and additively homogeneous, i.e.,

∀x ∈ Rn
max and λ ∈ Rmax, we have ϕ(λ⊗ x) = λ⊗ ϕ(x).

Furthermore, the operator ϕ(x) is causal if ∀x, y ∈ Rn
max, and for any date λ ∈

Rmax, we observe that ϕ(x) = ϕ(y) < λ or ϕ(x), ϕ(y) ≥ λ, whenever xi = yi < λ or

xi, yi ≥ λ, for i = 1 to n.

Definition 5 A function ϕ from Rn
max to Rmax is causal if for all λ ∈ Rmax,

the equality min(xi, λ) = min(yi, λ) for i = 1 to n implies that min(ϕ(x), λ) =

min(ϕ(y), λ). A multivariable function is said to be causal if all its components are

causal.

Next, we also recall some other definitions and basic results.

Theorem 7 A topical function ϕ from Rn
max to Rmax is causal if and only if for all

x ∈ Rn
max, the inequality ϕ(x ∧ 0) ≥ ϕ(x) ∧ 0 holds.

Theorem 8 A max-plus linear form of Rn
max, of the form f(x) = vT ⊗ x, for v ∈

Rn
max, is causal if and only if the vector v is defined over R+n

max. A topical function

ϕ : Rn
max → Rmax is causal if and only if it is equal to the infimum of causal max-plus

functions.

Bousch [137] achieves an explicit characterization of causal topical functions by

using the set R+
max of positive reals extended by −∞. However, the results presented

for real topical functions also extend to Rmax, considering the following alternative

characterization.
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Definition 6 The sub-semi-ring of causal elements in Rmax is defined as:

C = R+
max = {x ∈ Rmax |x ≥ 0 or x = ϵ} .

Proposition 1 A topical function ϕ defined on Rn
max and taking values in Rmax is

causal if, for every vector x ∈ Rn
max satisfying

⊕n
i=1 xi = 0, we have ϕ(x) ∈ C .

Definition and Sufficient Conditions

The concept of causal controlled invariance, although previously presented in the

literature [136], is characterized through sufficient conditions to verify if a mod-

ule possesses this property. These sufficient conditions, in summary, require the

existence of a causal matrix U such that AM ⊕BU has its columns in ImM .

Let us first recall some definitions and basic results from [136].

Definition 7 (Causal Controlled Invariance) We say that the module M ⊂ Rn
max

is a causal (A,B)-invariant, or causal controlled invariant, if there exists a causal

admissible control law for M .

Proposition 2 The state feedback u(k) = U(M−T ⊗′ x) from Theorem 4 is causal

if the coefficients Uij −Mkj are all causal for i = 1 to m, j = 1 to q, and k = 1 to

n, at least when Mkj ̸= ϵ.

Definition 8 We say that the matrix M is normalized if the maximal element in

each of its columns is equal to 0.

Proposition 3 A finitely generated module M is a causal (A,B)-invariant if there

exist a matrix U over C and a matrix V satisfying the conditions of Theorem 3, with

the matrix M being normalized.
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3.3. The Algorithm for Causal Controlled Invariance

At this stage, it is possible to proceed with further considerations. Despite the

existence of sufficient conditions for the causal controlled invariance of a module,

there is no current characterization or algorithm designed to test these sufficient

conditions or other equivalent conditions. In order to develop such an algorithm,

the following results are first introduced, which generalize Theorem 2 to characterize

the existence of causal solutions to a max-plus linear monolateral equality.

3.3.1. Causal and R-causal Projections

Theorem 9 For any matrix A ∈ Rq×n
max and any vector y ∈ Rq

max, the following

statements are equivalent:

(i) There exists x ∈ Cn such that Ax = y.

(ii) APc(A−T ⊗′ y) = y, where Pc is the causal projection defined as:

Pc(x) = sup{z | z ∈ C, z ≤ x} , (3.20)

for x ∈ Cn. In other words, we have:

(Pc(x))i =

−∞, if xi < 0,

xi, if xi ≥ 0 .

Proof The proof relies on the following chain of inequalities:
y = Ax , if x is a solution of Ax = y

= APc(x) , if x is a causal solution

≤ APc(A−T ⊗′ y) , because x ≤ A−T ⊗′ y, if Ax ≤ y

≤ A(A−T ⊗′ y) , by the definition of Pc

≤ y , because x ≤ A−T ⊗′ y implies Ax ≤ y, so A(A−T ⊗′ y) ≤ y.
Since both ends of the chain are equal, we conclude that all its terms are equal,

which implies the equality (ii) of the theorem. This shows that statement (ii) implies

statement (i). The converse is immediate, as x = A−T ⊗′ y is a solution if (ii) is

satisfied.
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This result can be extended to an equation of the form Ax⊕ b = y.

Theorem 10 For any matrix A ∈ Rq×n
max and vectors b, y ∈ Rq

max, we have the

following equivalences:

(i) There exists x ∈ Cn such that Ax⊕ b = y.

(ii) APc(A−T ⊗′ y)⊕ b = y.

Proof The proof is based on the same chain of inequalities:
y = Ax⊕ b , if x is a solution of Ax⊕ b = y

= APc(x)⊕ b , if x is a causal solution

≤ APc(A−T ⊗′ y)⊕ b , because x ≤ A−T ⊗′ y, if Ax ≤ y

≤ A(A−T ⊗′ y)⊕ b , by definition of Pc

≤ y , because A(A−T ⊗′ y) ≤ y and b ≤ y, if Ax⊕ b ≤ y.

The theorem is deduced as previously.

The two previous results are inspired by those of Cottenceau [138], which were

established for formal series associated with a max-plus linear system. We now

introduce the notion of projection relative to a matrix R, or R-projection, in order

to formulate a test to verify the existence of a causal solution as mentioned in

Proposition 3.

Theorem 11 Given integers n, m, p, and q, and matrices H ∈ Rn×p
max, M ∈ Rn×q

max,

and R ∈ Rm×p
max , there exists a matrix W such that HW = M and RW is causal, in

Cn×q, if and only if the following equality holds:

HPR
C (H−T ⊗′ M) = M , (3.21)

where the causal projection relative to a matrix R, or R-projection, is defined as

PR
c : Rq

max −→ Rq
max, by:

∀w ∈ Rq
max , P

R
c (w) = sup{z ∈ Rq

max | Rz ∈ Cn, z ≤ w} . (3.22)
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Proof This follows the same logic as before. Formally, the matrix H−T ⊗′ M is

defined on Rmax, as well as its projection. The projection is defined column by

column. If the equality in the theorem is verified, then W = PR
C (H−T ⊗′ M) is a

solution to HW = M such that RW is causal, by definition of the projection PR
C .

Conversely, if M = HW with RW causal, we have the following chain of inequalities:
M = HW with RW causal

= HPR
C (W ) since RW is causal, so PR

C (W ) = W

≤ HPR
C (H−T ⊗′ M) because HW ≤M so W ≤ H−T ⊗′ M and PR

C isotone

≤ H(H−T ⊗′ M) because ∀z, PR
C (z) ≤ z

≤M because z = H−T ⊗′ M satisfies Hz ≤M .

This chain has identical endpoints, which means that all terms are actively equal,

and in particular, HPR
C (H−T ⊗′ M) = M , which concludes the proof.

At this point, it is possible to introduce the algorithm for verifying the conditions

in Proposition 3.

3.3.2. Development of the Algorithm

Finally, we see that Theorem 11 allows for the effective verification of the sufficient

conditions in Proposition 3. This is expressed in the following statement:

Proposition 4 Given the matrices A, B, and M defined as before, let H, R, and

V be the matrices such that:

Im


H

R

V

 = Cone
((

A B ϵ
)
,
(
ϵ ϵ M

))
,

then the conditions from Proposition 3, which are sufficient for ImM to be causal

controlled invariant, are satisfied if and only if the conditions from Theorem 11 are

also satisfied.
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Proof The condition from Proposition 3 is that there exists a causal matrix U and

a matrix X such that AM ⊕ BU = MX. This leads to considering the module of

solutions (Y, U,X) of the identity AY ⊕ BU = MX. If the matrices H, R, and V

are defined as in the statement, then the solutions are parameterized in the form:
Y

U

X

 =


H

R

V

W ,

where W is a free parameter matrix. Testing the causal controlled invariance of

ImM then amounts to verifying the existence of a matrix W of adequate size such

that HW = M , and such that RW is causal, which is the object of theorem 11, and

completes the demonstration.

The verification of the sufficient condition in Proposition 3 is performed by testing

the equality HPR
C (H−T ⊗′ M) = M . In practice, the algorithm involves two main

steps, as follows:

• given the matrices A, B and M , compute the matrices H, R, et V ,

• finally, check whether there exists a matrix W such that RW is causal and

HW = M .

The first step of this procedure can be achieved using the algorithm by Allamigeon et

al. [139]. The computations may have high complexity, but the results are matrices

of finite order. The last point is to effectively compute the projection PR
C (W ) of

a given matrix W ∈ Rp×q
max. The R-projection of a matrix is performed column

by column using Theorem 11, starting from the columns w of the matrix W for

which PR
c (w) = sup{z ∈ Rp

max | Rz ∈ Cm, z ≤ w}. To this end, we establish some

elementary properties of the R-projection.

Proposition 5 The following properties are verified:

(i) A scalar z ∈ Rmax is causal if and only if z ≤ z2.
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(ii) Using the notation (v2)i = v2
i , for a vector v, it is also true that v is causal if

and only if v ≤ v2.

(iii) If R is a row vector, then

PR
c (w) =

w if Rw is causal,

z else,
(3.23)

where z is defined by:

zi =

wi if R1i = −∞,

−∞ if R1i + wi < 0, and R1i ̸= −∞.
(3.24)

(iv) In the case of a matrix, the R-projection is computed by applying the procedure

successively for each row of the matrix R, from the first row to the last one, and

then repeating this calculation until the rows are no longer modified.

Proof Properties (i) and (ii) are verified directly. To show (iii), we notice that Hw

is not causal, thus −∞ < max
i|R1i ̸=ϵ

(R1i + wi) < 0, which means there exist indices

i for which R1i + wi is negative. In the case (iv) of a matrix, we can apply the

same procedure successively for each row until convergence. At each step of the

procedure, certain coefficients of the vector are set to zero. Since the number of

rows and coefficients is finite, and the size of the matrix W is p× q, convergence is

guaranteed in a maximum of p× q steps.

These remarks lead to an effective calculation procedure. The resulting algorithm

is given in the table named Algorithm 1. Moreover, in the paper [1], three simple

examples of application of the algorithm for verifying the sufficient conditions of

causal controlled invariance of different modules are presented. These examples are

reported in Appendix A.

58



3.3. THE ALGORITHM FOR CAUSAL CONTROLLED INVARIANCE

Algorithm 1 The algorithm for calculating the R-projection of a matrix W
function PcR(W,R)

[nlin, ncol]← size(R)
pout← ((W,R(1, :)))
for i = 2 to nlin do

z ← (W,R(i, :))
pout← pout+ (z)

pout← (pout)
return pout

function SingLPcR(W,R)
[nlin, ncol]← size(W )
pout← zeros(nlin, ncol)
i← 1
for j = 1 to nlin do

if full(R(i, j) ·W (j, i)) ≤ full((R(i, j) ·W (j, i)) · (R(i, j) ·W (j, i))) then
pout(j, i)←W (j, i)

return pout

function Twin(M)
N ← maxplus(−plustimes(full(M)))
return N

In conclusion of this section, it has to be remarked that a module M is controlled

invariant if the control law makes it invariant for the closed-loop system and that,

in the context of max-plus algebra, this law has also to be causal, that means that

has to express the non-anticipative character of the transformation.

With the theoretical foundation in place, the subsequent sections delve into the

methodology developed to model cooperating underwater devices used in repetitive

patrolling. Additionally, it will be explored how the patrolling problem can be

formulated and solved through a “Model Matching Problem (MMP)” to manage

the synchronization of the devices and their coordinated behaviour, including the

verification of the causal controlled invariance of the found module.
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Chapter 4.

The Problem of Patrolling

This analysis concerns the modelling of the situation presented in Fig. 4.1, where a

shoal of three fish-like robots have to explore many areas through predefined paths.

In this way, fish robots are considered as units performing work in a pre-established

sequence [2]. This phase is carried out using the Max-Plus Algebra Toolbox for

MATLAB [169] and for Scilab [168], the latter now integrated into ScicosLab [170].

Figure 4.1.: General scheme for the patrolling
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4.1. THE MODELLING PROCESS

4.1. The Modelling Process

The modelling process begins with a detailed definition of the considered system.

To that end, it has to be specified that each fish robot within the shoal is charac-

terized by distinct sensor equipment and mobility features. These robots have to

repeatedly patrol an area containing predefined Points of Interest (POIs). Each POI

can have different characteristics such as extension, topology, and depth and has to

be surveyed by some robots of the shoal, that have the most suitable capabilities

(sensors) for those points. There may be POIs that need to be explored in a visual

way, others in an acoustic way, or with environmental sensors (e.g., temperature).

In the diagram in Fig. 4.1, when a robot has moved to the end of a “segment”, it

means that it has reached and explored that point. Moreover, when a robot reaches

the end of its path, that is the POI n.4 containing the recharge station, it must be

recharged to then be positioned at its starting point for a new patrolling round.

The modelling of this control problem can be faced with the max-plus algebra

and therefore, the primary challenge of this work concerns the study of the problem

through this theoretical framework.

4.1.1. Constraints and Operational Procedures

In formulating the model for the fish robot exploration scenario depicted in Fig.

4.1, it was chosen to directly outline the constraints and specifications governing the

behavior of the fish robots within the system. While an intermediate event graph

is not used in this process, the constraints are explicitly formulated and integrated

into the modelling method for clarity and coherence. These constraints encompass

priority management among fish robots, task sequencing for each robot, conflict

avoidance given by exclusive exploration, and other pertinent considerations.

The subsequent list delineates the key constraints and their corresponding han-

dling mechanisms within the model:
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• Exclusive exploration: only one fish at a time can explore every point.
• Priority assignment: fish robot 1 has priority over the others in exploring

points in common with them. This choice may be dictated by knowing that
that robot is slower and/or has to take a longer route 1.

• Sequential task execution: each fish starts a new round only after recharging,
returning to its starting point, and after receiving the start command.

• Availability of charging basis: there are three charging basins, one for each fish
• Exclusion of final POI: POI n.4 does not have to be explored as it corresponds

to the final point where recharge stations are located out of the water.
• Operator intervention exclusion: the human intervention for device retrieval

and charging is not considered during the survey, assuming that, when the
survey is performed, there is always someone to charge the devices and, once
charging is complete, to return the fish robots to their starting point.

4.1.2. Definition of the Model

In the Table 4.1, the involved variables are presented, where the index k is related

to the number of the survey (k-th round). Three input events, u1 (k), u2 (k) and

u3 (k), are triggered from outside of the system and they represents the “time when

fishes of type 1, 2 and 3 are commanded to start”: these values needs to be provided

by some external source, while other values can be computed with appropriate rules.

Then, internal events are the ones of type “exploration start time of a fish in one

POI” and “exploration completion time by a fish in one POI”: events of this type

can only occur after the fish has arrived at the POI and, if the point is in common

with a higher priority fish, once the previous exploration in the same POI has been

completed by the high priority fish involved there. Finally, the “global end of charge”

is an output event, triggered internally by the system and visible from outside.

1In general, the prioritization of certain robot actions over other robots can be influenced by
several factors, including mission objectives, available resources, environmental constraints, and
complexity of actions. These design choices aim to optimize the overall performance and success
of the robotic system in accomplishing its mission.
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Table 4.1.: Involved Variables

Variable name Meaning

ui(k) Time when the fish i is commanded to start, for the k-th
round

xaij(k) Exploration start time, after the travel, by fish i, in the
POI j, for the k-th round

xeij(k) Exploration completion time, after the data survey, by
fish i, in the POI j, for the k-th round

xri(k) Time when the fish i has completed its recharge and it is
ready for a new round

xr4 (k) = y(k)
Global end of charge, for the k-round, in correspondence
with the recharge completion after the patrolling by the
three robots and their positioning at the starting point

The variables’ indexes, starting from xaij and xeij , have been defined as follows:

• the first index can be “a” if it refers to the exploration start time by a fish;

“e” represents instead the exploration completion time, after the data survey,

• i is related to the specific fish and can be 1, 2 or 3,

• j is related to the considered POI and can be 1, 2, 3 or 4 (final point).

However, for POI n.4, there is only xai4 and not xei4, since that POI does not

have to be explored, as it represents the end of each robot’s path where the recharge

bases are located. So, actually, xai4 does not represent an exploration start time,

but the recharge start time for the fish i. Moreover, because of the robots’ return-

to-start, represented by their readiness for a new round after the recharge, other

variables, xr1, xr2 and xr3 has to be added, to represent the time when each fish

type (indicated by the subscript) has completed its recharge and is ready again at

the starting point2. Finally, one last variable, that is xr4 (k), represents the output

of the system, and it is related to the global end of charge, that considers the end

of the charging of all three robots and their readiness at the starting point.
2Actually, these variables could have been called xei4, but it was preferred to distinguish explo-

ration actions from charging actions, for better readability and understanding by the reader.
Moreover, knowing the devices, the (maximum) recharging times can be known and fixed a
priori, while exploration times may vary if the system configuration changes.
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In this situation, the contributions of the three robots and the four POIs, for the

k-th round (Fig. 4.6), are as follows:

♦ xa11 (k) as the exploration start time of the fish 1 in POI n.1

♦ xa21 (k) as the exploration start time of the fish 2 in POI n.1

♦ xa32 (k) as the exploration start time of the fish 3 in POI n.2

♦ xe11 (k) as the exploration completion time of the fish 1 in POI n.1

♦ xe21 (k) as the exploration completion time of the fish 2 in POI n.1

♦ xe32 (k) as the exploration completion time of the fish 3 in POI n.2

♦ xa13 (k) as the exploration start time of the fish 1 in POI n.3

♦ xa33 (k) as the exploration start time of the fish 3 in POI n.3

♦ xe13 (k) as the exploration completion time of the fish 1 in POI n.3

♦ xe33 (k) as the exploration completion time of the fish 3 in POI n.3.

♦ xa14 (k) as the arrival time of the fish 1 in POI n.4 (recharge station).

♦ xa24 (k) as the arrival time of the fish 2 in POI n.4 (recharge station).

♦ xa34 (k) as the arrival time of the fish 3 in POI n.4 (recharge station).

♦ xr1 (k) as the time when the fish 1 is ready for a new round after the recharge.

♦ xr2 (k) as the time when the fish 2 is ready for a new round after the recharge.

♦ xr3(k) as the time when the fish 3 is ready for a new round after the recharge.

In a similar way as before, some constants have been defined with Tijm, where:
• i is related to the fish type and can be 1, 2 or 3,
• j is related to the POI to be reached or explored and can be 1, 2 or 3 or 4,
• m is denoted by “P” if it is a travel time to reach the POI from a previous

POI (or the start) or “E” if it represents the exploration time of the same.

Then, there are three TiC , denoting the time for the fish type i to reach the charging

base, representing a “flyback” time, and three TiR corresponding to the time of the

recharge of the device i and its returning to the start. Let’s remember that only 1

fish at a time can explore a POI and that the fish 1 has priority over the other two on

common points: therefore, it has to visit POI n.1 and POI n.3 first. Moreover, each
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fish starts a new round after that it has recharged, has returned to the start at time

xri (k), and once received the start command at time ui (k + 1): the contributions

in the parenthesis of the first three equations of the model guarantee this concept.

At this point, the model can be shown as follows:

xa11 (k + 1) = T11P ⊗ (u1 (k + 1)⊕ xr1 (k))

xa21 (k + 1) = T21P ⊗ (u2 (k + 1)⊕ xr2 (k))

xa32 (k + 1) = T32P ⊗ (u3 (k + 1)⊕ xr3 (k))

xe11(k + 1) = T11E ⊗ xa11 (k + 1)

xe21 (k + 1) = T21E ⊗ (xa21 (k + 1)⊕ xe11 (k + 1))

xe32(k + 1) = T32E ⊗ xa32 (k + 1)

xa13(k + 1) = T13P ⊗ xe11 (k + 1)

xa33 (k + 1) = T33P ⊗ xe32 (k + 1)

xe13(k + 1) = T13E ⊗ xa13 (k + 1)

xe33(k + 1) = T33E ⊗ (xa33 (k + 1)⊕ xe13 (k + 1))

xa14 (k + 1) = T1C ⊗ xe13(k + 1)

xa24 (k + 1) = T2C ⊗ xe21(k + 1)

xa34 (k + 1) = T3C ⊗ xe33(k + 1)

xr1 (k + 1) = T1R ⊗ xa14(k + 1)

xr2 (k + 1) = T2R ⊗ xa24(k + 1)

xr3 (k + 1) = T3R ⊗ xa34(k + 1)

xr4 (k) = y (k) = xr1 (k)⊕ xr2 (k)⊕ xr3 (k)

Using a matrix notation, the equations can be written as:


x (k + 1) = A0x (k + 1)⊕A1x (k)⊕B′u (k + 1)

y(k) = Cx(k)
(4.1)
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with:

A0 =



ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵϵ ϵ ϵ

T11E ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ

ϵ T21E ϵ T21E ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ

ϵ ϵ T32E ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ

ϵ ϵ ϵ T13P ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ T33P ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ T13E ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ T33E T33E ϵ ϵ ϵ ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ T1C ϵ ϵ ϵ ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ T2C ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ T3C ϵ ϵ ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ T1R ϵ ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ T2R ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ T3R ϵ ϵ ϵ



A1 =



ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ T11P ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ T21P ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ T32P

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ


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B′ =



T11P ϵ ϵ

ϵ T21P ϵ

ϵ ϵ T32P

ϵ ϵ ϵ

ϵ ϵ ϵ

ϵ ϵ ϵ

ϵ ϵ ϵ

ϵ ϵ ϵ

ϵ ϵ ϵ

ϵ ϵ ϵ

ϵ ϵ ϵ

ϵ ϵ ϵ

ϵ ϵ ϵ

ϵ ϵ ϵ

ϵ ϵ ϵ

ϵ ϵ ϵ



C =
(
ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ e e e

)
The equation, due to the presence of the term A0x (k + 1), describes an implicit

relation that has to be made explicit to obtain an expression of the form:
x (k + 1) = Ax (k)⊕Bu (k + 1)

y(k) = Cx(k)
x(0) = ϵ

(4.2)

At this point, it has to be considered that the least solution of an implicit equation

x = Ax⊕ b can be expressed, in the max-plus algebra, by means of the Kleene star

A∗ = ⊕
n∈NA

n, as x = A∗b. In this case, A0 is lower triangular and therefore Ai
0 = ϵ

∀i ≥ dimA0. In this way, A∗
0 can be calculated, obtaining A∗

0 = ⊕
n∈NA

n
0 with Ai

0 = ϵ

∀i ≥ 16. Once calculated A∗
0, it is possible to finally obtain the representation of

the plant as in (4.2) where the final matrices are A = A∗
0A1, B = A∗

0B
′ and C:

x (k + 1) = A∗
0
(
A1x(k)⊕B′u (k + 1)

)
= A∗

0A1x(k)⊕A∗
0B

′u (k + 1)
y(k) = Cx(k)
x(0) = ϵ

(4.3)
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Using the Symbolic Math Toolbox of MATLAB, combined with the Max-Plus

Algebra Toolbox for the same environment, it has been possible to show the matrices

A∗
0, A, B and C leaving the various Tijm in a symbolic way, as shown in the following

4.2. The choice of using MATLAB just in this case, derived from the fact that there

is no symbolic calculation on ScicosLab, that was instead used for all the rest of

calculations and simulations.

Remark 6 It is possible to simplify the system for better readability, considering

the use of a reduced version of the previous model while maintaining its equivalence.

In fact, it is worth noting that some components within the model are exclusively

represented as additions, allowing specific variables to be incorporated into others.

For example, it is possible to substitute the contribution of xe11, xe21, xe32, xe13,

xe33 into the other variable, to delete five equations. In this way, the core nature

of the system remains unchanged and only a reduction in the number of variables

used for representation has been applied. It is important to highlight that also in

this scenario, the introduction of numerical values would yield equal results for the

outputs, but less variables can be monitored. For this reason, it was preferred to

avoid reducing the system, leaving the reader the evaluation and the selection of

which variables to monitor depending on specific requirements.

68



4.1. THE MODELLING PROCESS

Fi
gu

re
4.

2.
:M

at
ric

es
A

∗ 0,
A

,B
,a

nd
C

69



4.1. THE MODELLING PROCESS

4.1.3. Simulations

Once obtained the matrices in parametric form, a numerical example is provided,

with the following time units:

• In POI n.1: T11P = 4, T21P = 6, T11E = 4, T21E = 5

• In POI n.2: T32P = 6, T32E = 5

• In POI n.3: T13P = 8, T33P = 4, T13E = 4, T33E = 2

• In POI n.4: T1C = 35, T2C = 30, T3C = 40

• At the starting point, after recharging: T1R = 5, T2R = 10, T3R = 20.

For this modelling option, with the time units provided, the A, B and C matrices

are now as follows, considering that the results are now plotted on ScicosLab where

ϵ = −∞ is represented by a point.

Figure 4.3.: Matrices A, B and C with numerical values
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4.1. THE MODELLING PROCESS

Assuming that all fish types are commanded to start at the same time instant 0

and again at the instant 30, from the simulation of the system, it emerges that the

first-round ends after 82 time-units and the second one at 159 time-units, i.e. after

further 77 time-units, as indicated in the next lines:

u (1) =


0

0

0

→ x (1) = Ax (0)⊕Bu (1) =
(

4 6 6 8 13 11 16 15 20 22 55 43 62 60 53 82
)T

y (1) = Cx (1) = 82

u (2) =


30

30

30

→ x (2) = Ax (1)⊕Bu (2) =
(

64 59 88 68 73 93 76 97 80 99 115 103 139 120 113 159
)T

y (2) = Cx (2) = 159

This means that after 82 time-units all three robots have finished their first ex-

ploration, have recharged and are ready for a new round. In this case, to obtain

x (1), only the contribution of Bu(1) was involved since x (0) = ϵ by hypothesis.

As regards the result x (2), instead, start commands ui are sent before the global

return-to-start time xr4 (instant 82), and this leads to a state vector x(2) that, for

the second round, only depends on the contribution of Ax(1). If, on the other hand,

it was assumed that the start commands received by the fishes would have been at

the instant 160, i.e., after the global return-to-start time of xr4 (instant 82), the

following state vector x(2) would have been obtained, only depending on Bu(2):

u (2) =


160

160

160

→ x (2) =
(

164 166 166 168 173 171 176 175 180 182 215 203 222 220 213 242
)T

y (2) = Cx (2) = 242
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4.2. THE MODEL MATCHING PROBLEM

In these two latter results, only one of the two contributions of the expression

x (2) = Ax (1) ⊕ Bu (2) predominates. However, if the start command times could

also be different for each fish, the obtained result would depend for some components

on Ax(1) and for others on Bu(2):

u (2) =


30

30

160

→ x (2) =
(

64 59 166 68 73 171 76 175 80 177 115 103 217 120 113 237
)T

y (2) = Cx (2) = 237

4.2. The Model Matching Problem

The main steps to solve a MMP for the linear max-plus system are now recalled,

as presented in section 3.2.4. In this case, the plant has matrices AP , BP and CP ,

previously denoted as A, B and C in section 4.1.3. The model was here chosen with

the objective that each round should end exactly 120 (40 + 80) time units after the

reception of start commands or, alternatively, 180 (100 + 80) time units after the

completion of the previous round. This requirement aims to match the output of

the plant with the output of the max-plus stationary linear model described by:
xM (k + 1) = 100 xM (k)⊕ 40 uM (k + 1)

yM (k) = 80 xM (k)
xM (0) = ϵ

(4.4)

with xM : N→ Rmax as the state vector, uM : N→ Rmax as the control input and

yM : N→ Rmax as the dater of output data, for integers k > 0.

Such MMP consists in finding a suitable control law that forces the given plant

to behave accordingly to the given model. Therefore, the MMP consists in finding,

for all possible non-decreasing input sequences {uM (k)}k∈N of the model, a non-

decreasing control input sequence {uP (k)}k∈N for the plant, such that its output

{yP (k)}k∈N equals the {yM (k)}k∈N of the model, i.e. yP (k) = yM (k) ∀k ∈ N.
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4.2. THE MODEL MATCHING PROBLEM

Considering now the joint internal event dater xE =
(
xP xM

)T

it is possible to

describe the related joint dynamics through the equation:

xE(k + 1) = AExE(k)⊕B1uP (k + 1)⊕B2uM (k + 1) (4.5)

with AE =

AP ϵ

ϵ AM

, B1 =

BP

ϵ

, B2 =

 ϵ

BM

 and xE(0) = ϵ.

This control problem can now be reformulated as that of finding, for any input

{uM (k)}k∈N, a control input {uP (k)}k∈N that keeps xE(k) inside the output equal-

izer semi-module K =

xE =

xP

xM

 ∈ R
np+nM
max , s. t.CPxP = CMxM

 .
Given a non-anticipative plant ΣP and a non-anticipative model ΣM , the related

MMP is solvable if for all x ∈ ImB2 = Im

 ϵ

BM

, there exists y ∈ ImB1 =

Im

BP

ϵ

, such that x⊕ y belongs to V ∗ (K), where V ∗ (K) is the maximum (AE ,

B1)-invariant semi module contained in the output equalizer semi-module K.

Remark 7 At this point, one doubt may arise related to the condition of non-

anticipativeness presented in Definition 4, especially for AP ≥ InP , where AP is

the so-called matrix A of the plant presented in Chapter 4.1.3. Indeed, for the con-

sidered plant this hypothesis is not respected, since many components of the diagonal

of AP are ϵ. However, it has to be remarked that the non-anticipativeness condi-

tion is not used actually in the first part of the proof of Theorem 5 [70], where the

equalities 3.17 and 3.18 are enough to get AExE(k) ≥ B1up(k), without using the

hypothesis AE ≥ In+1. The second part of the proof cannot be simplified in the same

way, but it is possible to say that the condition of the theorem is at least sufficient

to provide a solution of the MMP, without this hypothesis, and this allows to keep

on with the example. An alternative proof that avoids the condition AE ≥ In+1, or

just the hypothesis AP ≥ InP , for the Theorem 5 is provided in Appendix B.
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4.2. THE MODEL MATCHING PROBLEM

Coming back to the example, matrices AE , B1 and B2 will be:

Figure 4.4.: Matrices AE , B1 and B2 with numerical values

In this way, K and V ∗ can be obtained through a dedicated code written in

ScicosLab that provides the following results:

Vstar_Found = T

Solvable = T

Figure 4.5.: Matrices K and V ∗ with numerical values
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4.3. CAUSAL CONTROLLED INVARIANCE

These results means that the MMP for these two systems is solvable, making it pos-

sible the synchronization of the system to the provided model. With the resolution

of this synchronization in terms of MMP, future steps are the verification and valida-

tion of this solution, either in simulated scenarios with Digital Twins development,

and in real marine environments.

Remark 8 Depending on the defined working model, the objective is to find out

whether the system under consideration, with the given modelling, can synchronise

on this model or sub-synchronise. Synchronization refers to the phenomenon where

the components of a system adjust their states to operate in a coordinated manner.

Sub-synchronization, on the other hand, implies a partial alignment or coordination

among the system components, which may not achieve full synchronization but still

exhibit some degree of coordination. There are different “levels” of synchronisation

or sub-synchronisation through Model Matching to achieve the objective fully or par-

tially but satisfactorily if the optimal situation cannot be achieved due to structural

issues in the modelled system. If the problem could not be solved, it would have been

necessary, for example, to consider weakening certain constraints.

4.3. Causal Controlled Invariance

At this point, it is possible to consider the contribution of the paper [1], to verify if

the V ∗ found is not only controlled invariant, that here means (AE , B1)-invariant,

but also causal. In this case, the matrix that it is called M in the equation of the

Theorem 11, is the previously mentioned V ∗, that, however, should be normalized

before the test. The results of the algorithm, shown below, confirm that this V ∗ is

causal controlled invariant.
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4.3. CAUSAL CONTROLLED INVARIANCE

Figure 4.6.: Matrices V ∗ normalized and U , and ScicosLab output
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4.3. CAUSAL CONTROLLED INVARIANCE

Figure 4.7.: Results of the algorithm

As it can be seen from these last lines, corresponding to the Theorem 11, the test

has successfully ended, confirming that ImM = ImV ∗ is causal controlled invariant,

both because U is causal and all equivalences are satisfied (all comparisons are True).
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Chapter 5.

Conclusions

In this thesis, a novel approach is introduced to model the coordinated behaviour of

marine biomimetic vehicles. Specifically, the research investigates the use of max-

plus algebra to effectively manage the coordination and synchronization of vehicles

assigned to patrol specific areas. The application of max-plus algebra represents an

innovative aspect of this work, wherein the patrolling fish robots represent one of

many case studies that can be considered.

The primary aim is to address the challenges related to coordinating fish robots,

engaged in confined underwater exploration. A shoal of three biomimetic vehicles is

considered, each equipped with different capabilities, to conduct surveys in an un-

derwater area via predefined paths covering specific Points of Interest in a cyclical

and coordinated manner. This formulation involves diversified and repetitive tasks

for each robot, with the underlying theoretical framework of max-plus algebra. The

latter is renowned for its applicability in discrete event systems, and it has been ex-

ploited to develop this work, given its effectiveness in managing tasks concatenation

and synchronization, and in modelling various real-world situations, including the

synchronized behaviour of marine vehicles during patrolling missions.

The starting point of this thesis is rooted in an understanding of the context

within which the research operates, namely marine vehicles, their mathematical
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models and key navigation technologies, that also lay the foundations for subsequent

developments. These components are pivotal to make this work a bridge between

the theoretical aspects and their practical use in simulations and real situations. In

fact, this blend of theory can be connected to the practice using sensors for precise

positioning to verify the vehicles’ displacements and it proves valuable in simulations

to study how vehicles move, using mathematical models like the Fossen model.

This thesis represents the three-year excursion of doctoral work, initially focused

on a single fish robot’s mathematical model and underwater technologies. The scope

has then expanded to incorporate the application of max-plus algebra for the coor-

dination of vehicles. For this reason, the structure of the thesis has a dual nature,

which delves into both the individual modelling of marine vehicles and their technolo-

gies, and the broader exploration of max-plus algebra’s application in cooperative

vehicle control. Following the foundation of the research, in fact, the focus is then

brought back to the theoretical framework, highlighting the essential role of max-plus

algebra in achieving the coordinated task execution for multi-agent patrolling.

An overview with key concepts and basic results related to max-plus algebra is

provided, presenting its linear systems, the concepts of controlled invariance, causal-

ity, and Model Matching Problem. The notion of causal controlled invariance for

max-plus linear systems is also delved into, emphasizing its theoretical and practical

implications. This notion has proven to be highly useful and applicable to a wide

range of control problems in such systems, especially for online implementation of

control laws. Moreover, this work contributes to the existing scientific literature by

providing clarity on this topic of causal controlled invariance and introducing new

equivalent sufficient conditions for a module to satisfy this property. Moreover, an

algorithm has been specially developed to test such conditions, since no algorithm

had so far been designed to verify the sufficient conditions defined in the literature.

In other words, using the algorithm it is possible to check whether there is a causal

state feedback that makes a module invariant for the closed-loop system.
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The formulation of diversified and cyclic tasks for each robot, based on task-driven

requirements rather than time-driven constraints, plays a central role and through

a series of steps, the work leads to a complete model with the plant as a max-plus

linear system. The plant is tested in simulation, providing a valuable foundation for

multi-agent systems’ repetitive patrolling in real underwater scenarios.

The methodology, carried out with toolboxes for both MATLAB and ScicosLab,

also leads to the formalization of an appropriate “synchronization” problem for to the

patrolling problem, also defined as a “Model Matching Problem (MMP)”. An MMP

consists in finding a suitable control law, that forces the plant, modelled as a linear

system, to behave in accordance with a preestablished model of a similar kind. In this

way, the shoal of fish robots can perform repetitive tasks according to a predefined

strategy. Taking up the previously simulated plant, an example of resolution of an

MMP is also provided. Finally, the module resulting from this solution is tested

with the developed algorithm to confirm its causal controlled invariance.

While these developments mark significant contributions, the pursuit of necessary

and sufficient conditions for causal controlled invariance remains a promising direc-

tion for future advancements in this field. Indeed, it is important to note that the

current results are based on sufficient conditions for this property.

In summary, this research contributes to the advancement of knowledge in the

field of confined underwater exploration, multi-agent patrolling, and coordinated

behaviour of biomimetic marine vehicles for efficient and synchronized missions. In

fact, max-plus algebra is integrated into the control framework of marine vehicles,

with methodologies aimed at enhancing efficiency and effectiveness in coordinating

marine vehicle patrolling. Moreover, a solution to the Model Matching Problem

(MMP) is proposed, providing insights into the feasibility and effectiveness of lever-

aging max-plus algebra in real scenarios. A novel algorithm is also presented to test

the causal controlled invariance of the module resulting from the MMP, to ensure

the stability and reliability of the found solutions for vehicle control systems.
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These contributions establish a synergy between theory and practice, laying the

groundwork for future research and applications in the dynamic field of marine

robotics and multi-agent systems.

Among different approaches for potential future developments, the investigation

of using a switching system is suggested, considering parameters, such as transit

and exploration times, that fluctuate within certain intervals: this would lead to an

enhanced flexibility in adapting to real-world complexities. Using linear dynamics of

switching type is possible to consider different interactions and configurations of the

shoal with variable interactions. Moreover, this work could significantly be extended

by incorporating a broader description of the patrolling problem, encompassing sce-

narios with varying numbers of agents and sites.

After managing the coordination aspect with max-plus algebra, particularly ad-

dressing the MMP, next steps can involve the verification and validation of the

solution. This process can span real marine environments and simulated scenarios.

As regards the application to a real shoal of biomimetic vehicles, further validation

demands the integration of individual fish robot dynamics to confirm the proposed

plan. Simulation can instead include the development of Digital Twins to have

a complete simulation platform for the fish robots’ path planning and modelling.

Moreover, a Digital Twin can be used as a visual display of the max-plus model.

Furthermore, exploring the model’s potential as a fault-detection system for iden-

tifying deviations between received data and assigned parameters is proposed to

ensure the reliability of the shoal in case of unforeseen issues during operations.

In conclusion, this work has so far resulted in two publications, one for the French

conference “Modélisation des Systèmes Réactifs (MSR ’23)”, outcome of the period

spent abroad, focusing on the algorithm for causal controlled invariance verification

[1], and one for “The 34th International Ocean and Polar Engineering Conference

(ISOPE-2024)” as regards the modelling of the cooperating fish robots [2]. Moreover,

the initial phase of research of this thesis will now be extended within the Project
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“MAXFISH: Multi agents systems and Max-Plus algebra theoretical frameworks

for a robot-fish shoal modelling and control” 20225RYMJE, funded by the MUR

Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) Bando 2022.

82



Appendix A.

Examples for Causal Controlled

Invariance Verification

In this appendix, some examples related to the implemented algorithm are presented.

These results, developed in the ScicosLab software, are taken from [1].

Before addressing such examples, it is worth mentioning that before using the al-

gorithm, it is, of course, necessary to add a preliminary part in the code allowing

the user to define the matrices A, B, and M , in order to subsequently calculate

(H R V )′ and the generators wi, as explained in section 3.3.2.

A.0.1. Example 1

The first example concerns the following matrices and in this case, ImM is controlled

invariant but it is not causal and the test with PR
C confirms this. The input data

used are as follows:

A =


1 0 .

. 0 .

0 . 0

 B =


0 0

4 5

5 6

 M =


0 0

−1 −3

0 0


which lead to the following system:
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X(k + 1) =


1 0 .

. 0 .

0 . 0

X(k) +


0 0

4 5

5 6

U(k)

This is what was obtained with the algorithm and displayed in the ScicosLab

clipboard. We’ve avoided showing the P and Q matrices, as they don’t add any

information about the results obtained.

U =

−4 −4

−5 −5


ScicosLab Output:

Is M A invariant? F

Is P*A*M <= (Q*A*M) + Q*B*U? T

Is Q*A*M <= (P*A*M) + P*B*U? T

Is M A-B invariant? T

H*PcR(H(-t)\otimesmin M) = M ?

F F

T T

T T

H =

 −1 −1 −1 −2 −2 −2 −1 −4 −1 −1 −4 −4

. . . −2 . . . −6 −1 −1 . .

. . . −1 −1 −1 . −3 . . −3 −3



R =

(
. −5 . . −6 . −5 . . −5 −10 .

−6 . −6 . . −7 . . −6 . . −11

)

V =

(
0 0 0 −1 −1 −1 0 . 0 0 . .

0 . . . . . 0 −3 . . −3 −3

)
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H ∗ PR
C (H−T ⊗′ M) =


−1 −1

−1 −3

0 0


As it can be seen from the last lines, which correspond to the result of Theorem

11, it is confirmed that ImM is not causal controlled invariant, both because U is

not causal and because some equivalences are not satisfied: there are indeed False

(F) values, whereas, to have causal controlled invariance, all components should be

True (T).

A.0.2. Example 2

In this example, different matrices A and B are considered, compared to the Example

1 of Section A.0.1. However, the same matrix M was used, and in this case, ImM

is both controlled invariant and causal. The input data used are as follows:

A =


0 1 0

. 0 .

0 . 0

 B =


1 0

0 1

. 3

 M =


0 0

−1 −3

0 0


In this case, here is what was obtained with the algorithm :

U =

6 6

4 4


ScicosLab Output:

Is M A invariant? T

Is P*A*M <= (Q*A*M) + Q*B*U? T

Is Q*A*M <= (P*A*M) + P*B*U? T

Is M A-B invariant? T
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H*PcR(H(-t)\otimesmin M) = M ?

T T

T T

T T

H =

 . −1 . −1 . . . 0 . . . 0 . −1 −1 .

. −4 −4 . . −1 . . . −1 . . . −2 . −2

. . −1 . −1 . −1 . 0 . . . 0 . . −1



R =

(
−1 . . −4 −4 . −2 . . . −1 . . . −2 .

−3 . . . . −3 . −4 −4 −3 −3 −3 −3 . . .

)

V =

(
0 . . . . 0 −1 . . 0 0 −1 −1 −1 −1 −1

0 −1 −1 −1 −1 0 . 0 0 . . 0 0 . . .

)

H ∗ PR
C (H−T ⊗′ M) =


0 0

−1 −3

0 0


A.0.3. Example 3

In this example, there are different matrices A, B, and M . This case represents a

situation where there exists a causal control law U , but only a part of the state is

used. In fact, looking at the matrix A, it is noticed that it has a column composed

only of ϵ elements, and here, even though the matrix U is causal and the image ImM

is controlled invariant, the latter does not satisfy the criterion of causal invariance

as defined in this thesis. The input data are here as follows:

A =


2 . 4

1 . 0

0 . 1

 B =


0 2

4 1

0 0

 M =


−2 −1

0 0

0 −3


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The algorithm’s responses are shown below:

U =

5 5

6 6


ScicosLab Output:

Is M A invariant? F

Is P*A*M <= (Q*A*M) + Q*B*U? T

Is Q*A*M <= (P*A*M) + P*B*U? T

Is M A-B invariant? T

H*PcR(H(-t)\otimesmin M) = M ?

F F

T T

T F

H ∗ PR
C (H−T ⊗′ M) =


. .

0 0

0 .


This is an example of a causal controlled invariant module, but the equality (4.3)

of Theorem 11 is not satisfied: this illustrates that the conditions of Proposition 3

are only sufficient.
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Appendix B.

Alternative Proof for Theorem 10

In order to avoid the the hypothesis AE ≥ In+1, or just the hypothesis AP ≥ InP

within the Theorem 5 [70], an alternative proof is provided as follows.

Proof Given an alternative system of the form x(k + 1) = AEx(k)⊕B1u(k + 1)⊕

B2w(k+ 1), where u is a control input, and w is a disturbance, together with a sub-

module K of the state-space, the request is to check whether, for every disturbance

w, there exists a control u such that x(k) lies in K. Actually, the answer depends

only on the initial condition x(0). The set of such admissible initial conditions is

the set, called e.g. W⋆, for which for every w, there exists a control u such that

x remains in K. This set can be seen as the supremal element of the family of

modules W that satisfy the inclusion AEW⊕ ImB2 ⊂W ⊖ ImB1. This inclusion is

equivalent to the couple of conditions AEW ⊂W ⊖ ImB1 and ImB2 ⊂W ⊖ ImB1.

Since the latter is just the condition of controlled invariance, the conclusion is that

the problem is solvable if and only if ImB2 ⊂ V⋆
K(AE , B1)⊖ ImB1.

When this is applied to a system for the Model Matching Problem, Theorem 5

is then obtained, without the hypothesis AE ≥ In+1. In this way, the problem is

solved with the provided additional hypothesis.
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