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Abstract

This thesis focuses on the design and development of monitoring systems that

use deep learning (DL) methods for real-time analysis of images and videos

in indoor environments, following the paradigm of edge artificial intelligence

(edge AI). The research explored two main application areas: in the security

sector, the focus was on the analysis of RGB data for video surveillance; in

the medical sector, the focus was on depth data analysis for monitoring and

diagnostic support purposes.

In the context of security, representing the first application scenario of this

research, the initial focus was on the design of a multi-camera video surveil-

lance infrastructure. This infrastructure was developed with the objective of

efficiently managing data from various sources. Simultaneously, the implemen-

tation of DL models capable of effectively detecting objects, while ensuring

computational resource efficiency, was pursued. Moving towards the domain

of weapon detection, specific analyses were conducted to identify the most

suitable low-cost computing device for executing DL-based weapon detectors,

comparing the NVIDIA® Jetson Nano with the Google Coral Dev. Tests per-

formed on a specifically acquired dataset (WeaponSenseV0) highlighted that

the NVIDIA® Jetson Nano provided better performance, both in terms of ef-

ficacy and efficiency. After selecting the NVIDIA® Jetson Nano as the ideal

computing device, the research moved towards further developments. The next

step was the collection of the WeaponSenseV1 dataset, which paved the way for

creating the first edge AI framework to identify, through RGB video record-

ings, knives and guns held by people. In this DL approach, two cascaded

convolutional neural networks (CNNs), optimized for edge devices, were used

to address the challenge of recognizing small objects in RGB frames, a theme

widely discussed in scientific literature. Although initial results were promis-

ing, the framework encountered a significant challenge: a decrease in efficiency

in crowded environments. To overcome this obstacle, in the last phase of the

research, developed and validated on the WeaponSenseV2 dataset, a super-

resolution (SR) branch was integrated into the CNN for weapon detection.

This approach was designed to maintain low computational complexity, acti-

vating the SR branch only during the training phase and removing it during

deployment. The results obtained demonstrated that the new approach not

only overcomes the limitations of previous work but also manages to maintain
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reduced computational complexity on edge devices, simultaneously improving

accuracy in weapon identification.

In the second application scenario, the research focused on developing DL

methods for segmenting limbs of preterm infants using depth images acquired in

neonatal intensive care units, combining the principles of GreenAI and edge AI.

The primary objective was to create a CNN that offered high accuracy, while at

the same time being more efficient and deployable in sustainable computational

resources. This approach was adopted to reduce energy resource consumption,

thus overcoming the limitations posed by state-of-the-art DL models, which

tend to operate with huge computational requirements. The adoption of the

edge AI paradigm in this area improved the accessibility of artificial-intelligence

technologies and enhanced privacy and security by enabling the processing of

sensitive data on-site and reducing dependence on external cloud resources.

Furthermore, priority was given to increasing the reliability of systems, ensuring

their operation even in scenarios with poor or nonexistent connectivity.

x



Sommario

Questa tesi si concentra sulla progettazione e lo sviluppo di sistemi di mon-

itoraggio che utilizzano metodi di deep learning (DL) per l’analisi in tempo

reale di immagini e video in ambienti indoor, seguendo il paradigma dell’edge

artificial intelligence (edge AI). La ricerca ha esplorato due settori applicativi

principali: nel settore della sicurezza, l’attenzione si è rivolta all’analisi di dati

RGB per la videosorveglianza; nel settore medico, l’analisi si è concentrata su

dati di profondità per scopi di monitoraggio e supporto diagnostico.

Nel contesto della sicurezza, che rappresenta il primo scenario applicativo

affrontato in questa ricerca, l’attenzione iniziale si è concentrata sul design di

un’infrastruttura di videosorveglianza multicamera. Questa infrastruttura è

stata sviluppata con l’obiettivo di gestire in modo efficiente i dati provenienti

da svariate fonti. Contemporaneamente, si è proceduto all’implementazione

di modelli di DL in grado di rilevare oggetti in modo efficace, assicurando al

contempo un’efficienza dal punto di vista delle risorse computazionali. Spo-

standosi verso il dominio del riconoscimento di armi, sono state condotte anal-

isi specifiche per identificare il dispositivo di computazione a basso costo più

adatto per il progetto, confrontando l’NVIDIA® Jetson Nano con il Google

Coral Dev. I test, eseguiti su un dataset specificatamente acquisito (Weapon-

SenseV0), hanno evidenziato che l’NVIDIA® Jetson Nano garantiva perfor-

mance migliori, sia in termini di efficacia che di efficienza. Di conseguenza,

tutti gli sviluppi successivi della ricerca sono stati direzionati verso l’utilizzo

dell’NVIDIA® Jetson Nano. Dopo aver stabilito il dispositivo di computazione

ideale, la ricerca si è spostata verso ulteriori sviluppi. Il passo successivo è

stato la raccolta del dataset WeaponSenseV1, che ha aperto la strada alla

creazione del primo framework edge AI per identificare, attraverso videoregis-

trazioni RGB, coltelli e pistole impugnati dalle persone. In questo approccio

di DL, due reti neurali convoluzionali (CNN) in cascata, ottimizzate per dis-

positivi edge, sono state utilizzate per affrontare la sfida del riconoscimento di

oggetti di piccole dimensioni nei frame RGB, un tema ampiamente discusso

nella letteratura scientifica. Sebbene i risultati iniziali fossero promettenti, il

framework ha incontrato una sfida significativa: una riduzione dell’efficienza in

ambienti affollati. Per superare questo ostacolo, nell’ultima fase della ricerca,

sviluppata e validata sul dataset WeaponSenseV2, è stato integrato un ramo di

super-resolution (SR) nella CNN per la detection di armi. Questo approccio è
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stato progettato per mantenere bassa la complessità computazionale, attivando

il ramo di SR solo durante la fase di addestramento e rimuovendolo in fase di

deployment. I risultati ottenuti hanno dimostrato che il nuovo approccio non

solo supera le limitazioni dei lavori precedenti, ma riesce anche a mantenere

una complessità computazionale ridotta sui dispositivi edge, migliorando con-

temporaneamente l’accuratezza nell’identificazione di armi.

Nel secondo scenario applicativo, la ricerca si è focalizzata sullo sviluppo di

metodi per la segmentazione degli arti dei neonati pretermine tramite immagini

di profondità acquisite in terapia intensiva neonatale, coniugando i principi

della GreenAI e dell’edge AI. L’obiettivo principale è stato quello di creare una

CNN che offrisse un’elevata accuratezza, ma che fosse allo stesso tempo più

efficiente e integrabile in risorse computazionali sostenibili. Questo approccio

è stato adottato per ridurre il consumo di risorse energetiche, superando cos̀ı

le limitazioni imposte dai modelli di DL allo stato dell’arte, i quali tendono

a lavorare con abbondanti risorse computazionali. L’adozione del paradigma

dell’edge AI in questo ambito ha migliorato l’accessibilità e la diffusione delle

tecnologie di intelligenza artificiale ed ha potenziato la privacy e la sicurezza,

permettendo l’elaborazione di dati sensibili in loco e riducendo la dipendenza da

risorse cloud esterne. Inoltre, si è data priorità all’incremento dell’affidabilità

dei sistemi, garantendone il funzionamento anche in scenari di connettività

scarsa o inesistente.
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Chapter 1

Background and motivation

1.1 Dichotomy in digital trends: from complex and

generalistic to edge-oriented and specific AI

We live in an ever-changing world, primarily driven by technological progress.

In recent years, we have witnessed an increasingly rapid development of new

technologies, with artificial intelligence (AI) leading this development.

The main factors contributing over time to this technological explosion are

essentially three: the exponential increase in available data, advances in com-

putational power, and the growing interest of the scientific community in the

study of increasingly complex and accurate algorithms capable of solving tasks

unimaginable until a few years ago [1]. To date, an example of the most im-

portant innovations made possible by the combination of these three factors is

that of Large Language Models (LLMs), which are particularly advanced AI

models that use enormous amounts of text to understand, interpret, translate,

and generate natural language in a way that mimics human intelligence. These

models are complex not only in their size but also in their ability to learn subtle

linguistic and contextual nuances, enabling them to perform a variety of lin-

guistic tasks with precision and naturalness previously inconceivable. However,

LLMs present significant drawbacks. Their complexity requires a huge amount

of computational power for training and execution, raising issues of environ-

mental sustainability due to the vast energy consumption necessary to power

these systems [2]. This aspect highlights the challenge of balancing technolog-

ical advances with responsibility towards the environment. Furthermore, the

high complexity and costs associated with the development and maintenance

of these models limit their accessibility and affordability, often making them

the prerogative of large organizations or entities with significant financial re-

sources [3]. It is necessary to emphasize that this trend towards a centralization

of power and technological control in the field of AI presents significant chal-

lenges for society. The risk that control over the development and distribution

of AI systems is limited to a narrow group of individuals or entities could lead
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to a dominance of their interests and behaviors. This situation could result

in stifling innovation and restricting opportunities for a variety of perspectives

and competencies. The absence of diversity and representation in decisions

concerning AI technology could lead to the development of solutions that do

not reflect the needs and perspectives of various groups of people, worsening

existing inequalities. It is therefore essential to adopt policies and practices

that promote equity, diversity, and inclusion in the field of AI, to ensure that

its development and use are beneficial and accessible to all sectors of society.

LLMs clearly exemplify the challenges and limits associated with the use of

complex AI models. However, these challenges are not unique to LLMs but also

extend to other areas of AI, such as computer vision, which plays a fundamen-

tal role in applications ranging from security to medical diagnosis. The field of

computer vision, for example, has seen enormous growth in the pre-training of

Large Visual Models on vast image datasets. Advanced architectures like Visual

Transformers (ViT), Swin Transformers, or SAM models have revolutionized

the systems’ ability to understand and analyze images, extracting detailed se-

mantic information useful for a wide range of applications. However, computer

vision models share the same limitations as LLMs. The need for large volumes

of data for training and the demand for high computational power raise similar

questions in terms of environmental impact and accessibility. Moreover, man-

aging complex visual systems, due to their high cost and substantial energy

consumption, may not be suitable in some contexts, such as in real-time image

monitoring and analysis systems.

In the current landscape of constant technological evolution, there is a need to

mitigate the aforementioned critical issues arising from the adoption of complex

and generalist AI approaches. To address this need, part of recent research is

focusing on implementing AI in an edge computing environment. This line of

research, known as Edge Artificial Intelligence (edge AI), takes up the main

concept of edge computing according to which data processing is performed

directly on local devices, at the edge of the network, rather than transmitting

large volumes of data to a central server or the cloud for analysis. The goal

of edge AI is to make artificial intelligence more accessible, faster, and more

energy-efficient. For such purposes, high-precision models requiring enormous

computational resources are replaced by lightweight and optimized algorithms,

which can be run on hardware with limited computational capabilities, such as

smartphones, sensors, and other Internet of Things (IoT) devices. This not only

reduces latency – the delay before a data transfer begins following an instruction

for its transfer – but also improves privacy and security, as sensitive data can be

processed locally without having to send it over a network. Furthermore, edge

AI plays a fundamental role in enabling real-time applications and in scenarios

where network connection is limited or unreliable. For example, in autonomous

2



1.2 Impact and Challenges of edge AI in Computer Vision

vehicles, edge AI systems can quickly process huge amounts of data from vehicle

sensors to make instant driving decisions. Similarly, in sectors such as industrial

production or precision agriculture, edge AI allows monitoring and responding

to variable conditions in situations where constant cloud communication is not

practical or efficient.

The rise of edge AI marks a push towards more sustainable and decentralized

solutions in the field of AI, offering a balance between computational power,

speed, energy consumption, and privacy. This approach represents a significant

paradigm shift, where not only high accuracy is pursued, but also the efficiency

and adaptability of AI systems to different needs and usage contexts are valued.

1.2 Impact and Challenges of edge AI in Computer

Vision

In computer vision, the use of deep learning (DL) has enhanced and directed sci-

entific research and innovations in recent years. The adoption of architectures

such as convolutional neural networks (CNNs) has overcome the limitations

of traditional methods, thanks to their ability to process and interpret vast

amounts of visual data with unprecedented accuracy.

Continuing in the same direction, part of the research continues to focus

on the development of increasingly complex and accurate architectures, whose

usability depends on the availability of an enormous amount of computational

resources. As a result, the use of cloud resources or centralized servers be-

comes necessary to manage such computational workloads. However, the use

of substantial computational resources and a centralized computing model is

unsuitable or even impractical in many contexts. In applications that require

real-time responses, such as surveillance systems, the latency associated with

transferring data to a central server for processing can be a significant obsta-

cle, making it essential to process data directly on the device. Similarly, in

remote areas or emergency situations, where Internet connectivity is limited or

absent, centralized processing is simply not a viable option. In sectors such as

healthcare or public safety, it is crucial to prevent sensitive data from being

sent to central servers for processing to protect them from potential breaches.

In addition to this, the economic and scalability aspects must be considered:

cloud processing requires a significant investment in terms of infrastructure

and bandwidth, which may not be sustainable for startups or institutions with

limited budgets, with a consequent negative impact on the dissemination and

access to technology by everyone. Furthermore, the aspect of environmental

sustainability is increasingly relevant, as centralized data centers have a sig-

nificant environmental impact due to their high energy consumption and CO2
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emissions.

The integration of edge AI in the field of Computer Vision is arousing in-

creasing interest in the scientific community due to the numerous advantages

it offers over traditional centralized data processing paradigms. This growing

interest is reflected in the widespread increase of research works that exploit

the combination of AI and edge computing across a broad range of application

sectors [4].

As an example, in Precision Agriculture (PA), which aims to enhance crop

productivity while reducing costs and environmental impact, the use of Un-

manned Aerial Vehicles (UAVs) for image and video acquisition is common

[5]. Many of the methods proposed in the literature use highly-demanding DL

models that must necessarily be executed in the cloud [6, 7], but these solutions

often prove ineffective due to challenges characteristic of PA, such as limited

connectivity and bandwidth. Recent PA research therefore relies on edge-based

approaches, where the execution of DL algorithms is shifted to edge devices on-

board the UAVs [8, 9, 10], so as to overcome the problems related to the lack

of connectivity in rural areas and drastically reducing latency times.

The use of edge-oriented methodologies is having a strong impact also in

Video Analytics, a subset of Computer Vision specifically tailored to analyze

video streams to automatically detect, track and analyze moving objects or

behaviors and activities within video footage. The video analysis allows to re-

veal hidden patterns and connections, thus facilitating well-informed decision

making and enabling prediction of future events. The design and application

of DL methodologies enabled these systems to greatly outperform human mon-

itoring in terms of accuracy and efficiency. These advantages have fostered the

use of intelligent video analysis in a multitude of sectors, from surveillance and

security to retail, industry, manufacturing, and healthcare.

The recent transition of video analytics applications to edge AI is driven by

the need to tackle both common and application-specific issues that arise from

relying on cloud-based data processing.

In the domain of surveillance and security, the most prominent issues re-

late to privacy and data security. Storing sensitive surveillance footage in the

cloud raises significant concerns about unauthorized access and potential mis-

use of the data. In addition, dependence on stable, high-bandwidth network

connections is critical, as any network failures or latency can critically hinder

real-time monitoring and responses, which are essential in security operations.

In surveillance applications such as intrusion detection or facial recognition, re-

cent approaches utilize edge AI to detect abnormal behaviors, maintain public

safety or identify unauthorized accesses, while ensuring efficiency and real-time

feedback [11, 12, 13].

The retail sector faces similar challenges, particularly with regard to cus-
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tomer privacy. Video analytics in retail often involve customer behavior and

demographics, and storing this data in the cloud requires stringent data pro-

tection measures. In this sense, the development of edge-oriented methods en-

abled privacy-preserving customer analytics [14, 15] while also avoiding techni-

cal challenges related to the integration of various types of cameras and sensors

with cloud platforms [16].

In the context of industry and manufacturing, the main concerns are latency

and operational continuity. The slightest delay in processing video data can

cause inefficiencies or failures, especially in automated environments. In addi-

tion, the high volumes of video data generated in industrial environments can

be expensive and require a lot of bandwidth when transmitted and stored in

the cloud. Relying solely on cloud services poses risks, in particular in the event

of Internet outages, which can halt continuous operational monitoring. In light

of these considerations, research has adopted edge solutions to enhance the

reliability of systems in intelligent applications for industry, such as detecting

manufacturing anomalies or monitoring production processes [17, 18].

Healthcare facilities, on the other hand, are tightly bound by regulatory com-

pliance issues, such as adherence to laws and regulations like HIPAA in the U.S.

or GDPR in Europe. Storing patient monitoring videos in the cloud introduces

complexities in maintaining compliance. The sensitivity and confidentiality of

patient videos also pose significant risks, as any data breach can have disas-

trous implications for patient privacy. In addition, bandwidth requirements for

the transmission of high-quality patient monitoring videos in the cloud can be

challenging. These issues are particularly relevant in settings where the health-

care infrastructure may have resource limitations or constraints, as is often the

case in countries with publicly funded healthcare systems. In these cases, the

use of the edge AI paradigm becomes crucial to contribute to the well-being

of society, and research in the field, although lagging behind other application

areas, is making progress in this regard [19, 20].

Despite these promising advancements in utilizing edge AI across various

domains, significant challenges remain in its integration into Computer Vi-

sion, which can sometimes amplify domain-specific issues, potentially hindering

progress in certain research areas. A major obstacle is the limited computing

power and memory capacity of edge devices, especially when compared to cen-

tralized servers. Such limitations can significantly reduce the complexity of DL

models that can be implemented on such devices. Moreover, in time-sensitive

applications, balancing the need for real-time computations with the limited

processing capacity of edge devices becomes critical. In these scenarios, de-

veloping DL models with an optimal trade-off between execution speed and

accuracy is of crucial importance.

Driven by these considerations, this thesis focuses on the development of
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edge-compliant DL methodologies specially designed for monitoring human

behavior through video data analysis. It primarily targets two crucial areas

where there are still open challenges that can be tackled, achieving signifi-

cant improvements and pushing forward the state of the art in the integration

of edge AI and computer vision: surveillance and security, with the task of

weapon detection using surveillance cameras, and healthcare, focusing on pose

estimation from depth cameras for monitoring preterm infants.

1.3 Aim of the thesis

The ultimate goal of this thesis is to contribute to the current research in the

field of the edge AI applied to computer vision, with a specific focus on the de-

sign and development of intelligent systems based on DL methods for real-time

monitoring of human behavior via analysis of video data acquired in indoor or

outdoor environments. The research scope pursued was operationally declined

in two different application sectors: the surveillance and security sector, with

rgb data analysis for video surveillance purposes, and the healthcare sector,

with depth data analysis for monitoring and diagnostic support purposes.

• In the surveillance and security scenario, in collaboration with the Ital-

ian company INIM Electronics, a leader in the security systems sector,

the task of weapon detection was addressed. Two of the most significant

challenges in this scenario are (i) the low accuracy in detection due to

the small size of weapons relative to the camera’s field of view (FoV) and

(ii) the need to perform detection in real-time. The most widespread

methods in the literature to mitigate the problem of small-sized weapons

involve enlarging the frames to be analyzed through classic interpolation

techniques or super resolution (SR), or using complex detection archi-

tectures with hundreds of millions of parameters, but both solutions are

impractical in an edge context with low computational resources and

when real-time feedback is necessary. In light of this, the goal is to de-

sign surveillance systems which integrate DL methods capable of

being executed on edge devices with an optimal speed-accuracy

trade-off .

• In the healthcare scenario, the work focused on the development of ef-

ficient methods to segment preterm infants’ limbs from depth images,

for monitoring and diagnostic support purposes in assessing the quality

of the infant’s movements. State-of-the-art approaches are based on DL

models that require high computational, memory, and energy resources,

which limits their applicability only to scenarios with high computational

and economic resources. The development of methods following the edge
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AI paradigm (i) increases the accessibility and dissemination of such tech-

nologies and (ii) ensures greater privacy and security (i.e., sensitive data

are processed locally without the need for external cloud resources) and

greater reliability (i.e., applications continue to function even with absent

or limited Internet connection). In view of this, the goal is to develop

DL methods that are less onerous in terms of computational,

energy and memory resources, thus making them more suitable

for use in resource-limited environments.

1.4 Thesis overview

An overview of the thesis structure is proposed hereafter for the sake of read-

ability:

• Chapter 2: underlines the video surveillance’s pivotal role in modern

security systems and presents the crucial need of developing efficient

weapon detection algorithms in automatic surveillance systems, for en-

suring safety and security. Within chapter subsections, the advantages

that the adoption of the edge AI paradigm can bring in this context will

be explored, as well as the inherent challenges of the weapon detection

task. The limits and open issues in the state of the art will be disclosed

and innovative DL methodologies will be proposed to gradually meet the

actual needs and tackle the open issues. All the presented analyses and

methods have the common objective of exploring, demonstrating and

validating the potential and advantages of developing edge-compliant DL

methodologies for weapon detection in video surveillance.

• Chapter 3 highlights the need to implement efficient and sustainable al-

gorithms for preterm infants’ limb segmentation. The chapter will present

an approach developed considering both environmental and economic as-

pects. The design of the approach was guided by strategies to mini-

mize the computational resources required for algorithmic computation,

contributing to meet the demand for more sustainable and cost-effective

solutions.

• Chapter 4 offers an overview of the conclusions of each work from previ-

ous chapters. Then, final considerations and open challenges of healthcare

ecosystem are discussed.
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1.5 Thesis contribution

In surveillance and security, weapon detection on edge is crucial as it enables

real-time analysis of surveillance footage, enhancing public safety and respon-

siveness to eventual threats. During the three years of the PhD, the following

publications contributed to expanding the state of the art in the field of edge

AI-based surveillance systems for real-time monitoring of human behavior, with

focus on the crucial task of weapon detection. The contribution, in journals

and conferences, focused on (i) designing multi-camera surveillance systems

with the integration of edge AI (ii) exploring and evaluating the performance

of edge devices for weapon detection (iii) developing DL methods capable of

being executed on edge devices for real-time weapon detection from surveillance

videos.

• Berardini, D., Mancini, A., Zingaretti, P., & Moccia, S. (2021, Au-

gust). Edge artificial intelligence: A multi-camera video surveillance ap-

plication. In International Design Engineering Technical Conferences and

Computers and Information in Engineering Conference (Vol. 85437, p.

V007T07A006). American Society of Mechanical Engineers.

• Berardini, D., Galdelli, A., Mancini, A., & Zingaretti, P. (2022, Novem-

ber). Benchmarking of dual-step neural networks for detection of dan-

gerous weapons on edge devices. In 2022 18th IEEE/ASME Interna-

tional Conference on Mechatronic and Embedded Systems and Applica-

tions (MESA) (pp. 1-6). IEEE.

• Berardini, D., Migliorelli, L., Galdelli, A., Frontoni, E., Mancini, A., &

Moccia, S. (2023). A deep-learning framework running on edge devices

for handgun and knife detection from indoor video-surveillance cameras.

Multimedia Tools and Applications, 1-19.

• Berardini, D., Migliorelli, L., Mancini, A., & Maŕın-Jiménez, M. J.

Edge AI and Super-Resolution for enhanced Weapon Detection in Video

Surveillance. Engineering Applications of Artificial Intelligence (under

review)

In healthcare, monitoring limb movement in preterm infants is crucial to

assess the presence of neuro-motor dysfunctions. Although research in this

field has developed highly reliable models, computational costs have often been

overlooked. These models typically require huge computations which leads to

the need for expensive hardware, posing environmental sustainability issues and

making their clinical use a privilege, contradicting the goal of creating widely

accessible healthcare technologies. With the aim of tackling such issues, the
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following contributions deal with (i) the design of edge AI-compliant and cost-

efficient methods for clinical applications in preterm infants’ pose estimation,

(ii) the analysis of the usability of DL methodologies on edge devices, along

with improvements in terms of efficiency.

• Cacciatore, A., Migliorelli, L., Berardini, D., Tiribelli, S., Pigliapoco,

S., & Moccia, S. (2022, May). Some Ethical Remarks on Deep Learning-

Based Movements Monitoring for Preterm Infants: Green AI or Red AI?.

In International Conference on Image Analysis and Processing (pp. 165-

175). Cham: Springer International Publishing.

• Migliorelli, L., Cacciatore, A., Ottaviani, V., Berardini, D., Dellaca’,

R. L., Frontoni, E., & Moccia, S. (2023). TwinEDA: a sustainable deep-

learning approach for limb-position estimation in preterm infants’ depth

images. Medical & Biological Engineering & Computing, 61 (2), 387-397.

• Berardini, D., Cacciatore, A., Moccia, S., Mancini, A., & Migliorelli,

L. A Methodological Strategy to Develop Sustainable and Cost-Effective

Deep Learning Approaches for Green Edge AI. IEEE Transactions on

Sustainable Computing (under review)

1.6 Publications

The following publications, which are only partially related to the topic of my

doctorate and will not be discussed in the thesis, are the result of collaborations

within the VRAI group and between research groups:

• Migliorelli, L., Berardini, D., Cela, K., Coccia, M., Villani, L., Frontoni,

E., & Moccia, S. (2023). A store-and-forward cloud-based telemonitoring

system for automatic assessing dysarthria evolution in neurological dis-

eases from video-recording analysis. Computers in Biology and Medicine,

163, 107194.

• Gonçalves, C., Lopes, J. M., Moccia, S., Berardini, D., Migliorelli,

L., & Santos, C. P. (2023). Deep learning-based approaches for human

motion decoding in smart walkers for rehabilitation. Expert Systems with

Applications, 228, 120288.

• Migliorelli, L., Berardini, D., Rossini, F., Frontoni, E., Carnielli, V.,

& Moccia, S. (2021, November). Asymmetric Three-dimensional Con-

volutions For Preterm Infants’ Pose Estimation. In 2021 43rd Annual

International Conference of the IEEE Engineering in Medicine & Biol-

ogy Society (EMBC) (pp. 3021-3024). IEEE.
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Chapter 2

Edge AI in Surveillance Systems for

Effective Weapon Detection

2.1 Edge AI Preliminaries: a Multi-Camera Video-

Surveillance Application

Nowadays, video surveillance plays a crucial role. The increase in the avail-

ability of surveillance data, from cameras installed in private places such as

homes, offices, educational institutions, and commercial buildings, raises the

issue of how to effectively process this data to extract useful information [21].

Monitoring these videos is a time-consuming and tiresome task for humans,

particularly when it requires constant supervision. Moreover, the fact that a

single high-definition video camera can generate about 10 GB of data per day

also points out the challenges associated with data storage.

Over the years, the development of algorithms for automatic processing of

surveillance video has become an extremely active field of research trying to

overcome these challenges [22]. Such algorithms, in addition to reducing the

human workload, enable the storage of only the high-level information derived

from the analysis, rather than storing the entire volume of raw video data. The

analysis of surveillance videos involves various tasks, such as object detection,

action recognition, and classification of those objects or actions as normal or

abnormal. Early approaches were based on traditional computer vision tech-

niques [23]; however, in recent years, the potential of artificial intelligence,

particularly DL, has overcome the limitations of these traditional methods,

achieving much superior results due to its ability to learn from data. In fact,

DL algorithms are able to extract information from raw data, such as images

and videos, through a training process based on a large volume of annotated

data.

Nevertheless, the development of DL algorithms for video processing in

surveillance presents several challenges, including the requirement for real-time

(or near real-time) processing and the need for cost-effective hardware for their
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Figure 2.1 Outline of the proposed infrastructure. The sensing devices and a soft-
ware module inside the computing device makes up the sub-infrastructure described
in Sec. 2.1.1.2. The deep learning based module inside the computing device make
up the data processing sub-infrastructure described in Sec. 2.1.1.3.

use. To overcome these issues, edge AI is emerging as a promising solution,

combining artificial intelligence, IoT and edge computing [24]. By shifting com-

puting workloads from remote centers, such as cloud servers, to camera devices,

it considerably reduces communication overhead and enables accurate real-time

analysis. Therefore, edge AI is able to bring significant improvements in the

video surveillance domain, enabling faster data processing, reducing latency

and providing more efficient data management [25, 26].

Guided by these premises, this preliminary research proposes a multi-camera

video surveillance infrastructure integrating the edge AI paradigm. The pro-

posed research aims to provide a low-cost and horizontally scalable solution

which makes an efficient use of the state-of-the-art DL techniques for object

detection from videos, laying the foundation for using edge-compliant methods

via a framework to manage and analyze multiple video streams in real time.

To this end, the work focused on (i) the design of a physical network made

up of cameras acting as sensing nodes, which send data through a local area

network to a computing device, along with the implementation of an efficient

solution to handle multiple-source video data, and (ii) the deployment of an

off-the-shelf DL model to perform real-time people and object detection tasks

over multiple-source video streams, even in resource-constrained settings.

2.1.1 Methods

Figure 2.1 shows an outline of the infrastructure designed for collecting and

processing video streams from sensing devices. In this section, first, the sens-

12
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ing devices and computing board employed are introduced, highlighting their

main characteristics to motivate their choice (Sec. 2.1.1.1). Next, data ac-

quisition (Sec. 2.1.1.2) and processing (Sect. 2.1.1.3) stages of the proposed

infrastructure are presented, focusing on the description of video stream han-

dling for the former and the description of the DL model, as well as its deploy

on the edge device, in the latter. For the sake of simplicity, data acquisition

and processing are described referring to a single data stream. However, since

both acquisition and processing modules are thread-based, in the presence of

multiple cameras, a new thread pair (i.e., acquisition thread and processing

thread) can be created for each camera from the main process.

2.1.1.1 Acquisition and Computing Devices

To implement the data collection sub-infrastructure, the use of Internet Proto-

col (IP) cameras as sensing devices was chosen. An IP camera, differing from

traditional analog cameras, is capable of sending and receiving data via an IP

network. This feature offers several advantages; notably, IP cameras do not

require a local recording device but only a Local Area Network (LAN) connec-

tion. As a result, they provide higher video quality and resolution compared to

traditional cameras. Furthermore, IP cameras can offer Power over Ethernet

(PoE) or wireless connections, depending on the requirements, and maintain

image clarity over long distances.

As shown in Figure 2.1, the data collection sub-infrastructure in this work

consists of four Hikvision® 2MP Fixed Bullet Network Cameras1 connected to

a LAN with PoE.

For the data processing sub-infrastructure, an embedded computing board

was chosen to receive and analyze data, so as to implement the edge comput-

ing paradigm. These edge computing devices have similar functionalities to a

standard computer but are constructed as a single circuit board, which brings

computation closer to the data collection sub-infrastructure, offering multiple

advantages at a low cost.[27]

Despite the limited computational power of computing boards, adopting the

edge computing paradigm presents several advantages over alternatives such as

cloud-based solutions. These include faster processing due to reduced latency,

enhancing the overall system’s responsiveness, and reduced security risks as

data may not need to leave the local network. Additionally, privacy is im-

proved, especially when handling video data. The distributed nature of the

infrastructure also increases reliability and fault tolerance, while the use of

low-cost devices reduces infrastructural costs.

The NVIDIA® Jetson Nano™ Developer Kit2 was the chosen edge device

1https://www.hikvision.com/
2https://developer.nvidia.com/embedded/jetson-nano-developer-kit
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for the data processing sub-infrastructure. It features a 4 GB RAM, a 4-core

ARM A57 CPU, and an on-board GPU with 128 CUDA cores based on Maxwell

microarchitecture design, supplemented by a heat sink, enabling the execution

of low-power artificial intelligence systems for image classification, detection,

and segmentation.

Thus, the Jetson Nano was selected as the core processing module thanks to

its computing capabilities, available at a relatively low cost. Its specifications

allowed for the development of a lightweight DL algorithm that processes video

data from multiple sources simultaneously.

2.1.1.2 Data Acquisition Stage

As detailed in Sec. 2.1.1.1, 4 Hikvision Network cameras were used as sensing

nodes in the data acquisition stage. At first, a network switch supporting PoE

technology was connected to the LAN router to exploit the PoE capabilities

of the IP cameras. The four cameras were then placed in the monitoring area

(e.g., a living room) and connected to the network switch via standard CAT6A

Ethernet cables, in order to send and receive data over the LAN.

To complete the physical connection between the infrastructure nodes, also

the Jetson Nano board was connected to the network switch through an Ether-

net cable, thus facilitating its communication with the rest of the infrastructure.

It is worth noting that the Jetson Nano, as well as the other devices, was con-

nected to the same switch for practical purposes only. The devices only need to

be connected to the same LAN, not necessarily to the same LAN entry point.

Once the physical connections between sensing and computing devices is es-

tablished, a virtual connection is set up between the cameras and the Jetson

Nano, enabling the latter to receive video streams. The Real Time Stream-

ing Protocol (RTSP) is used as the standard protocol for making the streams

available over the LAN. RTSP is designed to control streaming media servers

within communication systems.

The initial step to create the virtual connection was the definition of a unique

RTSP URL for each camera using the Hikvision web service, along with the

access credentials for connecting to each device via the URL. Subsequently, a

stream handler module was implemented within the Jetson Nano board. This

module’s purpose is to open each stream towards the cameras, enabling data

reception.

A Python script was implemented for video stream handling, which, given

the RTSP URL3 and access credentials, utilizes Python bindings of OpenCV,

an open source computer vision library, for interacting with an external pro-

gram named GStreamer to open the stream and start the data acquisition.

3the URL was in the format rtsp:// 〈username〉:〈password〉@〈url〉
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GStreamer, a powerful framework for creating streaming media applications,

allows to set up a stream handler with desired characteristics (e.g., data type,

compression encoding/decoding standards). In detail, the process starts with

the creation of the camera handler managing the stream. The main Python

process creates a string with appropriate parameters to open a pipeline using

GStreamer. Thus, OpenCV interacts with GStreamer and initializes the cam-

era handler. Once the connection between the Jetson Nano and the camera

is established, the main Python process generates a thread that begins au-

tonomous data acquisition at a resolution of 640x480 pixel using the previously

initialized stream handler.

Thus, at the end of this process, the Jetson Nano begins receiving video data

as consecutive frames, which are forwarded to the data processing module for

DL analysis.

2.1.1.3 Data Processing Stage

The data processing stage relies on a DL algorithm to analyze the video frames

collected in the data acquisition stage. To this end, an off-the-shelf Single

Shot Multibox Detector (SSD) MobileNetV2 network [28][29] was employed as

lightweight DL algorithm to perform the object and people detection tasks.

The SSD MobileNetV2 network was chosen for its efficient balance of de-

tection speed and accuracy. Unlike two-step architectures like Faster R-CNN

[30], SSD localizes objects in one step and employs multi-scale computation

for varied object sizes. This approach, along with MobileNetV2 as its feature

extraction backbone, allows SSD to provide real-time, accurate detections even

in limited-resource environments.

MobileNetV2, a lightweight Convolutional Neural Network, includes a 3x3

convolutional layer and 19 residual bottleneck layers. These layers feature a

combination of subsequent 1x1, 3x3, and 1x1 convolutions, with Batch Nor-

malization and ReLU6 activations, using residual connections [31] for efficient

feature extraction. SSD extends MobileNetV2 with six convolutional blocks,

enabling multi-scale object detection across its fully convolutional structure.

Therefore, to achieve real-time detections over video streams, the Jetson

Nano was equipped with an off-the-shelf SSD MobileNetV2 detection model.

This model, implemented in TensorFlow4 — a widely-used Python library for

deep learning model training and inference — comes pretrained on the COCO

dataset5. COCO is a benchmark dataset with over 200k annotated images

and 80 object categories, including a wide range of objects, food, vehicles, ani-

mals, and people. Given that the work focus was primarily on the developing a

4https://www.tensorflow.org/
5https://cocodataset.org/
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framework to manage and process multiple video streams with edge AI integra-

tion, the use of a pretrained model allowed for immediate inference applications

without the need for additional training.

In the deployment process of SSD MobileNetV2 into the Jetson Nano, in

order to fully exploit the edge device’s computing capabilities, NVIDIA’s Ten-

sorRT — a library for high-performance deep learning inference on NVIDIA®

devices valuable for real-time systems and embedded applications — was used.

TensorRT optimizes models given in Universal Framework Format (uff ), with

”.uff” extension, according to the hardware characteristics of the specific NVIDIA®

board. The off-the-shelf TensorFlow model was available as a frozen inference

graph in the protobuf file format with ”.pb” extension. The frozen inference

graph, a specific TensorFlow file format, represents the model as a serialized

graph with all training weights and can be loaded in a TensorFlow environment

for inference. Thus, as a first step, the TensorFlow model was converted into

the generic uff intermediate format for TensorRT compatibility. Then, the

uff model was converted into a TensorRT engine, resulting in a serialized file

with model optimizations based on the Jetson Nano hardware. Following these

static steps, the final detection model was obtained as a TensorRT engine for

efficient use during inference on the Jetson Nano board, without the need to

rely on TensorFlow or other similar frameworks.

After the adaptation of the off-the-shelf detection model to the edge device

characteristics, the data processing pipeline, as mentioned in Sec. 2.1.1.2, was

expanded to manage the analysis of the video stream received from the data

collection thread. Breaking it down, to carry out the processing stage, the

main Python process initially creates a new processing thread, with the initial

task of opening the TensorRT engine from a file, deserializing it and loading it

into the GPU’s allocated memory, thereby establishing the necessary context

for inference. Subsequently, the processing thread begins to process the frames

captured by the acquisition thread from the RTSP stream.

More in details, the processing thread takes the acquired frame, now shared,

applies preprocessing to the frame to align with the model’s input require-

ments, namely image resizing at 300x300 pixel, channel order adjustment, and

normalization, and inputs it into the SSD MobileNetV2 loaded in the GPU.

The model processes the normalized frame, returns the predicted output and

the processing thread performs post-processing to generate the final detection

coordinates, confidence scores, and predicted label classes, storing them in a

shared variable. The variable is accessible to the main Python process, which

awaits the results and, upon their receipt, can utilize them for various actuation

purposes.
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2.1 Edge AI Preliminaries: a Multi-Camera Video- Surveillance Application

Table 2.1 Inference speed in Frames Per Second (FPS) comparison on multiple cameras.

N. of Cameras 1 2 3 4

FPS 25.0 6 ∼ 20.5 ∼ 14.7 ∼ 10.0

2.1.2 Results

Figure 2.2 Qualitative results showing the live detection obtained with SSD Mo-
bileNetv2 inference on 2 cameras. Image captured under remote working conditions
during the COVID-19 pandemic.

Table 2.1 presents the results in terms of Frames per Second (FPS) obtained

with up to 4 cameras connected to the LAN, each transmitting over an RTSP

stream monitored by the acquisition module.

As detailed in Sec. 2.1.1.2 and in Sec. 2.1.1.3 each acquisition thread on

the Jetson Nano managed an RTSP stream, continuously capturing frames at

a resolution of 640x480, and the corresponding processing thread then resized

each frame to 300x300 and inputted it into the SSD MobileNetV2 network. The

network’s detection output was subsequently sent back to the main process for

visualization or various actuation purposes.

In a single-camera configuration, the system achieved an inference rate of

25.0 FPS. However, with the addition of cameras and parallel data streams,

a gradual decline in FPS was observed. With two cameras, the FPS dropped

to approximately 20.5. This further decreased to around 14.7 FPS using three

cameras, with the Jetson Nano processing data from three different RTSP

streams. With four cameras, the inference speed decreased to about 10.0 FPS.

It is important to note that the fame rate in the single-camera setup is upper

bounded by the Hikvision camera’s frame rate, which is 25 FPS.

Figure 2.2 illustrates some qualitative detection results in a living room set-

ting using two cameras. For visualization purposes, a monitor was connected to

the edge device. These qualitative results demonstrate the SSD MobileNetV2

625 FPS is the maximum frame rate of each Hikvision camera.
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ability to detect multiple objects of varying sizes while running on an edge de-

vice in multi-camera settings. The system effectively identified both a person

and a chair from two different perspectives and sizes, as shown in the left and

right images of Figure 2.2.

2.1.3 Discussion

The designed infrastructure exploited a thread-based approach to handle the

video stream coming from each IP camera used for video surveillance. For

each camera an acquisition thread was responsible for frame collection and a

processing thread analyzed the acquired frames to perform object and people

detection, providing results to the main process. The proposed infrastructure

achieved promising results in terms of real-time inference even with the 4-

camera setting, since an inference speed of 10.0 FPS in the object and people

detection tasks guarantees immediate response in case of anomalous event (e.g.

detection of specific target objects or people intrusion).

It is worth highlighting that the use of a video surveillance system based

on the proposed infrastructure has multiple advantages: (i) the reduction of

latency times due to potential feedback delays from external computational

resources for data analysis, crucial in time-sensitive applications (ii) the in-

dependence from Internet connectivity for the operation of the architecture,

avoiding monitoring interruptions in situations of temporary or total lack of

external connectivity, fundamental in safety-critical surveillance systems that

require continuous monitoring (iii) the extreme horizontal scalability of the sys-

tem via the addition of new nodes for computation, with all the related benefits

[32], (iv) the low cost of the entire infrastructure, enabling a global spread of

intelligent surveillance systems, thus democratizing access to the technology

and simultaneously increasing the level of overall safety and well-being.

This research, despite employing an off-the-shelf approach for object and

people detection without specific task training for the DL model, establishes

a foundation for future development. It demonstrates the feasibility of inte-

grating artificial intelligence into video surveillance on edge devices. This is

achieved by using a hardware and software infrastructure designed to handle

multiple surveillance cameras, employing a thread-based method for real-time

video acquisition and analysis through a deep learning model.

Furthermore, the ease of extension and adaptability of the proposed infras-

tructure also allows its use in a variety of applications that make use of arti-

ficial intelligence-based models for video analysis, as the crucial application of

weapon detection in video surveillance, explored extensively in this thesis.
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2.2 A Deep Dive into Weapon Detection in Modern Surveillance

2.2 A Deep Dive into Weapon Detection in

Modern Surveillance: Impact, Challenges and

Emerging Trends

Weapon-related crimes, particularly those involving guns and knives, are a

significant global issue, accounting for 76% of all homicides [33]. This alarm-

ing statistic underscores the critical importance of Video Surveillance Systems

(VSSs) in various environments, including airports, hospitals, homes, and of-

fices [34]. VSSs play a pivotal role in enhancing public safety by providing

real-time monitoring, which is essential for the early detection of potential

threats [34]. The ability of these systems to identify the presence of handguns

and knives may enable prompt interventions by security personnel, potentially

averting violent incidents and reducing the rate of homicides. Furthermore,

installing surveillance cameras serves as a preventive measure, discouraging

potential offenders and thereby playing a significant role in reducing crime

rates [35].

However, the effectiveness of VSSs is currently limited by the reliance on

human operators for round-the-clock monitoring, which is a demanding and

costly process [36, 34]. Continuous observation leads to fatigue, reducing the

operators’ alertness and the overall efficiency of the surveillance [37]. Thus,

while VSSs are a crucial tool in addressing weapon-related crimes, its poten-

tial is not fully realized due to the limitations of human-based monitoring.

This highlights the need for advanced solutions, such as automated detection

technologies, to enhance the effectiveness of video surveillance in public safety

[38].

To meet these needs, research in the field of video surveillance is largely

based on advances in the broader field of generic object detection, adapting au-

tomated detection methodologies to the specific context of video surveillance.

Indeed, in recent years, the field of generic object detection has been extensively

studied and significant progress has been made in the state of the art. With

the growing popularity of DL, automatic object detection approaches based

on this paradigm have gradually replaced previous approaches based on tradi-

tional machine vision techniques (e.g., deformable parts model [39], Selective

Search [40]). These DL-based methods have outperformed their predecessors

in terms of speed and reliability, establishing themselves as essential tools for

augmenting the capabilities of human operators. However, despite research

advances in the development of general-purpose object detectors, the nuanced

and complex task of efficiently detecting weapons in VSSs remains a signifi-

cant and unresolved challenge, highlighting an area of ongoing research and

development in the field [41, 42].
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One of the primary difficulties in detecting weapons, as opposed to generic

objects, lies in the small size of weapons compared to the camera’s FoV [43].

In Closed-Circuit Televisions (CCTVs), weapons often appear significantly

smaller compared to the overall FoV. This is further exacerbated when the

weapons are located at a considerable distance from the camera, diminishing

their apparent size.

In generic object detection, the problem of identifying small objects has been

partially mitigated through the use of complex DL methods, which are paired

with higher resolution inputs [44, 45, 46, 47]. These approaches demonstrate

improved performance, but they come with significant challenges. Indeed, they

necessitate extensive training datasets to achieve optimal effectiveness, and

they require considerable computational power for inference processing. As

highlighted in [42], this presents practical limitations for their deployment in

real-world surveillance settings. Particularly in the domain of video surveil-

lance, the lack of comprehensive, real-world datasets for weapon detection

severely hampers the implementation of these complex detection systems [42].

Additionally, the need for powerful computational resources for their deploy-

ment can be excessively costly and energy-demanding. This is particularly

problematic in settings with limited resources, like smaller public areas or less

developed regions, where the implementation of such demanding systems is im-

practical. Consequently, this poses a major hindrance to the broad adoption

of these systems for weapon detection [42]. To improve the detection of small

weapons and address the shortage of extensive datasets, solutions leveraging

object-segmentation techniques designed to require weaker form of supervision

could be employed [48, 49]. However, the inherent complexity of these DL

methods inevitably demands improved hardware capabilities. This may pose a

barrier to the widespread adoption of such systems.

2.2.1 Related Work

Despite the popularity of generic object detection, research efforts in automatic

handguns and knives detection from surveillance videos are quite limited, espe-

cially in edge computing settings with Single Board Computers (SBCs). Among

the seminal works in this field, the authors in [50] proposed an approach for

firearms and knives detection from CCTV images based on visual descriptors

and Machine Learning (ML). The knife detection algorithm relies on sliding

window technique followed by MPEG-7 based feature extraction and Support

Vector Machine (SVM) for classification. The firearm detection also includes

an image pre-processing step using background subtraction and Canny edge

detection algorithms, followed by the sliding window and a classification based

on MPEG-7 region shape descriptor. Both detection algorithms were evaluated
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2.2 A Deep Dive into Weapon Detection in Modern Surveillance

Table 2.2 Summary of the state-of-the-art approaches in weapon detection.
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Chapter 2 Edge AI in Surveillance Systems for Effective Weapon Detection

on a custom-built dataset. Despite the valuable contribution, the use of sliding

window approach and other time-consuming techniques limit the applicability

in real-world scenarios.

In recent years, the increasing popularity of DL has prompted the diffusion of

new general-purpose architectures for object detection. Among these, some of

the most widely used state-of-the-art detectors includes Faster R-CNN, which is

based on a two-stage detection process (i.e., a region proposal stage followed by

the object localization and classification), and one-stage detectors (i.e., direct

object localization and classification) like the You Only Look Once (YOLO)

family [51, 52, 53] and SSD [28].

Following this trend, recent works in handguns and knives detection from

surveillance videos have focused on exploiting such general-purpose detection

architectures.

In [54] a handheld gun detection approach based on DL is proposed. The

authors exploited a Faster R-CNN with a VGG16 backbone and compared

its performance against several ML methods on the Internet Movie Firearms

Database (IMFDB), proving its superiority. Similarly, in [55], a sliding window

and a region proposal approach, both based on a VGG16 CNN classifier, were

compared. The region proposal approach outperformed the sliding window in

terms of speed and detection accuracy on a custom-built dataset.

These works have the merits of having highlighted the validity of DL over

standard ML methodologies in video surveillance field. However, the datasets

they use to validate the approaches do not fully represent real-world scenarios.

Indeed, they are mainly made up of static images not acquired by CCTVs and

firearms are often the largest and the only object in the foreground. These

datasets oversimplify the detection task, potentially skewing the results. Addi-

tionally, the results in [55] on test videos show a high number of false negatives

(i.e., missed detections).

While the previous work focused exclusively on the detection of guns, the

authors in [56] addressed the detection of both guns and knives. To this end,

a Faster R-CNN was trained on a custom-built dataset obtained by collecting

data from various sources, including a portion of the dataset in [55] for guns

and COCO images for knives. Both GoogleNet and SqueezeNet CNNs were

tested as backbones for the Faster R-CNN. While SqueezeNet achieved compa-

rable results to [55] for gun detection, it performed poorly on knife detection.

In contrast, the GoogleNet-based architecture showed better performance in

knife detection compared to the other methods, even though with relatively

low overall detection performances. Similar previous works, this study has

limitations in the composition of the dataset, which is not representative of a

real-world scenario. In addition, the proposed solution needs two distinct archi-

tectures to be effective in the detection of both handguns and knives, limiting
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2.2 A Deep Dive into Weapon Detection in Modern Surveillance

the applicability in resource-constrained environments.

In the last few years, research effort in general-purpose object detection has

also focused on the development of DL modules to be added on top of CNN

architectures, aiming to improve detection performance. To this end, one of

the most popular components is Feature Pyramid Network (FPN) [57], which

combines high and low-resolution features from different CNN layers, improv-

ing the detection at different scales. Following these improvements over the

existing state-of-the-art, more recent works in handguns and knives detection

from CCTV have adopted DL architectures with the integration of such compo-

nents [58, 41], trying to tackle the issues related to small object sizes, discussed

in Sec. 2.2. Authors in [58] introduced an approach based on a single-stage

object detector integrating a multi-level FPN to enhance localization ability

for handgun detection from CCTV. The approach was validated on a custom

dataset comprising 5500 images of handguns extracted from CCTV videos. In

[41] a Faster R-CNN with a FPN was exploited to perform gun detection on

CCTV images. The training was performed on several combinations of non-

CCTV data from [55], custom CCTV data and synthetic data. The evaluation

on CCTV data highlighted that while the addition of synthetic training data

slightly improved the results, the addition of non-CCTV data even decreased

detection performances on small objects.

Although both works integrate modules on top of the detection architectures

to improve detection performances on the respective CCTV datasets, the re-

sults obtained in terms of weapon detection and inference speed do not allow to

translate their approaches into the real-world domain. This is clearly expressed

by the authors themselves in the conclusions of [41].

With an eye towards focusing on computationally undemanding detection

architectures, the authors in [59] present a comparative analysis of the one-

stage detectors YOLOv5 and YOLOv7 [60] on a custom dataset of people,

handguns, rifles and knives, with images from Google Open Images Dataset,

Roboflow Public Dataset and local sources. YOLOv5 outperformed YOLOv7,

but the overall results were rather poor, hindering the real-world implementa-

tion of the approach. Moreover, as demonstrated by the image samples shown

in the paper, the dataset does not mirror a real-world domain. Table 2.2 sum-

marizes the state of the art approaches with their methodological details and

limitations.

Despite recent advancements, there is still a lack of approaches that exploit

edge AI for weapon detection in surveillance videos. The inherent challenges

in developing efficient algorithms for edge devices with limited computational

capacity, coupled with the need to achieve good accuracy even when dealing

with very small weapons, largely contribute to creating this research gap. An

additional major challenge is the difficulty in finding representative surveillance
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datasets that accurately reflect various real-world situations, which are essential

for training and validating effective detection algorithms. Effectively tackling

these challenges would allow to exploit edge AI potential for real-time weapon

detection in video surveillance, achieving significant benefits in terms of cost

reduction, privacy protection, and latency reduction [61].

With the aim of filling the existing gap and pushing forward the state of

the art in weapon detection on edge devices, the proposed research emphasizes

addressing the identified challenges and shifting towards approaches centered

on the edge AI paradigm. The following sections present:

• Sec. 2.3: A detailed description of the fully-CCTVWeaponSense dataset,

used to validate the proposed weapon detection approaches. The dataset

has three versions, with incremental improvements on the data composi-

tion between versions;

• Sec. 2.4: A benchmark study performing a comprehensive performance

comparison of two low-cost single board computers running a weapon

detection algorithm, to determine the edge device with the optimal char-

acteristics;

• Sec. 2.5: A novel edge-oriented, DL-based approach for detecting hand-

guns and knives in indoor VSSs, specifically designed to tackle the detec-

tion of smaller objects and operate on edge devices with limited compu-

tational power;

• Sec. 2.6: An innovative approach that integrates deep learning and

super-resolution methods, enhancing the detection of small-sized weapons

on edge devices without extra computational cost.
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2.3 The WeaponSense Dataset

(a) (b)

(c) (d)

(e) (f)

Figure 2.3 Sample of frames extracted from recordings in the WeaponSense dataset
are shown to highlight the related challenges (e.g., multiple people, different weapons
and non-threatening objects, distance from camera). For visualization purposes only,
the handguns and knives have been pointed out in red.

2.3 The WeaponSense Dataset

Due to the lack of benchmark datasets and the scarcity of publicly available

datasets representative of the real world in the field of weapon detection, part of

the research work was spent on the creation of a custom dataset. The Weapon-

Sense dataset was collected and used to validate deep learning methodologies

developed for weapon detection on edge devices.

Three versions of the dataset, available upon request, were created: (i)

WeaponSenseV0, consisting of 30 video sequences featuring handguns; (ii)

WeaponSenseV1, which adds 22 video sequences featuring knives to the previ-

ous version; (iii) WeaponSenseV2, which includes 4 additional videos, captured
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in a different environment, containing both guns and knives. For Weapon-

SenseV0 and WeaponSenseV1, acquisition was conducted using a Dahua 4MP

Bullet Network Camera, a commercial camera with IP connected to a LAN

network with PoE. The choice of the IP camera, suggested by INIM Elec-

tronics, an Italian leader in the surveillance systems sector, was driven by the

good compromise between cost, performance, and quality in terms of image

resolution and compression technology.

The camera was placed in the upper corner of a nearly empty room to capture

video sequences in which a variable number of subjects were free to move, with

one of them holding a weapon, such as a knife or a gun. The acquisition sessions

were carried out using a custom Python script, collecting a total of 52 video

sequences of 30 seconds each. The frame rate of the camera was set to 10

FPS with a default resolution of 1280x720 pixels, resulting in 300 frames for

each video sequence. In the 52 collected video sequences, 19 different subjects

appear holding a gun (30 sequences) or a knife (22 sequences). Furthermore, the

same subject appearing in multiple videos wore different clothes. The average

number of people per video is 2.88, with a standard deviation of 1.05.

For the creation of WeaponSenseV2, the acquisition of additional video se-

quences was conducted using a Hikvision 4MP Fixed Turret Network Camera.

In this case, the camera was installed on the ceiling of a room set up with shelves

containing commercial products, to simulate a commercial activity. The same

acquisition protocols described for the first two versions of the WeaponSense

dataset were followed. As a result, 4 new sequences were acquired, with 3 dif-

ferent subjects and multiple weapons in each sequence, for a total of 300 frames

each. In WeaponSenseV2, which thus comprises 56 videos, the average number

of people per video and the standard deviation are 2.87 and 0.99, respectively,

remaining almost unchanged from the previous version. The WeaponSense

dataset, in all its versions, was gathered with the goal of simulating an indoor

real-world application domain, so as to overcome the limitations found in the

datasets used in the current state of the art [54, 55]. Some of the challenges of

the WeaponSense dataset are shown in Figure 2.3.

The major one is the very small size of the objects to be localized compared

to the whole image (i.e., ∼0.1% of the image area, computed on the average

ground-truth boxes areas), due to the distance of the people from the camera.

Another significant challenge is the poor contrast of the objects against the

background, along with motion blur in images. Additional challenges include

the presence of multiple people who may be holding non-threatening objects

(e.g., smartphone as in Fig. 2.3(b)), variations in subjects’ poses (e.g., sitting

or standing as in Figs. 2.3(a) and 2.3(c)) and orientations (e.g., Fig. 2.3(a)

with respect to Fig. 2.3(f)), multiple weapons in the image (as in Fig. 2.3(e)),

and variability both in terms of subjects and intra-class objects (i.e., the use
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of different objects belonging to the same class).
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2.4 Benchmark of Cost-Effective Single Board

Computers for Weapon Detection

Monitoring threats and preventing criminal activities is an open challenge to

safeguard the health of citizens. Modern DL techniques have been shown to

outperform traditional techniques in terms of speed and accuracy of results,

giving a significant boost in this area by providing real-time information crit-

ical for prevention of criminal activities. In this context, edge computing is a

powerful paradigm that can be successfully adopted to run artificial intelligence

applications while ensuring security, privacy, and flexibility without suffering

downtime and latency. The opportunity to leverage the integration of edge

computing and artificial intelligence in the domain of video surveillance, as de-

scribed in Sec. 1.2, has been explored by several researchers in the literature

[13]. The authors in [62] presented a video surveillance application leveraging

a DL algorithm on edge devices to detect, count and track people. Similarly,

in [11], an approach for real-time human detection on resource limited SBCs

was proposed. All the contributions emphasized the benefits of implementing

artificial intelligence solutions at the edge, instead of relying on cloud process-

ing.

Nevertheless, as far as weapon detection is concerned, the use of SBCs to run

DL algorithms is still very limited, with open challenges on how to translate

the proposed approaches in a real-world domain [41]. To push forward progress

in this context, an essential first step is to make the researchers aware on the

limits and capabilities of using SBCs in weapon detection, as done in other

domains by existing studies on performance benchmarking of different edge

devices [63].

Driven by these considerations, a comprehensive comparison was conducted

in this study between two of the most popular SBCs for on-edge analysis:

Google Coral Dev board 7 and NVIDIA® Jetson Nano 8. The benchmark

aimed to evaluate the performance in the execution of a lightweight dual-step

approach for weapon detection.

More in details, the comparison between SBCs was on a dual step detection

architecture for hand-held weapons detection that leverages a prior detection

of the people using SSD MobileNetV1 [64], and a subsequent detection of the

potential hand-held weapon wielded by each person using YOLOv4-Cross Stage

Partial (CSP) [65] network. An extensive performance evaluation comparison

- in terms of both inference speed and impact on detection accuracy after

quantization - between the two edge SBC devices was conducted using the

custom WeaponSenseV0 dataset, introduced in Sec. 2.3, consisting of 1,307

7https://coral.ai/products/dev-board
8ttps://developer.nvidia.com/embedded/
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(a) Google Coral Dev (b) NVIDIA® Jetson Nano

Figure 2.4 Edge devices selected to benchmark inference performance.

Table 2.3 Overview of the general features of the two edge SBC devices used in this work.

Feature Google Coral Dev NVIDIA® Jetson Nano

Memory
1GB LPDDR4 4GB 64-bt LPDDR4

@1.6GHz @1.6GHz

Cpu

NXP i.MX 8M SoC 64-bit Quad-core

Quad-core ARM Cortex-A53, ARM A57 @1.43GHz

(plus Cortex-M4F) @1.5 GHz

OS Mendel Linux Jetson4Tegra

AI Unit
Google Edge TPU

128-core NVIDIA® GPU
ML accelerator co-processor

Optimization Frameworks
TensorFlow Lite

TensorRT
PyCoral

annotated frames.

This work contributes to the future research by providing an insight on

the computational limitations to address when developing edge-compliant ap-

proaches for weapon detection.

2.4.1 Methods

This section gives an overview of the SBCs used in the benchmark analysis

and presents the DL model implemented for weapon detection, outlining its

deployment on each edge device.

2.4.1.1 Target Edge Devices

For the performance benchmark, two popular devices in the edge computing

domain were selected: the Google Coral Dev (Fig. 2.4(a)) and the NVIDIA®
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Jetson Nano (Fig. 2.4(b)).

In 2020, the Coral Dev board was released by Google for running low power

artificial intelligence applications on embedded devices. The Coral provides

high performance and high-speed neural network inference thanks to its tensor

processing unit (TPU) co-processor, an ad-hoc built-in application specific inte-

grated circuit (ASIC) using the TensorFlow framework. The workflow to create

a model for the Edge TPU is based on TensorFlow Lite. The Edge TPU can

perform 4 trillion operations (tera-operations) per second (TOPS), using 0.5

watts for each TOPS (2 TOPS per watt). This board offers a fully-integrated

system, including NXP’s iMX 8M system-on-chip (SoC), eMMC memory, 1GB

or 4GB LPDDR4 RAM, Wi-Fi, and Bluetooth. A lightweight open-source op-

erating system derived from Debian Linux, named Mendel, has been developed

for the Coral Dev to facilitate the development of fully integrated models.

The second selected SBC, the Jetson Nano, was released by NVIDIA®. This

board supports running artificial intelligence applications with low power con-

sumption. The presence of a GPU with 128 CUDA cores based on the Maxwell

micro-architecture in the edge device enables high inference performance. It is

available in either a 2GB or 4GB RAM version and includes a 4-core ARM®

Cortex®-A57 MPCore CPU, achieving a peak performance of 472 GFLOPs

for the rapid execution of modern AI algorithms.

To summarize, Tab. 2.3 shows the main features of the two devices utilized

for running DL applications on the edge.

2.4.1.2 Deep Learning Approach

Driven by the goal of detecting small dangerous objects held by people, a

two-step DL approach was chosen. This dual-step process is necessary to first

identify people within the camera’s field of view, and then to detect a weapon

within the area (bounding box) around the person.

The SSD MobileNetV1 network [64] was utilized for people detection, while

YOLOv4-CSP [65] was selected for detecting dangerous weapons held by peo-

ple. The selection of these two models was based on the hardware constraints

of the edge SBCs, as well as on the optimizations (e.g., models’ quantization) of

the models on these devices. Using a single accurate-but-complex model would

not have been compatible with the memory limitations of the SBCs, and many

state-of-the-art models are not yet optimized for efficient deployment on edge

devices.

The Coral Dev requires Edge TPU-compiled models with full integer quanti-

zation to speedup model inference using its Edge TPU co-processor. The people

detection model was deployed on the Coral Dev straightforwardly, as Google

developers released a ready-to-use, pre-trained and Edge TPU-compiled version

with 8-bit signed integer (INT8) quantization. To deploy the weapon detec-
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tion model on Coral Dev, it was first converted from Tensorflow to TensorFlow

Lite (tflite), a framework providing a set of tools that enables on-device DL

inference. During this conversion, post-training quantization (PTQ) in INT8

was applied, preparing the model for the edge device. The tflite INT8 model

was then compiled for Edge TPU to obtain the final optimized version for the

execution on Coral Dev.

The Jetson Nano, with its on-board GPU, can run models both with quanti-

zation in half-precision floating-point (FP16) format and without quantization

in single-precision floating-point (FP32) format, while the INT8 quantization is

not supported. To maximize inference speed, FP16 quantization and additional

optimizations using TensorRT (TRT) were applied to both MobileNetV1 and

YOLOv4-CSP. TRT, the framework developed by NVIDIA®, facilitates high-

performance DL inference with hardware-specific optimizations. To maximize

the throughput for on-device inference, TRT allows to convert a model into

a ready-to-run TRT engine in the form of a serialized binary file. The Mo-

bileNetV1 model was converted and optimized to TRT with FP16 quantiza-

tion through the intermediate conversion to uff. As regards the YOLOv4-CSP

model, the deployment was done via a first conversion of the model from Keras

to the Open Neural Network Exchange (onnx ) format, which is an open format

for AI models, and then an optimized FP16 TRT engine was created from the

latter format.

After the models deployment on both edge devices, the system was tested

in a real-world scenario. During inference, frames were acquired from an IP

camera connected to the tested device at a fixed rate of 30 FPS. Following

the acquisition and processing setup introduced in 2.1, a separate thread con-

tinuously acquired a new frame, putting it in a shared buffer, replacing the

previous frame in the buffer. Meanwhile another thread, accessing the shared

buffer, asynchronously processed the available frame with the DL models.

2.4.2 Experimental protocol

2.4.2.1 Data Preparation and Training settings

Starting from the WeaponSenseV0, introduced in Sec. 2.3, each of the 30 video

sequences was processed to remove irrelevant frames at the beginning and end

of the acquisition, and one frame every four was sampled, so as to increase dif-

ferences between consecutive frames. Then, each of the resulting 1307 frames,

was manually labeled using LabelMe9, a publicly available annotation tool.

Each annotation was performed by drawing a bounding box to tightly enclose

the weapon and by assigning it to the class weapon.

9https://github.com/wkentaro/labelme
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An off-the-shelf SSD MobileNetV1 pretrained on the COCO dataset [66]

was exploited for inference. The FP16 version of the SSD MobileNetV1 was

used for inference with the NVIDIA® Jetson Nano board, while its INT8 ver-

sion was used for inference with the Google Coral Dev board. To train the

YOLOv4-CSP, the dataset WeaponSenseV0 was split in ∼75%, ∼10%, ∼15%

for the training, validation and testing set, respectively, with data split at video

level. The weapon detector was trained using Tensorflow on a GPU NVIDIA®

GeForce RTXTM 3090 with a FP32 format. The training was performed for

80 epochs using Adam optimizer with a batch size of 8 and an initial learning

rate of 0.005. The best weights across the epochs were chosen based on the

validation loss. After training, PTQ was applied to the weapon detector to

obtain both the FP16 Jetson-compliant and the INT8 Coral-compliant models.

2.4.2.2 Performance metrics

To benchmark the edge devices two primary metrics were used: (i) the PASCAL

VOC Average Precision (AP) [67] to evaluate the detection performance and

(ii) the FPS to evaluate the inference speed. The AP (Eq. 2.1) was computed by

taking an approximated Area Under the Curve (AUC) of the Precision-Recall

(PR) curve

APweapon =

n−1∑
k=0

(rk+1 − rk)ρinterp(rk+1) (2.1)

where n is the number of recall values in the PR curve and ρ(r̃) is the

precision measured at recall r̃.

To further assess the detection performance also Precision (Prec) (Eq. 2.2)

and Recall (Rec) (Eq. 2.3) were computed as secondary metrics,

Prec =
TP

TP + FP
(2.2) Rec =

TP

TP + FN
(2.3)

where TP , FP , FN are the correct detections, the wrong detections and the

missed detection, respectively, computed at a threshold = 0.4.

The FPS were computed as an exponential moving average (Eq. 2.4)

FPSt =

{
Y0, t = 0.

αYt + (1− α) · FPSt−1, t > 0
(2.4)

where α is the coefficient of weighting decrease, set equal to 0.05, Yt is the

instant FPS value at time t and FPSt is the exponential moving average value

at time t.

32



2.4 Benchmark of Cost-Effective SBCs for Weapon Detection

Table 2.4 Benchmark performance of SSD and YOLO running in sequential mode on the
edge devices.

Device Accelerator Datatype

FPS

AP Prec Recn° people

0 1 2 3 4

Google Coral Dev TPU INT8 36.5 2.9 1.5 1.1 0.9 98.8 96.8 98.9

NVIDIA® Jetson Nano GPU FP16 23.8 4.5 2.5 1.7 1.4 99.6 100 99.6

Due to the dependence of the tested approach with respect to the number

of people in the camera’s FoV, the calculation of FPS was performed taking

into account a variable number of people in the camera’s field of view. Thus,

a different FPS value is computed for each different number of people (i.e.,

from 0 to 4 people) in the IP camera FoV, to assess in a real-world scenario

the impact of increased workload on each SBC. Except for the inference with

0 people, in each inference run there is exactly a weapon held by a person.

2.4.3 Results

Table 2.4 shows the results obtained in terms of AP, Prec, Rec and FPS on

each edge device. Jetson Nano achieved the highest results in terms of primary

PASCAL VOC and secondary metrics (AP = 99.6, Prec = 100.0 and Rec =

99.6), while the INT8-quantized framework running on Coral achieved slightly

worse results (AP = 98.8, Prec = 96.8 and Rec = 98.9). Comparing the two

edge devices in terms of FPS, it turns out that the Coral outperformed the

Jetson Nano when doing inference with 0 people in the camera FoV (FPS =

35.6 for the Coral and FPS = 23.8 for the Jetson Nano). On the other hand,

increasing the number of people in the camera FoV led to better results for the

Jetson Nano with respect to the Coral, going from FPS = 4.5 (on the Jetson

Nano) against FPS = 2.9 (on the Coral) for 1 person to FPS = 1.4 (on the

Jetson Nano) against FPS = 0.9 (on the Coral) for 4 people. Fig. 2.5 shows

the FPS trend of both the edge devices when varying the number of people in

the camera FoV.

2.4.4 Discussion

Although the introduction of DL enhanced existing approaches for the early de-

tection of criminal activities, there remains potential for further improvements,

especially in terms of edge computing perspectives.

The work compared two SBC running a two-step approach for identifying

dangerous weapons in the camera FoV. The results obtained, detailed in Table

2.4, shows the strengths and weaknesses of each edge device in terms of AP,

33



Chapter 2 Edge AI in Surveillance Systems for Effective Weapon Detection

0

5

10

15

20

25

30

35

40

0 1 2 3 4

FP
S

n° people

FPS comparison on edge devices 

Google Coral Dev NVIDIA Jetson Nano

Figure 2.5 FPS comparison on edge devices.

Prec, Rec and FPS.

The FP16-quantized framework running on the Jetson Nano achieved better

results with respect to the INT8-quantized framework for both the PASCAL

VOC AP and secondary metrics (i.e., Prec and Rec). The higher performance

of the former could be attributed to its FP16 weights’ representation, which is

closer to the original FP32 weights’ representation used in the training phase

compared to the INT8 weights’ one. Indeed, although the post-training quan-

tization of the FP32 framework to INT8 representation allowed to obtain a

lighter-memory model with respect to the FP16 post-training quantization (i.e.,

8 bits per weight instead of 32), the overall expressivity of the network turned

out to be lower, resulting in slightly worse detection performances.

As regards benchmark on the inference speed of the edge devices, the Coral

Dev obtained impressive results when running inference with 0 people in the

camera FoV, while from 1 to 4 people the Jetson Nano outperformed the Coral

Dev in terms of FPS, showing a smoother FPS degradation (Fig. 2.5). The

reason for this trend may be attributed to the memory management of the

edge devices. The Coral Dev, beyond the shared 1GB RAM, has an additional

8MB SRAM (See Tab. 2.3) that can cache model parameters for the fastest

possible data transfer towards the TPU, while the Jetson Nano solely relies on

a shared 4GB RAM. Thus, since the no-people inference use only the first-step

SSD MobileNetV1, the Coral can cache the whole model’s parameters (i.e.,

model size of 7MB) in the 8MB SRAM once and do high-speed continuous in-

ference. When dealing with one or more people, the second-step YOLOv4-CSP
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model comes into play and the Coral Dev faces an additional time overhead for

rewriting SRAM to switch among the two models. Furthermore, the YOLOv4-

CSP’s parameters (i.e., model size of 56MB) do not fit entirely in the SRAM,

requiring also external memory readings (i.e., shared RAM) to do inference.

On the other side, the Jetson Nano directly loads both models in its shared

4GB RAM, resulting in a slower FPS for no-people inference but maintaining

higher FPS values with respect to the Coral Dev when both models are used.

To conclude, the research delineated herein did not concentrate on examining

the optimal DL architecture for undertaking the task of interest, namely, the

automated detection of weapons from surveillance videos. The exploration

of CNN architectures is reserved for subsequent sections of this thesis. The

findings from this investigation were instrumental in guiding the selection of

the NVIDIA® Jetson Nano as the most appropriate computational device.

This decision was based on the congruence of the device’s capabilities with

the specific requirements of the experimental framework, as evidenced by the

aforementioned research outcomes.
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2.5 Edge-Driven Deep Learning Framework for

Handgun and Knife Detection in Indoor Video

Surveillance

As extensively discussed in Sec. 2.2, the primary challenge in integrating edge

computing and artificial intelligence lies in developing methods that are both

accurate and light enough to be executed on edge devices. The specific chal-

lenges of weapon detection in video surveillance, which include the need to

accurately recognize small-sized weapons in non-static images (i.e., extracted

from videos), further hinder the development of edge-oriented methodologies.

Here, it is crucial to find an optimal balance between the computational com-

plexity of the model, the execution speed, and the accuracy. Much research in

the literature focused on maximizing the accuracy of weapon detection meth-

ods, neglecting aspects of execution speed and computational compatibility

with edge devices. Conversely, the rare approaches that focused on develop-

ing edge-oriented methods, trying to balance all the necessary components,

show gaps in terms of applicability to real domains. In fact, these approaches

were validated on datasets that do not adequately reflect the real context of

video surveillance (e.g., they use static images with foreground or non-handled

weapons), resulting in a drastic reduction in accuracy when applied in real

scenarios.

Summing up the challenges and requirements in this still relatively unex-

plored research field, there is the need to find an effective yet efficient approach

for small handheld weapons detection in CCTV under resource-constrained

settings. Motivated by the exploratory benchmark on the edge devices pre-

sented in Sec. 2.4, and with the aim of taking a step towards the resolution

of the still-open challenges, this work presents a DL-based approach oriented

to the edge computing paradigm for handgun and knife detection from indoor

surveillance videos. The innovative contribution of the work is the proposal

of an approach robust to the small-object size yet deployable on edge devices

with limited computing capacity – and consequently costs. To this end, it

leverages a first CNN to obtain a prior detection of the people in the frame,

and a second CNN to perform a subsequent detection of the potential handgun

or knife within each person’s bounding box. The approach was validated on

the fully-CCTV WeaponSenseV1 dataset, introduced in 2.3.

The following sections (i) describe the implemented approach and the deploy-

ment on the edge (Sec. 2.5.1); (ii) delineate the ablation studies, including the

training settings and the performance metrics used to validate the approaches

(Sec. 2.5.2); (iii) show the experiments carried out and the results obtained

(Sec. 2.5.3); and (iv) present the discussion of results (Sec. 2.5.4).
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(a)

(b)

(c)

Figure 2.6 (a) Workflow of the proposed approach for indoor handgun and knife
detection. After proper dataset preparation (described in Sec. 2.5.2.1) the weapon
detector was trained using the output of the people detector (as detailed in Sec.
2.5.1.1) and the mean average precision performance was computed on the test set.
Both convolutional neural networks were quantized in half-precision (i.e., FP16 quan-
tization) and deployed in the NVIDIA® Jetson Nano (as in Sec. 2.5.1.2)) for real-time
processing of the IP camera video stream. The details on the convolutional structure
of (b) the people detector and (c) the weapon detector are shown, too.
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To enable fair comparisons, the codes are available on GitHub10.

2.5.1 Methods

2.5.1.1 Dual-Stage Deep Learning Approach

The proposed approach, whose workflow is shown in Fig. 2.6(a), is based on the

observation that a weapon becomes dangerous only when carried by a human.

Thus, a two-step detection process is proposed, involving a prior detection

of the people within each frame, followed by the detection of the potential

handgun or knife within each person’s bounding box. Each step relies on a

specific DL architecture, aiming at maximizing the speed-accuracy trade-off.

The architectural choices also take into account the SBC hardware constraints

in terms of memory footprint, as this is a primary concern when dealing with

edge devices.

To carry out the prior people’s detection, the SSD MobileNetV2 network

[28, 29] was used (Fig. 2.6(b)), since it represents a good compromise between

computational speed and people detection accuracy. Although its detection

performance on the COCO dataset is lower than other architectures [29], it

achieves nearly-optimal results when the performance evaluation is restricted

on the person category, as shown in [68]. The SSD meta-architecture was

chosen since it performs object localization by adopting a single-stage approach

as opposed to other two-stage architectures which enhances accuracy to the

detriment of speed (e.g., [30]). This allowed to reduce inference time.

MobileNetV2 was adopted as backbone for features extraction to further

increase the speed of the SSD. MobileNetV2 is a lightweight CNN with a 3×3

convolutional layer followed by 19 inverted residual blocks [29], made up of three

1×1, 3×3, 1×1 convolutions interleaved with batch normalization and ReLU6

activation function, with a residual connection [31] between the 1×1 layers.

The peculiar blocks’ structure reduces the number of network parameters, thus

increasing inference speed. The SSD meta-architecture stacks on top of the

MobileNetV2 six output convolutional blocks, obtaining six different scales of

detection for each input image.

An intermediate processing on each person’s bounding box within the frame

was performed before the weapon detection step. In particular, with the aim

of preserving the objects’ aspect ratio, a square crop from the original image

was computed, according to both the center and the maximum side (between

width and height) of each person’s bounding box. Each crop was then fed to

the subsequent step, resizing it according to the needs.

Once the prior information on each person’s location within the frame was

obtained, the subsequent step performed the detection of potential weapons

10https://github.com/daniebera/on-the-edge-weapon-detection
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carried by a subject. The YOLOv4-CSP network [65] was implemented for

handgun and knife detection (Fig. 2.6(c)) due to its ability in detecting objects

with respect to other state-of-the-art detectors, while attaining a good inference

speed in resource-constrained hardware. Such results are highlighted by the

comparison in both [69] and [29] on the COCO dataset. The YOLOv4-CSP was

designed starting from the YOLOv4 network, originally introduced in [69]. As

regards the backbone, the YOLOv4-CSP exploits the existing CSPDarknet53

(i.e., a Darknet53 with CSP stages each made up of 1,2,8,8,4 residual layer,

respectively) and converts only the first CSP stage into an original Darknet

residual layer for efficiency purposes. Instead, as regards the neck, it introduces

CSP connections in the Path Aggregation Network architecture of the YOLOv4

by transforming the original reversed darknet layers of YOLOv4 in reversed

CSP darknet layers, maintaining the Spatial Pyramid Pooling (SPP) module.

As output layers, in its original configuration YOLOv4-CSP has three 1 × 1

convolutions with 255 filters each, so as to obtain detection at three different

scales. As a result, the YOLOv4-CSP obtained a substantial gain in terms

of trade-off between speed and accuracy, making it suitable for challenging

detection tasks in resource-constrained settings.

To accomplish the detection on two classes (i.e., knife, gun), each of the three

original output layer of the YOLOv4-CSP was replaced with a 1×1 convolution

having 3×(2+5) = 21 filters. In this way, each output layer provides a n×n×21

map in which each of the n× n spatial locations encodes the information (i.e.,

coordinates, class scores and probability of containing an object or objectness

score) of 3 candidate bounding boxes, so that 3 candidate bounding boxes ×
(2 class scores + 4 bounding box coordinates + 1 objectness score) = 21. The

final selection of the most promising bounding boxes among candidates was

performed according to the non-maximum suppression algorithm.

2.5.1.2 Deployment on Edge Devices

Guided by the findings in Sec. 2.4, the SBC to deploy the DL framework

was the NVIDIA® Jetson Nano Developer Kit, due to its capability to run

low-power artificial intelligence applications effectively on its onboard GPU,

making it suitable for the proposed research. As in Sec. 2.4.1.2, TRT frame-

work was used to optimize DL models and convert each model in a serialized

and FP16-quantized engine to enable higher performance inference on the Jet-

son Nano. The MobileNetV2 model was converted in a straightforward way

from Tensorflow to the uff format for TRT-compatibility and from uff to an

optimized TRT engine. The YOLOv4-CSP model was first converted from

Keras to onnx format, then, a TRT engine was created from the onnx -like

model. Since an internal default parameter of a Keras layer (i.e., upsampling)

caused incompatibility issues for a fully optimized inference with TRT, the
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Table 2.5 Number of annotated frames — prior to online data-augmentation application
— and number of video sequences related to each class of interest.

n° frames n° videos

knife 1118 22

gun 1307 30

total 2425 52

Table 2.6 Number of video sequences related to train, validation and test datasets for
each class. In round brackets is given the number of total frames in each set for each class,
obtained by summing the number of labeled frames of each video belonging to the set
considered.

Train Validation Test

knife videos (frames) 17 (870) 2 (98) 3 (150)

gun videos (frames) 24 (1030) 2 (103) 4 (174)

total videos (frames) 41 (1900) 4 (201) 7 (324)

Keras model structure was re-implemented with a custom upsampling layer.

Moreover, two custom plugins in TRT were used to allow post processing of

the model predictions and to apply Non-maximum Suppression algorithm, oth-

erwise not supported in TRT engine.

Once the TRT engines were obtained, following the work in Sec. 2.1 and in

Sec. 2.4, a thread-based pipeline was exploited to acquire frames from the IP

camera and to process them first with the SSD Mobilenetv2 and then (poten-

tially) with the YOLOv4-CSP. After the opening of a video stream via RTSP

between the IP camera and the Jetson Nano, a thread was responsible for

handling video data as consecutive frames and forwarding them to the DL al-

gorithms for processing. The people detector and the weapon detector were

implemented as distinct processes that communicate via the Transmission Con-

trol Protocol (TCP), enabling them, in principle, to be physically decoupled

(i.e., in an edge computing architecture with multiple nodes each process can

communicate with the others independently from its physical location). The

entire pipeline was designed to be suitable even in multi-camera settings via

the opening of multiple camera-to-device RTSP video streams.

2.5.2 Experimental Protocol

2.5.2.1 Dataset Preparation

The WeaponSenseV1 was used, and further processed to create the final dataset

for validating the DL algorithms. Following the same protocol described in

Sec.2.4.2.1, for each new video sequence integrated to the previous version of

the WeaponSense, one frame in every 4 was sampled. The resulting 1118 new

frames, carefully labeled with knife annotations, were added to the 1307 frames

with gun annotations.
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Table 2.5 summarizes main information on the dataset, including number of

frames and videos for each class (i.e., knife and gun classes).

During the inference, in the second step of the proposed approach, the

YOLOv4-CSP for handguns and knives detection takes as input a square crop

centered on each person’s location instead of the original frame. Thus, the

dataset was further processed to enable a faster training of the algorithm. A

new dataset was constructed by square cropping on the original frame (having

a resolution of 1280×720 pixels) the detected person holding the weapon. Each

crop was then resized to 416×416 pixels (i.e., the network’s input size) and the

ground-truth bounding box coordinates were adjusted accordingly, to obtain

the dataset used in training phase.

Table 2.6 summarizes the splitting strategy. The split was explicitly per-

formed at video level (i.e., without mixing frames extracted from the same

video across train, validation and test set) to attenuate possible bias. As a

result of this strategy, the 78.3%, 8.3% and 13.4% of the available frames were

used for training, validation and testing, respectively.

To improve DL algorithms’ generalization capabilities, online data augmen-

tation strategies were implemented on the training dataset. The applied data-

augmentation transformations were: the change in brightness level, so as to

simulate a scenario where artificial and natural lighting might change through-

out the day, and the horizontal flipping to switch the weapon grip.

2.5.2.2 Training Settings

The SSD MobileNetV2 was implemented using Tensorflow. The available

weights obtained with the pre-training of the model on the COCO dataset

were exploited for inference. The YOLOv4-CSP network was implemented

and trained in Keras, a Python library running on top of TensorFlow. To train

the YOLOv4-CSP the fine tuning methodology was applied. Starting from the

pre-trained weights on COCO dataset, the model was trained with stochastic

gradient descent (SGD) for 300 epochs using an initial learning rate of 0.001 and

a batch size of 16. The learning rate reduction on plateau policy was applied

with a reduction factor of 0.5 after 10 epochs with no improvements on the vali-

dation loss. Early stopping was also applied, with training termination after 75

epochs with no improvements on the validation loss. The optimal combination

of batch size, optimizer and initial learning rate was found after the tuning

of each hyper-parameter through manual search. The best weights configura-

tion among epochs was retrieved according to the lowest loss value achieved on

the validation set. The training was performed on a GPU NVIDIA® GeForce

RTXTM 3090.
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Table 2.7 Proposed ablation study.

Name of the architecture First-step Second-step

SSD-MobileNetV22 SSD-MobileNetV2 SSD-MobileNetV2

YOLOv4-CSP2 YOLOv4-CSP YOLOv4-CSP

Proposed SSD-MobileNetV2 YOLOv4-CSP

2.5.2.3 Ablation Study and State of the Art Comparison

Table 2.7 outlines the ablation studies conducted, including the DL models

used in each step and the name of each approach evaluated. As a first ablation

study, the use of SSD Mobilenetv2 in both steps of the proposed approach was

investigated (i.e., SSD-MobileNetV22), to evaluate the impact on the detection

performances. Since the work aims at developing an approach to maximize the

speed-accuracy trade-off, also the use of YOLOv4-CSP in both steps was inves-

tigated (i.e., YOLOv4-CSP2), mainly to evaluate its influence on the inference

speed.

The proposed dual-step approach for handguns and knives detection was

compared also with the state-of-the-art methods in [55, 41, 59] developed for

weapons detection task, as well as with other popular object detectors.

Moreover, to point out the impact of using different image input sizes on

detection performances, further comparison with state-of-the-art detectors with

varying input sizes was performed. The rationale for such comparison lies on

the fact that in general-purpose object detection the size of the input image

can affect the performance. As a matter of fact, bigger input sizes often leads

to more accurate but slower detection while smaller input sizes leads to faster

but less accurate detection [70].

For a fair comparison, all the approaches were investigated using the same

data split and were trained on the same computational hardware.

2.5.2.4 Performance Metrics

To validate the proposed approach and compare it against the other state-

of-the-art approaches, embracing the main literature in the field [69, 28], the

detection performance was assessed using the standard COCO detection met-

rics as follows:

• AP as primary metric computed as the mean AP over the knife and gun

classes and over 10 Intersection over Union (IoU) thresholds from 0.50 to

0.95 with a step size of 0.05 (0.50:0.95);

• AP50 as the AP computed at IoU 0.50, corresponding to the primary

PASCAL VOC11 metric, detailed in Sec. 2.4.2.2;

11http://host.robots.ox.ac.uk/pascal/VOC/
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Table 2.8 COCO standard evaluation metric and inference speed comparisons for the
ablation study.

Ablations AP APm APs AP50 AP75 FPSnano

SSD-MobileNetV22 21.20 26.50 19.40 56.80 8.90 13.60

YOLOv4-CSP2 79.30 50.10 49.30 99.60 93.90 2.80

Proposed 79.30 50.10 49.30 99.60 93.90 5.10

Figure 2.7 Comparison of the speed-accuracy trade-off in terms of frame per second
on the Jetson Nano (FPSnano) and Average Precision (AP) for the ablation study.

• AP75 as a strict metric computed as the AP at IoU 0.75;

• APs and APm as the AP at IoU 0.50:0.95 for small (where object area

< 322 pixels) and medium (where 322 < object area < 962 pixels) ob-

jects, respectively. The APl for large objects was not included since the

weapons’ related bounding-box area is always smaller than 962 pixels in

the WeaponSenseV1 dataset.

To further evaluate the presented approaches, efficiency metrics were also

computed. Specifically, (i) billion floating point operations (GFLOPs) were

computed when comparing the proposed approach with the others in the state

of the art and (ii) inference speed on the Jetson Nano board (FPSnano) in

terms of FPS was computed for the ablation studies. Following the literature

in closer fields [69, 71, 72, 73], both GFLOPs and FPS were plotted against AP.

Additionally, to assess if significant differences exist among the approaches in

the ablation studies, the one-way ANOVA (significance level = 0.05) with post

hoc test was conducted. The considered population for each approach was the

set of APs computed individually for each video in the test set.
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Table 2.9 COCO standard evaluation metric for comparisons between the proposed
approach and other state-of-the-art architectures.

Compared Approaches AP APm APs AP50 AP75 GFLOPs

Faster-RCNN-VGG16640x640 [55] 10.40 14.50 6.70 28.20 3.10 138.12

Faster-RCNN-ResNet50-FPN1280x720 [41] 30.50 34.70 27.50 67.60 20.80 223.68

Faster-RCNN-ResNet50-FPN640x640 15.80 21.20 10.20 39.50 8.80 99.64

Faster-RCNN-ResNet50-FPN416x416 7.00 9.60 4.50 19.50 1.40 44.56

SSD-MobileNetV2416x416 9.80 17.50 2.90 26.40 5.10 1.18

YOLOv4-CSP416x416 9.00 11.50 1.10 32.00 1.90 25.17

YOLOv5416x416 [59] 10.10 17.20 3.60 23.30 7.80 47.90

Proposed 79.30 50.10 49.30 99.60 93.90 26.35

Figure 2.8 Comparison of the complexity-accuracy trade-off in terms of billions
floating point operations (GFLOPs) and Average Precision (AP) for the compari-
son against the state-of-the art approaches. The yellow values in the chart indicate
the image input sizes for the Faster-RCNN-ResNet50-FPN architecture. The pro-
posed approach outperforms the state-of-the-art weapon detectors while having fewer
GFLOPs.
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2.5.3 Results

Table 2.8 summarizes the performance comparison in terms of AP, APm, APs,

AP50, AP75 and FPSnano of the approaches in the ablation study.

The proposed approach achieved the highest results in all the COCO metrics,

with an AP = 79.30 averaged over all classes, as well as an AP50 = 99.60, which

represents the PASCAL VOC traditional metric computed at a single IoU of

0.50. The YOLOv4-CSP2 approach obtained the same results of the proposed

one for all the COCO metrics, while it achieved the worst results in terms

of inference speed (FPSnano = 2.80) on the Jetson Nano board. In contrast,

with the use of the SSD-MobileNetV22 approach the inference speed reached

the highest value (FPSnano = 13.60), but the AP dropped significantly (AP

= 21.20 with 58.10 points drops), along with all the other COCO metrics. In

particular, the SSD-MobileNetV22 approach resulted in very low performance

when computed at IoU of 0.75 (AP75 = 8.90) with a drop of 85.00 points with

respect to the proposed approach. Significant differences were found (p-value

< 0.05) between the approaches in the ablation studies. The speed-accuracy

trade-off of the proposed approach with respect to the ablations is shown in

Fig. 2.7.

When compared with the other state-of-the-art single-step approaches, the

proposed one obtained by far the best performances for all the COCO metrics

(shown in Tab. 2.9). Moreover, the proposed approach required GFLOPs =

26.35, achieving the best results in terms of trade-off between complexity and

detection performance (as pointed out in Fig. 2.8).

The approach in [55] (i.e., Faster-RCNN-VGG16640×640) achieved low values

for all the metrics, and particularly for AP, APs and AP75, with 10.40, 6.70

and 3.10, respectively. The same holds for the approach in [59], with AP =

10.10, AP50 = 23.30 and AP75 = 7.80. The approach in [41] (i.e., Faster-

RCNN-ResNet50-FPN1280×720) required the highest GFLOPs (i.e., 223.68),

while obtained the nearest performance to the proposed approach with AP

= 30.50, AP50 = 67.60 and AP75 = 20.80, yet showing consistent degradation

in performance when the IoU threshold increases from 0.50 to 0.75. Moreover,

decreasing the input size on the same architecture led to a significant reduction

of all the metrics (AP = 15.80 and AP = 7.00 for Faster-RCNN-ResNet50-

FPN640×640 and Faster-RCNN-ResNet50-FPN416×416, respectively).

In particular, when evaluating the approach in [41] using the same input

size as the proposed approach (i.e., 416 × 416 pixels), the worst results were

obtained in terms of AP, APm, AP50 and AP75 with values 7.00, 9.60, 19.50

and 1.40, respectively.

Both the architectures SSD-MobileNetV2 and YOLOv4-CSP in single-step

settings (i.e., trained to directly detect the weapons from the original frames)

obtained very low performance, with the worst value on small objects achieved
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by YOLOv4-CSP (APs = 1.10). On the other hand, the SSD-MobileNetV2 re-

quired the smallest amount of GFLOPs (i.e., 1.18), pointing out the lightweight

design of the model.

Qualitative results of the proposed approach are shown in Fig. 2.9. The

samples include weapons from both classes (i.e., knife in Fig. 2.9(a) and gun

in Figs. 2.9(b) and 2.9(c)).

2.5.4 Discussion

Automatic weapon detection from CCTV plays a crucial role in preventing

crimes and enabling a prompt response by law enforcement agencies. Despite

its relevance, the survey of the literature highlighted the lack of effective yet

efficient approaches in coping the open challenges in the field, such as handling

small-object sizes and achieving real-time responses [41] especially in on-the-

edge settings. As a first step to solve such issues, the presented work addressed

the challenging task of the on-the-edge indoor detection of handguns and knives

while keeping near real-time performance.

The proposed double-step approach achieved satisfactory detection results

with AP and AP50 equal to 79.30 and 99.60, respectively. The choice of

YOLOv4-CSP as weapons detector in the second step allowed to obtain ac-

curate detection with good localization capability, with marginal differences

in AP for small and medium-sized objects. The impact of the YOLOv4-

CSP as second-step detector is visible from the comparison with the SSD-

MobileNetV22 approach. In the latter, the SSD-MobileNetV2 detector used

in the second step was unable to achieve good localization at higher IoU and

also suffered on small weapons detection (APs = 19.40), meaning that the

feature extracted from the person’s crop were not strong enough to localize

challenging objects (e.g., very thin objects, objects with low background con-

trast). On the other hand, the SSD-MobileNetV22 approach achieved the best

inference speed thanks to the higher lightness of the SSD-MobileNetV2 with

respect to YOLOv4-CSP. Neverthless, the proposed approach still achieved the

best speed/accuracy trade-off among the approaches in the ablation study. Its

accuracy is also evidenced by the qualitative results, with high confidence in

localizing and predicting each correct weapon class. Also, in extremely chal-

lenging scenarios (i.e., in Fig. 2.9(c), the vaguely visible gun on the right side)

the proposed approach localized the weapon, even if with lower confidence

compared to other detections. The low confidence in such situations could be

attributed to the detection hardness resulting from the low weapon/background

contrast. In comparison with YOLOv4-CSP2, while there is no difference in AP

due to the simplicity of the people detection task for both YOLOv4-CSP and

SSD-MobileNetV2 models (i.e., in the first step all the people were correctly
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(a)

(b)

(c)

Figure 2.9 Samples of qualitative results. For the sake of clarity, each object de-
tected has been zoomed in to point out both the predicted bounding box and the
related classification score. Predicted gun and knife bounding boxes are highlighted
in blue and red, respectively.
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identified in the frames), the speedup in the proposed approach is given by the

use of the lighter model in the first step. When compared with the state-of-

the-art approaches, the proposed one achieved the highest performance. The

low performances of [55] could be related to the hardness in the localization

of handheld weapons whose size is very small compared to the frame size. In

support of such a consideration, the worst metrics of [55] were the APs and

the AP75. As regards [41], despite the addition of the FPN module slightly

increased the detection ability on the small objects, the low performance paired

with the high GFLOPs does not allow the use of the approach in the actual

on-the-edge practice. Furthermore, reducing the input size makes the achieved

result even worse. The state-of-the-art detectors (i.e., SSD-MobileNetV2 and

YOLOv4-CSP) were evaluated at the same input size of the proposed approach

and despite the small GFLOPs values highlight the small complexity of the

approaches, they obtained very low performance. The poor results may be

attributed to the small-sized weapons in the images, which almost disappear

when the original frame size (i.e., 1280×720) is resized to match the detectors’

input size (i.e., 416×416). In the proposed approach, thanks to the prior focus

on the people, the size of the weapon with respect to the camera FoV does not

affect the detection performances so heavily.

A limitation of the proposed approach lies in the dependence of its speed

on the number of people in the FoV at the same time (i.e., the second step

of the approach process an image for each detected person). However, it still

ensures near real-time performance in non-crowded environments (e.g., home

surveillance systems).

This work, by proposing and validating an approach both effective and effi-

ciently executable on edge devices, represents a step in the incremental progress

towards addressing some of the crucial challenges in weapon detection. Al-

though there is considerable room for improvement, the developed methodology

demonstrated the feasibility of effective weapon detection in resource-limited

settings, enabling to leverage the potential of edge computing with artificial

intelligence.
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2.6 Edge AI and Super-Resolution for Enhanced

Weapon Detection in Video Surveillance

The need to develop edge-oriented methods in weapon detection has been par-

tially addressed by the research presented in Sec. 2.5, proposing a deep learning

approach for weapon recognition that is effective and at the same time exe-

cutable in near real time on low-power edge devices. Despite its improvements

to the state of the art in weapon detection, the speed of the proposed approach

being dependent on the number of people present in the camera FoV limits its

applicability to non-crowded contexts. In this sense, there is still much work to

be done to effectively solve the most relevant problems in detecting weapons:

(i) the low detection accuracy due to the small size of the weapons with respect

to the camera FoV, and (ii) the need to perform real-time detection. As already

discussed in Sec. 2.2, to solve the small-object challenge, a popular method in

many fields is the use of SR. Naive approaches, as in [74], apply SR to enlarge

images or image regions, then sequentially apply detection methods. In more

recent approaches, like [75] and [76], the potential of Generative Adversarial

Networks (GAN) for SR is exploited to jointly super-resolve and detect objects.

Despite the improvement in detecting small-sized objects, the major limitation

of these approaches when edge-oriented solutions are necessary is the signifi-

cant complexity introduced. Indeed, beside using an additional model, having

enlarged the image, the number of GFLOPs significantly increases for the same

model used, as shown in Tab. 2.9. Due to these limitations, the solutions are

impractical in an edge context and when real-time feedback is needed. Never-

theless, the basic idea of integrating SR techniques brings significant advantages

for the problem of small object detection. Therefore, the operational goal of

this research is to leverage these advantages while minimizing the drawbacks,

to overcome the limitations of the previous approach, discussed in Sec. 2.5.4.

This would guarantee the applicability, in any video surveillance context, of

models on edge devices in real time without dependence on the number of peo-

ple present in the camera FoV, allowing for further improvement of the state

of the art, approaching the research goal of this thesis.

To this end, inspired by [77], this work proposes YOLOSR, an architecture

which exploits a SR branch trained in conjunction with a lightweight weapon

detector, to enhance the detection performance especially on small-sized ob-

jects. The SR branch is then discarded in the inference phase, so as to improve

weapon detection accuracy without impact on the computational complexity of

the detection architecture. The approach was validated on the WeaponSenseV2

dataset, described in Sec. 2.3.
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Figure 2.10 Architectural view of the proposed YOLOSR, comprising the baseline
detector YOLOv5-small (Backbone + PANet) and the SR branch (SR).

2.6.1 YOLOSR Architecture

The architecture of the YOLOSR is detailed in Fig. 2.10. The two main compo-

nents of the architecture are the baseline YOLOv5-small (YOLOv5s) detector

and the SR branch. This section first reviews the most popular YOLOv5s for

weapon detection, then presents the proposed SR branch in detail.

Baseline YOLOv5s

The YOLOv5 object detection model comprises several variants (i.e., nano,

small, medium, large, extra large), each designed to balance differently the

trade-off between speed, size, and accuracy. The YOLOv5s is the small variant

of the YOLOv5, which enhance speed and efficiency over accuracy. Despite be-

ing designed to be suitable for real-time applications on resource-constrained

devices, it still maintains a reasonable level of accuracy. The YOLOv5s con-

sists of three main components: the backbone, the neck and the head. The

backbone, which processes the input image extracting low- and high-level se-

mantic features, is based on the CSPDarknet53, presented in Sec. 2.5.1.1. The
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of the SR branch are shown.
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CSP design applies to each stage of the Darknet53 and splits the feature map

into two parts, processes them separately and then merges them again (i.e.,

C3 stages shown in Fig. 2.11(a)), enhancing learning efficiency and reducing

computational cost. For the sake of efficiency, in the YOLOv5s the structure

of the Darknet53 is reduced in depth with respect to the other YOLOv5 ver-

sions, with 1,2,3,1 bottleneck blocks in each CSP stage, respectively. An initial

6×6 convolution with padding and stride 2 increases the channel depth while

reducing spatial dimensions, enabling the network to capture finer details from

the beginning. Then, after each CSP stage the backbone halves the spatial

dimensions, resulting in a total network stride of 32. At the end of the back-

bone YOLOv5s uses SPP Fast (SPPF) an improved version of the SPP module,

which pools the feature map at different scales and concatenates them to main-

tain spatial information. This design makes the model robust to variations in

object size and shape.

The neck of YOLOv5s, which maintains the CSP-sized version of C3 stages

introduced in [65], aggregates features from three different scales of the back-

bone, using Path Aggregation Network (PANet) to enhance feature-level com-

munication between different scales. PANet connects the top-down and bottom-

up pathways in a bidirectional manner, which improves the propagation of

low-level features and helps the model in detecting smaller objects.

The head consists of three detection layers, each responsible for detecting

objects at a different scale (large, medium, small). For each scale, a final 1×1

convolutional layer predicts, for each portion of the feature map, three bounding

boxes in terms of: (i) bounding box coordinates (x, y, width, height), (ii) an

objectness score indicating the likelihood of an object’s presence, and (iii) class

scores for each class the model is trained on. Thus, for weapon detection on

the WeaponSenseV2, each detection layer was implemented having 21 filters

so as to predict, for three bounding boxes: four bounding box coordinates,

an objectness score and two classes (i.e., Knife, Handgun). The selection of

the most accurate bounding boxes among the candidates generated by the

YOLOv5s model was refined using the non-maximum suppression algorithm.

Super Resolution Branch

The design of the SR branch was inspired by [77], and can be conceptualized

as an encoder-decoder architecture. From this perspective, the first part of

the encoder is shared with the detection architecture, and is responsible for

extracting features relevant to both the SR and weapon detection tasks. The

second part of the encoder, related only to the SR branch, uses the low- and

high-level features coming from the second and the fourth C3 stages of the

shared backbone, respectively. First, after applying of a 1×1 convolution to

refine both low- and high-level features, the encoder upsamples the high-level
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Table 2.10 WeaponSenseV2 composition, pointing out (i) the number of frames and
number of video sequences containing the Handgun class, the Knife, or both (i.e., mixed);
(ii) the total number of labeled instances for each class.

n° frames n° videos n° instances

Handgun 1421 30 1798

Knife 1266 23 1541

mixed (Handgun & Knife) 275 3 -

total 2952 56 3339

feature to match the dimension of the low-level feature and concatenates them.

Then, three consecutive 3×3 convolutions process the features, merging spatial

and semantic information. The structure of the decoder, shown in Fig. 2.11(b)

is based on the Enhanced Deep Super Resolution (EDSR) network [78]. To

reconstruct the high resolution (HR) image, the decoder starts with a head

consisting of a 3×3 convolution. Following this, the body of the decoder, made

up of 16 residual blocks and another 3×3 convolution, processed the features.

The output from the body is then added to the head’s output, via residual

connection. Then, the tail of the decoder employs the PixelShuffle [79] op-

eration, which implements efficient sub-pixel convolutions, applied four times

to upsample the features. This process achieves a total upsampling of x16 on

the decoder’s input features, thus reconstructing a x2 HR image from the low-

resolution (LR) original image given as YOLOSR architecture’s input. The

process concludes with a final 3×3 convolution with three filters to produce

the RGB HR output image.

2.6.2 Experimental Protocol

2.6.2.1 Dataset Preparation

The WeaponSenseV2, described in 2.3, was used for validating the YOLOSR.

This dataset builds upon the 2425 frames from WeaponSenseV1, augmented

with an additional 527 frames, possibly containing multiple labeled instances.

These new frames resulted from the annotation of the Handgun and Knife

classes and the sampling one frame in every two from the new videos, following

2.4.2.1. All the frames have a size of 1280×720 pixels.

Table 2.10 summarizes the dataset-related details, including the number of

frames and videos containing the Handgun class, the Knife, or both, as well as

the number of labeled instances for each class.

2.6.2.2 Training Settings and Performance Metrics

The YOLOSR was implemented in PyTorch and the experiments in this study

run on a NVIDIA® RTXTM A6000 GPU. Table 2.11 presents the data splitting
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Table 2.11 Number of videos in the train, validation, and test splits for each class,
including the mixed videos, containing both classes’ instances. The total number of frames
in each set is given in round brackets, computed by summing the labeled frames from all
videos in the respective set

Train Validation Test

Handgun videos (frames) 24 (1030) 2 (103) 4 (174)

Knife videos (frames) 17 (870) 3 (221) 3 (150)

mixed (Handgun & Knife) videos (frames) 2 (264) - 1 (140)

total videos (frames) 43 (2164) 5 (324) 8 (464)

methodology used for the WeaponSenseV2. To reduce potential bias, the split

was conducted at the video level, ensuring that frames from a single video

were not distributed across the training, validation, and test sets. Following

this approach, 73.3%, 11.0%, and 15.7% of the total frames were allocated

for training, validation, and testing purposes, respectively. To accomplish the

joint training of the weapon detector and the SR branch, the 1280×720 frames

were used as HR ground truth for the SR branch, and were downsampled to

640×360 during the training and used as input for the YOLOSR. Consistently,

the validation and testing of the YOLOSR, discarding the SR branch, was

always performed on the downsampled 640×360 frames.

The overall loss of the YOLOSR was a weighted sum of the detection loss

and the SR reconstruction loss, defined in Eq. 2.5.

Loss = αLw + βLsr (2.5)

The detection loss Lw was the standard YOLO loss [51], defined in Eq.

2.6, where λbox, λobj and λcls are the weights for the box, objectness, and

classification loss, respectively.

Lw = λbox · Lbox + λobj · Lbox + λcls · Lcls (2.6)

The SR reconstruction loss was the L1 loss, computed between the SR branch

prediction Ŷ , and the ground truth HR image Y , as in Eq. 2.7.

Lsr =
∥∥∥Ŷ − Y

∥∥∥
1

(2.7)

To train the YOLOSR, fine-tuning strategy was applied. The weapon detec-

tor was initialized with YOLOv5s pre-trained weights from the COCO dataset,

while for the SR branch the Kaiming initialization was used. The model was

trained using SGD optimizer with momentum of 0.9 and weight decay of 0.0005

for 300 epochs using an initial learning rate of 0.05 and a batch size of 32.

The learning rate linear-reduction policy was applied with a final learning rate

of 0.0005. Early stopping was also applied, with training termination after
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100 epochs with no improvements on the validation loss. The optimal com-

bination of batch size, optimizer and initial learning rate was found after the

tuning of each hyper-parameter through manual search. The best weights con-

figuration among epochs was retrieved according to the lowest detection loss

value achieved on the validation set. To increase data variability, minimizing

overfitting risks and improving model’s generalization ability, online data aug-

mentation strategies were implemented on the training dataset. The randomly

applied data-augmentation transformations were: Hue Saturation Value (HSV)

adjustments, image translation and scaling, left-right flipping, and mosaic aug-

mentation.

Following [77], the performance of the YOLOSR was evaluated using the

AP50, as the AP defined in Eq. 2.1, computed using an IoU of 0.5. This

metric was chosen as the primary measure for assessing and comparing the de-

tection accuracy against the other methods. The global AP was calculated as

the mean of the AP values for both the Handgun and Knife classes. To evalu-

ate the YOLOSR in terms of efficiency against the other approaches, inference

speed in FPS on the Jetson Nano board was computed, so as to validate the

method on edge devices. In addition, to measure and compare the computa-

tional complexity of each method, the GFLOPs were computed.

2.6.2.3 Ablation Studies

With the aim of evaluating the effectiveness of the proposed method in in-

creasing the weapon detection accuracy without adding complexity, a series of

comparisons with other architectures and ablation experiments were conducted.

As a first ablation study, several baseline architectures having different com-

plexities were compared on the weapon detection task. The baseline YOLOv5s,

used in YOLOSR, was compared against the YOLOv5-medium (YOLOv5m),

YOLOv5-large (YOLOv5l), YOLOv4-CSP and YOLOv3.

The second ablation study then evaluated the integration of the SR branch

into the most promising baseline architectures identified in the first ablation,

selected according to their effectiveness in balancing complexity and detection

performance.

In the final ablation study, the impact of the SR branch design on the weapon

detection performance was investigated. To this end, a different version of

the SR branch, named SR-early, was designed and integrated into the most

promising baseline architectures of the first ablation. In this SR version, the

shared backbone between the weapon detector and the SR branch was shal-

lower. Specifically, the SR-early branch utilized the low- and high-level features

coming from the first and the third C3 stages of the backbone (i.e., C3 1 and

C3 2 in Fig. 2.10). In accordance, within the SR-early branch was modified the

upscaling process, reducing the number of PixelShuffle operations from four to
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three, so as to generate the HR image of the correct size (i.e., doubled with

respect to the LR input image).

2.6.3 Results

Table 2.12 Comparisons of the baseline architectures in terms of FPS on Jetson Nano
and GFLOPs, and AP50 assessed for handgun, knife and as a mean between the two classes
(All).

Model
AP50

GFLOPs FPS
Handgun Knife All

YOLOv5s 55.90 23.50 39.70 15.90 15.4

YOLOv5m 59.50 25.40 42.40 48.00 5.9

YOLOv5l 67.80 41.20 54.50 107.90 3.2

YOLOv4-CSP 50.10 18.60 34.40 53.10 4.7

YOLOv3 66.70 38.60 52.70 154.90 2.4

The comparative results for different baseline architectures in terms of com-

plexity, efficiency (measured in GFLOPs and inference speed in FPS on Jetson

Nano, respectively) and predictive accuracy (indicated by AP50) computed for

the handgun, knife and as a mean of the two classes, are presented in Table

2.12. The evaluated architectures include YOLOv5s, YOLOv5m, YOLOv5l,

YOLOv4CSP, and YOLOv3. A specific focus on the GFLOPs and FPS of each

architecture reveals the following order of increasing complexity and decreas-

ing efficiency: YOLOv5s with 15.90 GFLOPs running at 15.4 FPS, YOLOv5m

with 48.00 GFLOPs running at 5.9 FPS, YOLOv4-CSP with 53.10 GFLOPs

running at 4.7 FPS, YOLOv5l with 107.90 GFLOPs running at 3.2 FPS, and

YOLOv3 with 154.90 GFLOPs running at 2.4 FPS.

When it comes to predictive accuracy, YOLOv5l leads with an AP50 com-

puted as a mean of the two classes of 54.50, followed by YOLOv3 (52.7),

YOLOv5m (42.40), YOLOv5s (39.70), and YOLOv4CSP (34.40). Notably,

for each of these networks, the AP50 values were higher for handguns com-

pared to knives. This trend suggests a more effective detection performance

for handguns across all evaluated models.

Table 2.13 Models’ comparisons with SR branch in terms of AP50 assessed for handgun,
knife and as a mean between the two classes (All).

Model
AP50

Handgun Knife All

YOLOSR (proposed) 68.80 34.20 51.50

YOLOv5mSR 65.90 32.90 49.40

YOLOv5lSR 64.30 35.00 49.70

The search for an architecture that balances both effectiveness and efficiency

led to the exclusion of YOLOv3 and YOLOv4-CSP for further tests on the
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Table 2.14 Models’ comparisons with SR-early branch which uses the low and high-level
features from the first and the third C3 stages of the backbone. Performance are assessed in
terms of AP50 for handgun, knife and as a mean between the two classes (All).

Model
AP50

Handgun Knife All

YOLOSR-early 60.40 32.50 46.50

YOLOv5mSR-early 62.60 35.80 49.20

YOLOv5lSR-early 56.80 35.00 45.90

SR branch. Indeed, YOLOv3, besides being the most complex and inefficient

with 154.90 GFLOPs and 2.4 FPS, also fell short in terms of effectiveness, not

achieving the highest AP50 score. On the other hand, YOLOv4-CSP was the

least effective, with an AP50 of 34.40, and ranked third in complexity and

efficiency. The focus thus shifted to the remaining architectures – YOLOv5s,

YOLOv5m, and YOLOv5l among which YOLOv5l stood out for its highest

predictive accuracy (AP50=54.50) and YOLOv5s for its low complexity (15.90

GFLOPs) and superior efficiency, running at 15.4 FPS on the Jetson Nano.

In Table 2.13, the focus shifts to the three main baselines of interest namely

YOLOv5s, YOLOv5m, and YOLOv5l, each integrated with the SR branch.

The results demonstrate that the proposed architecture, YOLOv5s with the SR

branch (referred to as YOLOSR), achieved the highest performance, recording

an AP50 of 51.50 across all classes. The integration of the SR branch into

the YOLOv5m baseline, resulting in YOLOv5mSR, led to an AP50 of 49.50

for both classes. Meanwhile, the YOLOv5lSR, which is the YOLOv5l baseline

with the SR branch, showed slightly better results with an AP50 of 49.70 for

both classes. Interestingly, the addition of the SR branch led to a decrease

in AP50 for the less computationally efficient YOLOv5l baseline. However,

for the other two baselines, YOLOv5s and YOLOv5m, there was a noticeable

increase in performance. In particular, the proposed architecture experienced

the most remarkable enhancement, with an increase of 12.8 percentage points

in handgun detection and 10.7 percentage points in knife detection.

The final result, presented in Table 2.14, involves an ablation study to de-

termine the most effective placement of the SR branch within the architecture.

The results from this ablation study indicated a decline in performance for all

baselines when the SR branch’s position was altered as described in Sec.2.6.2.3.

The most significant negative impact was observed in the YOLOv5l baseline

with the early integration of the SR branch (referred to as YOLOv5lSR-early),

which recorded an average AP50 of 45.90 across the two classes. This was

followed by both YOLOv5s baseline (YOLOSR-early) and YOLOv5m baseline

(YOLOv5mSR-early), registering an average AP50 across the two classes of

46.50 and 49.20, respectively. It is worth noting that the integration of both
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the SR and SR-early branches only affects accuracy, while it does not influence

the speed nor the complexity during inference.

2.6.4 Discussion

In the context of video surveillance, real-time recognition of weapons on low-

cost devices is an open problem. If effectively solved, it would ensure the global

spread of such technology, leading to a significant increase in public safety in

many contexts. To this end, in this study was presented the YOLOSR, an

approach that leverages the integration of SR technologies, enhancing perfor-

mance in weapon recognition without the drawback of increased computational

complexity. The proposed architecture was built on a baseline weapon detec-

tor and a SR branch used only during training. Among the various baselines

validated, the YOLOv5s used stood out for its low complexity, making it per-

fect for edge computing contexts. Although, by design, this baseline priori-

tizes speed over accuracy, the integration of the SR branch into the YOLOv5s

helped in enhancing the resolution of the feature maps within the model’s

shared backbone. Thus, the structures of the objects become clearer and more

defined, which turned out to be extremely beneficial for detecting smaller ob-

jects, otherwise difficult to identify at lower resolutions. Since the SR branch

was discarded during inference, the YOLOSR maintained same GFLOPs of

the baseline YOLOv5s but with a substantial increment of 11.80 points in

AP across the two classes. The benefits brought by the integration of the SR

branch make YOLOSR the fastest architecture with the best results in AP

among the presented ones, thus showing the best balance between speed and

accuracy. On the contrary, an interesting finding regards the YOLOv5l base-

line, in which the shared backbone becomes too deep for the SR task, leading

to poor results. This, in a multi-task context, negatively impacts the detection

performance. Diving deeper into the details, to comprehend why the SR-early

branch led to worse results compared to SR branch, a premise needs to be

made. Generally, due to the tiny size of small objects, details related to these

objects are gradually lost in the high-level feature maps (i.e., feature maps

processed by the deeper layers of the network). In fact, the most relevant in-

formation about small objects is extracted from the shallow layers, which is

why architectures like YOLO use a multi-scale approach, also combining in-

formation from low-level feature maps to achieve detection on smaller-sized

objects. In light of these premises, although the negative influence of the SR

task still led to worse results than the YOLOv5l baseline, an hypothesis on

why the SR branch performed better than the SR-early branch can be made.

Since the negative impact of the SR-early branch affected the shared backbone’s

earlier layers more, while the SR branch had a greater impact on the deeper
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layers, YOLOv5lSR was able to achieve better detection performance because

its earlier layers were able to extract more relevant information compared to

the earlier layers of YOLOv5lSR-early. This hypothesis is also supported by

the fact that, moving from YOLOv5lSR-early to YOLOv5lSR, the highest in-

crease in AP was related to the Knife class (i.e., +7.8 points), whose objects

are even smaller than those in the Handgun class. Nevertheless, additional

investigation on this aspects is needed. Although the solution proposed in this

study makes it suitable for edge deployment and scenarios requiring real-time

feedback, its accuracy performance, compared with the study presented in Sec.

2.5, underscores the importance of continued research in this domain.

2.7 Conclusion and Future Perspective

The increasing prevalence of surveillance recordings in a variety of both public

and private settings, such as homes, offices, and educational facilities, under-

scores the challenge of handling large data volumes. Moreover, the demand-

ing task of human supervision, particularly in the context of round-the-clock

surveillance, together with the complexities of data storage, emphasizes the

urgency for designing solutions in this domain.

Answering to these challenges, the development of automated algorithms

for surveillance video analysis has gained momentum, transitioning from tra-

ditional computer vision techniques to more advanced artificial intelligence

methods, particularly DL. These DL algorithms have innovated the field by

significantly reducing the human burden and enabling the storage of processed,

high-level information instead of vast volumes of raw footage. However, im-

plementing these algorithms in video surveillance is not without its challenges,

notably the requirement for real-time processing, and the need for cost-effective

and efficient hardware are still topical concerns.

To address these issues edge AI, which integrates artificial intelligence with

the IoT and edge computing, emerges as a promising approach. This integra-

tion enables the shifting of processing tasks from remote servers to local de-

vices, significantly cutting down communication expenses, enabling real-time

data analysis, and providing enhanced security in data handling compared to

cloud-based systems. Particularly in video surveillance, edge AI is aimed at

accelerating data processing speeds, minimizing latency, and boosting overall

data management efficiency. The research detailed in this chapter is aligned

with these objectives, delving into the application of edge AI in video surveil-

lance systems to effectively tackle the aforementioned challenges.

Specifically, a first research effort in this Chapter dealt with a multi-camera

video surveillance infrastructure designed to be cost-effective and scalable which

adopted cutting-edge DL techniques for object detection over multiple video
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streams. The work focused on establishing a network of camera sensors, effi-

ciently managing data from multiple sources and applying DL models capable

of real-time, resource-efficient detection tasks. This method represented a con-

siderable improvement in the development of surveillance systems, aiming to

reduce resource intensity and enhance their capability to manage the complexi-

ties inherent in simultaneous security loads. Furthermore, it laid the foundation

for ongoing advancements, primarily in the proposed DL methodologies which

aligned with the edge AI paradigm.

Following this research, a thorough investigation was undertaken to deter-

mine the most optimal SBC system for computation. This exploration was

performed using the first version of the custom-built WeaponSense dataset

(i.e., WeaponSenseV0) and involved a comparative analysis between the Google

Coral Dev and the NVIDIA® Jetson Nano. The comparison is based on the

deployment of a CNN aimed at detecting weapons yielded by a subject in an

indoor scenarios. The outcome of this comparison revealed that the NVIDIA®

Jetson Nano board outperformed its counterpart, leading to its consistent use

in subsequent studies for the development of algorithms that ensure both effi-

ciency and effectiveness.

Following this outcome, subsequent research focused on the development of

a system for identifying handgun and knives from the WeaponSenseV1. This

focus addresses a significant challenge that remains a topic of keen interest in

the literature: the detection of small objects. To tackle the challenge, this

research deployed two consecutive CNNs on the NVIDIA® Jetson Nano: the

first is tasked with identifying the person, while the second CNN is dedicated

to recognizing the handheld weapon. This dual-network strategy represents a

targeted and methodical approach to weapon detection in surveillance scenar-

ios however, a major limitation such as poor efficiency in densely populated

settings stimulated the latest proposed work. Thus, last efforts focused on

the use of a single detector, with a specific emphasis on improving its efficacy

during training via a SR module. This module was designed to be detach-

able from the architecture being evaluated, ensuring that it did not introduce

additional computational costs when the CNN is deployed on the NVIDIA®

Jetson Nano. This enhancement, tested on the WeaponSenseV2, while signif-

icantly optimizing the detector’s performance without adding processing de-

mands, underscored the vast potential for further innovation, especially from

a methodological standpoint. With such a view, future research directions will

include the improvement – both in terms of expansion and diversification – of

the WeaponSense dataset, with an emphasis on collecting and annotating data

from outdoor scenarios. Another area of interest will be the implementation of

tracking modules, as in [80], which could provide insights into an individual’s

intentions by analyzing their movements once a weapon is detected. This would
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add a predictive element to the system. Furthermore, integrating video-based

data with information from different sensing devices, such as passive infrared

[81] will be useful to enhance the overall reliability of the system.
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Chapter 3

Advancing Preterm Infants’

Movement Monitoring with Edge

AI: Bridging the Technological Gap

3.1 Monitoring Preterm Infants through

Sustainable Vision Systems: Challenge and

Perspectives

TheWorld Health Organization estimates that each year, over one in ten infants

is born prematurely (before the 37th week of pregnancy)1. Although there have

been significant advancements in survival rates, premature birth still has a deep

impact on the neurodevelopment of infants. Common and enduring effects of

preterm birth include delayed language development, cognitive deficits, and

behavioral and motor disorders [82].

The timely identification of signs of atypical neuronal development is cru-

cial for enabling clinicians to intervene. This early intervention is vital for

enhancing infants’ brain plasticity and facilitating damage compensation and

recovery procedures [83]. With such a view, monitoring limbs’ movement of

preterm infants in neonatal intensive care units (NICUs) may provide valuable

insights on their neuromotor development [84]. Nevertheless, despite its clinical

significance, the movements’ assessment often remains qualitative and reliant

on visual observation by trained clinicians in NICUs [85].

Close, quantitative and non-intrusive monitoring is essential to examine in-

fants’ spontaneous motility and responses to various stimuli and interventions

[86]. In this context, clinical decision support systems based on vision sensors

have emerged as a promising tool for non-invasive and quantitative assess-

ment of preterm infants [87]. These systems, as exemplified by studies such as

[88, 89, 90], integrate artificial intelligence – and specifically DL – algorithms

1https://www.who.int/news-room/fact-sheets/detail/preterm-birth
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for data analysis, and have the potential to provide meaningful insights into in-

fants’ movements, gestures, and postures. Nevertheless, notwithstanding their

undeniable clinical relevance, it is crucial to recognize that the implementation

of these tools needs the employment of either centralized or cloud-based server

infrastructure [87, 91]. This architectural choice introduces multifarious chal-

lenges. In the case of cloud-based systems, these challenges primarily revolve

around issues related to privacy, security, and potential reliance on a consis-

tent internet connection [92]. Conversely, centralized infrastructures, lacking

in scalability, pose different issues, notably in terms of computational costs,

which, while advantageous for data processing, may also give rise to significant

environmental concerns due to increased energy consumption [93]. This can

consequently affect affordability through both higher operational expenses and

potential sustainability concerns [94].

In the field of artificial intelligence, high operational costs have long posed

a significant barrier to innovation and practical deployment, as highlighted

in [95]. This challenge is particularly pronounced in the healthcare sector,

where the development of costly systems raises substantial concerns related to

the ethical principle of distributive justice in technology, as discussed in [96].

However, a transformative change is forthcoming with the advent of edge AI.

This computational paradigm empowers real-time data processing and decision-

making, thereby alleviating the strain on centralized cloud resources and effec-

tively overcoming the economic barriers that have long been associated with

artificial-intelligence implementation [97]. Moreover, the adoption of edge AI

may also align with the emerging concept of GreenAI [98]. By significantly

reducing energy consumption and the need for extensive cloud server infras-

tructures, edge-AI-based systems may contribute to a more sustainable and

environmentally friendly approach to AI deployment, especially in healthcare

settings [99].

Following these considerations, the proposed contribution presents a DL-

based approach tailored to the edge computing paradigm, with a specific focus

on segmenting preterm infants’ limbs from depth images collected in the NICU

of the G. Salesi Hospital in Ancona, Italy. This research addresses the critical

need for efficient limb segmentation algorithms as a prior for infants’ movement

monitoring, while emphasizing sustainability in accordance with contemporary

GreenAI principles [98]. Drawing inspiration from the eco-conscious guidelines

outlined by Schwartz et al. [98], the work develops a sustainability-oriented

methodology, encompassing both environmental and economic considerations.

The approach explores strategies to minimize the computational resources re-

quired for algorithmic computation, contributing to a more environmentally

friendly and cost-effective solution. As a concrete realization of this strategy,

the selected edge device for deploying the proposed algorithms is the NVIDIA®
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Jetson Nano [100]. This transition towards greener and more efficient AI imple-

mentations holds the potential to reduce environmental impacts while advanc-

ing crucial applications such as the quantitative assessment of preterm infants’

movements in NICUs.

3.2 Related Work

In recent years, the field of neonatal care has witnessed a significant surge in

the utilization of vision-based methods for monitoring preterm infants’ move-

ment. These methods, predominantly employing RGB and RGB-depth (RGB-

D) cameras, have undergone a remarkable evolution from implementing tradi-

tional computer vision algorithms to embracing advanced DL techniques.

Initially, these systems relied on classical computer vision approaches, such

as thresholding and morphological operations. However, the landscape shifted

markedly with the advent of DL, which offered enhanced capabilities in ana-

lyzing complex motion patterns. Pioneering this transition, McCay et al. [101]

employed OpenPose, a CNN initially devised for adult pose estimation, to as-

sess infant’s movements. They further refined this approach by developing a

secondary CNN model to evaluate the quality of general movements in preterm

infants, extracting insights from joint orientation and displacement histograms

derived from RGB video data. In Moro et al., [102], developed a system to ana-

lyze and categorize the motion patterns of infants from 2D video recordings, fo-

cusing on identifying unusual movements. Their approach combines computer

vision and machine learning techniques. The process involves three main steps:

first, identifying key body points on infants using a deep learning-based detec-

tor; second, deriving quantitative measures from the movement trajectories of

these points; and third, applying machine-learning-based classifiers like SVM,

to distinguish between normal and abnormal motion patterns. Similarly, the

works of Reich et al. [103], Sakkos et al. [104], and Schmidt et al. [105], Moccia

et al. [88] also leveraged the infant’s joints detection as a prior for limbs’ move-

ment monitoring. Their methodologies varied, ranging from employing shallow

artificial networks to integrating long short-term memory (LSTM) networks, all

aimed at improving movement’s assessment. While these surveyed approaches

have achieved good results, they fall short in aligning with the principles of

energy efficiency and economic sustainability. Indeed, these systems, especially

those reliant on advanced DL methods, require significant computational re-

sources and energy to run. This not only heightens the economic impact but

also challenges their integration in environments with limited computational

resources, such as remote or under-resourced medical facilities. Schwartz et al.,

[105, 98], categorize this approach as “Red AI” characterized by striving for

enhanced accuracy while overlooking its economic and environmental impacts.
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In contrast, “Green AI” supports DL models that meet or surpass existing

performance standards while also minimizing energy use, thus advocating for

models that are both efficient and sustainable.

Following the Green AI principles, the work in [89], inspired by [88], imple-

mented an approach completely based on DL for preterm infants’ pose estima-

tion from depth video recordings acquired in NICUs. This was based on two

subsequent CNNs. The first CNN performed the preliminary identification of

limbs positions, while the second serves to refine the results obtained from the

initial CNN. In the work, there is a preliminary hint of the necessity to enhance

the sustainability of the algorithms, which is exemplified through an ablation

analysis of the proposed architectural framework. The latter, specifically, was

optimised from a computational point of view through the implementation

of asymmetric convolutions that had the property of reducing the number of

trainable parameters of the neural network while keeping almost unchanged

the results [106].

As the field advances, it is crucial to find a balance between technical ad-

vancement and the development of economically and energetically sustainable

solutions as to ensure the equitable distribution of the benefits yielded by these

decision-support systems [86].

With this vision, the research in [94], presents an all GreenAI paradigm-

oriented study: proposing the TwinEDA architecture designed for limb seg-

mentation in preterm infants using depth images. TwinEDA’s design integrates

elements from two distinct CNNmodels: it incorporates the efficient lightweight

asymmetric and dilated convolutions from [107], as well as the more complex

bi-branch Unet structure from [88]. This architecture aims to match the per-

formance of the Red-AI oriented network proposed in [88], but with enhanced

efficiency akin to the model in [107].

Pursuing this research, this Chapter focuses on addressing two principal

issues identified in the TwinEDA study [94], which underscore the need for

additional investigation in specific domains:

• The original design of TwinEDA was devoted to minimizing computa-

tional demands. However, the assessment of computation costs was lim-

ited to just memory requirements and the number of trainable param-

eters. This approach was found to be suboptimal, as evidenced by the

relevant literature [98]. In response to this issue, a more efficient

variant, TwinEDA Light, has been introduced. Its primary goal

is to enhance the computational efficiency of TwinEDA. The ef-

fectiveness of this improvement is assessed through an in-depth

analysis of FLOPs, providing a more thorough evaluation of

computational performance.
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• The transition towards edge computing is identified as a pivotal develop-

ment, enabling the application of algorithms on widely accessible com-

puting devices. This would adhere to the principles of distributive justice

and fairness in artificial intelligence, thereby expanding the global acces-

sibility of high-quality neonatal care [96]. As a result, the proposed

architecture, along with other comparative DL approaches, has

been deployed on the NVIDIA Jetson Nano device. This im-

plementation allows for an empirical assessment of their per-

formance, considering both predictive accuracy and inference

speed, in edge computing contexts.

In the research presented in [94], where the undersigned contributed as a

coauthor, a specific domain of investigation (i.e., the development of an ar-

chitecture along the lines dictated by GreenAI) was established. The work

provides a crucial basis for the analyses that will follow in this chapter, which

represent the further development of the vision system for automatic preterm

infants’ limbs segmentation from depth images (Figure 3.1). Indeed, the goal

of this research is to (i) refine the DL approach proposed in [94] through an

in-depth analysis of FLOPs so that it will be even more efficient, (ii) fully

orient the research following the edge computing paradigm, in this regard all

the outcomes presented will be the result of the deployment on the NVIDIA®

computing device. The impact of the research is twofold, while on the one

hand an operational methodology for optimizing a network will be proposed

so that the deployment in current clinical practice results as energy efficient

as possible, on the other hand it will testify how SBC-type computing devices

ensure the possibility of deploying advanced monitoring systems without cost

barriers. This latter integration, and the subsequent discussion of results, intro-

duces an innovative approach in computer vision, particularly in its application

to clinical decision-making tools. This effort seeks to establish a new bench-

mark in literature, illustrating how advanced decision support systems can be

effectively implemented in environments with limited resources and to the best

of the author’s knowledge this is among the first work in literature in the field

of monitoring by vision systems.

3.2.1 From TwinEDA to TwinEDA Light

TwinEDA was conceived to put together the best features from two baseline ar-

chitectures: EDANet [107] and a CNN we previously designed [89] for preterm

infants’ limbs segmentation. Since EDANet was intended for real-time image

semantic segmentation, it was designed to be compute-efficient. For this reason,

its main computational blocks rely on lightweight surrogates of convolutions,

such as dilated convolutions [108] and asymmetric convolutions. When com-
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Figure 3.1 Workflow of the proposed approach to monitor preterm infants’ limb-
movement.
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Figure 3.2 Architecture of EDANet, TwinEDA, and TwinEDA Light. Every block
or layer is explained in the bottom part of the image. Conv stands for convolution and
Asym for Asymmetric. EDA1 and EDA2 are the two processing units of EDANet,
that we maintain in both TwinEDA and TwinEDA Light. EDA1 (EDA2) consists of
six (five) densely-connected consecutive convolutional blocks, each of which processes
the data via a normal convolution, an asymmetric convolution, and an asymmetric
and dilated convolution, with increasing dilation factor (d) througout EDA1 and
EDA2. The values for d are powers of 2 and are color-coded in the image.
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pared to the network in [88], EDANet is a much higher throughput but weaker

performance. Of course, this is explained by the two different approaches used

when the two CNNs were designed (high speed for EDANet, strong perfor-

mance for the CNN proposed in [88]). TwinEDA puts together the elements

that make EDANet fast and efficient (namely, lightweight operations like di-

lated and asymmetric convolutions), and the CNN in [88] highly-performing on

the task (namely, the bi-branch structure of each stage inside UNet [109]).

Fig. 3.2 shows the architecture of EDANet, TwinEDA, and newly proposed

TwinEDA Light. TwinEDA expands EDANet’s architecture both in the encod-

ing path, by parallelizing its blocks in a bi-branch structure, and in the decod-

ing path, by using more up-sampling stages and including trainable transposed

convolutions in each of them. TwinEDA has 3.73 million trainable parameters,

more than five times as many as EDANet (around 0.69 million).

The downsampling path uses two bi-branch blocks (inspired by [88]) that

employ 3×3 strided convolutions with a stride of 2 and maxpooling layers

to reduce the image/feature maps size. It includes two EDA modules (from

[107]), EDA1 and EDA2, comprising six and five densely connected sub-blocks,

respectively. Each sub-block features a 1×1 convolution to decrease the number

of feature maps, an asymmetric 3×3 convolution, and a dilated 3×3 asymmetric

convolution. The dilation factor in these convolutions, inspired by EDANet,

increases progressively, with EDA1 using dilation factors of 2, 4, and 8, and

EDA2 using factors of 1 and 2. This dense data flow approach in each EDA

module allows for efficient processing of features. The outputs of the EDA1

modules are concatenated and then passed through additional down-sampling

blocks and the EDA2 modules.

The upsampling path in TwinEDA mirrors the bi-branch structure of the

downsampling path. It processes the data initially through a single 1×1 con-

volutional layer, followed by two parallel layers. One layer implements a 3×3

transposed convolution (as in [88]), while the other performs a bilinear inter-

polation operation (as in [107]), which is a demand-driven process.

As reported in the literature [98], in order to assess the computational re-

quirements and efficiency of a CNN, only relying on the number of trainable

parameters can be misleading and does not provide a clear picture. Indeed,

different architectures can use the same amount of parameters for different op-

erations (e.g., the same set of parameters [a, b] can be used to perform a + b

or ab, the latter of which clearly requires more computation), or in a different

layers (e.g., CNNs typically have a better inductive bias than Fully-Connected

networks, which implies that the latter need more parameters and more sam-

ples to generalize on unseen data [110]). Therefore, to obtain a further reduc-

tion in inference time and compute, this research is focused more on FLOPs
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or Multiply-Add operations (MACs)2, rather than on model parameters as in

[94]. Although the number of parameters and the number of FLOPs are highly

correlated (displaying a correlation of 0.772 in CNNs and 0.994 for transformers

[111]), the number of FLOPs is the exact measure of the amount of compute

that a program requires, in terms of single summations and multiplications.

The current research landscape reveals a notable gap in studies evaluating

the efficiency of CNNs based on the number of FLOPs. While Tang et al. [112]

proposed a method involving a loss function that incorporates FLOPs min-

imization, leading to model pruning for reduced computation, the approach

presented here, particularly in the context of TwinEDA Light, differs signif-

icantly. Instead of pruning, this method focuses on optimizing an existing

architecture (TwinEDA) by rearranging computation-intensive operations to

address computational inefficiencies.

3.3 Methods

3.3.1 TwinEDA Light

This research investigates the hypothesis that the distribution of FLOPs within

a CNN is crucial for identifying potential “compute bottlenecks” and, conse-

quently, increased latency. It is hypothesized that a CNN exhibiting an uneven

FLOPs distribution across its layers is likely to be more efficiently optimized

by focusing on the layers with the highest FLOPs demands. An uneven FLOPs

distribution is tentatively defined as a scenario where a single layer accounts

for more than 5-10% of the total computation. The ptflop library [113] was

used to estimate the FLOPs for the entire network and each layer individually.

The FLOPs per layer (FPL) percentage is calculated by dividing the FLOPs

in a layer by the total network FLOPs, and standard deviation (std) is used as

a measure of dispersion, indicating the unevenness of the FLOPs distribution.

An even FPL distribution would theoretically have a std of 0, meaning that

each layer requires the same amount of compute. In order to compare the std

values between relatively similar architectures, the coefficient of variation (CV)

is additionally reported for the FPL distribution in the network, defined as the

ratio between mean and std, so as to normalize the degree of deviation with

respect to the mean network size.

The FPL distribution for TwinEDA (shown in Fig. 3.3) has std=3.14 and

CV=6.44. The bar plot clearly shows a huge discrepancy between the majority

2Nowadays, most architectures rely on Fuse Multiply-Add operations (MACs), that perform
a sum and a multiplication (x*a+b) in just one FLOP, so one FLOP includes two MACs.
Although the two numbers are linearly dependent and express the same quantity, we will
refer to FLOPs in this paper, in order to give a more realistic description of the compute
inside CNNs.
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of layers (many of which are not shown in the plot, as their FPL is below 3%)

and three of the final layers, each of which takes up for 27% of total FLOPs. A

deeper analysis, revealed that these three layers are the only three transposed

convolutions in TwinEDA (the pink layers in Fig. 3.2, also marked with TC).

Their disproportionate consumption of computational resources, compared to

other layers, indicates inefficiencies in their design, potentially leading to higher

computational costs in the network. Thus, it is hypothesized that a faster and

less compute-demanding CNN can be achieved by reducing the std for this

distribution. As per EDANet (Fig. 3.4), the FPL distribution also shows that

one layer absorbs around 27% of the total FLOPs in the network (in particular).

Of course, reducing the std by completely changing the architecture would

not allow for a fair comparison between the two CNNs, nor for a fair evaluation

of the method. Therefore, the strategy involves a reduction in TwinEDA’s

hyperparameters (height, width, and depth of the feature maps) in the region of

the three transposed convolutions (ConvTranspose). In particular, in order to

keep the two CNNs as similar as possible, the spatial size (width and height) was

preserved and choose to operate on depth, i.e., reducing the number of feature

maps that the ConvTranspose layers process. This is achieved by introducing

a squeeze with a 1x1 convolutions before each of these ConvTranspose, whose

aim is to halve the number of feature maps that these layers have to process.

In particular, the three ConvTranspose layers now respectively receive 67%,

the 66%, and the 50% of the number of input feature maps as before.

As can be seen from Fig. 3.5, these small changes lead to a decrease in std

in the FPL distribution from 3.14 (TwinEDA, Fig. 3.3) to 2.68, which is very

close to the value for EDANet (2.60, Fig. 3.4). Similarly, CV decreases from

TwinEDA’s (6.44) to TwinEDA Light’s (5.01), which is, however, much bigger

than EDANet’s (3.01).

3.3.2 Preterm Infants’ Kinematic Model and Ground Truth

Preparation

As in the work [88, 94, 89], 12 binary masks for the infants’ limb-joint and

8 for the connections between the joints were prepared as ground-truth. The

12 joints considered by the kinematic model were: wrists, elbows, shoulders,

ankles, knees, and hips. The 8 joint-connections were: forearms, arms, legs,

and thighs. A joint-mask consists of all the pixels inside a radius r centered

on the annotation site. A connection-mask is a rectangular region of thickness

r lying above the straight line connecting two consecutive joints. Individual

masks were built for each joint and joint-connection to handle possible self- or

external- occlusions (Fig. 3.1, central part).
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Figure 3.3 The percentage of FLOPs per layer (FPL) for TwinEDA. The maximum
FPL in the network is highlighted by a red triangle (27%). The coefficient of variation
(CV), defined as the ratio between mean and (standard deviation) std, is also reported
(along wtih sd) for the FPL distribution in the network.

Figure 3.4 The percentage of FPL for EDANet. The maximum FPL in the network
is highlighted by a red triangle (27%). The coefficient of variation (CV), defined as
the ratio between mean and (standard deviation) std, is also reported (along wtih sd)
for the FPL distribution in the network.
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Figure 3.5 The percentage of FPL for TwinEDA Light. The maximum FPL in the
network is highlighted by a red triangle (30%). The coefficient of variation (CV),
defined as the ratio between mean and (standard deviation) std, is also reported
(along wtih sd) for the FPL distribution in the network.

3.3.3 Deployment on Edge Device

As stated in Chapter 2, to fully leverage the computing capabilities of the

Jetson Nano and improve the TwinEDA light inference speed, the TensorRT

framework was used. Developed by NVIDIA®, TensorRT optimizes a DL

model for specific hardware, converting it into a serialized engine for high-

performance inference on GPUs.

Initially, the model was transformed from Pytorch to onnx, an open format

that facilitates interoperability among Artificial Intelligence frameworks. Fol-

lowing this, the final TensorRT engine was crafted from the onnx -compatible

model, incorporating GPU-specific enhancements such as layer fusions and pre-

cision calibration.

This process yielded an optimized TwinEDA light engine, which was then

employed to assess performance on the Jetson Nano.

3.4 Experimental Protocol

3.4.1 Dataset

For the experiments, the babyPose dataset [114] was expanded by 11 depth

videos. This expansion resulted in a dataset comprising 27 depth videos from

27 spontaneously breathing preterm infants. These videos were acquired in the

NICU of G. Salesi Hospital in Ancona, Italy, following approval from the Ethics

Committee of the “Ospedali Riuniti di Ancona” (ID: Prot. 2019-399) and upon
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Figure 3.6 Samples of depth frames from the babyPose dataset.
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receiving written consent from the infants’ legal guardians. The videos, each

5 minutes in length, were acquired using the Astra Mini S - Orbbec® at a

frame rate of 30 FPS and an image size of 640x480 pixels. To address privacy

concerns, only depth videos were acquired, and all networks were trained and

tested exclusively on depth frames. Samples of depth frames are shown in

Figure 3.6.

Consistent with the average movement frequency of preterm infants [115], one

frame was extracted from each video every 5 seconds. Out of these extracted

frames, 1000 frames per infant were annotated with the assistance of clinical

partners using a publicly available, custom-built annotation tool3. A random

selection of 700 frames per infant was used to train the proposed architectures,

while the remaining 300 frames were reserved for testing.

3.4.2 Training Settings

To manage the training time and memory requirements, the resolution of all

depth frames was reduced to 128x96 pixels. In preprocessing these frames, the

mean intensity was removed as described in [88, 94]. A radius of 4 pixels was

selected for constructing the ground-truth masks.

A batch size of 256 was set, along with an initial learning rate of 0.05. The

cosine annealing scheduler with five restarts policy was applied to the learning

rate. The best combination of loss function, learning rate schedule, and opti-

mizer was determined through a grid-search analysis. Following this analysis,

the networks were trained for 200 epochs using Adam as the optimizer and per-

pixel binary cross entropy as the loss function. The optimal configuration of

weights across epochs was determined based on the lowest loss value obtained

on the validation set. The training of these architectures was conducted using

Pytorch 1.12.0 on a GPU NVIDIA® RTX 3090 with 24 GB of RAM.

3.4.3 Comparison with Other Architectures

The proposed architecture (i.e., TwinEDA Light) was compared with the orig-

inal TwinEDA and EDANet, all deployed on the NVIDIA Jetson Nano com-

puting device. The comparison with the first architecture, i.e., the TwinEDA,

serves to prove the research hypothesis that the TwinEDA Light is an efficient

version of the TwinEDA built on the basis of an in-depth FLOPs analysis on

the individual blocks peculiar to the network. On the other hand, the compari-

son with EDANet serves to demonstrate how, in accordance with the Green AI

paradigm, it is essential to design sustainable architectures without significant

performance degradation particularly in the medical field. It should be empha-

3https://github.com/roccopietrini/pyPointAnnotator
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Network GFLOPs N° params (M) mean DSC FPS (16bit) FPS (32bit)

TwinEDA 7.18 3.73 81.8 22.7 19.9

TwinEDA Light 2.86 2.8 82.3 41.9 30.5

EDANet 0.42 0.69 77.3 82.3 57.7

Table 3.1 The table shows, for each architecture, the number of Giga FLOPs (GFLOPs),
the number of trainable parameters the average DSC values, and the inference speed in
FPS. FPS were assessed on NVIDIA Jetson Nano in two distinct formats: FP16 (or
half-precision floating-point) and FP32 (single-precision floating-point). To distinguish the
post-quantization and the not-quantized architectures’ throughput, the nomenclatures FPS
(16bit) and FPS (32bit) were used.

sised that all architectures were retrained on the same split dataset described

in the previous section.

3.4.4 Performance Metrics

The performance in terms of efficacy was measured via the Dice similarity

coefficient (DSC) computed between the ground-truth binary masks and the

predicted ones.

DSC =
2× TP

2× TP + FP + FN
(3.1)

where TP and FP are the true joint (or joint-connection) and background

pixels classified as joints, respectively. FN are the pixels belonging to a joint

(or joint-connection) wrongly ascribed as background.

Following Sec. 2.4.1.2, the efficiency of each model was evaluated by both

reporting the number of FLOPs for each CNN but also by measuring the infer-

ence speed in FPS. This assessment was carried out for models in two distinct

formats: those utilizing FP16 (half-precision floating-point) post-training quan-

tization and those operating in FP32 (single-precision floating-point) format.

3.5 Results

Table 3.1 presents the outcomes of the conducted experiments. The perfor-

mance of each CNN is reported in terms of Giga FLOPs (GFLOPs), number

of parameters, mean DSC, and FPS on NVIDIA Jetson Nano. FPS assess-

ments were conducted following two different weights’ precisions: FP16 (after

a quantization process), and FP32. The DSC values are not significantly influ-

enced by the type of quantization, leading to the decision to report only those

obtained using FP32 weights.

A notable trend is the decrease in the number of parameters: TwinEDA

Light, despite its increased depth due to the application of 1x1 convolutions

for feature map channel reduction, has fewer parameters (2.8 million) compared
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to TwinEDA (3.73 million). Simultaneously, TwinEDA Light demonstrates a

slight yet significant improvement in performance, achieving a DSC of 82.3,

compared to TwinEDA’s 81.8 and EDANet’s 77.3.

Examining the FPS for both post-training quantization methodologies EDANet

remains the fastest network, with 82.3 FPS in 16-bit and 57.7 in 32-bit formats,

however, TwinEDA Light significantly enhances performance over TwinEDA,

elevating the computation speed from near real-time to true real-time. Specifi-

cally, TwinEDA Light achieves FPS of 41.9 in 16-bit format and 30.5 in 32-bit

format, compared to TwinEDA’s 22.7 (16-bit) and 19.9 (32-bit), respectively.

3.6 Discussion

This chapter delves into recent advancements in DL, specifically within the

healthcare sector, emphasizing the need to integrate edge AI computing to

strengthen and operationalize the GreenAI principles, in order to overcome

barriers such as high costs and environmental concerns. The research hinges

on the development of a DL-based approach, particularly tailored for edge com-

puting, and focuses on segmenting preterm infants’ limbs from depth images

acquired in NICUs.

The discussion is further extended by addressing two primary issues identified

in the TwinEDA study [94]: the optimization of computational efficiency and

the transition towards edge computing for broader accessibility of neonatal

care. The research introduces TwinEDA Light, a variant designed to enhance

computational efficiency assessed via FLOPs analysis.

When evaluating quantitative performance in terms of DSC, TwinEDA

Light is the one that achieved better results with an increase of +0.5 DSC

from TwinEDA to its Light version and +5 DSC from EDANet to TwinEDA

Light. This follows the precepts of GreenAI, according to which an eco-aware

network is designed to achieve adequate performance with low computational

costs. In fact, TwinEDA Light has a lower number of parameters (- 0.93 M)

than TwinEDA and a significant reduction in GFLOPs (-4.32 G). This was

made possible by implementing a strategy for evaluating the GFLOPs absorbed

by each layer of the TwinEDA, trying to reduce as much as possible any ab-

sorption peaks also clearly visible in the Figure 3.3. Indeed, TwinEDA Light

was developed with the objective of minimizing the std of the FPL distribution.

This goal is achieved; however, it is important to note that in Fig. 3.5, the

most computationally intensive layer in TwinEDA Light accounts for 30% of

the total FLOPs in the network. This is the same ConvTranspose layer that

absorbs 27% of the total FLOPs in TwinEDA (Fig. 3.3). Having a stronger

outlier in the distribution seems contradictory to the aim of reducing the std of

the distribution. Nonetheless, this approach results in a reduction of FPL for
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the other two ConvTranspose layers, which consume 19% and 4% of the total

FLOPs in TwinEDA Light, compared to 26% and 15% in TwinEDA.

It is worth noting that this study does not aim to conclusively prove the

hypothesis that a negative correlation exists between the standard deviation in

FPL distribution and the model efficiency and throughput. Rather, the design

of TwinEDA Light serves as a proof of concept for the method, with further

research planned in this area. This work encourages that other researchers also

consider this metric in the design and optimization of CNN-based models.

3.7 Conclusion and Future Perspective

This research marks a significant shift in the development of DL models, with

a strong emphasis on sustainability and adherence to the principles of dis-

tributive justice and fairness in artificial intelligence. Central to this study

are two objectives: first, refining the DL approach as detailed in [94] through

a comprehensive analysis of FLOPs to boost efficiency; second, embracing the

edge computing paradigm, demonstrated by the deployment of TwinEDA Light

network on the NVIDIA® computing device. This approach is not just about

achieving energy efficiency in clinical practice, but is also a incentive to making

advanced monitoring systems globally accessible and free from cost barriers,

thus expanding the reach of high-quality neonatal care.

The study’s forward-looking plans include extending the research beyond

prototype testing in NICUs. The focus is on further optimizing convolutional

neural networks for edge computing devices, which involves developing inno-

vative methods to minimize the energy consumption of AI models throughout

their lifecycle, from training to deployment. This aspect is particularly crucial

in healthcare, where the need for accessible, equitable, and cost-effective tech-

nology solutions is paramount. In order to minimize costs, some well-studied

techniques could be used, like Knowledge Distillation [116], to boost the per-

formance of an inexpensive model thanks to the supervision of a pre-trained

teacher model. Moreover, as mentioned in Sec. 3.6, further work will be ded-

icated to investigate the hypothesis underlying the proposed method, i.e., the

existence of a negative correlation between the standard deviation in FPL dis-

tribution and model efficiency.

By integrating these methodologies, the research not only sets a new trend

in computer vision, especially in the realm of clinical decision-making tools,

but also strives to establish a new benchmark in the literature.
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Chapter 4

Conclusive remarks

4.1 Conclusion

Driven by the extreme importance of fostering technological progress oriented

toward the development of approaches that are efficient, sustainable, and af-

fordable for all, the journey of this thesis began with the ultimate scope of

contributing significantly to research in the field of edge AI applied to com-

puter vision, with the aim of designing and developing intelligent systems for

real-time monitoring of human behavior. In pursuit of this scope, as outlined

in the objective of this thesis, the three-year research mainly targeted two

application domains: surveillance and security, focusing on weapon detection

from surveillance cameras, and healthcare, focusing on limb segmentation from

depth cameras for preterm infants monitoring. A deep dive into the considered

domains enabled the identification of limitations still existing in state-of-the-

art approaches, as well as the gaps that need to be addressed to contribute to

technological progress in the development of edge-compliant methodologies.

The two key challenges to be faced in weapon detection from surveillance

video are the small size of the weapons to be detected and the need to perform

real-time detections. In the edge context, these challenges are amplified by

the low computational capacity of edge devices, which limit the complexity of

usable models, raising the need to develop models with the best possible balance

of complexity, speed, and accuracy. To progressively tackle such challenges, the

research effort into the domain of weapon detection in surveillance scenarios

led to multiple outcomes, each building upon the findings of the previous ones.

These outcomes represent incremental steps toward achieving the primary aim

of developing surveillance systems based on DL methods with an optimal speed-

accuracy balance on low-power edge devices.

A preliminary study explored and underscored the feasibility of integrating

the edge AI paradigm within the context of video surveillance in multi-camera

settings, also demonstrating the ability to achieve real-time responsiveness in

these environments. Motivated by these preliminaries, the following research

addressed the specific task of weapon detection. The study analyzed and quan-
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titatively evaluated the performance of edge devices in this context when run-

ning DL models, demonstrating their limitations and computational capabili-

ties, and enabling the selection of the NVIDIA Jetson Nano as the most suitable

SBC. Based on these findings, the research outlined in this thesis moved for-

ward with the development of a deep learning method for weapon detection

that could optimally balance three key components: speed, accuracy, and com-

plexity, when performed on edge devices. The work compared the proposed

method with the state of the art, emphasizing both its validity and the lack in

the current state of the art of methodologies balanced in all the components

(i.e., speed, accuracy, complexity). Nevertheless, the still-existing limitations

in the proposed approach encouraged further research in this direction. Thus,

the last research work in this thesis proposed an approach for weapon detection

without any limitation on applicability, which at the same time significantly

enhances the accuracy without increasing complexity, further advancing the

state of the art in the adoption of edge AI paradigm in weapon detection.

Moving into the healthcare domain for preterm infants’ monitoring, the lit-

erature review pointed out that the current research does not align with the

principles of efficiency and economic sustainability. The approaches in litera-

ture require significant computational resources, impacting the economic fea-

sibility and hindering their integration in settings with limited resources. The

research in this thesis addressed such needs by proposing an enhancement over

the existing approaches, with the development of a more efficient method for

preterm infants’ limb segmentation. The validation of the approach via both

the analysis on the computational complexity and the execution on edge de-

vices emphasized its applicability in real contexts, as well as its superiority over

the other state-of-the-art approaches.

The findings in both the surveillance and healthcare domains not only demon-

strate the robustness and applicability of the proposed methods, but also lay

the foundation for future explorations in similar areas. Indeed, the research

pursued in this thesis showed the potential and benefits that the integration

of edge AI and computer vision can bring, while also proving its feasibility in

challenging contexts.

4.2 Impact

The research conducted in this thesis discloses significant practical implications

in both domains examined. In the domain of surveillance and security, the main

goal pursued through the development of new methodologies for weapon detec-

tion is the increase in the effectiveness of security measures. In the healthcare

sector, efforts to improve automatic systems for monitoring preterm infants

are aimed at better treatments and diagnoses. These goals, however, are not
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an end in themselves. Enhancing the effectiveness of security systems leads

to crime prevention and enables prompt intervention in dangerous situations,

while better treatments and diagnoses lead to faster patient recovery and early

discovery of potential diseases. These implications, as a result, improve people’s

well-being, which is the ultimate and real research goal. For both weapon detec-

tion and preterm infants monitoring, the design and development of advanced

methodologies that, besides being effective, are also efficient and sustainable,

aim to achieve the same ultimate goal. The benefits of using technologies

based on the edge AI paradigm in weapon detection are significant in ensuring

privacy and data security, and in increasing the responsiveness of automated

surveillance systems. In monitoring preterm infants, the adoption of edge AI

paradigm brings benefits on patient privacy and on ensuring operational conti-

nuity of systems, as well as real-time feedback. All of these benefits, explored

in this thesis and pursued during the three years of research, paired with the

real possibility of making these technologies affordable to everyone, converge

in the same direction by providing the greatest drive towards the ultimate goal

of the research, the well-being of society.
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Vicente, and I. Bravo-Muñoz, “Smart video surveillance system based on

edge computing,” Sensors, vol. 21, no. 9, p. 2958, 2021.

[63] A. Baobaid, M. Meribout, V. K. Tiwari, and J. P. Pena, “Hardware

accelerators for real-time face recognition: A survey,” IEEE Access, 2022.

[64] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-

lutional neural networks for mobile vision applications,” arXiv preprint

arXiv:1704.04861, 2017.

[65] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Scaled-yolov4: Scaling

cross stage partial network,” in Proceedings of the IEEE/cvf conference

on computer vision and pattern recognition, 2021, pp. 13 029–13 038.

[66] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,

P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in con-

text,” in Computer Vision–ECCV 2014: 13th European Conference,

Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13.

Springer, 2014, pp. 740–755.

[67] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman,

“The pascal visual object classes (voc) challenge,” International journal

of computer vision, vol. 88, pp. 303–338, 2010.

[68] W. Rahmaniar and A. Hernawan, “Real-time human detection using deep

learning on embedded platforms: A review,” Journal of Robotics and

Control (JRC), vol. 2, no. 6, pp. 462–468, 2021.

[69] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed

and accuracy of object detection,” arXiv preprint arXiv:2004.10934,

2020.

[70] A.-A. Tulbure, A.-A. Tulbure, and E.-H. Dulf, “A review on modern de-

fect detection models using dcnns–deep convolutional neural networks,”

Journal of Advanced Research, vol. 35, pp. 33–48, 2022.

[71] P. Ramachandran, N. Parmar, A. Vaswani, I. Bello, A. Levskaya, and

J. Shlens, “Stand-alone self-attention in vision models,” Advances in neu-

ral information processing systems, vol. 32, 2019.

[72] Y. Lee, J. Kim, J. Willette, and S. J. Hwang, “Mpvit: Multi-path vision

transformer for dense prediction,” in Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, 2022, pp. 7287–

7296.

91



Bibliography

[73] Y. Li, M. Shao, B. Fan, andW. Zhang, “Multi-scale global context feature

pyramid network for object detector,” Signal, Image and Video Process-

ing, pp. 1–9, 2022.

[74] B. Na and G. C. Fox, “Object detection by a super-resolution method and

a convolutional neural networks,” in 2018 IEEE international conference

on big data (Big data). IEEE, 2018, pp. 2263–2269.

[75] Y. Bai, Y. Zhang, M. Ding, and B. Ghanem, “Sod-mtgan: Small object

detection via multi-task generative adversarial network,” in Proceedings

of the European Conference on Computer Vision (ECCV), 2018, pp. 206–

221.

[76] S. M. A. Bashir and Y. Wang, “Small object detection in remote sens-

ing images with residual feature aggregation-based super-resolution and

object detector network,” Remote Sensing, vol. 13, no. 9, p. 1854, 2021.

[77] J. Zhang, J. Lei, W. Xie, Z. Fang, Y. Li, and Q. Du, “Superyolo: Super

resolution assisted object detection in multimodal remote sensing im-

agery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61,

pp. 1–15, 2023.

[78] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep residual

networks for single image super-resolution,” in Proceedings of the IEEE

conference on computer vision and pattern recognition workshops, 2017,

pp. 136–144.

[79] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop,

D. Rueckert, and Z. Wang, “Real-time single image and video super-

resolution using an efficient sub-pixel convolutional neural network,” in

Proceedings of the IEEE conference on computer vision and pattern recog-

nition, 2016, pp. 1874–1883.

[80] J. Zhao, K. Dai, P. Zhang, D. Wang, and H. Lu, “Robust online tracking

with meta-updater,” IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 2022.

[81] Z. Gu, “Home smart motion system assisted by multi-sensor,” Micropro-

cessors and microsystems, vol. 80, p. 103591, 2021.

[82] H. Turpin, S. Urben, F. Ansermet, A. Borghini, M. M. Murray, and

C. Müller-Nix, “The interplay between prematurity, maternal stress and

children’s intelligence quotient at age 11: a longitudinal study,” Scientific

Reports, vol. 9, no. 1, pp. 1–9, 2019.

92



Bibliography

[83] G. S. Mallmann, A. L. N. França, P. R. Almeida, L. S. Oliveira, L. S. F.

Merey, and D. A. Soares-Marangoni, “Association between the general

movement optimality score and clinical features in newborns during hos-

pitalization: A cross-sectional study,” Early Human Development, vol.

177, p. 105720, 2023.

[84] T. Zhao, T. Griffith, Y. Zhang, H. Li, N. Hussain, B. Lester, and X. Cong,

“Early-life factors associated with neurobehavioral outcomes in preterm

infants during nicu hospitalization,” Pediatric Research, vol. 92, no. 6,

pp. 1695–1704, 2022.
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