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Background and objectives: Timely identification of dysarthria progression in patients with bulbar-onset 
amyotrophic lateral sclerosis (ALS) is relevant to have a comprehensive assessment of the disease evolution. 
To this goal literature recognized the utmost importance of the assessment of the number of syllables uttered by 
a subject during the oral diadochokinesis (DDK) test.

Methods: To support clinicians, this work proposes a remote deep learning-based system, which consists (i) 
of a web application to acquire audio tracks of bulbar-onset ALS patients and healthy control subjects while 
performing the oral DDK test (i.e., repeating the /pa/, /pa-ta-ka/ and /oo-ee/ syllables) and (ii) a DDK-AID 
network designed to process the acquired audio signals which have different duration and to output the number 
of per-task syllables repeated by the subject.

Results: The DDK-AID network overcomes the comparative method achieving a mean Accuracy of 90.23 in 
counting syllables repeated by the eleven bulbar-onset ALS-patients while performing the oral DDK test.

Conclusions: The proposed remote monitoring system, in the light of the achieved performance, represents an 
important step towards the implementation of self-service telemedicine systems which may ensure customised 
care plans.
1. Introduction

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegener-

ative disease of adulthood (the average age of sufferers is 58-60 years 
old). It is the most common motor neuron disease and has a preva-

lence of about 0.6 and 3.8 per 100000 person-years [1,2]. ALS causes 
the gradual loss of spinal, bulbar and cortical motor neurons, leading to 
paralysis of voluntary muscles and even respiratory ones [3].

The occurrence of ALS-related bulbar symptoms, such as dysarthria, 
denotes a bulbar involvement in the ALS evolution and it repre-

sents a crucial milestone in the development of the bulbar-onset ALS. 
Dysarthria encompasses a range of neurological speech disorders char-

acterized by irregularities in the strength, speed, range, steadiness, tone, 
or precision of movements involved in breathing, phonation, resonance, 
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articulation, and prosody [4]. Thus, this sign has devastating conse-

quences on an individual’s ability to communicate and quality of life 
[5].

Identifying the evolution of dysarthria has a pivotal clinical value: to 
predict the progress of the disease, to prescribe compensatory strategies 
(e.g., assistive communication devices) for ensuring those who are af-

fected to live as well as possible, and to find new outcome measures for 
clinical trials [6]. Although dysarthria assessment holds significant im-

portance, it primarily relies on visual observation by clinicians and the 
usage of the Robertson dysarthria profile. This is a clinical rating scale 
with different items to assess various aspects – such as breathing, phona-

tion, facial musculature, diadochokinesis (DDK), reflexes, articulation, 
intelligibility and prosody – as to determine the extent of impairment 
and plan an appropriate treatment plan [7]. Among the tasks from the 
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Robertson Dysarthria Profile, the longitudinal evaluation of speaking 
rate during the test of oral DDK is of utmost importance to map the 
dysarthria progression [8–10]. DDK is a physically-demanding test deal-

ing with the rapid repetition of syllables in a time interval ranging from 
30 seconds to one minute [11]. The procedure requires both the rep-

etition of single syllables (as: /pa/), also known as alternating motion 
rate, or polysyllables (as: /pa-ta-ka/, or /oo-ee/), also referred as se-

quential motion rate [12,13]. Uttering these syllables (/pa/, /ta/, /ka/, 
/oo-ee/) require bilabial, dental, velar and vowel actions. As a conse-

quence, possible difficulties in conducting DDK test over time, such as 
a reduced speaking rate with respect to the previous time, may timely 
reveal the presence of bulbar ALS-related oral-motor deficits [8,6,14].

Despite its clinical relevance, oral-DDK test is mainly performed 
during the outpatient assessment and the clinicians directly evaluate 
patients by counting the number of syllables repeated by the subject 
for each of the tasks [15]. This procedure is sporadic and suffers from 
fatigability bias, induced in the patients by the travel to the facil-

ity which highly influences their performance during the evaluation 
[5,16,17]. Moreover, the assessments are often collected in paper for-

mat, jeopardising data availability, sharing and longitudinal consult-

ing [6,18]. Computer-assisted methodologies, based on the analysis of 
audio recordings, have been proposed in literature to automatically 
evaluate patients’ performance in the oral DDK test [19,20]. However, 
these systems are designed to operate in a controlled environment and 
with high-performance audio acquisition systems.

With the view to support clinicians in the automatic and close moni-

toring of dysarthria, the proposed work presents a convolutional neural 
network (CNN)-based system to process audio signals and remotely 
evaluate the oral-DDK test. The system is validated on recordings from 
patients with bulbar-onset ALS and healthy control subjects while per-

forming the three tasks of repeating the /pa/, /pa-ta-ka/ and /oo-ee/ 
syllables for 30 seconds. The subjects involved in the study performed 
the test at home with consumer acquisition devices – i.e., earphones 
connected to smartphones, tablets or PCs – and the CNN automatically 
counted the number of syllables repeated for each of the tasks. The in-

novative contributions of the work are the following:

• The implementation of a custom network architecture, namely 
DDK-AID network, inspired by the general-purpose object detector 
in [21]. The DDK-AID network, unlike the one proposed in [21], (i) 
reduces the size of the bounding box detection from 2D (width and 
height) to 1D (width), to save computation and (ii) inputs audio 
signals variable in duration.

• The implementation of an on-the-fly methodology to create syn-

thetic training-audio signals, from real ones, of people performing 
the oral DDK test. The aim of this methodology was to tackle 
the variability in both bulbar-onset ALS population’s vocal perfor-

mance and the use of consumer devices for acquisitions, all while 
enhancing the network’s generalization capabilities when applied 
to recordings obtained in uncontrolled scenarios [19].

• The proposal of a remotely self-usable prototype system to perform 
the oral DDK test at home, consisting of a web-application that the 
subjects involved in the study can use on their personal device.

Pursuing studies on self-service telemedicine systems has, of all, the 
value of: broadening the possibilities of research, favouring the collec-

tion of innovative assessment indexes for clinical trials, and actively 
involving patients in their care plan, allowing them to carry out assess-

ments in a familiar environment while feeling almost in touch with their 
clinical reference.

The rest of the paper is organized as follows: Sec. 2 presents the rel-

evant state-of-the-art contributions in the field of oral DDK-test assess-

ment in dysarthric subjects. Sec. 3 presents the implemented method-

ology while technical details for enabling fair comparisons are shown 
2

in Sec. 4. The results achieved are detailed in Sec. 5 and discussed in 
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Sec. 6. Sec. 7 concludes the work and proposes possible future develop-

ments.

2. State of the art

In the past decades, some computer-based approaches were devel-

oped to support clinicians in assessing patients’ performance while exe-

cuting the oral DDK test.

Rong in [6] proposes a method to automatically monitor ALS pa-

tients while performing the oral-DDK test. The approach is based on 
the extraction of vocal features from the audio signal and the subse-

quent application of wavelets to map the temporal pattern of syllable 
repetitions.

Similarly in [22,23], the authors apply filtering techniques before 
implementing both a selective-search algorithm to identify signal peaks 
and clustering to discern those most likely to be a DDK-repetition.

These approaches were validated for ALS-dysarthric patients. How-

ever both acquisition protocols require audio signals to be recorded in 
quiet rooms, with performant microphones (e.g., head-mounted con-

denser microphone) and in controlled scenarios (i.e., with supervision 
by clinicians). Indeed, the implemented audio-processing methodolo-

gies mainly rely on standard signal-processing techniques which may 
be unsuitable for tackling highly variable audios in a dataset i.e., ac-

quired with consumer devices and in uncontrolled scenarios typical of 
telemedicine systems [24].

Inspired by recent considerations that showed the potentiality of 
deep learning over standard signal-processing techniques when dealing 
with multimedia data in closer fields of research [25,26], in [19] the au-

thors implement a semi-automatic system consisting of two subsequent 
CNNs. The experimental approach, designed for dysarthric patients but 
tested on healthy control subjects only, assesses subjects’ performance 
while carrying the DDK-test out via a sliding-windowing algorithm. 
Then, a corrective module enables the manual refinement of networks’ 
predictions. Despite the breakthrough in implementing deep-learning 
procedures, the semi-automatic nature of the approach always requires 
the intervention of a clinician. Furthermore, the use of two subsequent 
networks has been outperformed by the implementation of individual 
multi-task frameworks [27].

With the view to overcome limitations posed in [19], in [28], the 
authors implement a fully-automatic framework based on Faster R-CNN 
to assess DKK-test in patients suffering from multiple sclerosis. The pro-

posed approach is computationally burdensome (number of trainable 
parameters ∼60 M) and, when tested on bulbar-onset ALS patients, per-

formance was not satisfactory. Indeed, as proven in [23], the complexity 
of the network may bring the training data to be memorized. This causes 
the network to lose its effective capacity in handling the high variabil-

ity inherent in data in terms of vocal performance and vocal alterations 
induced by pathology trajectory [29].

It is worth noting that these two latter approaches, as the previous 
ones [6,22,23], handle signals acquired in a controlled scenario, more-

over, they process audio signals having the same duration as to have 
inputs equal in size for the fully connected (FC) layers. These strict 
requirements may hamper the translation of such computer-assisted 
technologies in the actual clinical practice while hardening the possi-

bility of integrating the methods in a telemedicine application.

To overcome the state-of-the-art limitations, this paper presents a 
system based on deep learning to remotely assess the number of syl-

lables repeated by patients with bulbar-onset ALS and healthy control 
subjects while performing the oral DDK test. Inspired by work in closer 
fields [28] our system exploits the potential of deep learning to cope 
both with the complexities of data acquired with consumer micro-

phones and the audio-data variability induced by dysarthria staging in 
the involved patients.

Unlike other state-of-the-art contributions, our DDK-AID model has 
a lower computational complexity – and consequently lower costs – 

with the view to deploy such a monitoring application within a cloud 
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Fig. 1. Workflow of the convolutional neural network (CNN)-based system to remotely assess the performance of healthy control and bulbar-onset amyotrophic 
lateral sclerosis (ALS) subjects who carry out the oral diadochokinesis (DDK)-test.
infrastructure [30]. Moreover, the network was trained and validated 
from audio recordings (i) of different duration, following guidelines in 
[31] and (ii) acquired with commonly used devices and in uncontrolled 
environments (each subject was free to use the application at home 
without clinician’s supervision). The workflow of the proposed system 
is shown in Fig. 1.

3. Methods

3.1. Data acquisition

Audio recordings were acquired from 32 healthy control subjects 
and 11 bulbar-onset ALS patients while carrying out the oral-DDK test.

The acquisitions were made via the Homely Care web application 
(Fig. 2) that the subjects involved in the study can use on their personal 
device such as smartphone, computer, tablet. Homely Care enables sub-

jects to sequentially perform the 3 oral-DDK tasks of repeating: (i) the 
/pa/ syllable (ii) the /oo-ee/ syllables and (iii) the /pa-ta-ka/ syllables, 
while recording the audios. Following the protocol in [31], each task 
can last a maximum of 30 seconds and the subject, eventually feeling 
fatigued, has the possibility to stop the acquisition at any time.

As shown in Fig. 2, the first page of the application explains to the 
user how to perform the test optimally. For example, the user is asked 
to wear headphones with a microphone to capture qualitatively better 
audio recordings. Tutorials with a speech language pathologist while 
performing the oral-DDK test are provided too as well as instructions to 
start a recording.

The application also allows the user to eventually discard and repeat 
the audio acquisition if adverse events occurred such as the sudden 
ringing of the telephone or intercom.

During the execution of the test, the user was reminded to: (i) ac-

quire in a room without TV and radio turned on, (ii) wear earphones 
with microphone.

Then, the acquired audio recordings were safely stored on the cloud 
architecture and analysed via the DDK-AID network.

As showed in Table 1, a total of 350 audio acquisition (approxi-

mately 58 minutes of recordings) were initially acquired via the Homely 
Care web application. These acquisitions are the result of a first-step 
of dataset cleaning: some recordings (e.g., 5 recordings of /pa-ta-ka/ 
syllables-repetition task) were excluded due to excessive background 
noise, in most cases caused by a person talking loudly in background.

The total number of acquisitions made by the subjects involved in 
the study is shown in Fig. 3 for the /pa-ta-ka/ syllables-repetition task. 
3

Similar trends occur for the other two oral-DDK tasks. As visible from 
Table 1

Total number of recordings acquired through the Homely Care application for 
each of the 3 oral diadochokinesis (DDK) tasks.

/pa/ /pa-ta-ka/ /oo-ee/

Bulbar-onset ALS patients 97 92 97

Healthy control subjects 17 32 15

the pie chart, healthy control subjects perform the DDK task only once, 
whereas bulbar-onset ASL patients were left to use the Homely Care 
application free for 4 months.

3.2. Data preprocessing

Inspired by works in closer fields [28,32,33], these audio acquisi-

tions are processed by the DDK-AID network as mel spectrograms (𝑆) 
extracted from the audio recorded at a sample rate of 8000 Hz. The 𝑆
is calculated over 64 bands using a Hann window of 0.064 s length and 
a 25% shift. To accentuate the energy of the syllables in frequency we 
applied the following equation obtaining an enhanced 𝑆 (𝑆𝑒):

𝑆𝑒 =
3
√
10 log(𝑆(𝜏, 𝜈) + 1) ∀𝜏 ∈ [0, 𝑇 ],∀𝜈 ∈ [0,64] (1)

Where 𝑆(𝜏, 𝜈) is a scalar entry of the 𝑆 at time (𝜏) and frequency 
band (𝜈). T is the total duration of the acquisition.

The result obtained was then normalised as follows:

𝑆𝑁 =
𝑆𝑒(𝜏, 𝜈) −𝑚𝑒𝑑𝑖𝑎𝑛(𝑆𝑒)
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑆𝑒,95)

∀𝜏 ∈ [0, 𝑇 ],∀𝜈 ∈ [0,64] (2)

3.3. Training data generation

The choice to let patients use the application freely led to the collec-

tion of an unbalanced number of acquisitions per subject (see Table 1

and Fig. 3).

Therefore, to lower the risk of overfitting [34] during training, for 
each subject involved, we decided to randomly extract one single audio 
recording per task. This has resulted in a pre-training dataset of ap-

proximately 21 minutes. The original 58-minutes dataset partitioning is 
outlined in Fig. 4.

To make up for the lack of data and to increase data variability, 
these 21 minutes of recordings were used as a prior to implement 
a methodology to generate the actual training dataset. This dataset 

consists entirely of generated audio signals both for bulbar-onset ALS 
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Fig. 2. Example screenshot of the Homely Care web application, enabling users to perform the oral diadochokinesis (DDK) test. The screen on top shows the starting 
page of the application. This has all the information the users need to perform the oral DDK test at home, e.g., it invites the users to wear headphones to ameliorate 
the quality of the audio acquisition, offers the users an audio tutorial on how best to carry out the test. On the bottom the actual acquisition screen is shown. The 
users have the option to press play when are ready to perform the test. They can stop when they want (considering that the test lasts a maximum of 30 seconds). 
When performing the oral DDK test, the users are always advised to record in non-noisy environments. In addition, the users have the option of deleting the recording 
and repeating the test if a sudden noise or adverse event has occurred.
Fig. 3. Pie chart showing the number of acquisitions for the /pa-ta-ka/ repe-

tition task produced by the subjects involved in the study. The larger the slice 
area, the higher the number of acquisitions conducted by the subject. Blue de-

notes bulbar-onset amyotrophic lateral sclerosis (ALS) patients (the two distinct 
shades of blue identify individual patient’s acquisitions), orange denotes healthy 
control subjects (the two distinct shades of orange identify individual control 
subject’s acquisition). As visible, healthy control subjects performed a single 
oral DDK-test recording. In contrast, bulbar-onset ALS patients were free to use 
the application, and the areas of the blue pie chart slices are consequently vari-

able.

patients and healthy control subjects (Fig. 4). The training-dataset gen-
4

eration follows the procedure described below:
• As shown in Fig. 5, from each spectrogram of subject 𝑖 two groups 
of portions were selected. The one with the syllable repetition 
𝐹𝑖 = {𝑓𝑖,0, 𝑓𝑖,1, ..., 𝑓𝑖,𝑑} and that with pause between two consecu-

tive repetitions 𝐸𝑖 = {𝑒𝑖,0, 𝑒𝑖,1, ..., 𝑒𝑖,𝑚}. Where 𝑑 and 𝑚 are the total 
number of syllables and pauses noted in a single audio recording, 
respectively.

• To maximise the variability of the generated spectrograms – and 
consequently mitigate overfitting – all the 𝐸𝑖 were merged in a sin-

gle group 𝐸 = {𝑒0, 𝑒1, ..., 𝑒𝑧}, without distinguishing the subject from 
whom they were recorded. In contrast, 𝑓𝑖,𝑗 portions were kept sep-

arate by subject. 𝑧 represents the total number of pauses annotated 
in the pre-training dataset.

• During the training, spectrograms were on-the-fly generated by 
alternately concatenating the previously cut 𝑓𝑖,𝑗 and e𝑗 portions 
(Fig. 6). This procedure enables, for each subject, to generate au-

dio signals lasting differently and with intervals between consec-

utive syllables repetition variable in duration as well, simulating 
possible oral DDK test-induced fatigue. The per-task spectrograms 
generation algorithm runs on-the-fly at every batch as to allow the 
network to handle new data each time. Its flow is illustrated below:

1. Choice of subject which 𝐹𝑖 portions belong to. Considering 
that, the original audio signals have variable number of sylla-

ble repetitions per time (e.g., minimum 8 to maximum 60 for 
the /pa-ta-ka/ syllables repetition), a weighted random strategy 

is adopted to favour subjects with a higher number of syllable 
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Fig. 4. Original dataset partitioning. Considering the increased number of audio acquisitions made by bulbar-onset ALS patients, from the original 58-minutes 
pre-processed dataset we randomly derived two sets: (i) a first set -namely pre-training set- with 21 minutes of audio recordings from bulbar-onset amyotrophic 
lateral sclerosis (ALS) patients and healthy control subjects and (ii) a second one with the remaining 37 minutes of recordings from bulbar-onset ALS patients. The 
21 minutes of audio recordings serve as a prior for generating fictitious audio signals from training and validation purposes. While we test the performance of the 
network on the 37 minutes of recordings from bulbar-onset ALS patients and on the original recordings of healthy control subjects in the pre-training set. We would 
like to emphasise that no original signals were used in the training and validation phase, but were only generated with the procedure Training data generation.

Fig. 5. Spectrogram partition consisting of three /pa/ syllables repetition. The f𝑖,𝑗 portions delimite the duration of the /pa/ syllable while the e𝑗 portions identify 
the time between the repetition of two successive /pa/ syllables. 𝑖 is an index that identifies a specific subject while 𝑗 is a progressive index to distinguish different 
/pa/ syllables within the audio.
repetitions. In particular, at each iteration of the algorithm, the 
𝑖-th subject had a probability p𝑖 of being selected equal to:

𝑝𝑖 =
|𝐹𝑖|∑𝑛

𝑘=0 |𝐹𝑘|
(3)

Where |𝐹𝑖| represents the cardinality of the set (i.e., the number 
of repetitions of the 𝑖 subject) and 𝑛 the number of subjects 
involved in the study.

2. Choice of number of 𝑓 -repetitions to be included in each 
generated signal. The number of repetitions (namely 𝑠) is ran-
5

domly fixed each time to generate the signal.
3. Definition of the average duration of the 𝑓 -portions. Starting 
from the set 𝐹𝑖, a single portion 𝑓𝑖,𝑗 is randomly extracted. The 
duration of this portion (𝐿𝑒𝑛(𝑓𝑖,𝑗 )) constrains the average du-

ration of the subsequent generated portions. In particular each 
portion of the generated spectrogram is stretched based on a 
Gaussian-distribution procedure as follows:

𝐺(𝑥) = 1√
2𝜋𝜎2

𝑒
−(𝑥−𝜇)2

2𝜎2 (4)
Where 𝜎 is experimentally set to 0.1 and 𝜇 is equal to 𝐿𝑒𝑛(𝑓𝑖,𝑗 )
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Fig. 6. On-the-fly training audio-signals generation. f𝑖,𝑗 portions, the portions of the signal with the syllable repetition, were kept separate by subject while e𝑗 ones, 
the portions of the signal between two subsequent repetitions, were kept together.
4. Alternating choice of e𝑗 - and 𝑓𝑖,𝑗 -portions.

1 A portion e𝑗 is randomly selected from 𝐸.

2 The chosen e𝑗 is stretched to 𝑒𝑗 with a duration 𝐿𝑒𝑛(𝑒𝑗 ) equal 
to:

𝐿𝑒𝑛(𝑒𝑗 ) = 𝛼𝐺(𝑥) ∣𝑥∈ℝ (5)

Where 𝛼 is a number between 0 and 1 which was set fol-

lowing experimental assessment on real signals. It serves to 
make the silence instants of the generated signal consistent 
with those of the real one.

2a To simulate subject’s breaks, which are particularly frequent 
in bulbar-onset ALS patients, as experimentally verified by 
the analysis of the collected dataset, the 5% of the cases fol-

lowed the equation below:

𝐿𝑒𝑛(𝑒𝑗 ) = 𝛽𝐺(𝑥) ∣𝑥∈ℝ (6)

Where 𝛽 was experimentally set equal to 10.

3 A portion 𝑓𝑖,𝑗 is randomly selected from 𝐹𝑖.
4 The chosen 𝑓𝑖,𝑗 is stretched to 𝑓𝑖,𝑗 making its duration equal 

to 𝐿𝑒𝑛(𝑓𝑖,𝑗 ), according to the following equation:

𝐿𝑒𝑛(𝑓𝑖,𝑗 ) =𝐺(𝑥) ∣𝑥∈ℝ (7)

In Fig. 7 are shown both generated (top) and real (bottom) audio 
6

spectrograms from two different subjects.
3.4. DDK-AID network

A model inspired by You Only Look Once (YOLO) X [21] network 
was used to tackle the DDK-test assessment. The network, showed in 
Fig. 8, has 7 convolutional layers followed by 2 FC layers. As in [21], 
the DDK-AID Network is an anchor-free CNN. Excluding the anchor-

ing mechanism was driven by two motivations: (i) to avoid a clustering 
analysis to determine a set of optimal anchors and (ii) to reduce the 
complexity of the detection heads and the number of per-image predic-

tions. Unlike YOLO X, the DDK-AID network is originally designed to 
handle inputs of variable size along the temporal dimension. This is rel-

evant to the task we deal with, where subjects are left free to perform 
the DDK-test for a maximum of 30 seconds possibly stopping when they 
get tired.

Indeed the DDK-AID network takes in input the original spectro-

gram with dimension (𝑤, ℎ, 1) where 𝑤 are the signal’s frames and 
varies from acquisition to acquisition and ℎ are the bands (i.e., 64). 
Prior to entering the first convolutional layer, the spectrogram under-

goes a padding operation aimed at making the input dimension 𝑤 a 
multiple of 128. This way, the new padded spectrogram dimension be-

comes (𝑤 + 𝑝, ℎ, 1) with 𝑤 + 𝑝 = 128𝑘, 𝑘 ∈ ℕ. Controlling the padding 
operation at the input level -and not at each convolutional layer- allows 
for a 1-to-1 correspondence with the output produced by the network, 
enabling DDK-AID predictions to be consistent in size with respect to 
the original-spectrogram annotations, simplifying loss management.

Then, the padded spectrogram enters 7 subsequent convolutional 
layers. Each of these layers is activated by a Leaky Rectified Linear Unit 

(ReLU) and implements batch normalization. The convolutional layers 
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Fig. 7. The spectrogram shows the generated /pa-ta-ka/ syllables repetition (at the top of the figure) and real one (at the bottom of the figure). Sample of annotations 
(i.e., midpoint and length of the segment delimiting the syllables repetition) for training and validation sets are shown in blue.

Fig. 8. DDK-AID network flow. The network takes in input the padded original spectrogram with dimension (𝑤 + 𝑝, ℎ, 1) where 𝑤 are the original signal’s frames 
(i.e., resulting from the concatenation of the selected 𝐿𝑒𝑛(𝑓𝑖,𝑗 ) and 𝐿𝑒𝑛(𝑒𝑗 )), 𝑝 is a padding to set 𝑤 + 𝑝 = 128𝑘, 𝑘 ∈ ℕ and ℎ are the bands (i.e., 64). This input is 
processed via convolutional layers and iterative-fully connected (FC) layers and outputs 𝑛 spectrogram-segments (defined by their centre and width) according to the 
task (i.e., repetition of the /pa/, /pa-ta-ka/ and /oo-ee/ syllables). The iterative action of the FC layers on the output produced by the convolutional ones is shown 
too. Contextually the figure displays the mapping of the output produced by the FC layers to the input (which is shown here only to improve the understanding 
of the methodology) to identify the spectrogram-segments. The outputs of the network are depicted in blue and are: (i) the width of the segment delimiting each 
syllable repetition and its midpoint and (ii) the level of confidence associated to each predicted portion (in the figure these confidences are 0.99, 0.88, 0.23, 0.78, 
respectively). To simplify image interpretation, we considered a 𝑤 = 610-frames signal.
progressively reduce initial 𝑤 + 𝑝 and ℎ while increasing the number of 
feature maps (𝑐) up to the last convolutional layer whose output is a 
features block with dimension (𝑤 + 𝑝)∕128, ℎ and 𝑐 equal to 1 and 256, 
respectively.

To handle feature blocks from the last convolutional layer of vari-

able size, we implement FC-iterative layers. Indeed, as shown in Fig. 8, 
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the flattening operation is carried out iteratively on equally-sized por-
tions (size (𝑠) = 3) of the last padded-features block resulting in FC input 
layers of 768 (𝑐 ⋅ 𝑠 = 768). These sizes are the result of an iterative pro-

cedure that runs a window of amplitude 3 and stride 1 along the last 
padded features-block. At each iteration the output of the FC layers 
(namely the spectrogram-segments defined by their centre and width, 
as shown in Fig. 8) is mapped onto the corresponding region of the 

padded spectrogram in input to the DDK-AID network. This is done by 
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considering the proportion between the width of the padded original 
signal and that of the FC layers-input.

As in YOLO networks [27], the outputs of the FC layers, given by 
each iteration are (i) the width of the segment delimiting each sylla-

ble repetition and its midpoint identified within the portion of the last 
padded-features block associated with the iteration, and a (ii) confi-

dence associated with each predicted portion (see Fig. 8). To filter out 
predicted portions with an associated confidence too low, we tuned a 
minimum exclusion confidence-threshold (𝑚𝑖𝑛𝑇ℎ) as done in [35]. The 
tuning was conducted considering a confidence threshold varying be-

tween 0.1 and 0.9.

The choice of not deriving the bounding-boxes coordinates, nor-

mally in output from the detection networks [36], but only the infor-

mation necessary to get the amplitude of each 𝐿𝑒𝑛(𝑓𝑖,𝑗 )-portion stems 
from the will of lowering computation. Indeed the main clinical need 
there, was the retrieval of the number of syllables repeated by the sub-

ject for each oral DDK task [6]. We derived this outcome by counting 
the number of predicted portions in output from the DDK-AID.

4. Experimental protocol

4.1. Dataset

The dataset used in this work was recorded by bulbar-onset ALS sub-

jects who consecutively referred to Azienda Ospedaliero-Universitaria 
delle Marche (Italy) and healthy control subjects. The subjects involved 
were both males and females and had a similar age distribution. We 
excluded from the study subjects with tracheostomy, percutaneous en-

doscopic gastrostomy, cognitive impairment, without a caregiver and 
concomitant diseases that could interfere with communication skills 
or could affect life expectancy. To this goal, bulbar-onset subjects un-

derwent assessment scales: (i) the ALS functional rating scale revised 
(ALS-FRS-R) to assess the severity of the disease by characterising fea-

tures such as patient’s motor, breathing and swallowing abilities (total 
score = 48, the lower the worst), (ii) the Montreal cognitive assessment 
(MoCA) to assess a cognitive impairment (total score = 30, the lower 
the worst) and (iii) the dysphagia outcome and severity scale (DOSS) to 
assess dysphagia’s severity i.e., the patient’s difficulty to swallow foods 
or liquids (total score = 7, the lower the worst). Our bulbar-onset ALS 
subjects’ characteristics per-scale are listed below:

• 33 ≤ ALS-FRS-R ≤ 42

• 26 ≤ MoCA ≤ 30

• 3 ≤ DOSS ≤ 6

After approval of the study by the ethics committee, written in-

formed consent was signed by each subject involved. After the obtain-

ment of the registration permission we sent them the link to use the 
Homely Care web-application.

Each audio signal preprocessing was performed with the procedure 
described in Sec. 3.2.

The training and validation set were composed by all on-the-fly gen-

erated audio signals (see Fig. 4) with the procedure described in Sec. 3.3

and they differ from each other for the subjects involved, i.e., 80% of 
the subjects were used to train while 20% to validate implementing a 
stratified-sampling fashion.

The test set had original audio recordings acquired by bulbar-onset 
ALS and healthy control subjects involved (see Fig. 4). Specifically, the 
bulbar-onset ALS data used to test the network derived from the 37 min-

utes of original audio recordings excluding the 21 minutes of recordings 
exploited for CNN training and validation (see Sec. 3.2). In a different 
manner, for the healthy control subjects we used the original audios 
from which the on-the-fly generated audios were derived.

In the training and validation sets each spectrogram-segment was 
noted (namely the width of the segment and its centre, see Fig. 7) 
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along-side the number of repeated syllables. The annotation of each 
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audio recording in the testing set, consisted in the number of repeated 
syllables, namely the actual outcome of clinical interest for the speech 
language pathologists involved in the study.

4.2. Training settings

To train the DDK-AID network, we set an initial learning rate of 
0.0001. We set a number of epochs equal to 100 and used a batch 
size of 8 as a trade-off between memory constraints and computational 
resources available. Adam was used to optimize the network. The im-

plemented loss function was inspired by [27] and was re-engineered to 
pursue the task of interest and save computation. In particular, all the 
YOLO inspired networks output 2D bounding boxes. Here we lower this 
output from 2D to 1D as to handle spectrogram-segments, as follows:

𝐿𝑜𝑠𝑠 = 𝜆𝑐𝑜𝑜𝑟𝑑

𝑆2∑
𝑖=0

𝐵∑
𝑗=0

1𝑜𝑏𝑗
𝑖𝑗

[(𝑥𝑖 + 𝑥𝑖)2]+

𝜆𝑐𝑜𝑜𝑟𝑑

𝑆2∑
𝑖=0

𝐵∑
𝑗=0

1𝑜𝑏𝑗
𝑖𝑗

[(
√
𝑤𝑖 −

√
𝑤̂𝑖)] +

𝑆2∑
𝑖=0

𝐵∑
𝑗=0

1𝑜𝑏𝑗
𝑖𝑗

[(𝐶𝑖 + 𝐶̂𝑖)2]+

𝜆𝑛𝑜𝑜𝑏𝑗

𝑆2∑
𝑖=0

𝐵∑
𝑗=0

1𝑛𝑜𝑜𝑏𝑗
𝑖𝑗

[(𝐶𝑖 + 𝐶̂𝑖)2] (8)

Where 𝑥𝑖 identifies the actual location of the midpoint of the seg-

ment delimiting the syllable-repetition while 𝑥𝑖 identifies the predicted 
coordinate. 𝑤𝑖 represents the actual width of the segment delimiting 
the syllable-repetition while 𝑤̂𝑖 is its predicted version. 𝐶̂𝑖 represents 
the predicted confidence score of whether there is the syllable or not. 
𝜆𝑐𝑜𝑜𝑟𝑑 and 𝜆𝑛𝑜𝑜𝑏𝑗 are set as [27] as well as 1𝑜𝑏𝑗

𝑖𝑗
and 1𝑛𝑜𝑜𝑏𝑗

𝑖𝑗
.

Inspired by YOLO X, the number of predictable portions in output 
from each feature block can be established in the DDK-AID network 
too. This number was experimentally set for each of the 3 tasks of 
interest considering the maximum number of each-syllable repetitions 
performed by a healthy subject in a single feature block (i.e., 2.048 s) 
from the last feature maps block. Particularly for the /pa/, /oo-ee/ and 
/pa-ta-ka/ syllable repetition oral-DDK task, this number was equal to 
14, 10, 4, respectively.

All our analyses were performed using PyTorch framework on a 
Intel® Xeon® Silver 4214 CPU @ 2.20 GHz with 230 GB of RAM and a 
NVIDIA® RTX 2080 8 GB RAM.

4.3. Comparative method and evaluation metrics

The performance of the DDK-AID network was compared against the 
one of the original YOLO X [21]. This CNN was the one which inspired 
our DDK-AID and, unlike [28], has a low computational complexity and, 
consequently, low cost for cloud-computing deployment. The YOLO X, 
unlike the DDK-AID, does not implement the FC-iterative layers but 
applies classical FC blocks to the entire flattened feature map in output 
from the last convolutional block. Therefore, the input signal of variable 
duration has been stretched in such a way as to allow the FC layers, after 
the flattening operation, to get equally-sized inputs.

For the YOLO X network the number of predicted portions in output 
from each feature block was experimentally set too. For the /pa/, /oo-

ee/ and /pa-ta-ka/ syllables-repetition task, this number was set equal 
to 28, 20, 8, respectively.

For fair comparisons, the same training settings described in Sec. 4.2

were used as well as the same training/validation/testing set splits.

Both the networks performance were assessed in terms of Accuracy 
in pursuing the task of interest, i.e., assessing the number of per-task 
repeated syllables, according to the following equation:

|Syllables countactual − Syllables countpredicted|

Accuracy = 1 −

Syllables countactual

(9)
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Fig. 9. Sample of confidence-threshold tuning for the /pa-ta-ka/ syllable repetition oral DDK task for the DDK-AID model (a) and YOLO X (b). In orange the curve 
for healthy control subjects and in blue the one for the bulbar-onset amyotrophic lateral sclerosis (ALS) subjects.
Table 2

Quantitative results in terms of Accuracy achieved by the two tested architec-

tures, namely the DDK-AID and the YOLO X as well as the number of parameters 
(#Param.) for each architecture. Results are shown for both bulbar-onset amy-

otrophic lateral sclerosis (ALS) patients and healthy control subjects.

DDK-AID Network

Accuracy

#Param. Bulbar-onset ALS patients Healthy control subjects

/pa/ 722986 95.67 96.47

/pa-ta-ka/ 719116 92.62 91.88

/oo-ee/ 721428 82.57 95.45

YOLO X

Accuracy

#Param. Bulbar-onset ALS patients Healthy control subjects

/pa/ 1055304 42.92 52.32

/pa-ta-ka/ 977904 57.94 61.72

/oo-ee/ 1024344 45.93 57.39

Where the Syllables countpredicted and the Syllables countactual rep-

resent the number of syllables predicted by the network and the ground 
truth provided by speech language pathologists, respectively.

5. Results

Fig. 9 shows the 𝑚𝑖𝑛𝑇ℎ tuning outcome for the oral-DDK task of re-

peating the /pa-ta-ka/ syllables both for the proposed DDK-AID network 
and for the YOLO X. As visible from the results the highest performance 
was achieved for both the networks by a confidence threshold equal to 
0.5. The same trend occurs for the other two oral-DDK tasks.

Table 2 shows the number of parameters of each tested architecture 
(i.e., the DDK-AID network and the YOLO X one) for the /pa/, /pa-

ta-ka/ and /oo-ee/ syllables repetition oral-DDK task. Considering the 
DDK-AID network, the architecture with lower number of parameters 
(Param.) was the one for assessing the number of syllables count dur-

ing the /pa-ta-ka/ syllables-repetition task (# Param = 719116). This 
is followed by the architectures for evaluating subjects’ performance 
while repeating the syllables /oo-ee/ (# Param = 721428) and /pa/ (# 
Param = 722986), respectively. The same trend can be seen for YOLO X 
network. This subtle difference in the number of trainable parameters, 
depends on the fact that, inspired by [21,27], we set the number of pre-

dicted portions in output from each feature block differently for each of 
the tasks. Particularly, for both the CNNs this number had the highest 
values for the /pa/ syllables repetition task (= 14, 28, for the DDK-

AID and YOLO X, respectively) followed by the /oo-ee/ (= 10, 20, for 
the DDK-AID and YOLO X, respectively) and /pa-ta-ka/ (= 4, 8, for the 
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DDK-AID and YOLO X, respectively) syllables-repetition tasks, respec-
tively. In general, the DDK-AID network has fewer trainable parameters 
than YOLO-X.

The best Accuracy results are achieved by the DDK-AID network for 
both the ALS (mean Accuracy = 90.23) and healthy control subjects 
(i.e., mean Accuracy = 94.60). For the YOLO X the mean accuracy for 
the bulbar-onset ALS subjects and healthy control subjects was equal to 
48.93 and 57.14, respectively.

Observing the performance of the DDK-AID network, the worst re-

sults are achieved by the /oo-ee/ syllables-repetition task (Accuracy 
for bulbar-onset ALS subjects equal to 82.57). While, for the /pa/ and 
/pa-ta-ka/ syllables-repetition tasks, the same network achieves higher 
performance (Accuracy equal to 95.67 and 92.66, respectively). This 
performance reduction is also detectable in the scatterplots (Fig. 10). 
Each scatterplot shows the Accuracy of the architecture for the indi-

vidual subjects involved in the study: bulbar-onset ALS subjects (blue 
dots) and healthy control subjects (orange dots). The X-axis of the graph 
shows the Syllables countactual and the Y-axis the Syllables countpredicted

by the DDK-AID (first row) and YOLO X (second row). The straight 
line in the graph distinguishes 3 regions: (i) above the straight line are 
the audio acquisitions for which the CNNs overestimates the Syllables 
countpredicted, (ii) below the straight line are the acquisitions for which 
the architectures underestimate the Syllables countpredicted, (iii) for all 
the predictions lying on the straight line the Syllables countpredicted

matches the Syllables countactual. Observing the C. scatterplot (the one 
related to the /oo-ee/ syllables-repetition task) in Fig. 10, most of 
the errors (i.e., the dots deviating from the line) concern the Syllables 
countpredicted for the bulbar-onset ALS subjects. Even when viewing the 
training curves (Fig. 11) the one related to the /oo-ee/ syllables repe-

tition oral-DDK task is that where the Loss on the validation deviates 
more from the one of the training set. Moreover, the scatterplots show 
that the /pa/ syllable repetition task is the one which induces less fati-

gability both in bulbar-onset ALS subjects and healthy control subjects 
compared to the polysyllabic tasks (i.e., /pa-ta-ka/ and /oo-ee/ syllables 
repetition) [37]. In addition, from the graphs it appears that healthy 
control subjects mainly tend to do more syllables repetitions per task 
than bulbar-onset ALS subjects as stated in [23,12]. These results con-

firmed that bulbar-onset ALS subjects – who develop impairments in 
the orofacial musculature – progressively show slower articulation of 
words [38]. From the graph is visible that YOLO-X, unlike our DDK-

AID, tends to underestimate the Syllables countpredicted for each of the 
task. Though both the CNNs tend to overestimate critically ill subjects 
(i.e., those with lower values of Syllables countactual).

6. Discussion

The proposed work presents a support system based on deep learn-

ing to automatically and remotely assess a subject while performing 
the oral-DDK test. The system consists of a web application to acquire 

audio recordings while repeating the /pa/, /pa-ta-ka/ and /oo-ee/ syl-
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Fig. 10. Scatter plots representing the variable Syllables countactual on the x-axis and the variable Syllables countpredicted on the y-axis. The first, second and third 
columns show the scatterplots for the /pa/, /pa-ta-ka/ and /oo-ee/ oral-DDK task, respectively. The first row shows the scatterplots of the DDK-AID while the second 
one those of YOLO-X.

Fig. 11. Training curves of the DDK-AID network for the 3 oral-DDK tasks (i.e., /pa/, /pa-ta-ka/, /oo-ee/ syllables repetition). In orange the training Loss and in 

blue the validation one.

lables. These recordings are used to train and test the DDK-AID network 
which outputs the number of per-task repeated syllables. The network 
is specifically designed to process audio recordings of variable dura-

tion. Moreover, it handles the scarcity and variability of data collected 
through an on-the-fly training-data generation based on a synthetic-

signals generation algorithm.

As showed in Sec. 5, the proposed DDK-AID achieves improved per-

formance with respect to the YOLO X. Indeed, the YOLO X CNN, unlike 
the DDK-AID one, is not designed to process audio acquisitions of dif-

ferent duration. Therefore, in the preprocessing step, the audio-signal 
stretching is required so that the FC layers get equally sized inputs. 
However, this resizing suffers from main implications: (i) the original 
signal degrades especially when its length deviates excessively from that 
required as input by the CNN and (ii) the additional stretching phase 
introduces a variability factor in the training data which may harden 
the task.

Our DDK-AID has fewer parameters than the YOLO X. Indeed, in the 
DDK-AID network there is an exact relationship between signal frames 
and time. This allows a maximum number of predictable portions per 
feature block to be precisely set on the basis of the maximum number of 
syllables repetitions physically achievable by the healthy control group. 
This relationship is lost when dealing with signals to which a stretch-
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ing factor is applied. The latter aspect forces us to define, after proper 
tuning, a maximum number of repetitions in excess for the task of our 
interest.

It should also be emphasised that the iterative-FC layers in our DDK-

AID, unlike those of the YOLO X which are classical FC, allow to process 
data streams of any length without performance degradation. Indeed, 
these layers enable our CNN to count the number of syllable repetitions 
in the initial portions of the signal while continuing to receive and pro-

cess data from the stream as to predict the total number of syllables 
repeated by the subject.

The proposed training technique, based on audio-signals generation 
(Sec. 3.3), introduced two limitations visible in Sec. 5: the reduced per-

formance (i) in the /oo-ee/ syllables-repetition task for bulbar-onset 
ALS subjects, (ii) on critically ill subjects (mainly visible in the scatter-

plots B. and C. of Fig. 10). Regarding the issue (i) in the original signal, 
we experimentally verify that the representation in the spectrogram of 
the current syllable /oo-ee/ shows a dependency with the adjacent ones 
(i.e., previous and subsequent syllable repetition). The concatenation 
between individual syllables implemented with our data-augmentation 
technique, does not consider the syllables dependency, producing less-

realistic signals. Issue (ii) is caused by the fact that all the generated 
signals are obtained by concatenating, in an alternating way, portions 
with syllable repetition and silence portions. This pattern however is 
no more valid in the audio acquired from critically-ill bulbar-onset ALS 

subjects. Indeed, mainly due to mispronunciation, not all the syllable-
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repetition portions are annotated as an actual repetition by the speech 
language pathologists.

A straightforward limitation of the implemented methodology can 
be seen in the way we partitioned the data for training and testing, 
as well as in the choice of generating audio signals from real ones for 
training purposes. However, our aim is to investigate the feasibility of 
proposing a deep-learning method, integrable into a telemedicine sys-

tem, to (i) analyse data collected in an uncontrolled scenario and with 
commonly used devices, (ii) process audio acquisitions of different du-

ration in line with the clinical needs for conducting the evaluation [31]. 
To the best of our knowledge, this work is among the first to investigate 
these latter aspects.

As future work, to mitigate the aforementioned issues, we are go-

ing to increase our dataset size and variability and to make our data 
publicly available for promoting research in this field. Furthermore, we 
plan to improve the on-the-fly training-data generation mechanism by 
chaining together the actual syllables repetitions, silences and incor-

rectly pronounced repetitions and to couple the generated signals with 
real ones during training.

7. Conclusion

The results obtained from our deep-learning-driven system designed 
to aid clinicians in evaluating the evolution of dysarthria in subjects 
with bulbar-onset ALS are promising. Nevertheless, we recognize that 
further investigation and validation are essential to progress toward an 
improved framework for enhancing the well-being of these patients.

In this perspective, our future work will be devoted to the study 
of other characteristics that can be acquired from the audio recorded 
during the diadochokinesis task (e.g., the length of pauses between two 
successive syllables). Moreover, all the algorithms for the analysis of 
the audio-recordings will be integrated within a broader telemonitoring 
system that also includes the assessment of orofacial functions related 
to speech [17]. Ultimately, system usability will be soon investigated 
through structured and semi-structured interviews with domain experts 
involving both patients and their caregivers.
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