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Linear assignment problems are well-known combinatorial optimization problems involving domains such as
logistics, robotics and telecommunications. In general, obtaining an optimal solution to such problems is
computationally infeasible even in small settings, so heuristic algorithms are often used to ¯nd near-optimal
solutions. In order to attain the right assignment permutation, this study investigates a general-purpose
learning strategy that uses a bipartite graph to describe the problem structure and a message passing Graph
Neural Network (GNN) model to learn the correct mapping. Comparing the proposed structure with two
existing DNN solutions, simulation results show that the proposed approach signi¯cantly improves classi¯-
cation accuracy, proving to be very e±cient in terms of processing time and memory requirements, due to its
inherent parameter sharing capability. Among the many practical uses that require solving allocation pro-
blems in everyday scenarios, we decided to apply the proposed approach to address the scheduling of electric
smart meters access within an electricity distribution smart grid infrastructure, since near-real-time energy
monitoring is a key element of the green transition that has become increasingly important in recent times.
The results obtained show that the proposed graph-based solver, although sub-optimal, exhibits the highest
scalability, compared with other state-of-the-art heuristic approaches. To foster the reproducibility of the
results, we made the code available at https://github.com/aircarlo/GNN LSAP.

Keywords: Linear sum assignment; graph neural networks; deep neural networks; smart meters scheduling;
smart grid optimization.

1. Introduction

Linear assignment1 is a fundamental problem in

operations research; it aims at assigning the elements

of one ¯nite set to the elements of another set. This

is done under the condition of one-to-one corre-

spondence, so that the resulting assignment satis¯es

some optimality criterion, such as minimum cost or,

in a dual form, maximum pro¯t. When the sum

of the costs is the objective to be minimized, the

problem is called a Linear Sum Assignment Problem

(LSAP).

This type of problem is found in many image

processing applications such as point matching,2

handwritten character and mathematical expression

recognition,3 Multiple Object Tracking (MOT),4 and

object segmentation.5 In wireless communication
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systems, it plays an important role in tasks such as

mode selection for device-to-device communications,6

resource allocation in MIMO systems7 and unli-

censed channel management for LTE systems.8 On

audio processing ¯eld, the permutation ambiguity

problem of multiple source separation9 is closely

related to LSAP, as well as to end-to-end neural

diarization10 and, in general, for metrics computa-

tion, such as diarization error rate 11 or permuta-

tion-invariant word error rate 12 for automatic

speech recognition.

1.1. Related works

A well-established method for linear assignments is

the Hungarian algorithm,13 developed by Kuhn in

1955 and revised by Munkres in 1957,14 which suc-

ceeds in obtaining the optimal solution without a

greedy search. However, it does not scale well with

the size of the problem N, since its computational

complexity is OðN 3Þ.
Bertsekas et al. proposed the auction algorithm15

to solve LSAP problems, so called because it mimics

the actual auction process. This method comprises

two steps: A bidding phase and an assignment

phase. Later, an extension based on a scaling strat-

egy further enhanced the performance of the auction

algorithm. While being close to the ideal solution,

it still has a high computational complexity, which

a®ects its outcomes for linear assignment issues.

A variant of the Hungarian algorithm that uses the

shortest alternating paths to supplement primal solu-

tions has been proposed by Jonker and Volgenant.16 It

begins with an initialization phase based on a naive

auction algorithm.

Several algorithms, including the interior point

method17,18 and dual forest method,19 solve linear

assignment problems using general linear program-

ming techniques. Ramakrishnan et al.18 modi¯ed the

Karmarkar interior-point method20 and created an

approximate dual projective algorithm.

Additionally, a lot of heuristic methods based on

greedy tactics try to ¯nd quick approximate solu-

tions. For the generalized assignment problems,

Trick et al. suggest a greedy heuristic technique21

and demonstrate that adding some randomization to

the greedy approach can help ¯nd better solutions.

Another similar approach is the Greedy Randomized

Adaptive Search Procedure (GRASP).22 Naiem

et al. develop the Deep Greedy Switching (DGS)

algorithm,23,24 which starts with a random initial

guess and attempts to discover a better solution

by searching inside a well-de¯ned neighborhood.

Although these methods are much faster than the

previous heuristics having polynomial complexity,

they often get stuck when the value of the objective

function reaches a local optimum. Moreover, because

the gradients of these heuristic solutions are some-

what di±cult to describe, they cannot be directly

included in learning frameworks.

Recently, deep neural networks (DNNs) have

achieved promising results on mathematical optimiza-

tion problems, with practical applications such as

wireless resource management allocation,25 link sched-

uling optimization26 or interference management.27

Several data-driven algorithms have also been proposed

for linear assignment problems. In Ref. 28, the assign-

ment task was converted into an equivalent continuous

linear programming problem solved by a recurrent

neural network.Recentworks address smaller sub-tasks

by breaking the N �N assignment problem into N

multi classi¯cation tasks, using stacked perceptrons

layers,29 bidirectional long short-term memory neural

network (BDLSTM)30 and bidirectional recurrent

neural networks (BiRNN) .31

This paper is an extension of the work presented

in Ref. 32, where we propose a graph-based LSAP

description and a DNN technique built on graph

learning is used to address the assignment challenge.

This extended version of the paper includes a case

study of a real application on smart meter scheduling

and an in-depth analysis of GNN network perfor-

mance as the number of hidden layers and batch-size

used in training vary. As a comparison, we build

upon the framework proposed by Lee et al.,29 where

LSAPs of di®erent dimensionality N are decomposed

into N independent sub-assignment problems, and

two types of DNNs, a feed-forward MultiLayer Per-

ceptron (MLP) and a Convolutional Neural Network

(CNN) are applied to address the sub-assignments

as independent classi¯cation tasks.

In this work, we show that using an MLP is the

worst approach because it forces the problem to

be treated as independent assignments. A better

modeling strategy is arguably to process the entire

cost matrix as input. However, for example, in the
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CNN approach, as convolutional kernels cover a

narrow receptive ¯eld, it is required to stack several

layers to cover the entire cost matrix as the size of

the problem increases. Moreover, CNNs have ¯nite

receptive ¯eld, thus this solution cannot scale to

cover arbitrarily large cost matrices. In contrast, the

proposed graph representation of the cost matrix

together with graph-based DNN techniques allows

for an e±cient information spread, exploiting rela-

tions between all agent-job pairs, even for networks

with limited depth, with obvious advantages in

terms of scalability.

The paper is organized as follows: in Sec. 2 the

Assignment problem is formalized and the steps

of the Munkres–Hungarian algorithm are summa-

rized; Sec. 3 provides an overview on Graph Neural

Networks (GNN) and their application to combi-

natorial optimization problems; in Sec. 4 the pro-

posed approach, the loss function, the evaluation

metric and the neural architectures are presented

in detail, and the experimental results are dis-

cussed in Sec. 5. Finally, in Sec. 6 we describe the

real-world scenario of smart meter reading sched-

uling, in smart grids, explaining how the proposed

solution for solving the allocation problem, repre-

sents an interesting trade-o® between optimality

and e±ciency.

2. Problem Formulation

Typically, in the literature, assignment problems are

described by resorting to a toy-example in which N

jobsmust be assigned to as many di®erent workers or

agents; this of course can be extended to any other

context in which two sets of the same cardinality are

involved and all elements must be paired one by one.

Given two ¯nite sets I ¼ f1; 2; . . . ;Ng and J ¼
f1; 2; . . . ;Ng, let us assume that the assignment

of element i 2 I to element j 2 J incurs a cost ci;j.

The problem has a straightforward integer pro-

gramming formulation, in which the decision vari-

able xi;j is equal to 1 or 0 to indicate a feasible or

infeasible assignment, respectively; therefore, it can

be expressed as the minimization of the following

objective function:

XN

i¼1

XN

j¼1

ci;jxi;j; ð1Þ

subject to the constraints:

XN

i¼1

xi;j ¼ 1 j ¼ 1; . . . ;N; ð2Þ

XN

j¼1

xi;j ¼ 1 i ¼ 1; . . . ;N ; ð3Þ

xi;j 2 f0; 1g i; j ¼ 1; . . . ;N: ð4Þ
Another common way of modeling assignment pro-

blems is by means of graph theory, through a com-

plete bipartite graph, a structure where the set of

vertices can be divided into two disjoint sets or

classes, and the only edges connect vertices from one

class to those of the other class. Let N be the problem

dimensionality, the associated graph has 2N nodes,

N of which represent agents while the rest represent

jobs. The assignment costs, properly arranged in a

N �N adjacency matrix, C, thus represent the

weights of connections between nodes.

The resulting assignments can be also modeled as

a permutation � of the elements inside set I or set J,

or with a permutation matrix X�, whose elements

xi;j ¼ 1 if j ¼ �ðiÞ, and xi;j ¼ 0 if j 6¼ �ðiÞ, the latter
being the Adjacency matrix of a bipartite assignment

graph (Fig. 1).

2.1. Hungarian algorithm

Formally, the Hungarian algorithm involves manip-

ulating the weights of the bipartite graph in order

to ¯nd a stable, minimum-weight perfect matching

(see Ref. 33). However, most implementations use

dynamic programming techniques by acting on cost

matrix values, given the key observation that if a

number is added to or subtracted from all of the

entries of any one row or column of the cost matrix,

Fig. 1. Di®erent representations for the same assignment
permutation.
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then an optimal assignment for the resulting matrix

is also an optimal assignment for the original cost

matrix. The block above shows the pseudo-code

formulation of the iterative algorithm on which most

software libraries are based. When the algorithm

ends, the entries of the returned matrix A containing

ones indicate the optimal assignments, which ensure

that all constraints are satis¯ed.

3. Graph Neural Networks

GNNs have a broad range of uses in various domains

due to the prevalence of graph-structured data, where

the lack of an Euclidean structure makes it challenging

to use DNNs in a conventional way. In computer

vision, GNNs ¯nd applications such as generating

scene graphs,34 classifying point clouds35,36, and rec-

ognizing actions,37 as they help understand the

semantic relationships between objects in visual

scenes. In natural language processing,38,39 GNNs

leverage the connections between documents or words

to predict document labels for text classi¯cation.

They are also useful for creating accurate models

of smart transportation systems,40,41 where forecasting

tra±c speed, volume, and road density is crucial.

Recommender systems bene¯t from graph-based fra-

meworks42 that treat items and users as nodes. In

chemistry, researchers employ GNNs to analyze the

graph structures of molecules and compounds.43,44 In

healthcare, GNNs can build knowledge graphs linking

subjects with diseases or symptoms to assist physicians

in decision-making.45–49 Lastly, in neuroscience, GNNs

are valuable for mapping brain connectivity by iden-

tifying Regions of Interest (ROIs) from EEG

signals50–57 and visualizing connections between key

nodes, addressing a critical challenge in neuroscienti¯c

interpretation.

A graph is represented as G ¼ ðV ;EÞ, where V is

the set of vertices or nodes, and E is the set of edges;

let vi 2 V denote a node, and eij ¼ ðvi; vjÞ 2 E de-

note a directed edge from node i to node j. The

overall topology is provided by the Adjacency matrix

A 2 f0; 1gjV j�jV j, where Aij ¼ 1 if eij 2 E and Aij ¼
0 otherwise. A node may have numerical attributes,

x 2 RD, as can edges, ei;j 2 RF .

The notion of graph neural networks was initially

outlined in Gori et al.58 and further elaborated in

Scarselli et al.59 These early models implicitly de¯ne

the Spatial Convolution operator, which was later

formalized with the concept of Message Passing

(MP) mechanism; it tries to capture information by

the graph manifold, edges and node feature vectors,

by aggregating informative \messages" from a

neighborhood of nodes. ConvGNNs generalize the

operation of convolution, which is a widely popular

concept on image processing ¯eld, from grid data to

non-Euclidean graph data. A general framework is

described by Eq. (5) and depicted in Fig. 2, it

C. Aironi, S. Cornell & S. Squartini
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expresses the rule to update the attribute of node vi,

at network layer k:

x
ðkÞ
i ¼ � ðkÞðx ðk�1Þ

i ;m
ðkÞ
i Þ; ð5Þ

where m
ðkÞ
i denotes the message, obtained by

aggregating node vi's previous features x
ðk�1Þ
i ,

neighbors features x
ðk�1Þ
j and their edge features ej;i:

m
ðkÞ
i ¼ Mj2NðiÞð�ðkÞðx ðk�1Þ

i ;x
ðk�1Þ
j ; ej;iÞÞ: ð6Þ

In the previous equation,M represents a di®erentiable,

permutation invariant function (typically, sum, mean

ormax), while � and � denote di®erentiable parametric

functions such as Multi Layer Perceptrons (MLPs).

An interesting strength point of ConvGNNs,

compared with other architectures such as dense

networks or CNNs, is that they better scale with the

graph size, due to the localized action of the MP

mechanism, which allows e±cient parameters shar-

ing and, consequently, memory savings.

3.1. GNN for combinatorial optimization
problems

In the ¯eld of Combinatorial Optimization (CO),

GNNs have already demonstrated their practical

value. They have been used in various contexts, ei-

ther to produce a solution directly or as an inte-

grated component of an existing solver. Most of the

previous works on such topic focused towards ¯nding

feasible, optimal or near-optimal solutions, while a

smaller number tried to quantify the optimality of

the proposed solution, or prove its infeasibility.

Below, we brie°y review the main works involving

GNNs for basic CO problems. For a more extensive

review, see Ref. 60.

Prates et al.61 trained a GNN in a supervised

manner to solve small-scale instances (up to 105 cities)

of the Traveling Salesman Problem (TSP). A similar

structure was further extended by Lemos et al.62 for

the Graph Coloring Problem. To solve the TSP, Joshi

et al.63 suggested usingResidualGraphConvolutional

Neural Networks64 in a supervised manner. Instead of

producing a valid TSP tour, the model provides the

probability that each edge belongs to the tour. Li

et al.65 used Graph Convolutional Networks38 on

combinatorial problems easily reducible to Maximum

Independent Set (MIS) problems. Li et al.66 studied

the use of GNN for GraphMatching, that is, to search

for an alignment between two graphs or sub-graphs,

such that a cost function is minimized. Fey et al.67

proposed an extended architecture for the same

matching problem, in the ¯rst stage of which a GNN

learns a node embedding to compute a similarity score

between nodes based on local neighborhoods. AGNN-

based architecture known as GraphSIM is presented

by Bai et al.68 to address the challenges of graph edit

distance andmaximum common sub-graph problems,

in an end-to-end pipeline. A similar challenge to the

one addressed in this paper is presented by Nowak

et al.69 who trained a GNN in a supervised manner to

predict solutions to the Quadratic Assignment Prob-

lem (QAP). They modeled the QAP instances as two

adjacency matrices and used the two corresponding

graphs as input to the GNN.

4. Proposed method

In the following, given the assignment problem, the

cost overview has been modeled with a fully con-

nected bipartite graph, a structure where the set of

vertices can be divided into two disjoint sets or

classes, and the only edges connect vertices from one

class to those of the other class. Let N be the problem

dimensionality, the associated graph has 2N nodes;

N of which represent agents while the rest

represent jobs.

The input raw feature vectors of the nodes,

½x1 . . .x2N �, are initialized with the cost values

between source agents and receiving jobs, according

to the cost matrix C 2 RN�N :

xi ¼ ½Ci;1 . . .Ci;N � i ¼ 1; . . . ;N agents; ð7Þ
xNþj ¼ ½C1;j . . .CN ;j� j ¼ 1; . . . ;N jobs: ð8Þ

Conversely, all the raw attributes of the edges eij
in the constructed graph are initialized with

Fig. 2. The three main steps of the Message Passing
paradigm in GNNs.
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zero-valued vectors, hence they are not taken into

account by the convolution operator.

The GNN structure is composed of K layers,

through which the graph preserves its bipartite lay-

out, while node feature vectors are updated according

to the MP operator expressed, for the generic node v

and all its neighbors w, by the following equation:

x ðkÞ
v ¼ 1

jN ðvÞj
X

w2NðvÞ
MLPðx ðk�1Þ

v jx ðk�1Þ
w Þ: ð9Þ

Comparing Eq. (9) with the general structure

described in Sec. 3, it can be seen that messages

are generated by a learnable function (MLP), a

dense network whose input vector is obtained by

concatenating the attribute vector of node v with

that of each of its neighbors. Then, the average acts

as the aggregation function of messages from neigh-

boring nodes, collected in a set of K hops.

Finally, the feature map at last layer, X ðKÞ ¼
½x ðKÞ

1 . . .x
ðKÞ
2N �> is transformed to the actual output

Y 2 RN�N through a linear projection with learnable

parameters � 2 RN�2N , to obtain the estimated

assignment matrix:

Y ¼ �X ðKÞ: ð10Þ

4.1. Loss function and evaluation metric

The proposed model solves the assignment task as

2N separate classi¯ers to jointly comply both con-

straints of the assignment problem formulation

(Eqs. (2) and (3)); at train stage, the predicted scores

are obtained from the output logits Y by applying

softmax operations, in both row-wise and column-

wise directions:

ri ¼ softmaxðyi;1 . . .yi;NÞ; ð11Þ
cj ¼ softmaxðy1;j . . .yN ;jÞ; ð12Þ

then, given the ground truth binary assignment

matrix Ŷ 2 RN�N , the cross-entropy loss is com-

puted for each of the 2N separate classi¯ers, in the

form of negative-log likelihood:

Lr ¼ � 1

N

XN

i¼1

XN

j¼1

rij � logðŷi;jÞ; ð13Þ

Lc ¼ � 1

N

XN

i¼1

XN

j¼1

cij � logðŷi;jÞ; ð14Þ

¯nally, the total loss L ¼ Lr þ Lc is backpropagated

to update the network weights.

At inference stage, the output prediction matrix

Y passes through a threshold criterion, to obtain a

binary assignment map, whose rows and columns

are one-hot encoded vectors. The criterion allows

for \collision" avoidance (e.g. multiple jobs assigned

to the same agent or multiple agents tasked with

the same job); it consists of an iterative procedure,

in which the assignment with the highest output

value (thus the highest probability of being a cor-

rect match) is selected from the prediction matrix.

Then the corresponding row and column are delet-

ed, and the process is repeated until a single entry

remains.

To benchmark our proposed approach we use

accuracy as de¯ned in Ref. 29, that is, the amount of

jobs correctly matching their optimal agents, divided

by N. This also lets us to compare directly with

methods proposed in Ref. 29.

4.2. Network architecture

The Graph Neural Network consisted of K ¼ 2 lay-

ers, which was experimentally proven to be the

best performing depth for each of the problem

dimensionality (N) evaluated. A higher number of

layers showed the same level of accuracy, with the

drawback of parameters, memory and time con-

sumption increase, as evidenced by the ablation

study of Sec. 5.2.

The MLP network used for message propagation

has one input layer of size 2N , an hidden layer with

128 neurons, ReLU activation and an output layer

of size N. This con¯guration was applied identically

for all investigated values: N ¼ f2; 4; 8; 12; 16g. The
choice of a single hidden layer for the MLP follows

the network design made by the authors of Ref. 35

Fig. 3. Illustration of the nodes and edges de¯nition, from
the cost matrix to the corresponding bipartite graph.
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and Ref. 70, where the MP operator (9) was origi-

nally introduced.

4.3. Dataset

The policy we adopted to generate data samples

follows the one implemented in the reference paper:

we generated 100.000 synthetic cost matrices,

drawing samples from a continuous uniform distri-

bution: ci;j � U ½0; 1Þ, then, 80% of such matrices

were used for training, while the remaining 20% were

reserved for the validation process.

When running experiments, several times with

identical settings, we ensured that the chosen

amount of data is su±ciently large to avoid the

model to over¯t. With the same criterion we gener-

ated 20.000 samples which are used for testing.

In order to further reduce the dependence of the

results with respect to a speci¯c data distribution, we

investigated a minor variation on train phase by

generating di®erent samples at every epoch, but did

not obtain a noticeable improvement.

The ground truth decision matrix Ŷ is obtained

at runtime for each sample, using the Hungarian

algorithm; speci¯cally we used themunkres71 Python

package which implements the original algorithm.

4.4. Compared learning approaches

The MLP and CNN approaches we took as com-

parison29 address LSAP by ¯rst decomposing it into

N separate sub-assignment problems on how to

assign one of N jobs to agent j. Only constraints of

Eqs. (2) and (4) are strictly guaranteed, while the

constraint of Eq. (3) is not taken into consideration

at train time, hence there may exist some collisions

such that one job may be assigned to di®erent agents

simultaneously. To prevent this issue, a greedy col-

lision-avoidance rule is applied to ¯nally state the

actual assignment.

The MLP and CNN architectures developed in

Ref. 29 consisted of N models in parallel; the former

has four layers with 32, 64, 256, and N hidden neu-

rons, and ReLU nonlinearity, while the latter (CNN)

includes ¯ve convolutional layers, each containing

32, 32, 32, 32 and N kernels of size 1� 1, and an

output projection map. In both cases, cross-entropy

is taken as objective criterion, while Adam72 is used

as optimization algorithm.

5. Experiments and Results

Models were trained up to 50 epochs; the learning

rate was initially set to the value of 6 � 10�3, and then

halved if validation loss is not improved within a

patience interval of ¯ve epochs. Empirically, it has

been found that the learning rate is halved only once

within the entire training stage; an extension of the

training interval does not lead to further improve-

ments. Stochastic Gradient Descent (SGD) was used

as optimization algorithm, with L2 weight decay

of 5 � 10�4. Once the training is over, the model

checkpoint with best validation accuracy is selected

and evaluated on the test set.

5.1. Results

We report in Table 1 the results obtained in terms of

accuracy, in conjunction with the bar plot of Fig. 4,

where we compared the proposed graph approach

with the other solutions described on Sec. 4.4: MLP

and CNN.

The proposed GNN model exhibited relative

performance improvements of 0, 2% (N ¼ 2), 2, 2%

Table 1. Accuracy performance comparison for the
proposed GNN architecture and reference learning
approaches, for di®erent size N.

Size N 2 4 8 12 16

MLP29 0.9849 0.9763 0.7019 0.5918 0.5614
CNN29 0.9974 0.9829 0.8295 0.6605 0.6274
GNN 0.9997 0.9660 0.8477 0.7856 0.7361

MLP CNN GNN

A
cc

ur
ac

y

Fig. 4. Accuracy comparison bar chart between the
proposed GNN architecture and reference learning
approaches.
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(N ¼ 8), 18, 9% (N ¼ 12) and 17, 3% (N ¼ 16) if

compared with the conventional CNN. Improve-

ments rise to 1, 5% (N ¼ 2), 20, 8% (N ¼ 8), 32,7%

(N ¼ 12) and 31, 1% (N ¼ 16) if compared with the

conventional MLP. Conversely, a slight worsening of

accuracy has been observed for N ¼ 4, however, the

signi¯cant improvement achieved as N increases

suggests that large LSAPs may bene¯t more from

the GNN approach than the CNN or MLP ones.

An interesting aspect which characterizes the GNN

framework is the limited amount of memory required

to store network parameters.

Since the MLP and the CNN approached the LSAP

problem as N di®erent classi¯cation sub-problems, the

parameters are shared to a limited extent within

each of these classi¯ers; moreover, each of them

needs the full cost matrix as input, which causes

a noticeable overhead. On the other hand, the

message passing operator (Eq. (9)) allows for e±-

cient reuse of the internal MLP, since it operates

at node-level. Table 2 reports the exact count

of learnable parameters and MAC, Multiply and

Accumulate operations involved for each of the

considered architectures for di®erent graph sizes;

the values have been estimated by performing in-

ference with a single-batch input sample. Figure 5

helps to better visualize the trends of required

parameters (Fig. 5, top) and MAC (Fig. 5, bottom)

as N increases.

Table 3 and and Fig. 6 show the peak RAM

memory use, for each of the considered methods,

when solving an instance of the assignment problem.

The results reveal that the CNN method has signif-

icantly more memory consumption than the MLP-

based one. This is largely due to the fact that the

allocation of the 2D convolutional kernels is quite

costly. It is important to note, as previously men-

tioned, that these two methods actually use N

models in parallel on sub-instances of the entire

problem. The GNN network is positioned between

MLP and CNN in terms of RAM usage, mainly due

to the locality of the graph-convolutional operator

and the fact it does not require N models in parallel.

As we can see it is always less demanding with

Table 2. Resource requirements and MAC operations for di®erent models.

Learnable parameters MACs

Size N 2 4 8 12 16 2 4 8 12 16

MLP29 38.8k 81.3k 183.1k 317.7k 497.4k 38.1k 79.8k 180.2k 313.3k 491.5k
CNN29 9.7k 13.7k 32.1k 64.4k 125.9k 26.4k 215.5k 1.79M 6.29M 15.46M
GNN 2.5k 4.9k 9.6k 14.4k 19.2k 18.4k 147.5k 1.18M 3.98M 9.44M

Fig. 5. Trend in demand for memory parameters
requirements (top) and MAC operations (bottom).

Table 3. Measurements of peak RAM memory usage for
the execution of a single LSAP instance. Values are in kB.

Size N 2 4 8 12 16

MLP29 6.1 12.2 24.6 37.3 50.2
CNN29 8.7 67.4 548.3 1900.4 4629.1
GNN 17.4 72.6 319.5 786.1 1480.0
Hungarian14 56.0 176.0 608.0 1296.0 2240.0

C. Aironi, S. Cornell & S. Squartini
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respect to the Hungarian algorithm, for all addressed

case studies (di®erent N values).

The peak RAM occupation allows us to estimate

the maximum memory footprint of a speci¯c solver,

and hence the hardware minimum requirements;

in order to get a better insight into resource con-

sumption (it is almost always possible to trade-o®

memory occupation for execution time) we perform

also, in parallel, a time-pro¯le analysis, reporting on

Table 4 and Fig. 7 an estimation of mean execution

time, obtained over 10.000 runs, between the pro-

posed approach, the comparison ones, and the

Hungarian algorithm implemented in plain Python

language.71 We can note a cubic trend in time

complexity, which makes the Hungarian algorithm

impracticable to apply on resource-constrained

devices, even for small dimensions.

Looking at Fig. 5 (bottom) we observe that the

MAC operations required by the MLP are signi¯-

cantly lower than those required by the GNN, how-

ever, Fig. 7 seems to indicate an opposite trend.

As before, this behavior is because execution times

do not depend exclusively on the number of

raw operations, but are also very sensitive to other

time-greedy operations such as read/write memory

accesses. Indeed, we expect that the GNN, making

heavy use of parameter sharing, can be signi¯cantly

fast even if it experiences a high load in terms of

MACs.

Figure 8 further emphasizes the trade-o® between

e®ectiveness and e±ciency introduced by the graph-

based approach, compared with the Hungarian

algorithm.

Figure 9 shows the comparison between the

accuracy obtained in terms of correct assignments

and the cost accuracy. The latter quanti¯es the

deviation of the obtained assignment cost from the

optimal one. As already mentioned, the GNN is a

sub-optimal solver, however, an interesting aspect

emerges from this graph: although the number of

correct assignments produced by the GNN is signif-

icantly lower than the optimal solution, the error in

Table 4. Measurements of CPU average load time when
processing a single LSAP instance. Times are in �s.

Size N 2 4 8 12 16

MLP29 177.2 340.8 639.2 1023.6 1314.4
CNN29 221.5 454.0 934.0 1731.0 2324.4
GNN 331.1 353.8 446.7 583.5 813.3
Hung.14 28.7 88.2 518.6 1719.2 4197.5

A
ve

ra
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 ti
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e 
(µ

s)

Problem size N

MLP CNN GNN Hungarian

Fig. 7. CPU average running times for the di®erent
algorithms in exam.

Fig. 8. Inference time (solid lines) versus accuracy
(dashed lines).
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Problem size N

MLP CNN GNN Hungarian

Fig. 6. Peak RAM memory usage for the di®erent algo-
rithms in exam.
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terms of total cost is quite small. This indicates that

the GNN is very e±cient in determining those

assignments that have a major impact on minimizing

total cost, while errors are concentrated on the

remaining assignments which have little impact on

total cost. To further con¯rm this behavior, we

performed additional experiments with N ¼ 24 and

N ¼ 32, although previous analyses stop at N ¼ 16

to comply with the con¯guration used in the com-

parison methods, MLP and CNN.

All experiments were conducted on an Ubuntu

16.04 machine, with six Intel(R) Core(TM) i7-6850K

CPUs @ 3.60GHz and 32GB RAM; network models

were developed in Python language with PyTorch

and PyTorch geometric73 framework libraries.

5.2. Ablation studies

For ablation studies on the proposed model, we

conducted experiments with di®erent parameters,

including batch size (BS) and number of GNN

hidden layers (K), to explore how these factors may

a®ect the overall accuracy.

Figure 10 demonstrates that a high batch value

decelerates the convergence in terms of total required

epochs. On the other hand, contrary to what was

reported in Ref. 29, a low batch size did not lead to

unstable convergence behavior. In fact we were able

to achieve the best results in the least number of

epochs, using the batch value of 1.

Figure 11 shows the results in terms of accuracy

and inference time, achieved for several values of

GNN hidden layers: K ¼ f2; 3; 4; 5g.

The lack of improvement in accuracy, as depth

increases, is due to a phenomenon, known in the

GNN literature as over-smoothing,74–76 according

to which node features tend to converge to the

same vector and become nearly indistinguishable as

the result of applying multiple graph convolutional

layers.

6. Scheduling of Smart Meter Data Access
in Electricity Distribution Grids

Nowadays, smart meters play a crucial role in the

operation of modern power distribution networks.

Although their functionality is mainly targeted for

billing purposes, they have the potential to enable

smart grid capabilities, such as forecasting of house-

hold consumption, photo-voltaic load matching and

A
cc

ur
ac

y

Epoch

BS=1 BS=4 BS=8 BS=16

Fig. 10. Validation accuracy at di®erent training epochs,
for di®erent batch size values.

Fig. 11. Comparison plot, showing the relationship be-
tween GNN network depth (K), accuracy level (dashed
lines) and average inference time (solid lines).
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Problem size N

Accuracy (assignments) Accuracy (cost)

Fig. 9. Trends in accuracy of exact assignments and
deviation from the minimum attainable cost.
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detection of outages and °ickers in Low Voltage (LV)

grids.77

Measurements of active power, current or voltage

data are made at speci¯c time intervals and rely on

bidirectional communication to transmit information

to a control center, utility or retail company.

These agents are coordinated through a central-

ized head-end system.78 Due to bandwidth restric-

tions in communicating, the head-end accesses

multiple meters sequentially, through data con-

centrators. The data are then transmitted in clus-

ters, from the concentrators to the head-end system,

but due to resource-constrained communication

networks, it is challenging to obtain the relevant

measurements in near real time.

Figure 12 depicts a high-level architecture of an

Advanced Meter Infrastructure (AMI), consisting

of Smart Meters (SMs), Data Concentrators (DC),

Head-End station (HE) and Distribution System

Operator (DSO) control center. The low bandwidth

AMI communication networks between DC and

smart meters result in high latency and infrequent

updates, which strongly a®ects data quality in real-

time data-demanding applications.

Classically, the information validity is quanti¯ed

by the so-called age,79 which is the time from mea-

surement until the data are being utilized. A deeper

link from the information age to the signal dynamics

leads to another common metric, called mismatch

probability80 (mmPr), which in previous works81 has

shown to be a useful parameter for describing infor-

mation quality.

Since the timings at which SMs are accessed

directly a®ects the age of the information, altering

the scheduling order can determine the quality of the

data information.

Several works addressed the scheduling problem

under the assumption of such metrics and concepts.

In addition to Refs. 82 and 83, which face the

problem without a speci¯c policy but with brute-

force analysis, Refs. 84–86 use joint routing and

TDM-based scheduling in wireless mesh networks.

These works optimized the scheduling algorithm

by taking into account communication network

constraints incurred due to wireless interference.

Recently, Farooq et al.87 experimented with the use

of the Hungarian algorithm to ¯nd the best sequence

for accessing smart meter data in case of low-

performance networks.

6.1. System description

A time diagram showing how smart meters are

accessed during an example reading cycle, is shown

in Fig. 13. The DC employs a reactive approach,

which means that it submits a request for access to

meter data, and the meter replies with the needed

response. This information is forwarded by DC to

DC

HE

SM N

DSO

SM 1

SM 2

cycle

…

…

Fig. 13. Example of SM data access time diagram.
Dashed arrows represent data requests from DC, while
solid arrows represent responses from SM. Dash-dot arrows
mark data feedback from DC to DSO through HE.

Data
Concentrator

Neighborhood Area Network

Head End

DSO
Control Center

Meter

Fig. 12. Typical Advanced Metering Infrastructure
(AMI).
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the Head-End (HE), which accumulates it and only

at the end of the cycle forwards it to the controller

or any other grid monitoring software. Every access

to meters is associated by a speci¯c access delay,

which takes into account both communication

stack delays and any potential cache or other sys-

temic optimization measures that may have been

used.

All of the smart meters' data are gathered within

one collection cycle. When the previous data are

transmitted to the controller, the subsequent cycle

starts. After all the readings are taken, there is

an idle time ti that can be used for features like

updating the ¯rmware or sending alerts.

Due to their position in the timetable, each meter

experiences di®erent ageing. For instance, on the

highlighted cycle of Fig. 13, meter N (smN) is

accessed shortly before data transmission to the DSO

system, since it is placed in the last position of the

read queue; as a result, smN will have the shortest

access delay and in a similar vein, sm1 will experi-

ence the longest access delay.

6.2. Information quality metrics

In this work, we considered the following perfor-

mance metrics in relation to the access strategies:

. Information Age: the period of time between

when data are acquired by the smart meter and

when they are ¯nally available to the DSO (for

simplicity, the feedback time from HE to DSO is

neglected). For example, the age of the nth meter

is expressed by

Agen ¼ tcc � tsm;n; ð15Þ

where tcc and tsm;n are taken from the same read

cycle (see Fig. 13).

. Mismatch probability (mmPr): the probability

that any of the N values of the information ele-

ments that are used at the requester does not

match the current true value at the remote loca-

tion, within a sensitivity threshold ":

mmPrðnÞ ¼ PfInðtccÞ � Inðtcc � AgenÞ > "g; ð16Þ

where Inð�Þ indicates the information message, i.e.

power, current or voltage readings, of nth smart

meter.

6.3. Dataset

To perform the simulations we used the free-access

dataset published by the Indian Council on Energy,

Environment and Water, as part of the study

\What Smart Meters Can Tell Us, Insights on

Electricity Supply and Use in Mathura and Bareilly

Households".88

The data were collected using smart meters

installed in nearly 100 urban households in Mathura

and Bareilly districts of Uttar Pradesh, India. These

smart meters recorded electricity consumption

patterns and power supply information at three-

minute intervals, from May 2019 to October 2021.

The data also provided information on the situation

of power supply (including hours timestamp, volt-

age, current withdrawn and other related vari-

ables). Figure 14 shows an example of the data

series contained in the dataset; the consumption

pro¯le recorded from two households, over a 24 h

range.

6.4. GNN assignment solver

To assess the impact of the access scheduling, we

performed an analysis based on the system described

above. We considered coverage areas with 4, 8, 16

and 32 smart meters and we made the following

assumptions about the system dynamics:

. Meters are queried at ¯xed intervals of 15 min.

This is currently the most frequent time resolution

of meters readings, as stated in Refs. 82 and 87. In

addition, this assumption allows for a high level of

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

A
ve

ra
ge

 c
on

su
m

pt
io

n 
[k

W
h]

Hour

  Meter BR36

  Meter BR49

Fig. 14. Consumption pro¯le of two di®erent households
over 24 h.
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abstraction that does not take into account the

type of connection between each meter and the

control center, whether it is through a slow or

unreliable line, thus with high latency times, or

through a reliable, wide-band network. We assume

that within the established time interval, data

communication has occurred correctly.

. All meters are polled every cycle. This is a sim-

pli¯cation since in real-world scenarios some SMs

may be queried at a lower rate and thus excluded

from one or more cycles. However, we bypass this

option, which can be the subject of a future

parametric study.

. Based on simulation studies, and relying on pre-

vious works82,87 we set the tolerance threshold for

the mmPr parameter ð"Þ at 10% of the mean

power value.

The ¯rst step in the analysis is to determine the

mmPr pro¯les for each of the meters, simulating

every possible position in the read queue. As men-

tioned earlier, we considered four di®erent scenarios

for the total number of SMs inside the domain of a

data concentrator: 4, 8, 16 and 32. We estimated the

mmPr values over a 24 h time frame, as we believe

that the nonstationarity of the consumption data

requires recalculation of the reading order after this

time interval, to maintain the optimality of the

scheduling criterion.

Figure 15 shows the trend of calculated mmPr

values during a 24 h time interval, for 8 smart meters

from the dataset. Both the observation day and the

smart meters were chosen with a random criterion,

only for illustrative purposes.

Once the mmPr values for a single day were

obtained, the problem of determining the reading

order was easily modeled as a Linear Sum Assign-

ment Problem (LSAP) because a one-to-one assign-

ment must be determined between the meters and

the positions in the read queue in order to identify the

lowest \cost" that is the overall mmPr of a schedule.

The cost matrix was then de¯ned by vectorizing

the mmPr curves and overlaying them in an N �N

grid, as shown on Fig. 16. The range of cost values

lies in ½0; 1�, so we could use the same training

strategy as de¯ned in Sec. 4.

6.5. Results and discussion

In the following, two methods were applied to solve

the assignment problem, the Hungarian algorithm,

as de¯ned in Ref. 14, and the GNN data-driven as-

signment method, which is sub-optimal but has

lower complexity. The results are presented in the

following tables.

Moreover, the fastest way to deal with the as-

signment problem is to disregard cost optimization

and make random assignments. This obviously

eliminates the computation time but drastically

lowers the level of accuracy, which, for a problem of

size N, can be calculated on a statistical basis as 1=N!

being N ! the possible number of valid assignments.

Table 5 shows the total cost obtained from each of

the two allocation methods, i.e. the minimum

attainable mean mmPr. This value cannot be zero,

since even with a few meters within each read cycle,
Fig. 15. Calculated mmPr pro¯les, in relation to infor-
mation age and position of SM in the reading queue.

Fig. 16. Example of the 8� 8 cost matrix, related to the
mmPr curves of Fig. 15.
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mismatch of information is virtually inevitable. The

minimum value of mmPr, given in the second col-

umn, also corresponds to that obtained by the

Hungarian algorithm, since it is optimal. In contrast,

the GNN approach fails to always determine the

correct assignment, leading to sub-optimal schedul-

ing. The column labeled with \Max" reports the

upper bound of mmPr values, achieved with the

worst scheduling. The rightmost column of Table 5

reports the percentage deviation between the GNN

prediction and the minimum value, within the

spanning range.

Table 6 shows the accuracy in terms of matching

assignments, between the optimal solution and the

GNN solver.

Finally, Table 7 reports the time results in the

execution of the two algorithms, which is the main

motivation in favor of the GNN approach.

As pointed out earlier, the size of the assignment

problem greatly a®ects the execution time of the

Hungarian algorithm, although it manages to reduce

its complexity to OðN 3Þ, which is much lower than

the brute-force solution. Table 7 shows that GNN

produces faster assignments, by about 1:1�, for

N ¼ 8, 5:1� for N ¼ 16 and 28:2� for N ¼ 32. The

trend suggests that the advantage would grow for

larger N. This is signi¯cant in real-world scenarios, as

some smart grids may hold up to a hundred meters

within the same subsystem, as stated in Ref. 82.

7. Conclusions

In this work we proposed a novel learning frame-

work by adapting a data-driven approach of the

linear sum assignment problem, and then compared

the performances with two existing DNN-based

strategies.

We demonstrated experimentally that the pro-

posed approach has competitive performance, com-

pared to previous MLP and CNN based approaches,

regarding small assignment problems. For larger

problems it is able to outperform signi¯cantly these

approaches, while requiring signi¯cantly less

computational resources.

Subsequently, this study introduced the typical

components of an AMI, Advanced Meter Infra-

structure of a smart grid, explaining how a proper

scheduling of the smart meters query order can

minimize information obsolescence during the data

collection process. Smart meter power readings from

di®erent grid spans are employed, as experimental

settings. Although simulation results show lower

accuracy of the GNN approach compared to the

optimal solution, there is a notable gain in compu-

tational demand and execution time, the more so as

the number of counters in the neighborhood area

network is larger.

Furthermore, we observed that the incorrect

assignments of the GNN network actually minimally

a®ect the error in terms of total cost. This indicates

that although the network has been trained to min-

imize the assignments on a binary cross-entropy

basis, it also succeeds to exploit the cost values on its

decision mechanism, and tends to produce assign-

ments which while not optimal (lower accuracy)

have total assignment cost close to the optimal so-

lution.

Future work will attempt to explore new appli-

cation areas for the assignment problem, such

as integrating the proposed GNN solver into a

Table 5. Assignment cost, e.g. mmPr values obtained by
the Hungarian algorithm (Min), the worst possible solution
(Max) and the GNN method.

Problem size Min Max GNN Err %

N ¼ 4 0.4134 0.5309 0.4153 1.61%
N ¼ 8 0.5032 0.6559 0.5071 2.55%
N ¼ 16 0.5661 0.7195 0.5699 2.48%
N ¼ 32 0.6318 0.8057 0.6353 2.01%

Table 6. Accuracy levels obtained by
the Hungarian algorithm and the GNN
method.

Problem size Hungarian GNN

N ¼ 4 100% 85.0%
N ¼ 8 100% 75.0%
N ¼ 16 100% 66.5%
N ¼ 32 100% 65.0%

Table 7. Mean execution time for a single-
batch LSAP instance. Values are in �s.

Problem size Hungarian GNN

N ¼ 4 88.2 353.8
N ¼ 8 518.6 446.7
N ¼ 16 4197.5 813.3
N ¼ 32 34064.8 1209.0
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speaker-independent multi-talker speech separa-

tion model89–91 in order to increase performance

or speed up training time. In such systems the

network produces multiple outputs in an unpre-

dictable order, which must be assigned to the cor-

responding target signals to perform properly

supervised training. Assignment is made based on a

metric that quanti¯es the similarity between each

target signal and the possible candidate output.

Another potential application we might consider

is the use of the GNN LSAP solver for Multi-Object

Tracking and Segmentation (MOTS). This involves

not only detecting and segmenting objects in a

sequence of video frames, but also assigning consis-

tent IDs to each visible instance of the same object.

Typically, this is formulated as consecutive assign-

ment problems involving a few dozen objects and

must be carried out under tight constraints, to be

in synch with a real-time video stream.92 In such

context, the use of the proposed sub-optimal GNN

solver could bring considerable advantage.
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