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A novel Compressive Sampling method for ECG
wearable measurement systems

Francesco Picariello, Grazia Iadarola, Eulalia Balestrieri,
Ioan Tudosa, Luca De Vito1

Department of Engineering, University of Sannio,
Piazza Roma, 21, 82100 Benevento, Italy

Abstract

The paper presents a novel method for the compressed acquisition of electro-

cardiographic (ECG) signals. The proposed method is intended to be applied

to Internet-of-Medical-Things (IoMT) acquisition nodes (i.e. wearable measure-

ment systems) as they can benefit from a reduction of the signal data rate to

be transmitted, and the consequent reduction of energy consumption. Being

based on Compressive Sampling (CS), the proposed method presents a very low

computational complexity on the acquisition node. Moreover, since the sensing

matrix is adapted to the acquired signal, it allows achieving a better recon-

struction performance compared with the other CS-based methods available in

literature.

Keywords: Internet-of-Medical-Things, Wearable Measurement Systems, ECG

Signal, Compressive Sampling, Sampling Method

1. Introduction1

In recent years, wearable measurement systems for measuring physiologi-2

cal signals and parameters are becoming more complex due to the integration3

of several sensors and electronic front–ends, allowing to observe and real-time4

transmit signals, such as electrocardiogram (ECG) and respiration wave. More-5

over, they are going to be integrated in Internet-of-Things (IoT) systems where6

1Corresponding author e-mail: devito@unisannio.it
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several acquisition nodes must be connected and managed. In particular, in7

this field, Internet-of-Medical-Things (IoMT) systems have been proposed to8

monitor and manage healthcare applications [1, 2].9

One of the main challenges of IoMT nodes is to meet the energy consumption10

and size requirements of wearable devices. Moreover, IoMT systems must collect11

and store data from up to thousands of nodes, resulting in a significant data12

rate to be handled. A possible compression of this data rate must however13

guarantee a biosignal integrity, able to comply with medical standards, when14

it is necessary. Such challenges becomes harder as IoMT nodes are going to15

include not only Personal Area Network (PAN), but also Wireless Wide Area16

Network interfaces, such as Wi-Fi, LoRa, Sigfox or Narrowband-IoT (NB-IoT),17

which are characterized by higher power consumptions and lower data rates.18

Compression of biosignals has been proposed as a way both to reduce the19

data rate that the IoMT node has to transmit and to reduce the energy con-20

sumption of the node [3], since in many cases data transmission is the most21

expensive activity in terms of energy. In particular, among the different biosig-22

nals, the compression of the ECG has been faced by many researchers. A first23

classification of research contributions regarding ECG compression can be made24

by distinguish hardware and hybrid methods from digital methods. Methods25

in the former category exploit the sparsity of ECG signal in the time domain26

to design optimized architectures of analog-to-digital conversion. A method27

falling in this category is proposed in [4], where the authors designed a level-28

crossing Analog-to-Digital Converter (ADC) to efficiently sample analog ECG29

signals. The advantage of solutions in this category is that they provide signal30

compression without any computational load for the microcontroller of the ac-31

quisition node. Beside that, they rely on specific hardware designs that must32

be integrated in the acquisition node. For this last reason, in most cases a com-33

plete digital solution is preferred. The papers falling in the category of digital34

methods can be further classified into three types: direct methods, parameter35

extraction methods and transform domain methods [5]. Direct methods achieve36

compression by removing the redundancy of the ECG signal in the time domain.37
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A method belonging to this type, described in [6], proposed a protocol for ECG38

data compression where ECG data are coded as ASCII characters.39

In [7], the authors proposed a dynamic compression scheme for ultra–low40

power and real–time wireless ECG applications. It consisted of a digital integrate–41

and–fire sampler, allowing to represent the ECG signal as a pulse train and a42

lossless entropy encoder, allowing to encode the timestamps and sign phases of43

the pulse train to a binary stream. Parameter extraction methods are based44

on the extraction of some features of the ECG signal such as the P wave (the45

earliest wave of the ECG cycle, corresponding to the atria depolarization), the46

T wave (corresponding to the repolarization of the ventricles) or the QRS com-47

plex (corresponding to the depolarization of the right and left ventricles). A48

method falling in this category was presented in [8]. This method is composed49

by a preprocessing phase, where the signal is divided in beats and each beat50

is further segmented to find the P section, the QRS section and the T section.51

Each section is filtered with a different filter and the baseline is removed. Then,52

an encoder searches the best match of the preprocessed beat with the entries of53

a codebook and performs a Long-Term Prediction (LTP). Finally, the residue54

between the output of the codebook and the predicted waveform from the LTP55

is furtherly coded. In transform domain methods, the ECG signal is projected to56

a transform domain by means of a linear orthogonal transformation. Then the57

coefficients in the transformed domain are properly encoded. Some widely used58

transforms include Discrete Fourier Transform (DFT), Discrete Cosine Trans-59

form (DCT), Walsh Transform and Discrete Wavelet Transform (DWT) [5], [9].60

In [10], the ECG is compressed by first evaluating the DWT based on the Db661

wavelet function. Then, the obtained coefficients are selected by the application62

of a higher order statistics thresholding. The compressed signal is obtained by63

linear prediction coding and Huffman coding. The transform domain methods64

have gained a significant attention due to their capability of accurately repre-65

sent the ECG signal also at moderate compression ratios. However, most of66

them are unsuitable for a real–time implementation in acquisition nodes with67

constrained resources, due to their computational complexity and large buffer68
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memory requirements [11]. Hybrid approaches, combining methods from dif-69

ferent categories have been proposed in [11] and [12]. The method in [11] first70

detects the beats, it divides each beat into plain and complex blocks, based on71

their standard deviation. Then, specific compressions are applied to the two72

block types. The method in [12] faces the problem of unacceptable distortion73

of abnormal beats for high compression ratios. It uses a Support–Vector Ma-74

chine (SVM) binary classifier to identify abnormal beats. Then a wavelet–based75

compression is used for abnormal beats, while normal beats are compressed in76

groups by means of a hybrid encoder, employing a combination of wavelet and77

Principal Component Analysis (PCA).78

Alternatively, Compressive Sampling (CS) has been proposed for ECG signal79

compression. The advantage of CS is its capability of achieving performance80

comparable with transform-domain methods, while moving the computational81

load from the acquisition node to the receiving node. Since the receiving node82

is usually located on the Internet cloud, it has much greater computational83

resources available. Therefore, CS methods allows to realize ECG compression84

also on sensing nodes with constrained resources. For this reason, CS represents85

a widely proposed solution for data compression in IoT systems [13], where the86

acquisition and compression can be implemented in resource-constrained nodes,87

while the reconstruction is actually carried out (where needed) in the cloud.88

The literature regarding the application of CS for ECG compression is mostly89

concentrated on the quality assessment and improvement of the reconstructed90

signal by investigating the impact on the quality of a specific sensing matrix,91

dictionary matrix, or reconstruction algorithm. (see Section 2 for further details92

about CS) [14]. In [15], the authors compared the performance of the ECG93

reconstruction with the application of different dictionary matrices, based on94

the Discrete Wavelet Transform, belonging to several wavelet families, such as95

Coiflet, Daubechies, Symlet, biorthogonal and reverse biorthogonal. Another96

comparison of several dictionaries was reported in [14], where the dictionary97

matrix was based on the Daubechies db4, Gabor, and mexican hat and spline98

wavelets. Regarding the sensing matrix, often Gaussian and Bernoulli random99
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matrices are used as it has been proven their incoherence with Fourier and100

wavelet dictionaries. In [16], the authors evaluated the Toeplitz, Circulant and101

Triangular structured sensing matrices, because they do not require the random102

number generation and therefore are easier to implement and less complex. In103

[17] and [18], a CS–based sensing scheme using a Deterministic Binary Block104

Diagonal matrix (DBBD) as sensing matrix is utilized. In particular, in [17] a105

hardware implementation of the sensing scheme is also proposed and compared106

with the random demodulator Analog-to-Information Converter architecture.107

In [18], a digital CS scheme using the same sensing matrix is proposed and108

compared with Gaussian random matrices. About reconstruction algorithms,109

Basis Pursuit (BP) and Orthogonal Matching Pursuit (OMP) are mainly used in110

the literature. In [16], also Compressed Sampling Matching Pursuit (CoSaMP)111

and Normalized Iterative Hard Thresholding (NIHT) have been evaluated for112

ECG reconstruction. Alternative approaches have been proposed in [19] and in113

[20]. In the former, a parametric model of the ECG signal is used and the signal114

recovery is achieved by means of the Differential Evolution algorithm. In the115

latter, a time-normalized agnostic dictionary created by the PCA of training116

signals is instead used as signal base.117

This paper aims to propose a new digital CS–based ECG compression method118

where a deterministic sensing matrix, adapted to the acquired signal, is utilized.119

Differently from random sensing matrices, the sensing matrix does not require120

the random number generation. Moreover, being adapted to the signal, the121

sensing matrix contains more information on the signal features and therefore it122

can guarantee a better reconstruction quality, than other deterministic matrices.123

The present research aims to realize the ECG signal compression to be inte-124

grated in the smart wearable device of the Ambient-intelligent Tele-monitoring125

and Telemetry for Incepting & Catering over hUman Sustainability (ATTI-126

CUS) project [21]. The project main objective is to develop a telemedicine127

system where physiological signals are acquired by means of a smart T-shirt128

and possible anomalies in the parameters are discovered.129

A preliminary version of the proposed method was presented in [22]. In130
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the work presented here, the aforementioned method was further improved and131

assessed. In particular, the compression algorithm was modified such that the132

sensing matrix is not evaluated in each frame, but only whether a significant133

change in the signal distribution is found. Moreover, the proposed method has134

been compared against two state of the art methods performing CS–based ECG135

signal acquisition.136

The rest of the paper is organized as follows. In Section 2, some back-137

ground knowledge about CS is given. In Section 3, the proposed CS–based ECG138

compression scheme is presented. The experimental evaluation is presented in139

Section 4. Finally, Section 5 presents the conclusions and future work.140

2. Fundamentals of Compressive Sampling141

CS is based on the assumption that the ECG signal is sparse in a transform142

domain, i.e. its representation in such domain is a vector with few elements. In143

particular, let us consider a vector x of N samples acquired in a certain time144

window, at Nyquist rate, expressed as:145

x = Ψθ, (1)

where Ψ is a N ×N matrix describing the domain transformation, often called146

dictionary matrix, and θ is the vector of the coefficients in the transformed147

domain. The vector θ is assumed to be K-sparse, i.e. it contains at most K148

elements. Under the sparsity assumption, the compression is actually performed149

by multiplying the acquired ECG samples by a M ×N sensing matrix Φ, with150

M < N :151

y = Φx, (2)

where y is the M -size vector of the compressed samples. In order to guaran-152

tee the reconstruction, it is necessary that the sensing matrix Φ presents a low153

coherence with the dictionary matrix, where the coherence is defined as [18]:154
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µ(Φ,Ψ) =
√
N ·max

i,j

φT
i ψj

‖φi‖2‖ψj‖2
, (3)

where φT
i and ψj are the i-th row of Φ and the j-th column of Ψ, respectively,155

and ‖ · ‖2 indicates the `2 norm. The reconstruction of the ECG waveform is156

actually performed by solving the `1 minimization problem:157

θ̂ = arg min
θ
‖θ‖1 , subject to: y = ΦΨθ, (4)

where ‖ · ‖1 indicates the `1 norm.158

3. The proposed method159

In this Section, the proposed method is described. In particular, in Subsec-160

tion 3.1 the compression procedure occurring in the acquisition node is discussed,161

while in Subsection 3.2 the signal reconstruction, executed at the receiving side,162

is presented. Furthermore, in Subsection 3.3 the compressed data rate is de-163

scribed, and in Subsection 3.4 the computational complexity is analyzed.164

3.1. Compression165

As mentioned in Section 1, in digital CS–based methods, the compression166

is operated by multiplying the acquired samples by a sensing matrix. In this167

paper, the sensing matrix Φ is chosen such that the vector y performs a sort168

of cross-correlation between the vector x, consisting of a frame of N samples169

of the ECG signal acquired at the Nyquist rate, and the pulse train signal p,170

consisting of ones where the signal x has a high contribution and zero elsewhere.171

In this way, the M samples of y contain an information that is somehow related172

to the auto–correlation coefficients of x.173

The proposed method operates on records of N samples acquired at Nyquist174

rate. For each record x, the average of the samples in the record is performed175

to obtain the value xavg. Then, the signal magnitude xa is evaluated as:176

xa = | x− xavg | . (5)
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A threshold value xth is computed in each frame, representing a certain177

percentile of the waveform amplitude, by means of a sorting–based algorithm178

operating on xa. Then, xth is obtained according to the defined percentile. An179

analysis of the method performance versus the considered percentile is reported180

in Section 4.2.181

The Φ matrix is then updated whether a significant change is found in the182

xth value. Otherwise, the Φ matrix of the previous frame is used. The change183

of xth is considered significant when the distance between the value evaluated184

in the current frame and the one obtained in the previous frame is above a185

specified limit ε.186

In the case the Φ matrix must be updated, an N -size binary vector p is187

constructed by quantizing the signal magnitude xa, with the resolution of 1 bit,188

according to the threshold xth. Therefore, the n-th element p(n) of p, with189

n = 0, . . . , N − 1, is evaluated as:190

p(n) =

1, if xa(n) ≥ xth

0, if xa(n) < xth

. (6)

Once defined the vector p, the sensing matrix Φ is constructed as follows:191

Φ =


p(1) p(2) . . . p(N)

p(N −USR + 1) p(N −USR + 2) . . . p(N −USR)
...

...
. . .

...

p(USR + 1) p(USR + 2) . . . p(USR)

 (7)

where, USR = N/M is the Under-Sampling Ratio, expressing a measure of192

the data reduction respect to the number of samples acquired according to the193

Nyquist criteria. The sensing matrix Φ is built as a circulant matrix obtained194

by shifting the pulse train samples of USR positions in each row.195

The whole compression procedure is summarized by a block scheme as de-196

picted in Fig. 1. For the generic n–th frame, the xa vector is evaluated as in (5)197

and the xth(n) value is obtained, according to the chosen value of percentile.198
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n-th Frame

Evaluate xa

Evaluate xth(n)

?

n = 1
OR

|xth(n)− xth(n− 1)| > ε

Build p vector
and Φ matrix

Transmit p

Compress samples

Transmit com-
pressed samples

YES

NO

Figure 1: Block diagram of the compression procedure. The Φ matrix is actually evaluated

only whether a significant change is found in the value of xth.

If the current frame is the first one or the absolute difference of xth(n) and199

xth(n− 1) is greater than a certain value ε, a new p vector is evaluated, apply-200

ing (6) and a new sensing matrix Φ is generated. In this case, it is also necessary201

to transmit the p vector. If instead n > 1 and no significant change occurred in202

xth (i.e. ‖xth(n)−xth(n−1)‖ < ε), the values of p and Φ of the previous frame203

are used. Once defined the sensing matrix to be used, the acquired samples are204

compressed by the (2) and the compressed samples are transmitted.205

3.2. Reconstruction206

As mentioned in Section 1, the ECG signal waveform is reconstructed by207

finding the coefficients in the sparsity domain by solving (4). To this aim, a208

key role is played by the dictionary matrix (i.e. Ψ) which defines the sparsity209

domain. In other words, the dictionary matrix allows transforming the vector210
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of the acquired samples (see eq. (1)) to a sparse vector, i.e., having a reduced211

number of elements.212

As reported in [14], the dictionary that achieves the highest reconstruction213

performance for the ECG signal is obtained by means of the Mexican hat wavelet214

kernel. In [23], the Mexican hat wavelet matrix Ψbase is defined as:215

Ψbase =

[
ψ(2, 0),ψ(2, 2),ψ(2, 4), . . . ,ψ

(
2, 2

⌊
N − 1

2

⌋)
,

ψ(4, 0),ψ(4, 4),ψ(4, 8), . . . ,ψ

(
4, 4

⌊
N − 1

4

⌋)
,

. . . ,ψ(N, 0)

] (8)

where ψ(a, b) is a N -size vector that describes the Mexican hat wavelet function,216

defined according to the following expression:217

ψ(a, b) =
2√

3a · π1/4
·
[

1−
(

n− b
a

)2
]
· e− 1

2 (n−b
a )

2

(9)

with n = [0, . . . , N − 1]T , a the scaling factor, a = 2m, m ∈ {1, . . . , blog2(N)c},218

and b the delay factor, which depends on a, i.e. b ∈
{

0, a, 2a, . . . , a
⌊
N−1
a

⌋}
.219

Finally, in order to allow the reconstruction of the observed ECG signal in220

presence of a low–frequency baseline wander, the vector u = [1/N, . . . , 1/N ]T is221

added as last column of the matrix Ψ that is finally expressed as:222

Ψ =
[
Ψbase,u

]
. (10)

3.3. Compressed data rate223

Since in the proposed CS method, the sensing matrix is adapted to the signal,224

it is necessary to provide, for the reconstruction purpose, a coded version of the225

vector p together with the compressed samples, whenever the sensing matrix is226

updated. By assuming that each sample is provided with a resolution of b bits,227

the resulting compression ratio is slightly lower than the undersampling ratio:228
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CR =
B0

Bc
=

bNNf

bMNf +NpN
=

USR

1 + USR
Np

Nf

, (11)

where B0 and Bc are the data rates before and after the compression, respec-229

tively, Nf is the number of frames and Np is the number of frames where the230

matrix is updated.231

3.4. Computational complexity232

The proposed CS method presents a very low computational complexity for233

the acquisition node. For each acquired frame, the following operations are234

needed:235

� N log2N for the evaluation of the percentile xth, considering that a merge236

sorting algorithm is used;237

� one subtraction and two comparisons to check for a significant change in238

the xth;239

� if it is needed to update the Φ matrix, N further comparisons are needed240

to build the p vector;241

� N1−1 additions, where N1 is the number of ones in the p vector, for each242

compressed sample are needed to evaluate the compressed frame.243

The actual value of N1 varies in each frame. However, its mean value depends244

on the considered percentile for the evaluation of the threshold xth. Indicating245

with p% the value of the percentile:246

E{N1} = N · P{x(n) > xth} = N

(
1− p%

100

)
, (12)

where E{·} represents the expectation operator, and P{·} is the probability of247

finding x(n) samples higher than xth . Therefore, for each frame, the following248

mean number of operations is needed in the worst case when the Φ matrix is249

updated:250
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E{Nops} = N log2N +N + 3 +M (E{N1} − 1) =

= N

[
M

(
1− p%

100

)
+ log2N + 1

]
−M + 3.

(13)

Considering , as an example, a record of N = 720 samples acquired at a sam-251

pling frequency of 360 Samples/s, USR = 4 and p% = 60, according to (13), the252

number of operations for each record is slightly less than 60 000, corresponding253

to about 30 000 operations per second. Such computational load can be easily254

sustained by a 32–bit microcontroller, based on the ARM Cortex M4F core,255

which provides at least 1.27 DMIPS (Dhrystone Millions of Instructions Per256

Second)/MHz and a clock frequency greater than 50 MHz.257

At the receiving side, the ECG signal waveform needs to be reconstructed.258

At this stage, the computational complexity depends on the chosen reconstruc-259

tion algorithm. BP has generally a complexity O(N3). OMP has instead a260

much lower computational load. In its implementation based on the matrix261

inversion lemma, the number of operations is [24]:262

Nops = O((N +M)S), (14)

where, S is the number of iterations of the OMP algorithm which is in any case263

lower than N .264

4. Results and discussion265

In this Section, the performance of the method presented in Section 3 is266

analyzed through several tests implemented in MATLAB. For testing purposes,267

the ECG signals from the PhysioNet MIT-BIH Arrhythmia Database (available268

online [25]) have been considered. The MIT BIH database was chosen among the269

Internet–available ones as it is the most widely used in the scientific literature.270

Therefore, the results obtained on the ECG signals of this database can be271

easily compared among several research papers. This database contains 48272

half-hour excerpts of two-channel ambulatory ECG recordings, obtained from273

47 subjects studied by the BIH Arrhythmia Laboratory. The recordings were274
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acquired at a 360 Hz sampling frequency per channel with 11-bit resolution over275

a 10 mV range. The signals were segmented in N = 720–size frames, while M276

depends on the adopted USR value. Before being processed by the proposed277

CS method, in each frame the first three harmonics of the power-line signal, at278

{60; 120; 180} Hz, respectively have been removed in the frequency domain [26].279

Preliminary assessment phases were conducted on the method with the fol-280

lowing aims: (i) to evaluate the method with different reconstruction algorithms,281

(ii) to tune the amplitude percentile used in the method to build the p vector,282

(iii) to verify the influence of the ε threshold, which controls the update of283

the sensing matrix. In the above mentioned phases, two data-sets of ten ECG284

signals from [25] have been used:285

S1 = {100, 106, 107, 115, 117, 118, 119, 221, 223, 228} (15)

S2 = {101, 109, 122, 124, 200, 202, 205, 217, 219, 234} (16)

The first data-set contains the following main beat labels: atrial premature286

beats, premature ventricular contractions, paced beats, isolated QRS-like arti-287

facts, and right bundle branch block beats. In the second data-set, the main288

beat labels are: left bundle branch block beats, aberrated atrial premature289

beats, non-conducted P-waves, and nodal (junctional) premature beats. For290

each ECG signal, the Percentage of Root-mean-squared Difference (PRD) has291

been evaluated as figure of merit [14, 27, 28, 29]. The PRD is computed as292

follows:293

PRD =
‖x− x̂‖2
‖x‖2

× 100%, (17)

where x and x̂ are the original and the reconstructed signal, respectively. Then,294

two evaluation phases have been carried out. In the former, the method is295

characterized on the above mentioned signal data–sets and compared with the296

method proposed in [18] (DBBD sensing matrix and DCT dictionary) and the297

method reporting the best result in [14] (Bernoulli sensing matrix and two scales298

Mexican hat based dictionary). Those methods were selected as they got the299
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better accuracy of reconstruction within CS–based methods. In this analysis300

the following figures of merit were evaluated: PRD , PRD Normalized (PRDN ),301

Mean Square Error (MSE ), Root Mean Square Error (RMSE ), Peak Signal to302

Noise Ratio (PSNR). The used expression of PRD is that reported in (17). The303

following expressions of PRDN , MSE , RMSE and PSNR have been used [12]:304

PRDN =
‖x− x̂‖2
‖x− x‖2

× 100%, (18)

MSE =
‖x− x̂‖2

Ns
, (19)

RMSE =

√
‖x− x̂‖2

Ns
, (20)

PSNR = 10 log10

max(x)2

MSE
, (21)

where x is the average of the elements of x, and Ns is the number of samples305

of the entire signal under observation.306

In the latter phase, the method was tested on several types of abnormal307

beats, by evaluating the Weighted Diagnostic Distortion (WDD) [30], and the308

Wavelet Energy–based Diagnostic Distortion (WEDD) [31]. WEDD was evalu-309

ated according to [31] as a weighted sum of the Wavelet PRD (WPRD):310

WEDD =

L+1∑
l=1

wlWPRD l (22)

where L is the number of wavelet levels. The weights wl and the WPRD are311

evaluated as:312

wl =

∑Kl

k=1 d
2
l (k)∑

m=1 L+ 1
∑

k=1Kld2m(k)
(23)

WPRD l =

√√√√∑Kl

k=1 [dl(k)− d̃l(k)]2∑Kl

k=1 d
2
l (k)

(24)
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where, Kl denotes the number of wavelet coefficients at the l-th level, dl(k) and313

d̃l(k) are the k-th wavelet coefficients of the original and of the reconstructed314

signal, respectively.315

WDD was evaluated according to [12], by considering the following features:316

(i) QRS duration, (ii) P-wave height, (iii) P-wave duration, (iv) R-R interval,317

(v) QRS amplitude, (vi) PR interval, (vii) QT interval, and (viii) T-wave height.318

The features were evaluated by applying the method proposed in [32] for ECG319

delineation. For the evaluation of WDD , the following matrix of weights was320

used [12]:321

Λ = diag([2 2 2 2 1 1 1 1]). (25)

Therefore, WDD is evaluated as:322

WDD = ∆βT · Λ

tr(Λ)
·∆β × 100, (26)

where, ∆β is the vector of the normalized differences ∆βi of the features eval-323

uated on the original and reconstructed signal, respectively [30]:324

∆βi =
|βi − β̂i|

max{βi, β̂i}
. (27)

4.1. Influence of the reconstruction algorithm325

In this test, the performance of the proposed method, by employing either326

the OMP or BP algorithms in the signal reconstruction, has been evaluated in327

terms of PRD averaged among all the signals of the S1 data–set. The analysis328

has been carried out on the first 5 min of the signal recordings, considering329

values of the USR ranging from 2 up to 12 with a step of 2. The obtained330

results are shown in Fig. 2. As it was expected, the proposed method exhibits331

lower PRD if the BP algorithm is employed instead of OMP. In particular, by332

considering a PRD less than 9 %, which represents a good signal reconstruction333

quality for medical applications [28], the OMP algorithm can be adopted with334

a maximum USR of 6, while the BP algorithm allows to increase the USR at335
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Figure 2: Average PRD over the S1 data–set using BP and OMP as reconstruction algorithms.

BP achieves a better reconstruction quality for all the considered values of USR.

a maximum value of 9. However, the BP algorithm exhibits a computational336

complexity higher than the OMP. Since it assures a better accuracy in terms of337

signal quality reconstruction, BP was used in this paper.338

4.2. Influence of percentile339

This analysis aims at evaluating the influence of the percentile used for340

the determination of the threshold xth. To this aim, the average PRD over341

the first 1 min of the signals contained in the S1 data–set was evaluated for342

different percentiles and USR values. Each signal is reconstructed through the343

BP algorithm. The analysis has been carried out according to percentile values344

ranging from 20 % to 80 %, with a step of 10 % and for USR values equal to345

{2, 4, 6, 8, 10}. In Fig. 3, the obtained results are depicted. From this figure, it346

can be noted that the PRD does not show significant changes with the percentile347

in the considered range, for all the USR values. A value of 60 % has been chosen348

for the further tests.349
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Figure 3: Average PRD of the proposed method versus the percentile and for several values

of the USR.

4.3. Influence of the ε threshold350

In Fig. 4, the results in terms of average PRD , evaluated on the first 5 min of351

the signals in the S1 data–set when different values of the USR and ε have been352

used, are shown. The PRD is reported versus the CR, which, as mentioned353

above, is slightly lower than the USR, due to the need of transmitting the354
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P
R
D
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]

0.00mV
0.05mV
0.15mV
0.30mV

Figure 4: Average PRD , evaluated on the first 5 min of the signals in the S1 data–set, for

different values of USR and three values of the threshold ε: 0.00 mV (sensing matrix changes

in all the frames), 0.05 mV, 0.15 mV, and 0.30 mV.
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Table 1: Comparison of the results obtained with the proposed method (Proposed) vs. the

method proposed in [18] (DBBD+DCT) and the method reporting the best results in [14]

(Bernoulli+MexHat2) for the Data–set S1: (a) average, (b) standard deviation.

USR Method CR
PRD

[%]

PRDN

[%]

MSE

[·10−5 mV2]

RMSE

[·10−3 mV]

SNR

[dB]

PSNR

[dB]

2

Proposed 2.00 1.42 2.30 2.39 4.87 37.72 50.41

DBBD+DCT 2.00 0.94 1.52 1.58 3.97 41.22 52.16

Bernoulli+MexHat2 2.00 2.75 4.29 4.75 6.85 31.86 47.47

4

Proposed 3.99 3.06 4.68 5.04 7.04 31.39 47.24

DBBD+DCT 4.00 3.35 5.00 5.47 7.23 31.21 47.15

Bernoulli+MexHat2 4.00 4.91 7.49 8.32 9.04 27.09 45.09

6

Proposed 5.97 4.61 7.24 8.16 8.93 27.34 45.22

DBBD+DCT 6.00 8.21 13.38 14.36 11.79 22.60 42.85

Bernoulli+MexHat2 6.00 7.59 11.80 13.31 11.40 23.10 43.10

8

Proposed 7.94 7.40 11.71 13.04 11.31 23.18 43.14

DBBD+DCT 8.00 14.46 23.72 25.10 15.57 17.78 40.43

Bernoulli+MexHat2 8.00 11.41 17.88 20.05 14.01 19.49 41.29

10

Proposed 9.91 10.62 17.21 18.99 13.66 19.91 41.50

DBBD+DCT 10.00 19.48 31.88 33.56 18.05 15.18 39.13

Bernoulli+MexHat2 10.00 16.97 27.14 29.65 17.05 16.07 39.58

(a) Data–set S1 average.

USR Method CR
PRD

[%]

PRDN

[%]

MSE

[·10−5 mV2]

RMSE

[·10−3 mV]

SNR

[dB]

PSNR

[dB]

2
Proposed 2.00 0.60 1.00 0.39 0.40 3.86 6.23

DBBD+DCT 2.00 0.39 0.57 0.17 0.21 3.53 6.29

Bernoulli+MexHat2 2.00 1.12 1.04 1.19 0.84 3.57 5.88

4
Proposed 3.99 1.64 1.66 1.28 0.91 4.63 5.81

DBBD+DCT 4.00 2.15 2.75 2.58 1.65 5.89 5.27

Bernoulli+MexHat2 4.00 2.36 2.05 2.41 1.30 4.22 5.71

6
Proposed 5.97 1.80 1.84 2.72 1.45 3.51 5.86

DBBD+DCT 6.00 3.63 6.89 5.49 2.27 4.34 5.71

Bernoulli+MexHat2 6.00 3.15 3.06 4.60 1.90 3.76 5.79

8
Proposed 7.94 2.73 3.07 3.96 1.64 3.35 5.97

DBBD+DCT 8.00 7.21 12.44 9.88 3.06 4.37 5.98

Bernoulli+MexHat2 8.00 4.38 4.75 6.16 2.15 3.64 5.60

10
Proposed 9.91 3.35 5.07 5.66 1.95 2.98 6.11

DBBD+DCT 10.00 9.73 15.84 12.12 3.30 4.32 6.08

Bernoulli+MexHat2 10.00 6.39 10.36 8.59 2.52 3.78 5.58

(b) Data–set S1 standard deviation.
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Table 2: Comparison of the results obtained with the proposed method (Proposed) vs. the

method proposed in [18] (DBBD+DCT) and the method reporting the best results in [14]

(Bernoulli+MexHat2) for the Data–set S2: (a) average, (b) standard deviation.

USR Method CR
PRD

[%]

PRDN

[%]

MSE

[·10−5 mV2]

RMSE

[·10−3 mV]

SNR

[dB]

PSNR

[dB]

2

Proposed 2.00 1.83 2.47 2.66 5.06 36.10 51.24

DBBD+DCT 2.00 0.97 1.38 1.45 3.80 40.86 53.62

Bernoulli+MexHat2 2.00 2.93 4.10 4.46 6.65 31.18 48.78

4

Proposed 3.98 3.33 4.63 4.91 6.96 30.44 48.41

DBBD+DCT 4.00 3.29 4.47 4.93 6.85 31.02 48.70

Bernoulli+MexHat2 4.00 5.48 7.58 8.17 8.98 25.99 46.19

6

Proposed 5.96 4.98 7.02 7.53 8.60 26.77 46.58

DBBD+DCT 6.00 7.41 10.72 11.11 10.39 23.60 44.99

Bernoulli+MexHat2 6.00 8.21 11.48 12.47 11.08 22.35 44.37

8

Proposed 7.92 7.79 10.94 11.60 10.72 22.89 44.64

DBBD+DCT 8.00 12.57 18.26 18.46 13.34 19.34 42.86

Bernoulli+MexHat2 8.00 11.75 16.70 18.04 13.33 19.15 42.77

10

Proposed 9.88 10.63 15.06 16.12 12.64 19.99 43.19

DBBD+DCT 10.00 17.50 25.57 25.98 15.81 16.44 41.41

Bernoulli+MexHat2 10.00 16.68 24.14 25.49 15.82 16.22 41.30

(a) Data–set S2 average.

USR Method CR
PRD

[%]

PRDN

[%]

MSE

[·10−5 mV2]

RMSE

[·10−3 mV]

SNR

[dB]

PSNR

[dB]

2
Proposed 2.00 1.22 1.11 1.24 1.03 4.92 2.40

DBBD+DCT 2.00 0.36 0.40 0.18 0.24 3.41 2.51

Bernoulli+MexHat2 2.00 1.04 0.80 0.93 0.70 3.29 2.28

4
Proposed 3.98 1.57 1.52 1.31 0.91 4.23 2.40

DBBD+DCT 4.00 1.80 1.77 2.33 1.63 5.37 2.70

Bernoulli+MexHat2 4.00 2.31 1.95 2.00 1.11 3.95 2.27

6
Proposed 5.96 2.15 2.19 2.13 1.20 3.79 2.48

DBBD+DCT 6.00 3.50 5.48 3.74 1.86 4.54 2.82

Bernoulli+MexHat2 6.00 3.31 2.83 3.34 1.47 3.57 2.27

8
Proposed 7.92 2.98 3.13 2.42 1.14 3.98 2.54

DBBD+DCT 8.00 6.84 10.75 6.81 2.70 5.26 2.92

Bernoulli+MexHat2 8.00 4.21 4.79 4.65 1.77 3.39 2.46

10
Proposed 9.88 3.69 3.70 3.02 1.20 3.27 2.38

DBBD+DCT 10.00 9.40 14.04 9.92 3.33 5.25 3.07

Bernoulli+MexHat2 10.00 6.63 9.68 6.65 2.29 3.64 2.65

(b) Data–set S2 standard deviation.
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Figure 5: Average PRD (solid line) and Maximum PRD (dashed line) obtained for the S1 (a)

and S2 (b) for the proposed method (Proposed), the method proposed in [18] (DBBD+DCT),

and the method reporting the best performance of [14] (Bernoulli+MexHat2).

p vector, whenever it is updated. In details, the number of times when p is355

updated is controlled by the value ε. Higher ε is, lower is the probability that p356

is updated and CR is closer to USR. It can be observed in Fig. 4 that the PRD357

does not change significantly by increasing ε up to 0.30 mV, while a relevant358

increase of CR is achieved. For this reason a value of ε of 0.30 mV is selected359

for the further tests.360

4.4. Experimental results361

The results of the former evaluation phase are shown in Tab. 1 and Tab. 2,362

where the values of the considered figures of merit are reported versus the USR363

in the case of the proposed method (Proposed), of the method proposed in [18]364

(DBBD+DCT) and the method reporting the best results in [14] (Bernoulli+MexHat2).365

In particular, Tab. 1 reports the results for Data–set S1, while Tab. 2 reports366

the results for Data–set S2. In each table, the average and standard deviations367

of each figure of merit over the signals included in the Data–set are given.368

The USR is therefore reported in the first column. The second column369

reports the method and the third column shows the obtained CR. It can be370

seen that the proposed method shows average values of the figures of merit that371
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(c) Fusion of ventricular and normal beat
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(d) Left bundle branch block beat

Figure 6: Original waveforms (dashed grey line) and reconstructed waveform (solid black

line) of some abnormal beats extracted from the MIT-BIH arrhythmia database signals, after

a compression with USR = 8: (a) atrial premature beat (Signal no. 222), (b) premature

ventricular contraction (Signal no. 105), (d) left bundle branch block (Signal no. 213), and

(c) fusion of ventricular and normal beat (Signal no. 111).
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Table 3: Results of WDD and WEDD for 4 types of abnormal beats for different values of

the USR.
WDD [%] WEDD [%]

Abnormal beat

type
USR Average

Standard

deviation
Average

Standard

deviation

A (100 beats)

2 0.7 2.1 4.1 3.7

4 0.9 1.6 5.0 2.2

6 1.9 3.4 8.2 3.6

8 3.3 4.1 13.3 7.0

V (41 beats)

2 2.08 4.05 0.96 0.52

4 3.91 5.22 4.75 3.33

6 3.16 3.97 7.36 4.35

8 3.78 5.02 12.72 7.37

F (100 beats)

2 0.09 0.25 0.42 0.23

4 0.28 0.37 1.79 0.81

6 0.85 1.15 4.44 1.94

8 1.82 2.78 8.94 3.67

L (100 beats)

2 0.20 0.60 1.94 1.30

4 0.20 0.67 2.67 1.27

6 0.42 0.93 5.63 2.70

8 1.06 1.22 10.54 4.79

are better than the method Bernoulli+MexHat2 for all the considered values of372

CR. Compared with the method [18], the proposed method shows results that373

are slightly worse for USR = 2. Both the methods then give similar values for374

USR = 4. For USR > 4 the proposed method shows a much better accuracy.375

Looking at the standard deviations, it can be observed that, for both Data–sets376

S1 and S2, the proposed method shows a lower variability, for almost all the377

figures of merit, for a CR higher than 2.378

The superiority of the proposed method can be better observed in Fig. 5,379

where the trend of the average PRD (solid line) and the maximum PRD (dashed380

line), evaluated on the signals belonging to the Data–sets S1 (Fig. 5a) and S2381

(Fig. 5b), respectively, are reported versus the CR for the three methods. It382

can be seen that for CR > 4 the proposed method achieves a huge average383

reduction of PRD compared with both the other methods on both the data–384

sets. Moreover, it shows also a lower variability than the other methods. The385

higher accuracy of the proposed method than the other methods is due to the386
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adaptation of the sensing matrix to the acquired signal, realized by evaluating387

and transmitting the p vector.388

The latter evaluation phase was devoted to verify the behavior of the pro-389

posed method in the case of abnormal beats. To this aim, abnormal beats of 4390

types where selected in the first 10 min of the signal recordings no. 222 (atrial391

premature beat - A), no. 105 (premature ventricular contraction - V), no. 213392

(fusion of ventricular and normal beat - F), and no. 111 (left bundle branch393

block beat - L).394

The results are reported in Tab. 3. The table reports in the first column395

the type of abnormal beat and the number of analyzed beats. In the second396

column, the USR is reported. The other columns report the average values and397

the standard deviation of the WDD and WEDD figures of merit, respectively,398

evaluated on the considered beats. As expected, the values of both WDD and399

WEDD increase with the USR. However, for all the considered types of beats400

and values of USR, the values of WDD and WEDD result in the ranges of the401

highest quality categories reported in [30] and [31]. Slightly higher values were402

found for A and V beat types, mainly for USR = 8. This can be due to a403

non–perfect coverage of the used Mexican hat dictionary for specific beat types.404

This will be analyzed in a further work where an automatic optimization of the405

dictionary is planned, with the application of the method proposed in [33].406

The good reconstruction quality of abnormal beats can be seen in Fig. 6,407

where the acquired waveforms (thick grey line) and the reconstructed ones (thin408

black line), corresponding to 4 frames centered around abnormal beats of dif-409

ferent types, after the signal has been compressed with USR = 8. In particular,410

atrial premature beat, premature ventricular contraction, fusion of ventricular411

and normal beat and left bundle branch block beat are reported in Fig. 6a,412

Fig. 6b, Fig. 6c and Fig. 6d, respectively. It can be seen a good overposition of413

the thin black line (reconstructed signal) over the thick grey line (original ac-414

quired signal) that allows preserving all the characteristic features of the wave-415

form.416
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5. Conclusion417

In this paper, a novel method for the compressive sampling of ECG signals, is418

presented. The method is based on the idea of building a sensing matrix, which419

is adapted on the acquired signal frame. In particular, it is a circulant matrix,420

containing zeros and ones, obtained by quantizing (with the resolution of 1 bit)421

the magnitude of the acquired signal. The adapted sensing matrix guarantees422

that the significant portions of the signal waveform are actually contained in423

the compressed version, thus allowing a more accurate reconstruction respect424

to the methods already available in scientific literature. The sensing matrix is425

then used in combination with a modified Mexican hat wavelet dictionary that426

allows also the reconstruction of the signal wander for each processed frame.427

The experimental results, obtained on signal recordings from the PhysioNet428

MIT-BIH Arrhythmia Database, showed that the proposed method achieves a429

better accuracy in ECG signal reconstruction than the other methods based on430

compressive sampling. The good ECG signal reconstruction accuracy was also431

confirmed on abnormal beats of several types.432

Future work will be focused on a further improvement of the used dictionary,433

such to better adapt it to the different ECG signal waveforms. Moreover, the434

implementation and testing of the proposed method on an IoMT system is435

planned.436
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