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ARTICLE INFO ABSTRACT
Keywords: Background and objectives: Patients suffering from neurological diseases may develop dysarthria, a motor
Dysarthria speech disorder affecting the execution of speech. Close and quantitative monitoring of dysarthria evolution

Store-and-forward telemonitoring
Deep learning
Facial-landmark detection

is crucial for enabling clinicians to promptly implement patients’ management strategies and maximizing
effectiveness and efficiency of communication functions in term of restoring, compensating or adjusting. In
the clinical assessment of orofacial structures and functions, at rest condition or during speech and non-speech
movements, a qualitative evaluation is usually performed, throughout visual observation.

Methods: To overcome limitations posed by qualitative assessments, this work presents a store-and-forward
self-service telemonitoring system that integrates, within its cloud architecture, a convolutional neural network
(CNN) for analyzing video recordings acquired by individuals with dysarthria. This architecture — called facial
landmark Mask RCNN - aims at locating facial landmarks as a prior for assessing the orofacial functions related
to speech and examining dysarthria evolution in neurological diseases.

Results: When tested on the Toronto NeuroFace dataset, a publicly available annotated dataset of video
recordings from patients with amyotrophic lateral sclerosis (ALS) and stroke, the proposed CNN achieved
a normalized mean error equal to 1.79 on localizing the facial landmarks. We also tested our system in a
real-life scenario on 11 bulbar-onset ALS subjects, obtaining promising outcomes in terms of facial landmark
position estimation.

Discussion and conclusions: This preliminary study represents a relevant step towards the use of remote
tools to support clinicians in monitoring the evolution of dysarthria.

1. Introduction phonatory, resonatory, articulator, or prosodic aspects of speech pro-
duction. The responsible neuropathophysiologic disturbances of control

Dysarthria is a collective name for a group of neurological speech or execution are due to abnormalities that often include weakness,
disorders that reflects abnormalities in the strength, speed, range, spasticity, incoordination, involuntary movements, or excessive or vari-
steadiness, tone, or accuracy of movements required for the breathing, able muscle tone [1,2]. Neurodegenerative diseases (like amyotrophic
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lateral sclerosis (ALS) and Parkinson’s disease), inflammatory condi-
tions (like multiple sclerosis) and vascular pathologies (like stroke) are
the leading causes for dysarthria onset [3].

Offering continuity of care to patients suffering from dysarthria is
relevant to avoid the development of extreme social hardship condi-
tions that could directly affect the patients and their caregivers [4].
In fact, the impaired communication ability caused by the onset and
evolution of dysarthria undermines an individual’s possibility of keep-
ing and extending social contacts, which may eventually undermine
his/her overall well-being [5]. Given the premises, the clinical liter-
ature recognizes the assessment of dysarthria evolution as a useful
tool to: (i) monitor the disease trajectory and properly stage the man-
agement of restoring or compensatory strategies as to maximize the
effectiveness and efficiency of communication functions, (ii) have new
outcome measures for clinical trials, and (iii) detect any correlations
with other bulbar signs [6-9].

To search for new quantitative outcome measures to assess
dysarthria progress, different approaches were proposed. These mainly
monitor the speech and vocal features of dysarthric subjects, both in
home and hospital scenarios [7,10-14]. However, as stated in [15,16],
also the assessment of orofacial motor functions related to speech (or
motor speech assessment) should be considered to: (i) detect subtle
improvements or worsening in patients’ conditions (especially for those
who suffer from ALS, spinal muscular atrophy (SMA), facial palsy
and stroke); (ii) evaluate pharmacological and non-pharmacological
treatment progress and (iii) improve the staging of the rehabilitative
strategies management and pursue an augmentative communication
(AAC) assessment [1].

Despite the proven significance, the motor speech assessment
mainly relies upon visual observation by clinicians combined with
the drafting of rating scales, such as the Robertson dysarthria pro-
file [15,17]. This may lead to inaccurate outcomes as rating-scale
descriptors are unlikely to exactly fit a patient’s performance [18]. The
outcomes are collected during outpatient assessment thus they may be
influenced by patients’ emotional and physical status at the time of
examination [19]. Additionally, the qualitative examination lacks re-
producibility and may be prone to intra- and inter-clinicians’ judgments
variability, since it is influenced by the clinicians’ expertise [20].

A possible solution to attenuate the issues caused by the subjectivity
of current motor speech assessment has been proposed by the authors
in [21]. They employ electromyographic sensors placed over the facial
surface and inside the oral cavity. Despite the promising results, the
electromyographic acquisition system is complex and the overall ac-
quisition process can be deeply invasive to the patient and not usable
in home environment [2].

To objectively and non-intrusively examine orofacial impairments
in patients suffering from neurological diseases, the work in [22]
proposes a deep-learning (DL) methodology for assessing facial align-
ment from RGB videos of patients with ALS and stroke. The authors
in [22] released their dataset — namely the Toronto NeuroFace dataset
— which is a collection of RGB frames with the associated annotations
of 68-facial landmarks position. The Toronto NeuroFace is the first
annotated dataset in the field and the authors release it to foster the
scientific community to propose advanced support methodologies for
motor speech examination in patients with ALS and stroke as a way to
quantitatively stage dysarthria evolution.

Following [22], our work proposes an innovative cloud-based store-
and-forward - i.e., asynchronous - telemonitoring system called
Homely Care, aimed at supporting clinicians in dysarthria assess-
ment. Homely Care has two main components: a web application
and a scalable cloud architecture which relies on the Amazon Web
Services (AWS) cloud platform. The former guides a subject in per-
forming specific assessment tasks from the Robertson dysarthria profile
(e.g., keeping lips protrusion for 5 s), the latter automatically captures
the video recordings of the subject fulfilling the tasks and sends it to
a proposed end-to-end convolutional neural network (CNN). The CNN,
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which we called facial landmark Mask RCNN, processes the RGB frames
from the recordings and outputs the position of the 68 facial landmarks.
These are used as prior for assessing new outcome measures of motor
speech assessment which may give relevant insights to monitor the
trajectory of dysarthria evolution and identify the time to implement
rehabilitative treatment or AAC strategies.

The rest of the paper is organized as follows: Section 2 shows
the relevant state-of-the-art contributions in the fields of dysarthria
assessment, store-and-forward telemonitoring of neurological diseases
via consumer devices, and facial-landmark detection. Section 3 presents
the implemented methodology (from the CNN description to the cloud-
architecture presentation) while technical details for enabling fair com-
parisons are shown in Section 4. The results achieved are presented in
Section 5 and discussed in Section 6. Section 7 concludes the work and
proposes the future developments.

2. State of the art
2.1. Dysarthria assessment

Dysarthria assessments, both in Italy and abroad, relies on clinical-
rating scales based on the observation of speech muscles (i) at rest,
such as the face muscles at rest (lips, jaw), (ii) during speech activities
(henceforth referred to as “speech tasks”), such as spontaneous speech,
vowel prolongation, and reading, and (iii) during non-speech activities
(henceforth referred to as “motor tasks”), such as sustained posture
of lips (e.g., spontaneous smiling, volitional smiling, lip rounding, lip
retraction) and jaw (e.g., mouth opening), and diadochokinetic tasks
(e.g., jaw alternating motion rates) [1,23]. As introduced in Section 1,
such an assessment based on the use of clinical rating scales has, above
all, the main limitations of: suffering from ceiling effect — namely it is
hard to perceive fine changes in patients’ performance at disease’s early
stage — and hampering the possibility of research during clinical trials
by relying on qualitative ratings [24].

For alleviating the above-mentioned limitations, a number of sup-
portive systems to assess dysarthria via patient’s speech or vocal-
performance analysis have been proposed in literature. Examples in-
clude [12,25,26] which investigate the feasibility of machine learning
(ML) methods for the analysis of audio-data collected in hospital and
home scenarios. In [27,28], a telemonitoring-based application is in-
troduced to automatically assess the evolution in the intelligibility of
the speech of dysarthric patients. Also in [13] the authors proposed a
methodology for estimating the number of repeated syllables during a
diadochokinetic task in subjects with dysarthria.

All the proposed applications, which can potentially be used in
a home environment but are mainly tested in controlled scenarios,
achieved promising results. However, the state-of-the-art studies offer
complementary characterizations of dysarthria as they focus on specific
aspect of dysarthria assessment (e.g., articulatory slowness, intelligibil-
ity) and do not envisage — unlike the system we propose — a possible
extension to other features which may offer clinicians a comprehensive
assistive assessment tool. This is particularly relevant for individuals
with ALS, SMA, stroke, and facial palsy in whom the motor speech
assessment is crucial to capture improvements or worsening and as-
sess possible correlations with other bulbar signs (e.g., dysphagia and
respiratory aspects) [17].

2.2. Facial landmark detection: from methods to the challenges of self-
service telemonitoring

The facial-landmark detection from video recordings is a field of
research with numerous clinically-oriented applications ranging from
human expressions recognition [29,30] to fatigue detection, [31] and
facial-palsy rating [32].

In [33], the authors propose a ML-based methodology for assessing
the position of facial landmarks to detect facial palsy. In spite of the
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promising results, using standard ML instead of DL may lead to general-
ization problems on videos captured in non-optimal environments [34]
(e.g., with variable lighting and background) and may require a hand-
crafted features extraction step that makes the approach unsuitable for
the actual clinical practice [35,36].

To solve these issues, the work in [37,38] proposes a cascading
CNNs-methodology. Their framework, firstly, acts by roughly locating
the positions of the landmarks and, then, refines them via a regression
sub-network. This methodology, as highlighted in [39], suffers when
dealing with poor-lighting conditions that may occur in the home
environment, occluded face-parts which may be due to the presence
of clothing covering face portions, and challenging landmark positions,
which, in the case of neurological patients, may be due to the pres-
ence of severe orofacial impairments. Furthermore, the use of two
subsequent networks could be inefficient and overtaken by multi-task
networks [40].

Recent literature contributions [39,41,42] tackle the challenges
posed by real-life scenarios, benefiting of end-to-end CNN-based frame-
works which are originally designed to estimate people’s pose. Inspired
by these research hypotheses, our methodology refits the pipeline
in [43] to locate facial landmarks from ALS and stroke patients from
the Toronto Neuroface dataset [22].

The designed CNN was then deployed on the Homely Care cloud-
based system for being further tested on acquisitions carried out by
bulbar-onset ALS patients in the home environment, as to face chal-
lenges such as the usage of cameras integrated in consumer devices
(e.g., smartphone, tablet, PC), the autonomous management of the
acquisitions, varied background and illumination conditions.

2.3. Store-and-forward telemonitoring of subjects suffering from neurologi-
cal disorders by consumer devices

From 2020, telemedicine made significant advancements to uphold
the delivery of regular care for neurological patients, particularly those
with neuromuscular conditions. Numerous strategies were suggested
for various diseases. However, telemedicine emerged as a valuable tool
in managing neurological disorders during the pandemic era. Indeed,
these tools played a pivotal role in overcoming geographical barriers
and pandemic-related challenges by enabling the maintenance of the
patient-clinician relationship while minimizing risks associated with
in-person evaluations [44,45]. In addition to its role in supporting in-
person assessments by offering information on patients in the home
environment, telemedicine can be further explored in the development
of telehealth applications for continuous remote patient monitoring
or self-service telemonitoring. By utilizing devices or apps, patients
may provide clinicians with daily updates on their health status. This
information proves to be relevant in monitoring general indicators
(e.g., blood pressure, cardiac rhythm, and oxygen saturation) but also
ambulatory performance like speed and endurance in speaking [45].
Specifically, [46] leverages the myParkinsoncoach application to ex-
amine patients through the use of questionnaires. In their work, the
authors proved that using Likert scale questions to telemonitor patients
decreases the need for outpatient healthcare services among individuals
with Parkinson’s Disease. The myParkinsoncoach system can be used
from any platform — and thus device — and is designed to provide the
clinician with an intuitive interface to view trends generated by patient
responses. However, the evaluation of the patient’s responses alone
is not enough especially to assess dysarthria, where a comprehensive
solution is crucial.

Following this consideration, [47] presents Apkinson, a mobile
application for the Android operating system. This is designed for
speech and walking assessment of subjects with Parkinson. Apkinson
takes advantage of the device built-in sensors to acquire data that are
processed by signal-processing algorithms; it is designed to be usable
in the home environment in a store-and-forward fashion but is tested
in a controlled scenario. Despite the multimodal nature of the solution,
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the application is designed to be used only by smartphones running
the Android operating system. Furthermore, the authors state that the
system is not meant to be scalable and therefore cannot handle too
many requests nor can it be easily integrated with other assessments.
Similarly the work in [48] proposes a system for telemonitoring sub-
jects with Parkinson’s disease. Their system uses the accelerometer
and microphone of the smartphone to record multimodal data that
are analyzed by machine learning algorithms. As in [47] the proposed
system is envisioned for use in the home environment but is actually
tested in a controlled environment while few references are made to
the cloud platform that is supposed to manage the entire flow.

Currently the preprint paper of Neumann et al. [49] proposes the
closest solution with respect to ours. Indeed, with NEMSI the authors
present an internet-based multimodal dialogue system designed to
gather necessary evidence for the identification or ongoing monitoring
of patients with ALS. To this end, the authors highlight how for ALS
— unlike Parkinson’s disease in the previously mentioned approaches
— the assessment of orofacial functions related to speech is crucial to
detect subtle changes in patients’ performance as well as disease tra-
jectory. In line with this research, Homely Care automatically performs
the motor speech assessment of a dysarthric subject through video
recordings acquired with a web application in communication with a
cloud architecture. Given the inherent modularity and scalability, our
proposed system — which in this work automatically analyzes video data
via a proposed facial landmark mask RCNN — may, by design, already
safely collect other data (e.g., audio) to provide a comprehensive
assessment of the disorder. Moreover, the application can be used by
any personal device equipped with a camera and microphone with
no limitations on the operating system while the cloud architecture
is designed and implemented to easily and safely manage data from
multiple connected users.

3. Methods
3.1. Facial landmark mask RCNN

Our pipeline for facial-landmark detection is shown in Fig. 1 and
was inspired by Mask RCNN [43], which was originally designed to
predict the pose of the human body in two-dimensional space. Here,
Mask RCNN was modified to detect the facial landmarks.

As for Mask-RCNN, the proposed pipeline is made up of two stages.
The first stage is used to extract the regions of interest (Rols), while the
second stage is used to further refine the localization of the face and
to detect facial landmarks. To this end, the proposed CNN has 3 main
branches: one for classification, another for bounding-box regression
and the last for facial-landmark position estimation. In the first stage,
the RGB-input image is fed into a backbone-CNN. The backbone is a
ResNet50 (i.e., ResNet with 50 convolutional layers), coupled with a
feature-pyramid network (FPN), acting as feature extractor [50].

These output feature maps are fed into a region proposal network
(RPN), which generates Rols. Then, each region proposal is sent to the
Rol Align layer which generates a small fixed-size feature map from
each Rol. Warped features in output from the Rol Align are then fed
into fully connected layers of the second stage. These layers output the
bounding-box coordinates and the label category (i.e., “face”) with the
relative prediction-confidence in output from the soft-max layer of the
classification branch. It is worth noting that this stage of bounding-
box regression is crucial when deploying the pipeline in scenarios
(e.g., hospital wards) where empty backgrounds may not be guaran-
teed. In parallel with the bounding box coordinate regression and class
assignment, warped features are also fed into the mask branch which is
a fully convolutional network properly adapted for the facial-landmark
detection task. Particularly this branch was modified, compared with
the original implementation, for the task of interest by adding two
subsequent strided (s = 2)-transposed convolutions (with kernel sizes
3 x 3 and 4 x 4, respectively). The last convolutional layer outputs
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Fig. 1. Facial landmark mask RCNN.

Fig. 2. Sample image with the facial landmarks (green dots) and the bounding box
for face localization (black square).

68 binary masks, one for each landmark. The use of two additional
transposed convolution layers allows the resolution of the output map
to be extended facilitating the network to locate the 68 face landmarks.

The following paragraphs outline the datasets used to train and
validate the proposed facial landmark mask RCNN.

3.1.1. The 300 videos in-the-wild dataset

To train our facial landmark mask RCNN the fine-tuning technique
was adopted. To this end, the network was pre-trained on a subset of
the 300 Videos In-the-Wild Challenge (300-VW) dataset [51].% This is
a publicly available dataset of 114 videos showing one person each.
Each video has a duration of 1 min and is recorded in 30 frames per
second (FPS). The dataset has three logical categories of videos, with
increasing challenges for each category. The first category contains
videos of people acquired in well-lit conditions in various head poses,
without occlusions. The second category contains videos of people
acquired with variable light conditions (different illuminations, dark
rooms, overexposed shots, etc.) with minimal occlusions. The third cat-
egory contains videos of people acquired in unconstrained conditions,
including highly variable illumination conditions, occlusions, make-up,
expressions, and head poses. For our purposes, 1 out of 5 frames of
each video from the original 300-VW was selected with a training,
validation and testing set split of ~70%, ~20% and ~10%, respectively.
The weights resulting from the pre-training on such 300-VW subset
were then used to initialize the network.

3.1.2. The Toronto NeuroFace dataset

The fine-tuning was conducted on the Toronto NeuroFace dataset
[22], a collection of RGB video recordings from ALS patients (11

2 https://ibug.doc.ic.ac.uk/resources/300-VW/

subjects: 4 males, 7 females), stroke patients (14 subjects: 10 males,
4 females), and healthy subjects (11 subjects: 7 males, 4 females) of
similar age.

The video recordings were acquired in a controlled environment
with optimal lighting conditions with an Intel® RealSense camera
placed 30-60 cm away from the subject’s face. Each subject was asked
to perform specific speech and oral motor assessment tasks, such as
keeping maximum mouth opening and lips stretching, and repeating
the syllables /pa-ta-ka/ or /pa/.

Frames were extracted from each video recording as to maximize
intra-subject variability. For instance, for repetitive motor tasks only
three frames per-repetition were considered, one showing the gesture
beginning, one for its peak, and one between them. After frames
extraction, manual annotation of the 68 facial landmarks and the face
bounding box (Fig. 2) was performed for 3306 frames, of which: 1015
frames with healthy subjects, 920 frames with ALS individuals, and
1371 with stroke individuals.

For the purpose of this work, the Toronto NeuroFace dataset was
split in training, testing and validation set keeping frames from 32
subjects to train and validate the CNN, and frames from 4 gender-
balanced subjects (of which 2 with ALS and 2 with stroke) to test
it.

3.2. The homely care cloud-based store-and-forward telemonitoring system

3.2.1. Web application

To enable multimedia-data acquisition in the home environment,
we designed and implemented the Homely Care application. This is
a web application (therefore, from now on, we will refer to it as
sayweb app) developed in Typescript using the library ReactJS. Sub-
jects involved in the study used it on their personal smartphones,
tablets or PCs. The tasks in the web app were a subset of those in
the Robertson dysarthria profile [15], and were selected by speech
language pathologist as those that are functional to assess the disorder
in individuals with ALS. Among the selected tasks were: lips stretching,
lips protrusion, maximum mouth opening, mouth opening and closing,
mouth protrusion and stretching. The web app provides instructions
on how to start a recording as well as tutorials by a speech language
pathologist to support subjects in executing each task correctly.

Participants were registered by their clinicians in the system before
conducting acquisitions for the first time. After entering the relevant
data for account registration, each individual used the web app au-
tonomously. After logging in, the patient was able to visualize the
assessment sessions to be performed (left side of Fig. 3). Specifically, by
design, the clinician dictated a timetable of acquisitions and the patient
could see on a daily basis when he or she had to perform a new session.

When starting an acquisition session, the web app sequentially
shows the patient the tasks to be performed, each marked by a title,
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Fig. 3. Screenshots of the Homely Care web application (web app), enabling users
to perform the Robertson-dysarthria-profile tasks for assessing orofacial muscles. The
frame on the left part shows the starting page of the application. From this page the
user can both visualize the calendar of acquisition sessions and start a new one. The
right side the frame shows the acquisition screen. The user has the option to press play
when they are ready to perform the test, and stop the acquisition at any time (except
for tasks that have a fixed duration). During the execution of the task, the application
automatically records the video stream and guides the user in the correct positioning of
the face through an ellipse that appears on the screen. Users can start the acquisition
when the ellipse is colored green (i.e, correct positioning of the user with respect to
the camera’s field of view).

a description, and a maximum or predefined duration. The web app
films the patient during each task, only after a countdown to let the
individual adequately prepare. The web app also allows the user to
eventually discard and repeat the acquisition if adverse events occurs,
such as the sudden appearance of another subject in the camera field of
view. At the end of each task, a video file related to the task is stored.
Upon completion of all the tasks, all the video data are compressed into
a single file in .zip format. This .zip file is sent to the storage service
for being subsequently processed by our facial landmark mask RCNN.
If the file is successfully uploaded, the session is completed and the .zip
file is discarded from local storage. If, on the other hand, the upload is
unsuccessful, the web app put the file to be uploaded in a queue and,
when possible, proceeds with its upload again.

The web app does not impose stringent constraints (e.g., homoge-
neous and clear background) on the acquisitions, rather, it suggests
the patient to record in a bright environment, in order for the facial
landmark Mask RCNN to work in optimal conditions. In addition,
before starting the acquisition, an ellipse appears in overlay on the
screen to guide a user in the correct positioning of the face with respect
to the camera field of view. The acquisition does not start until the
subject’s face is not correctly positioned within the ellipse (right side
of Fig. 3).

3.2.2. Cloud architecture
The cloud architecture, built using AWS’s services,*> was designed to
meet the following essential functional requirement:

+ The system must manage the .zip files of the sessions, save them
in a storage, and guarantee characteristics such as persistence,
integrity, and even the possibility of encrypting the data, in order

3 https://aws.amazon.com/
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Fig. 4. Diagram representing the cloud architecture for the distribution and processing
of multimedia data via deep-learning methodologies. Icons are from official Amazon
Web Services (AWS) suites.

to ensure the protection of personal data, in compliance with the
General Data Privacy Regulation’;

The files within the storage must be available for consultation by
clinicians, to check, for example, the evolution of the patient’s
condition and the correctness of the acquisitions;

The system must expose an interface that allows the web app to
upload the .zip file with the data to be then processed by the CNN.
The scheme for distributing and processing a file must be easily
extensible, allowing the addition of new tasks and algorithms for
data analysis and, thus, the system expansion;

The system must have a database capable of storing the informa-
tion of interest and managing requests and transactions coming
from the clients;

The system shall present a backend to allow proper communica-
tion with the web app, providing Create, Read, Update and Delete
(CRUD) functionality on web app-relevant data;

The system must correctly manage the registration and login of
users.

Given the requirements, lambda functions were considered for han-
dling data processing via the proposed facial landmark mask RCNN.
Concerning the automatic distribution of data from each of the task, we
identified a solution based (i) on the use of queues (see “computation
queue” in Fig. 4), defined via the Amazon Simple Queue System (SQS)
service, and (ii) on the design of a structure consisting of a main
lambda function or “orchestrator”, and a set of lambda functions,
namely “consumers” or “computation lambda” (See Fig. 4), connected
to the queues. By using queues associated with the lambda functions,
we guaranteed system scalability as the resources instantiated for the
operation of the lambda function are proportional to the messages
remaining on the queue yet to be processed.® This feature is particularly
relevant when dealing with DL algorithms for data processing. Indeed,
such processing may not be immediate for the individual file and
having a system able to offer good scalability as the amount of files
to be processed increases is a crucial need. Fig. 4 shows a diagram
of the previously stated design. Each consumer implements a unique
multimedia-data analysis algorithm. In this case, the algorithm is the
facial landmark mask RCNN, which outputs the 68 facial landmark
positions from the RGB input frames. However, the system is designed

4 https://commission.europa.eu/law/law-topic/data-protection/data-
protection-eu_en
5 https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html
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to potentially integrate other assessment tasks extracted from Robert-
son dysarthria profile and, consequently, other algorithms for analyzing
the newly collected data. Each of these consumers is connected to an
SQS queue, which is used for the collection of messages indicating the
location of the media files to be processed within a special bucket,
deployed as temporary storage for file processing.

In particular, each consumer performs a polling of the associated
queue to receive a given number of messages (batch), which will be
associated to the processing of the file. Depending on the number of
messages sent in the queue, the consumer can automatically scale.
Following algorithmic processing, the consumer saves the result within
the system database for enabling the clinicians to access and view
the data. After this processing, the file is deleted from the temporary
bucket.

The orchestrator, on the other hand, is the lambda function that ac-
tually performs the distribution of data to one or more consumers. The
orchestrator monitors the patient’s bucket to detect the loading of new
files associated with each session. Therefore, when the .zip file with
the patient’s data of the entire session is loaded by the web app, the
orchestrator (i) adds a new session in the database, with a timestamp
(in ISO format 8601 format) equal to the time of the data receipt, (ii)
decompresses the received file onto the temporary storage bucket, (iii)
selects specific consumers for data processing, and (iv) sends messages
to each of the queues associated with the consumers aimed toprocess
the file. This structure, in addition to allowing automatic and scalable
computation, has the advantage of being easily extensible: to add a
new analysis algorithm to the system (for example, for audio data
processing), it is sufficient to add a new consumer and the associated
queue, and modify the database to add the new index, binding it to the
lambda function that will process it.

4. Experimentation

4.1. Training and deployment settings

The facial landmark Mask RCNN was pre-trained on the 300-VW
dataset for 100000 iterations using stochastic gradient descent (SGD)
as optimizer. The initial learning rate was set to 0.005, with a learning-
rate decay of 0.5 applied every 25% of the total number of iterations.
The resulting network weights were used as a starting point for the fine
tuning on the Toronto NeuroFace dataset. The fine tuning was carried
out in 28000 iterations. The initial learning rate was set to 0.001
with a learning-rate decay of 0.5 every 15000 and 20000 iterations,
respectively. The number of maximum subjects to detect per image was
limited to 1. The confidence threshold for the bounding box was set to
0.75. All these training settings come from an extensive grid-search to
find the best combination of loss, optimizer, learning rate scheduling,
and iterations.

Online data augmentation was used to increase the size and variabil-
ity of the Toronto NeuroFace dataset. Random brightness (with bright-
ness factor ranging from 0.8 to 1.2) and flipping (with a probability
equal to 0.5) were considered.

To perform the computation on cloud, the AWS lambda functions
leverage an arm64 architecture equipped with AWS Graviton2 pro-
cessor and 4 GB of memory, resulting in a CPU processing time of
roughly 10 min for each acquired task. It is worth noting that, as
the clinical assessment does not require real-time outcomes, we based
our system on the store-and-forward paradigm. Additionally, as per
our clinical partners’ agreement, the web app should refrain from
providing patients with quantitative performance feedback regarding
task execution. These factors allowed us to scale computational cloud
resources to a minimum with significant cost savings.
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4.2. Ablation studies

The performance of our facial landmark mask RCNN was compared
against the performance of (i) its akin, namely N-FLMask, trained
from scratch (i.e, without pre-training on the 300-VW dataset) and (ii)
the original Mask RCNN (i.e., without changing the regression branch
for landmark-position estimation) trained from scratch (i.e, without
pre-training on the 300-VW dataset), namely N-MaskRCNN.

Then, the performance of our network was compared against the
performance of the 300VW-FLMask (i.e., the facial landmark mask
RCNN trained on the 300-VW dataset only, without fine-tuning on the
Toronto Neuroface dataset).

An overview of the ablation studies is shown in Table 1. For each
CNN the training settings are those described in Section 4.1. All the
networks share the same training, validation and test set split for fair
comparisons.

4.3. Evaluation metrics

To assess the performance of the tested CNNs, the Normalized Mean
Error (N M E,) was computed across all the test images as follows:

NME, = [L% \/(xi_xpi.)2+(yi_ypi)2 - 100 o)}
N, 4 Diagypox

where Diagy,,, is the length of the bounding box diagonal, N; identi-
fies the number of landmarks, (x;, y;) are the ground-truth coordinates
and (xp;, yp;) are the predicted landmark coordinates. NME, was
assessed for the totality of 68 landmarks (N M Eg), for the 17 chin land-
marks (NME_;,), for the 10 eyebrow landmarks (N M E,,p,,,,), for
the 9 nose landmarks (NME, ), for the 12 eyes landmarks (NM E
and for the 20 mouth landmarks (NME,, ;).

eyes)

4.4. Clinical outcomes

The subjects involved in data acquisition via the web app were
both males and females with bulbar-onset ALS. They consecutively
referred to the facility and started using the application following the
acceptance of the study by the Ethics Committee.® Study participants
used the web app freely and performed the following tasks from the
Robertson dysarthria profile: maximum smile, lips stretching and lips
protrusion for 5 s, 5-times maximum-mouth opening, opening and
closing the mouth for 30 s, protrusion and stretching of the mouth for
30 s. Thus each video lasted at least 30 s, which we empirically sampled
at 8 FPS.

We excluded from the study ASL individuals with tracheostomy,
percutaneous endoscopic gastrostomy, cognitive impairment, individ-
uals without a caregiver and with concomitant diseases that could
interfere with communication skills or could affect life expectancy.
Each subject involved in this preliminary study underwent assessment
scales as the ALS functional rating scale revised (ALS-FRS-R) which was
assessed to determine the overall (i.e., not exclusive to bulbar features)
severity of the disease, with a maximum achievable score of 48 [52].

We further performed the Montreal cognitive assessment (MoCA)
to evaluate potential cognitive impairments (maximum achievable
score = 30) [53] and assessed dysphagia, i.e., the patient’s difficulty to
swallow foods or liquids, via the dysphagia outcome and severity scale
(DOSS) (maximum achievable score = 7) [54]. The characteristics of
the bulbar-onset ALS subjects included in our study are summarized in
Table 2.

From this qualitative analysis on bulbar-onset ALS subjects we
further proposed a prototype measure of orofacial functions related
to speech. This measure results from the position of facial landmarks
and is computed as the difference between the peak in the performed

6 Protocol-ID 118 25/03/2021.
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Table 1
Ablation studies for validating the proposed CNN for facial-landmark detection in subjects suffering from neurological diseases.
Facial landmark mask RCNN (our) N-FLMask 300VW-FLMask N-Mask
Pretraining 300-VW X X X

Fine tuning Toronto NeuroFace

Toronto NeuroFace

300-VW Toronto NeuroFace

Table 2
Characteristics of the 11 bulbar-onset ALS subjects included in the study who
consecutively referred to Azienda Ospedaliero-Universitaria delle Marche (Ancona, Italy).

Subject ID Age Gender ALS-FRS-R MoCA DOSS
1 63 F 33 30 3
2 70 F 32 28 5
3 67 M 42 30 5
4 77 F 40 27 3
5 80 F 35 26 4
6 55 F 39 30 3
7 57 M 40 26 5
8 53 M 37 29 5
9 61 M 35 30 6
10 61 F 38 28 5
11 75 M 40 30 5

gesture (Dp) and the neutral expression (D,) normalized for the inter-
ocular distance (D,). The task considered in this work dealt with
keeping maximum lip protrusion for 5 s, thus we named the measure
as LP-index:

P n
—5 (2)

LP —index =

The distances are computed as Euclidean ones in the two-dimensional
space.

5. Results

The quantitative results of the 4 CNNs (Table 1) on the testing
set from the Toronto NeuroFace dataset are shown in Table 3. The
performance of the N-FLMask was compared with the performance of
the N-Mask to prove the effectiveness of the architectural variation. As
can be seen from Table 3, the results of the N-FLMask were significantly
better than the results of the N-Mask with a NM E¢ equal to 2.70
against N M E¢q equal to 13.55 achieved by the N-Mask.

To prove the effectiveness of the chosen training protocol (pre-
training on 300-VW Dataset and fine-tuning on the Toronto NeuroFace
dataset), the performance of our facial landmark mask RCNN was
compared with that of the N-FLMask and 300VW-FLMask. As shown
in Table 3, our architecture achieved the highest performance with a
NM Egg equal to 1.79 against NM Egg equal to 2.70 and 3.88 of the
N-FLMask and 300VW-FLMask, respectively.

A similar trend in performance is also visible for the N M Es on the
other facial regions (i.e., chin, eyebrows, nose, eyes, mouth).

We then deployed our facial landmark Mask RCNN on the Homely
Care AWS cloud-based system and we reported in Fig. 5 the qualitative
results achieved by our CNN tested on the acquisitions made via the
web app by the 11 bulbar-onset ALS individuals consecutively referred
to Azienda Ospedaliero-Universitaria delle Marche.

6. Discussion

Close and quantitative monitoring of dysarthria evolution by as-
sessing the orofacial functions related to speech is crucial to examine
the progress of neurological diseases, such as ALS or stroke. However,
despite its importance, the monitoring of such muscle functions mainly
relies upon visual observation by clinicians combined with the drafting
of rating scales. This procedure, besides being qualitative and feasible
only during the outpatient assessments, does not allow clinicians to
perceive fine changes in patients’ performance. To attenuate the issues
of subjective assessments, the authors in [21] propose a monitoring

approach based on electromyographic sensors placed over the facial
surface and inside the oral cavity. Using such sensors may be too
invasive for the patient and the examination can only be implemented
in a controlled environment. A number of non-invasive systems to
telemonitor neurological disorders have been proposed in the literature
in the last decade. Some ask questions to the patient, others take
advantage of the sensors embedded in the smartphone to evaluate —
through signal processing or ML and DL algorithms - the evolution
of the disease by assessing biometrics such as tremor, gait and vocal
quality [46-48]. However, such approaches have been only partially
tested in the home environment, and do not envisage the possibility of
scaling the cloud system to integrate new evaluation tasks, or handling
multi-platform and multi-user settings. This may hamper the translation
of the approaches in the actual assessment practice.

To overcome possible state-of-art limitations and to assess dysarthria
in a quantitative non-invasive, and user-friendly fashion, the proposed
research presents a self-service store-and-forward telemonitoring sys-
tem for assessing orofacial functions related to speech. Our Homely
Care is based on a scalable and easy-to-integrate cloud platform to
safely handle the data, and a CNN aimed to automatically regress the
position of facial landmarks from video recordings acquired with a web
application usable by any consumer device and operating system.

Thus, our work consists, first, in the design of a CNN for facial
landmark detection. Inspired by literature in closer fields [43], we
presented our facial landmark mask RCNN. At this stage, we obtained
the quantitative results (shown in the Table 3) by testing the CNN on a
portion of the Toronto NeuroFace dataset. By the comparison of the
results of our facial landmark mask RCNN with the performance of
N-FLMask and 300VW-FLMask (i.e., the same network architectures
but with different training strategies), it emerged that the choice of
pretraining the CNN on the 300-VW dataset and then fine-tuning it on
the Toronto NeuroFace dataset was crucial. Indeed, the pre-training on
the wider dataset granted the network a higher power of generalization
while the fine-tuning allowed to refine the CNN ability to regress facial
landmarks from pathological subjects.

The original version of the Mask-RCNN (i.e., N-Mask) got the largest
error (i.e., the lowest performance). This suggests that varying the
branch for landmark-position regression allowed to recover a higher
level of details. It is worth noting that the chin and mouth-related
landmarks were the most challenging to detect, and this may depend
on the major impact that the progressive-disease has on the muscles
of the oral district [22]. In this case, the least flawed of the 4
architectures was our facial landmark mask RCNN. This may be due
to the fact that the 300-VW dataset — which was used to pre-train the
network — features people grimacing and, therefore, displays orofacial
impairments.

After the CNN design, we implemented the cloud-based Homely
Care system aimed to remotely monitor dysarthria. The system consists
of (i) the web app for video-data acquisition and (ii) the cloud architec-
ture which, besides handling the data acquired via the web app, hosts
our facial landmark mask RCNN.

To test the system functionality, the web-app usability, and the CNN
performance on data acquired in a real scenario, we let 11 individuals
with bulbar-onset ALS use the web app. The obtained results (see
Fig. 5) show that our facial landmark mask RCNN is robust to various
illumination levels. This is particularly evident from the frames 1,
2, and 3, in which the landmarks are correctly positioned over the
subjects’ face. Frame 1 shows the patient optimally positioned with
respect to a light source while performing a maximum lip-protrusion
task. In frame 2, the patient is positioned under an artificial-light
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Table 3
Results in terms of Normalized Mean Error (N M E) for each convolutional neural networks (CNNs).
Facial landmark mask RCNN (our) N-FLMask 300VW-FLMask N-Mask

NMEg 1.79 2.70 3.88 13.55
NME,,, 2.62 4.81 4.39 15.31
NME, b5 0.02 0.03 0.05 0.12
NME,,, 1.55 2.08 3.60 5.61
NME,y,, 1.03 0.94 3.04 5.23
NME, 1.49 2.19 3.70 21.17

‘mouth

Fig. 5. Qualitative outcomes: frames 1, 2, 3 demonstrate how our architecture is robust to various lighting and background levels. Frames 4, 5, 7, 8, show errors made by the
facial landmark mask RCNN in estimating the position of the 68 landmarks. Frames 5 and 6 show how, for the same patient, the network makes errors for the specific task of

lips-protrusion maintenance. All the errors are highlighted by a yellow box.

source and is performing a lip-stretching task. Instead, in frame 3, the
patient is in a neutral position in a dark environment. In the remaining
frames we show, on the contrary, a number of inaccuracies. In frames
4 and 8, landmarks are not correctly positioned in the eyebrow area.
This may be due to two factors that both subjects share and that are
poorly represented in the training datasets: the presence of glasses
and the poorly defined eyebrows. In addition, in frame 4, our CNN
also makes some localization errors in the area of the mouth. This
could be caused by the fact that the patient is performing a task of
maximum-mouth opening, thus she is assuming an extreme position
during which the labial rim tightens causing the landmarks delimiting
the lower and upper lip to come closer together. Frames 5 and 6 show
a diadochokinesis task in which the patient was required to perform a
sequence of movements for a predetermined time. Specifically, the task
involved alternating lip protrusions and stretches. When the patient
performs the lip-protrusion task, our facial landmark mask RCNN fails
in localizing lips landmarks. This error is highlighted also in literature
and may be due to the fact that the patient, in performing the task,
naturally develops expression lines that may confuse the CNN which
is trained on datasets with few samples such as those shown in the
frame [55]. As for frame 7, landmarks are incorrectly localized due
to the positioning of the patient in relation to camera field of view.
This specific acquisition was conducted with the outdated version of
the web app in which there was no ellipse guiding the patient in the
correct positioning.

A straightforward limitation of the proposed system lies in the lim-
ited number of subjects with neurological disease both in the Toronto
NeuroFace dataset — that we used to fine-tune our facial landmark
mask RCNN - and in our first experimentation conducted on 11 bulbar-
onset ALS patients only. However, the purpose of this work was the
proposal of a scalable cloud-based store-and-forward telemonitoring
system for non-invasive assessment of orofacial speech functions that
patients could easily use in the home environment with their personal
devices. Future directions of the present research will surely involve
more subjects both to expand the dataset to fine-tune the CNN and to
quantify with proper surveys the actual usability of the system from
both a clinical and patient-side perspective.

7. Conclusion and future perspectives

The social and health burden of neurological diseases is set to
increase further with the ageing of the population and the epidemiolog-
ical trends observed over the last 10 years, which confirm exponential
increases in incidence and prevalence not only in the elderly popula-
tion, but also in paediatric and young-adult age groups. The progressive
accumulation of disability that characterizes most neurological diseases
often prevents adequate therapeutic and care continuity. As a conse-
quence, discontinuity in care may generate serious conditions of social
distress involving an increasing number of individuals, families and
caregivers [56,57].

To meet the need of guaranteeing care continuity, we proposed
Homely Care: a self-service store-and-forward telemonitoring system
for evaluating dysarthria evolution via orofacial speech muscle assess-
ment in a quantitative and non-intrusive way. This system integrates
with a cloud architecture hosting the proposed facial landmark mask
RCNN for facial landmark-position estimation. From the position of
facial landmarks, as highlighted in [22], it will be possible to evaluate
the impact that diseases — like neurodegenerative ones — have on the
muscles involved in vital functions, such as speech articulation and
breathing. This will allow to provide decision support to clinicians. In
this regard, next improvement of this work will involve the implemen-
tation of a dashboard for the clinician aimed at viewing specific indexes
to quantify the degree of lips protrusion, lip stretching, maximum
mouth opening, facial and mouth symmetry and how these indexes
evolve in time. Fig. 6 shows a first prototype of index to quantify the
degree of lips protrusion over time.

This research represents a part of a wider project aimed at propos-
ing a comprehensive dysarthria-assessment system that integrates also
tasks to quantify other dysarthria features such as speech intelligibility,
phonation, respiration, oral diadochokinesis. Especially when dealing
with rare diseases, having quantitative and easily accessible data is
relevant both for establishing treatment plans specific to patients needs
and for improving knowledge about such a disabling disease. More-
over, from patients’ side, traveling to the hospital is sometimes tiring,
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Fig. 6. Example of a visualization interface for the clinician. There we show how the prototype of lip-protrusion index varies over time. Images are masked for privacy and

commercial logos reasons.

decreases their performance during evaluations phases, and has a real
cost. Systems such as the one described in this research are crucial, as
they enable to carry out assessments at home, with consumer devices
(such as smartphone and PCs) and in a familiar environment, while
always keeping patients in virtual contact with their trusted clinician.
Particularly, the latter aspect will be soon investigated through struc-
tured and semistructured interviews involving both patients and their
caregivers.
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