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A Letizia,
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ai miei nonni

“In the middle of difficulty lies opportunity.”
A. Einstein
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Abstract

In the context of Industry 4.0, the increasing amount of data in combination with
novel disruptive Machine Learning (ML) and Deep Learning (DL) methodologies lied
the foundation for helping the human operator to detect production issues as well as
classify the quality of the final product. These solutions, embedded into Decision
Support Systems (DSSs), offer great opportunities to automatize the overall quality
control process.

The objectives and the contributions of this thesis reflect the research activities per-
formed on the topics of: i) Predictive Quality Control (PQC), with the aim to design
and implement a DSS for predicting the processing quality and anomaly situations
during the machining of a tool; ii) Aesthetic Quality Control (AQC), with the aim to
design and implement a DSS for evaluating the aesthetic properties of the material for
a manufactured product.

In the first topic, the author presents a DSS comprised of the following cornerstones:
data collection, feature extraction, predictive model, cloud storage, and data analysis
interface. Differently from the related literature, the proposed approach is based on
a feature extraction strategy and a ML model powered by specific topics collected on
the lower and upper levels of the production system, allowing the acquisition of high-
quality labeled data, which are suitable for supervised ML approach. Compared with
respect to other state of the art ML models, the experimental results demonstrated how
the proposed approach is the best trade-off between predictive performance, compu-
tation effort, and interpretability for the prediction of processing quality.

In the second topic, the author proposes the application of novel ordinal DL method-
ologies to improve the classification performance in assessing the aesthetic quality of
wooden stocks while addressing typical challenges in AQC task, i.e. the bias miti-
gation, the error minimization between distant classes, the noise in labeling process
and the exploitation of ordinal and hierarchical constraints of the categories. The final
aim is to support the human operator in the final decision. The proposed approaches
are evaluated on a real-world dataset and compared with other state of the art DL
methods. For each challenge, the experimental results demonstrate the effectiveness
of each proposed approach.
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Sommario

Nel contesto dell’Industria 4.0, la crescente quantità di dati in congiunzione con
le nuove metodologie di Machine Learning (ML) e Deep Learning (DL) ha posto le
basi per aiutare l’operatore umano a rilevare i problemi di produzione e a classificare
la qualità del prodotto finale. Queste soluzioni, implementate in sistemi di supporto
alle decisioni (DSS), offrono grandi opportunità per automatizzare complessivamente
il processo di controllo qualità.

Gli obiettivi e i contributi di questa tesi riflettono le attività di ricerca svolte sui
temi: i) Controllo Qualità Predittivo (PQC), con l’obiettivo di progettare e imple-
mentare un DSS per la previsione della qualità di lavorazione e delle situazioni di
anomalia durante la lavorazione di un utensile; ii) Controllo Qualità Estetico (AQC),
con l’obiettivo di progettare e implementare un DSS per la valutazione delle proprietà
estetiche del materiale per un prodotto finito.

Nel primo argomento, l’autore presenta un DSS composto dai seguenti punti chiave:
raccolta dei dati, estrazione delle features, modello predittivo, archiviazione su cloud
e interfaccia di analisi dei dati. Diversamente dalla letteratura, l’approccio proposto si
basa su una strategia di estrazione delle features e su un modello di ML alimentato da
topic specifici raccolti ai livelli inferiori e superiori del sistema di produzione, consen-
tendo l’acquisizione di dati annotati di alta qualità, adatti ad un approccio di ML su-
pervisionato. Rispetto ad altri modelli di ML allo stato dell’arte, i risultati sperimentali
hanno dimostrato come l’approccio proposto rappresenti il miglior compromesso tra
prestazioni predittive, costo computazionale e interpretabilità per la previsione della
qualità di lavorazione.

Nel secondo argomento, l’autore propone l’applicazione di metodologie di DL per
migliorare le prestazioni di classificazione nella valutazione della qualità estetica dei
calci di fucile in legno, affrontando le sfide tipiche del compito di AQC, ovvero la
mitigazione dei bias, la minimizzazione dell’errore tra classi distanti, il rumore nel
processo di annotazione e lo sfruttamento dei vincoli ordinali e gerarchici delle classi
del dataset. L’obiettivo finale è quello di supportare l’operatore umano nella decisione
finale. Gli approcci proposti sono stati valutati su un set di dati reali e confrontati con
altri metodi DL allo stato dell’arte. Per ogni sfida, i risultati sperimentali dimostrano
l’efficacia degli approcci proposti.
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Chapter 1.

Introduction

The fourth industrial revolution, also known as Industry 4.0, is the result of a rapid
manufacturing innovation which is leading to an ever-increasing number of services.
The growing influence of Information and Communication Technologies (ICT) in pro-
duction systems allows the collection of Big Data [1] that can be analyzed and used
by companies to create innovative applications, enabling optimization of products and
services [2]. This increasing availability of data and related analytic processes, along
with new technological advances such as high-computing power and large storage ca-
pacity, have changed the paradigm in the fabrication of products and services [3]. The
combination of Big Data and Artificial Intelligence (AI) approaches lied the foun-
dation for evolving towards intelligent manufacturing and smart machines [4]. In
particular, Machine Learning (ML) and Deep Learning (DL) techniques have become
appealing solutions in different industrial areas such as predictive maintenance [5, 6],
decision support systems [7, 8] and quality control [9, 10, 11]. Using AI method-
ologies, the industry scenario has started to reduce machine failure, improve quality
control procedure, increase productivity, and substantially lower the production costs.
In fact, it is currently possible to predict machine and product failures or make recom-
mendations to human operators for saving costs and time [4, 12].

Among all the applications of AI in Industry 4.0, in recent years the Quality Con-
trol (QC) task has undergone a major boost in research and innovation, defining the
Quality 4.0 domain. In the real world, many tasks involve the classification of a given
manufactured item depending on its quality, according to the paradigm of Zero De-
fect Manufacturing (ZDM). ZDM aims for the complete elimination of defects, not
simply through detection and correction of defective products and process parameters,
but also through defect prediction and prevention [13]. In this sense, AI frameworks
can aid in two ways: i) for predicting the quality of the products throughout their life-
cycles; ii) for assessing the absence of defects on the finished products. In the first
case, the quality is referred to the evaluation of non-conformities that could impact
the capabilities of the product. This compliance of the products can be analyzed using
data analytic via improved predictive methods on manufactured products. In the sec-
ond case, the task refers to the detection of defects that affect the aesthetic properties
of the finished product. According to [14], ZDM can be implemented in two different
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way, i.e. Process-oriented ZDM, which evaluates the status of each product based on
the presence of defects in manufacturing system, and Product-oriented ZDM, which
focuses on the actual part defects by finding a solution to counteract them (see Fig.
1.1). Inspiring from this framework, the role of Decision Support System (DSS),
based on novel AI methodologies, has been highlighted to bridge the gap between
smart factory advances and the effective application of these technologies for quality
control procedures.

Product
oriented

-
START

Quality 4.0
Product

level
Machine

level

Decision 
Support System

Data analysis
level

Process
oriented

-
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Product handling 
or repair

Product 
Quality 
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Figure 1.1.: Quality 4.0 framework: the role of Decision Support System and Machine
Learning/Deep Learning methods for solving two typical Quality Control
applications in Industry 4.0 scenario, i.e. process-oriented and product-
oriented Zero Defect Manufacturing.

In this context, the objectives and the contributions of this thesis reflect the research
activities performed on the following two main topics:

• Design and implementation of a DSS for Predictive Quality Control (PQC)
for predicting the processing quality and anomaly situations during the machin-
ing of a tool;

• Design and implementation of a DSS for Aesthetic Quality Control (AQC) for
evaluating the aesthetic properties of a material for manufactured product.

The remainder of this chapter is organized as follows:

• Section 1.1 provides a background and motivation for this thesis topic, motivat-
ing the research study and highlights its relevance from the perspectives of AI
and DSS in the context of Quality 4.0 and related challenges;
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• Section 1.2 presents the main objectives of the thesis, where the problem is
formally defined from ML/DL point of view with a list of specific research
questions answered in this dissertation;

• Section 1.3 resumes the organization of the thesis;

• Section 1.4 presents the thesis outcomes in terms of scientific publications.

1.1. Background and motivation

In this section, an in-depth analysis of the Quality Control tasks and the corresponding
importance of Decision Support Systems in the Industry 4.0 scenario is provided.
Then, the challenges present in this context are highlighted.

1.1.1. Quality 4.0 applications

Quality Control (QC) is a growing area in Industry 4.0 and an important step in every
production system, representing one of the main differentiating factors in production.
In fact, the rapid timing of distribution pushes toward a shortening of time-to-market,
which inevitably has an impact on manufacturing processes. But releasing poor qual-
ity or defective products to the market can have severe consequences for the company:

• Material consequences: extra costs for disposal of materials, product replace-
ments, higher cost of production;

• Financial consequences: late delivery penalties;

• Intangible consequences: loss of consumer trust, complaints, deterioration of
brand image.

For this reason, during manufacturing, quality must be maintained by which Quality
4.0 technologies are available to fulfil major challenges in this field. AI methodolo-
gies, Cloud computing, Augmented and Virtual Reality, and Internet of Things (IoT)
are all essential tools in this context [3]. In particular, the increasing amount of data in
combination with novel disruptive ML/DL frameworks lied the foundation for helping
to detect production issues as well as classify the quality of the final product. These
solutions offer great opportunities to automatize the overall QC process: the benefit of
this approach can be summarized as the saving of time and resources, the minimiza-
tion of human variability and the increase in production performance.

In the real world, many tasks involve the classification of a given manufactured
item depending on its quality. In some cases, this quality is referred to the absence of
defects that could impact the capabilities of the product. While these quality control
tasks are crucial for some business-to-business industries where any defect can repre-
sent a prominent quality problem, there are other scenarios like business-to-consumer
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industries, where the aesthetic quality is more important, like in the automotive or
weapons industry. In this context, the finished product must guarantee high perfor-
mance not only at the mechanical level, but also at the aesthetic one according to the
expectations of the customer, with the aim to make a manufactured item with excel-
lent perceived quality [15]. This distinction leads to the definition of two different QC
applications: Predictive Quality Control (PQC) and Aesthetic Quality Control (AQC),
which are described below.

Predictive Quality Control

Defect, anomaly and fault prediction is the main focus for Predictive Quality Con-
trol (PQC), which aims to forecast the quality of the product before or during its
production via specific models and historical data process [16], [17]. The final goal
is to monitor manufacturing machinery and the corresponding produced quality: the
Remaining Useful Life (RUL) of the equipment is estimated for scheduling optimal
maintenance actions with the aim to avoid production line downtime and interrup-
tions. In literature, this task is defined as Predictive Maintenance (PdM), thus timely
performing preventive replacements that allow both to prevent unexpected failures and
minimise total maintenance costs [18], [19]. Referring to the framework in Figure 1.1,
this QC can be intended as process-oriented approach.

Aesthetic Quality Control

Even before the rise of quality 4.0, in the industrial setting there is a widespread use
of vision tools for the automation of QC procedures focusing on quantitative and de-
terministic analysis of the product, which aim to ensure that it complies with pro-
duction requirements. These techniques are conceived to verify, for instance, the di-
mensional or roughness inspection of materials or any other measurable parameter
[20], [21],[22]. However, there is a lack of methodologies that allow the modeling
and generalization of qualitative analyses. In this case, the aim of Aesthetic Quality
Control (AQC) is to determine the quality grade of a product according to non-metric
aesthetic canons. Differentiating the aesthetic level of a material or manufactured item
is often needed for estimating the commercial value of the final product. In this sense,
DL techniques enable to learn objective rules achieving high performances and ensur-
ing the results repeatability, without being influenced by the subjectivity and variabil-
ity over time as for the human operator. AQC can be considered as a product-oriented
approach in the paradigm shown in Figure 1.1.

1.1.2. The role of Decision Support Systems

Starting from the concept of Quality 4.0 and reaching the application in real manufac-
turing processes, the missing gap is the development of decision analytics in between
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[23]. The human perception is not able to deal with industrial systems generating a
large amount of data; on the other hand, computers and intelligent systems can pro-
cess large amounts of data fast, reliably, and accurately, but having no awareness in
decision-making processes. Decision Support System (DSS) is an effective tool for
bridging this gap, helping decision maker to cope with the identified complex prob-
lem processed by machines. At the same time, this allows for the establishment of the
human-in-the-loop paradigm: when the human factor is kept in the loop, capabilities
become extremely flexible and the existing knowledge in people-centered processes is
maintained [13].

Technological advances in Industry 4.0 have recently enabled significant progress in
knowledge representation models and learning algorithms enhancing DSS capabilities
and their use. For this reason, DSSs are now integrating multiple functions such as
analysis, modeling, prediction, optimization and diagnosis. In particular DSSs are
used for different purposes in a manufacturing industry, such as process control [8],
machine design [24], managers assistance [25], customer satisfaction [26], supply
chain [27], etc.

In the industrial scenario, DSSs are suited for knowledge capturing, transferring
and distribution between workforce as well as production phases. In this sense, the
relation between human processes and quality has been rarely investigated, for clear
data privacy issues and modelling challenges [13]. For this reason, according also
with the ethic guidelines by the European Commission (Human agency and oversight,
[28]), the goal of research should be to develop solutions that optimize human knowl-
edge and capabilities, towards a digitalization process which can enhance the human
operator, who must always be at the center of manufacturing production [29].

1.1.3. Challenges

Despite the several advantages, smart factory digitalization brings several challenges
that should be taken into account when designing a DSS:

• Data analysis issues: in the industrial domain, the amount of data and their
heterogeneity is enormous. Data are often acquired in large volumes and high
dimensions from heterogeneous sources. Data may be noisy and incomplete,
with imbalanced classes and ambiguous labeling. Several ML and DL tech-
niques have been developed during recent years to face these type of problems;

• Models interpretability: the human being should be able to understand the rea-
soning about data through data representations. AI models must aim to increase
accuracy rates of predictions while also understanding causality through mean-
ingful models;

• User-centered DSS: it is important to design a human-centered system for im-
plementing operator support tools during manual or partially manual processes
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as well as product and process inspections.

According to these main issues, the following challenges related to PQC and AQC
tasks have been identified.

PQC challenges

• Difficulty of obtaining quality labeled data [30]: labeled condition monitoring
data samples are required for supervised classification in order to establish map-
ping relationships between input samples and fault types in training phase. Fre-
quently, obtaining quality labeled data is not possible since: i) component wear
is not always easily identifiable, ii) frequent data missing values are present and
iii) the annotation is poorly structured.

• Difficulty to ensure model interpretability [31]: accurate predictive performance
and high interpretability are required at the same time for the ML/DL model.
Recently many monitoring systems that apply DL methods to historical data
have been proposed [32]. Given the complexity of industrial data, these models
require a large number of parameters in order to make inferences about system
behavior, which is why they are often called “black boxes”. As a result of
the large number of variables used for parametrizing black-box models, their
predictions cannot be traced by humans, not allowing the reconstruction of the
decisional path. This contravenes the concept of interpretability required for a
DSS.

AQC challenges

• Limited amount of data in unbalanced setting [33]: in some production scenar-
ios, certain manufactured pieces are in limited edition and high-end products are
made in smaller quantities than more common ones. Accordingly, this implies
that samples are not uniformly distributed over all labels. The resulting imbal-
anced learning problem, due to the presence of underrepresented data or severe
class distribution skews, is concerned with the performance of the AI algorithm.

• Intrinsic Bias [34]: although the potential of DL methods to learn discrimina-
tory patterns in data is relevant, the inability to detect bias from collected data
and the risk to reproduce this bias in model outcome pose a remarkable point
in the Industrial 4.0 scenario. Bias may correspond to confound information
enclosed in the data or in the model itself. In the DL scenario, the inability to
detect bias situations is mainly due to the lack of model interpretability.

• Minimizing errors between distant classes [35]: AI models are useful to autom-
atize classification tasks, but very often the error made among problem classes is
equally weighted. This is a problem from the real application perspective since
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this does not usually happen in human annotation. So the algorithms should
minimize misclassification errors among distant classes to effective in a DSS.

• Task subjectivity and intra-operator variability [36]: sometimes, AQC is purely
dependent on the evaluation and expertise of human eye, resulting in a diffi-
cult and subjective task and affecting the repeatability of results. In fact, the
task may be affected by intrinsic human operator variability as well as different
operating condition. When approaching the problem in a supervised way, these
issues are reflected in the ground-truth label, which might not always be reliable
due to possible noise or errors in the labeling process.

• Exploit dataset properties [37]: most ML and DL algorithms deal with classifi-
cation problems by considering the target variable as a set of disjointed classes,
not exploiting potential structural properties of the data. But several important
real-world problems are naturally modeled as a hierarchical structure or dis-
close an ordinal relation where the distance between classes is not quantifiable
a priori.

1.2. Aim of the thesis and research questions

Starting from the research gaps identified in the literature review summarized in Chap-
ter 2, the main objective of this thesis work is to address the challenges above indicated
concerning the Predictive Quality Control and Aesthetic Quality Control. The defini-
tion of these two Quality 4.0 problems led to the formulation of the following research
questions.

1.2.1. Predictive Quality Control problem

The PQC problem is addressed to design and develop a DSS for predicting the pro-
cessing quality and anomaly situations during the machining of a tool with the purpose
of implementing predictive maintenance actions. The research questions are summa-
rized below:

(i) How can supervised ML model be applied to predict the processing quality of a
tool starting from a machine sensors raw data?

(ii) How is it possible to obtain and manage reliable data annotation?

(iii) Is it feasible to ensure at the same time high predictive performance and model
interpretability?

(iv) Does the proposed ML algorithm outperform standard algorithms widely used
in literature?
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(v) How can the proposed algorithm be integrated in a DSS to provide suitable
feedback for supporting human operator during production stages?

(vi) How should DSS be designed to support real-time data acquisition and model
inference?

1.2.2. Aesthetic Quality Control problem

The AQC problem is addressed to design and develop a DSS for evaluating the aes-
thetic properties of a material for manufactured product with the purpose of support-
ing the human operator in the final decision. The research questions are summarized
below:

(i) How can supervised DL model be applied to perform a classification task based
on qualitative aesthetic properties of a material?

(ii) How is it possible to detect and mitigate unwanted bias in data?

(iii) How can errors between distant classes be minimized?

(iv) How is it possible to mitigate noise or errors in labeling process?

(v) Is it feasible to design DL methodology for exploiting ordinal and/or hierarchi-
cal properties of the dataset?

(vi) How can the proposed algorithm be integrated in a DSS to provide suitable
feedback for supporting human operator during final QC decisions?

1.3. Thesis overview

This thesis aims to answer the aforementioned research questions by proposing DSSs
comprising various novel ML and DL methods-based frameworks for Quality 4.0
tasks. These DSSs are designed to face the challenges described in Section 1.1.3.
For answering these questions, two real-world industrial use cases were faced.

In particular, the chapters are organized as follows:

• Chapter 2 reviews related literature in two research fields, which are Predic-
tive Quality Control (PQC) (Section 2.1) and Aesthetic Quality Control (AQC)
(Section 2.2). The author outlines the strengths and the drawbacks of the ex-
isting achievements, focusing on main contributions of this work respect to the
state of the art.

• Chapter 3 describes the PQC problem. Firstly, in Section 3.1 a preliminary
work is presented about the design of a DSS platform for RUL estimation with
interpretable ML model. According to this approach, in Section 3.2 the same
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methodology was applied to solve the PQC task related to the prediction of
machine processing quality. Section 3.2.1 describes the real use case we aimed
to face, Section 3.2.2 presents the proposed DSS framework and Section 3.2.3
the experimental setup and the results obtained.

• Chapter 4 is related to the AQC problem. Section 4.1 and Section 4.2 present
the collected dataset and how the task can be addressed by standard DL method,
respectively. Then, in Section 4.3 two different strategies are proposed for
bias mitigation. Section 4.4 and Section 4.5 describes the proposed ordinal
DL methodology in conjunction with a novel exponential loss regularisation.
Section 4.6 and Section 4.7 refer to the proposal of hierarchical DL methods for
deeply exploiting the structural properties of the dataset. Finally, in Section 4.8
the design of the proposed DSS for AQC is shown.

• Chapter 5 discusses the obtained results and revisits the scientific contributions
of this thesis in terms of new methodologies and knowledge created to benefit
Quality 4.0 scenario and their validity in real-world industrial applications.

• Chapter 6 concludes the dissertation and provide the directions for the future
research work.

1.4. Thesis outcome

The detailed descriptions of the thesis contributions are available in the following
publications. For each publication, the main contributions are listed.

Predictive Quality Control

• Rosati, R., Romeo, L., Vargas, V.M., Gutiérrez, P.A., Hervás-Martı́nez, C.,
Bianchini, L., Capriotti, A., Capparuccia, R. & Frontoni, E. (2022). Predictive
Maintenance of ATM machines by modelling Remaining Useful Life with Ma-
chine Learning techniques. In 17th International Conference on Soft Computing
Models in Industrial and Environmental Applications.

The main contributions of the present work (described in Section 3.1) can be
summarized as follows:

(i) the design of a feature engineering stage, performed in collaboration with
domain expert maintainers, that ensures to build a representative dataset;

(ii) the design of an efficient ML strategy to predict the RUL of multiple
ATMs;

(iii) the integration of the algorithm in a scalable cloud-based architecture as
the main core of a DSS.
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• Rosati, R., Romeo, L., Cecchini, G., Tonetto, F., Viti, P., Mancini, A., & Fron-
toni, E. (2022). From knowledge-based to big data analytic model: a novel IoT
and machine learning based decision support system for predictive maintenance
in Industry 4.0. Journal of Intelligent Manufacturing, 1-15.

The main contributions of our proposed approach (described in Section 3.2)
respect to related literature lie in:

(i) the prediction of processing quality and anomaly situations that are quan-
titatively annotated in our training dataset by a 3D coordinate measuring
machine;

(ii) the fully automatizing of the feature extraction and prediction step for
computing salient Key performance indicators (KPIs), which represent the
input of our ML predictive model;

(iii) the integration of the proposed ML approach in an IoT platform that en-
ables the collection of a huge amount of data and provide actionable deci-
sion recommendations for resolving productivity losses and maintenance
issue;

(iv) the combination of a feature extraction technique with a Random Forest
(RF) regression model for ensuring the best trade-off between the accuracy
prediction, computation effort, and model interpretability.

Aesthetic Quality Control

• Romeo, L., Rosati, R., & Frontoni, E. (2022). Decision Support System Based
on Deep Learning for Improving the Quality Control Task of Rifles: A Case
Study in Industry 4.0. In Machine Learning and Artificial Intelligence with
Industrial Applications (pp. 63-77). Springer, Cham.

The main contributions of the work, which will be described in Sections 4.1 and
4.2, are summarised below:

(i) the collection of annotated real dataset specifically tailored to solve the
AQC of wooden stocks. Each image is properly annotated by a high spe-
cialized technician;

(ii) the proposing of a DL approach based on VGG-16 and ordinal categor-
ical cross-entropy (CCE) loss in this novel and challenging Quality 4.0
application, i.e. the quality control classification task.

• Rosati, R., Romeo, L., Cecchini, G., Tonetto, F., Perugini, L., Ruggeri, L.,
Viti, P., & Frontoni, E. (2021). Bias from the Wild Industry 4.0: Are We Re-
ally Classifying the Quality or Shotgun Series?. In Pattern Recognition. ICPR
International Workshops and Challenges: Virtual Event, January 10–15, 2021,
Proceedings, Part IV (pp. 637-649). Springer International Publishing.
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The main contributions of the work, covered in Section 4.3, are the following:

(i) an in-depth analysis of the DL model to show the risk to reproduce the
presence of possible bias in the collected data;

(ii) the proposing of two-stage solution named Hierarchical Unbiased VGG-
16 (HUVGG-16) and a voting ensamble methodology for mitigating the
detected bias.

• Rosati, R., Romeo, L., Vargas, V. M., Gutiérrez, P. A., Hervás-Martı́nez, C., &
Frontoni, E. (2022). A novel deep ordinal classification approach for aesthetic
quality control classification. Neural Computing and Applications, 1-15.

The main contributions of this work (Sections 4.4) in the field of ordinal classi-
fication are:

(i) the introduction of a DL methodology for ordinal classification specifi-
cally tailored for solving an AQC task;

(ii) the introduction of a DL methodology for ordinal classification based on
CLM and CCE, demonstrating how there may be a sort of redundancy
between the maximization of an ordinal loss and the modeling of cumula-
tive distribution and imposing the ordinal constraint via the thresholds and
slope parameters;

(iii) the demonstration on how the proposed methodology is able from one
side to reduce misclassification errors among distant classes (which is a
relevant aspect for the real use-case) and from the other side to reduce the
bias factor related to other image features.

• Vargas,V.M., Gutierrez, P.A., Rosati, R., Romeo, L., Frontoni, E. & Hervás-
Martı́nez, C. Exponential loss regularisation for encouraging ordinal constraint
to shotgun stocks quality assessment. Applied Soft Computing. (minor revi-
sion)

The main contribution of this work described in Section 4.5 is the proposal
to apply the Lp norm to the exponential regularisation that is described in Sec-
tion 4.5.1 for obtaining soft labels with a more flexible distribution for an ordinal
classification problem.

• Vargas, V.M., Gutiérrez, P.A., Rosati, R., Romeo L., Frontoni, E., & Hervás-
Martı́nez, C. (2023). Deep learning based hierarchical classifier for weapon
stock aesthetic quality control assessment, Computers in Industry, 144, 103786.

As described in Section 4.6, the main contributions of the work are the follow-
ing:
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(i) the proposal of a DL hierarchical approach that simplifies, generalises and
automatises the AQC task by using multiple ordinal CNN models to pre-
dict hierarchically the final label in two steps (one for the macro label and
one for the micro);

(ii) the redesign and automation of an AQC task method in order to properly
perform in the specific context, i.e. providing classification that could be
more suitable for supporting the expert human operator.

• Rosati, R., Romeo, L., Vargas, V. M., Gutiérrez, P. A., Hervás-Martı́nez, C., &
Frontoni, E. Learning Ordinal-Hierarchical Constraints for Deep Learning Clas-
sifiers. IEEE Transactions on Neural Networks and Learning Systems. (under
review)

The main contributions of our proposed approach (described in Section 4.7)
respect to related literature lie in:

(i) the proposal of two novel hierarchical DL ordinal methodologies, namely
Hierarchical Cumulative Link Model (HCLM) and Hierarchical Ordinal
Binary Decomposition (HOBD) that are able to model the ordinal struc-
ture of different hierarchical levels of the labels within a single model;

(ii) the testing of the effectiveness of the proposed methodologies on the AQC
task, which disclose a natural hierarchical-ordinal structure of the classes,
measuring the performance with respect to state of the art ordinal and
hierarchical DL methodologies.

• Cecchini, G., Frontoni, E., Perugini, L., Romeo, L., Rosati, R., Ruggeri, L.,
Tonetto, F., & Viti, P.. Italian Patent “Sistema di visione per il controllo qualità
estetica basato su Intelligenza Artificiale” (pending).

The DSS described in Section 4.8 has been patented as a technology transfer
action between University and company Benelli Armi Spa.

Other publications released during doctoral studies, which are only partially related
to the topic of the Doctorate and will not be discussed in the thesis, are listed in
Appendix B.
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State of the art

The state of art related to the Predictive Quality Control is reported in Section 2.1,
while the literature review of the Aesthetic Quality Control with the state of the art
of employed methodologies are treated in Section 2.2. For each section, the main
contributions of this thesis with respect to research gaps are highlighted.

2.1. State of the art: Predictive Quality Control

Predictive Quality Control (PQC) is related to all the analysis that aim to establish
baseline performance measures, monitor the performance of smart machines and com-
pare with benchmark standards, and perform different actions accordingly [4]. In
Quality 4.0 framework, the goal of PQC is to identify quality-enhancing insights from
process and product data by using ML and DL methods in production [32], belonging
to the more general field of Predictive Maintenance (PdM).

State of the art in this field poses different challenges related to the downtime and
maintenance-related costs and different solutions for improving production efficiency.
According to the literature review proposed in [30], the state of the art solutions to
deal with this generic problem can be divided into four groups: (i) knowledge-based,
(ii) Big Data analytics, (iii) Machine Learning models and (iv) Ontology and reason-
ing. Despite meta-heuristic optimization approaches [38, 39] are being introduced for
solving a large scale combinatorial optimization problem related also to PdM tasks
[40, 41], IoT sensing technologies together with the designing of a feature extraction
stage and the deploying of a ML model ensure to directly learn from data for solving
PdM tasks. This peculiarity allows monitoring, annotating, and consequently process-
ing a large amount of heterogeneous data.

Supervised approaches

As predictive quality task involves the detection or prediction of quality and, fre-
quently, machine RUL estimation, it mainly comprises methods of supervised learn-
ing. Supervised learning has the goal of estimating a numerical or categorical target
variable on the basis of selected input variables (regression respectively classification)
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[32]. In this context, one important limitation is the lack of data showing the anno-
tation of anomaly state behavior [30, 42, 43]. In [44], the authors approached this
problem by proposing a top-down strategy consisting of first understanding machine
operation and then taking action to deal with the problem. In our case, we have built
a data-driven model that can learn anomaly situations closely related to productiv-
ity losses, thanks also to a robust annotation. The model is able to generalize across
different production cycles and operating conditions.

Deep Learning vs Machine Learning methods

For supervised learning, methods of both fields ML and DL can be used. The re-
cent advances of technology and the huge amount of data have laid the foundations to
apply DL methodologies for solving PdM task [45, 46]. The application of these so-
lutions includes the implementation of Recurrent Neural Networks (RNNs) and Long
Short Term Memory (LSTM) architectures [47, 48] for predicting failure by model-
ing spatio-temporal relationship across historical data. In [49] and [50], the artificial
neural network model was employed for providing the fault prediction and identifying
abnormal behaviors. Another work considers the implementation of auto-associative
neural networks for finding irregularity in railways [51]. Considering our PQC task,
sequential DL approaches (such as RNN and LSTM) may represent affordable pre-
dictive models by learning spatio-temporal features. However, the potential of DL
approaches may be limited by the interpretability of the model [52], which does not
always allow to provide clues on how and why the algorithm achieved the selected
prediction. Moreover, knowledge-based approach is not considered for improving
methods flexibility. Taking into account these considerations, we proposed a ML-
based approach able to provide some insights about model interpretability.

Common ML approaches for solving PdM task include the application of standard
classifiers such as K-Nearest Neighbors (KNN), Decision Tree (DT), Naive Bayes
(NB), Support Vector Machine (SVM), Random Forest (RF), and XGBoost (XGB)
[53]. From ML perspective, most related to our work are the following papers, which
proposed the application of ML models for predicting machine errors or RUL and
associated cost using sensor and event log data. In particular, the RUL prediction
task was solved in [6] using log-based data and XGboost algorithm. An evolution
of ensemble learning (i.e. graph based ensemble learning) was presented in [54] for
modeling the behaviour of different subsystems using different base learners. Graph-
ical models based on Bayesian network and dynamics Bayesian network were also
proposed in [55] and [56] for learning causal relationships among features and across
time in terms of conditional probabilities. In the latter, the graphical model is part of
a framework designed to predict failures and to measure the impact of such a predic-
tion on the quality of production planning processes and maintenance costs. Another
class of ML models includes the application of auto-regressive models (e.g. Auto-
regressive Moving Average) for predicting future behavior by using historical data.
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In [43], the authors apply the auto-regressive integrated moving average model in a
predictive maintenance framework to predict the remaining useful life of components.

The majority of these approaches for PdM use different condition monitoring data
(e.g. vibrations, currents, temperature, etc.) and run to failure data for predicting the
RUL. However, the annotation of the component wear is not always easily identifi-
able and traced across different production cycles and operating conditions. Thus, the
open issues include the difficulty of obtaining quality labeled data and interpreting it
[31]. A severe portion of available data could have no annotations, presents missing
values, and is poorly structured. This fact leads to the high demand to have available
a huge amount of annotated failure-related datasets. In our case, data are quantita-
tively annotated by a 3D coordinate measuring machine, resulting in a solid labeling
process.

Model interpretability

Generally, state of the art work test different ML models to evaluate which one is more
suitable for a given situation. For example in [53], the authors presented a classifica-
tion model to predict failure using as input vibration limit value and used the accuracy
of the models as an evaluation metric. Differently in [42] and [57], the computation
cost for training the ML models is considered as an important aspect to take into ac-
count. In contrast with respect to the above-mentioned literature, we proposed a ML
model that represents the best trade-off between the accuracy prediction, computation
effort and model interpretability for optimizing the machining quality. Starting from
the fact that manufacturing plants are dynamic environments, both the lack [58, 57]
and the excess [59, 44] of data heterogeneity may negatively affect the ML model. Our
approach tried to reduce the high dimension of collected data, by introducing a feature
extraction stage based on hand-crafted features. Different from the knowledge-based
approach, the extraction of salient Key Performance Indicators (KPIs) is fully auto-
matic. KPIs are the set of metrics to reflect the performance of operations in terms of
productivity, quality, and maintenance [60]. The KPIs monitoring allows to quantify
and identify the aspects of the operational activities [61], proving useful not only in
a predictive approach but also in the posterior step for decision-making process [62].
Besides the fact that this step enhances the interpretability and explainability of the
data, experimental results demonstrated how it increase the generalization power of
the ML model.

2.2. State of the art: Aesthetic Quality Control

Aesthetic Quality Control (AQC) refers to all those procedures for assessing the ab-
sence of defects that affect the aesthetic properties of the finished product. Current
ML and DL for QC have been proven in a variety of industrial domains, including
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fabric and textile industry [63, 64], printing industry [65], smart factory proptotype
[66], laser-based additive manufacturing [67], welds mass production [68] and auto-
motive industry [69]. In [63], the Fisher criterion-based stacked denoising autoen-
coders were applied to the problem of patterned fabric defect detection. They divided
fabric images into patches of the same size to train the model. Afterward, test patches
are classified into defective and defectless categories by also computing the residual
between the reconstructed image and defective patch. The authors in [64], firstly em-
ployed a regression model to predict the operation parameters by using as inputs the
yarn properties and secondly they applied a classification model to predict the quality
of textile production by using as inputs the predicted operation parameters. In [69],
different ML classifiers based on XGB and RF were employed to predict dimensional
defects in a real automotive multistage assembly line. The line encompasses two au-
tomated inspection stages with several human-operated assemblies and pre-alignment
stages in between.

2.2.1. Deep Learning approaches for Aesthetic Quality
Control

Standard DL approaches were employed in [68] to replace costly quality control pro-
cedures based on visual inspection during the welds mass production scenario with the
aim to improve the defect detection accuracy. They mainly focused on the collection of
balanced database and image pre-processing. Deep Neural Network (DNN), Deep Be-
lief Network (DBN) and restricted Boltzmann machine are standard DL architectures
that were applied in [65] to perform a visual inspection process in the printing indus-
try 4.0 by using as input a high-resolution optical quality control camera. Similarly,
in [66] a standard deep learning strategy fed by images acquired by a camera placed
over the assembly line was implemented to predict the quality-control in a smart fac-
tor prototype. Differently, the authors in [70] employed as predictors one key-quality
index and different process parameters monitored by the control instruments. They
applied a DNN consisting of a DBN in the bottom and a regression layer on the top
to predict the quality prediction of a complex manufacturing process. Recently, a DL
strategy was adopted for detecting geometric inaccuracy of the laser-based additive
manufacturing process [67]. They combined the output of a Convolutional Neural
Network (CNN) and the output of an Artificial Neural Network (ANN) for analyzing
the thermal images and include relevant process/design parameters respectively. The
overall network was trained to predict the final pointwise distortion prediction. Also
in [11] the authors proposed a CNN solution to automatically extract discriminative
features of the images for defect detection and at the same time by ensuring a high
processing speed which guarantees real-time detection.

Nevertheless, all of these solutions focus on quantitative and deterministic analyses:
the dimensional control, the roughness inspection of the materials, the patterned fabric
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defect detection and the test of production parameters are all measurable evaluation
procedures. Our work aimed to address a new challenge concerning the modeling of
a qualitative analysis that is strictly human dependent, i.e. the aesthetic evaluation of
a material.

The main differences with our work respect to related literature lie in the (i) different
application of DL methodology we proposed in unexplored and challenging AQC
application (i.e. we are interested to classify the aesthetic quality of rifle stocks based
on the analysis of wood grains) and (ii) different goal we aimed to solve (i.e. the
detection and mitigation of any unwanted bias in this scenario).

2.2.2. Ordinal classification

In the context of AQC task, the classes of the target variable often exhibit a natural
ordering. However, the natural ordinal structure of the problem is not usually exploited
and modeled in the learning procedure. For these reasons, the state of the art solutions
include standard classification and regression models that do not completely solve
the ordinal structure of the AQC task. This gap in the scientific literature lies the
foundations to introduce a DL-based DSS driven by ordinal constraints for solving an
AQC task.

Ordinal problems

Any given classification problem can be defined as the problem of predicting the real
class y from an input data x, where x is a K-dimensional vector x 2 X ✓ RK , and
y is chosen from a set of labels Y = {C0, C1, C2, ..., CQ�1}, being Q the total number
of categories defined for the problem. Ordinal classification or ordinal regression [71]
problems can be defined as a special case of standard classification problems, where
an order constraint is included between the categories. In this way, for this kind of
problems, the labels satisfy the expression C0 � C1 � C2 � ... � CQ�1. The prece-
dence operator (�) indicates that the categories follow a natural order but, in contrast
to a regression problem, they are discrete labels instead of continuous. Moreover, the
distance between each category does not necessarily need to be the same. In these
terms, we can define the position of each class in the ordinal scale as an integer like
O(Cq) = q.

Thus, in any ordinal problem, the order information described can be accounted to
obtain better classification performance, reducing the errors in distant classes while
trying to maximise the number of patterns correctly classified. Also, examples that
are misclassified in adjacent classes should produce a lower error when evaluating the
classification performance of any ordinal model.

Recently ordinal classification (also called ordinal regression) methods have been
proven useful in different research areas, including medical research [72, 73, 74],
computer vision [75, 76, 77], finance application [78] and environmental management
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[79]. An extensive review of ordinal classification approaches was provided in [80].
However, the introduction of these methodologies for solving an AQC task is not still
explored in the ML literature. It is worth noting that ordinal classification approaches
differentiate from the multipartite ranking problems where learning to rank strategy
is applied to automatically construct a ranking model from training data [81, 82].
The multipartite ranking problem represents the state of the art in many information
retrieval applications [83]. Although ordinal classification can be potentially scaled for
solving a multipartite ranking problem, they are pointwise approaches for classifying
data, where a naturalistic order is encoded in the label.

Ordinal classification problems can be easily simplified into other standard prob-
lems using the round prediction of a regression model or a cost-sensitive penalty.
These are considered standard approaches for solving the ordinal classification task,
with the main limitation that they assume a distance between class labels which can
influence the performance of the classifier. A specific method based on a cost-sensitive
ordinal hyperplanes ranking algorithm has been used for human age estimation using
face images [76]. The authors designed the cost of an individual binary classifier so
that the misranking cost can be bounded by the total misclassification costs. Other
ordinal approaches include ensemble decision tree and random forest models [73, 84]
based on a weighted entropy function for selecting the predictors in the tree that reflect
the magnitude of potential classification errors. A different approach based on con-
ditional ordinal random field model was proposed for context-sensitive modeling of
the facial action unit intensity by answering the context question in terms of temporal
correlation between the ordinal outputs [85]. Recent state of the art works move to-
wards two different approaches: ordinal binary decomposition methods and threshold
models combining ordinal loss functions.

Ordinal binary decomposition approach

One of the main class of ordinal-based approaches is the Ordinal Binary Decomposi-
tion (OBD) strategy. Within this category, the multiple model approaches use several
binary classification branches to compute a series of cumulative probabilities. Al-
though this approach introduces a large number of hyperparameters to be tuned, there
are some work [74] that try to reduce the effect of this problem, by redesigning the
output layer of the conventional deep neural network. Moreover, in the ordinal de-
composition approaches, the relationships among different binary classifiers are often
neglected. To try to alleviate this issue, it was proposed to learn an ordinal distribution
of the problem and to optimize those binary classifiers simultaneously [86]. Similarly,
a multiple ordinal regression algorithm to estimate the preferences of humans was pro-
posed [87]. They maximized the sum of the margins between every consecutive class
with respect to one or more rankings (e.g., perceived length and weight). An ordinal
decomposition approach combined with a fully 3D CNN network was used for assess-
ing the level of neurological damage in Parkinson’s disease patients and exploring the
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potential classification performance improvement in using ordinal label information
[72]. A standard sigmoid function is provided in the output node, rather than using
a softmax function for the output nodes. They trained a single convolutional model
for solving simultaneously individual binary classification tasks, which were treated
as multiple fully connected blocks.

Threshold based models

The most natural strategy to handle the ordinal structure extends the standard regres-
sion task by assuming that a latent variable underlies the ordinal classes. In this gen-
eral approach, called the threshold model, both the latent variable and the thresh-
olds, which act respectively as a mapping function and ordinal constraints, need to
be learned from the data. A threshold-based loss function is designed to model the
ordinal values among multiple output variables [88]. The authors applied the kernel
trick to provide a nonlinear extension of the model. Another work presented a struc-
tural distance metric for video-based face recognition [77]. Here the ordinal problem
is designed as a non-convex integer program problem that firstly learns stable ordi-
nal filters by projecting video data into a large-marginal ordinal space and then self-
corrected the projected data in a structure low-rank strategy. A large margin ordinal
regression formulation was also provided as a feature selection strategy for detecting
minimum and maximum feature relevance bounds by inducing sparsity in the model
[89]. The authors in [90] proposed the introduction of the lp-norm for deriving the
ordinal threshold with class centers with the aim to alleviate the influence of outliers
(i.e. non-i.i.d. noises). Their approach provided an optimization algorithm and cor-
responding convergence analysis for computing the lp-centroid. In [91], two neural
network threshold ensemble models were proposed for ordinal regression problems.
They generated a different formulation of the learned threshold by generating differ-
ent projections for the parameter updating. Another approach consists in imposing the
ordinal constraints on the weights that connect the hidden layer with the output layer
[92]. The formulation allows determining the optimum ones analytically according to
the closed-form solution of the inequality constrained least-squares problem estimated
from the Karush-Kuhn-Tucker conditions. In [93] is proposed a deep CNN model for
ordinal regression by considering a family of probabilistic ordinal link functions in the
output layer. These ordinal link functions fall within Cumulative Link Model (CLM).
They split the ordinal space into the different classes of the problem by using a set
of ordered thresholds. The thresholds are learned during the training process by min-
imizing a loss function that takes into account the distance between the categories,
based on the weighted Kappa index.
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Limitation of state of the art

Similar to the regression model, the main problem of standard ordinal classification
approaches based on regression is the lack of a direct relationship between the predic-
tion error of the regression model and the misclassification error. A different problem
arises for the cost-sensitive penalty approach where there is the need to have a pri-
ori knowledge of the task in order to properly define the cost matrix. Accordingly,
the ordinal binary decomposition approaches are highly influenced by how the over-
all problem is decomposed and how the results of all decompositions are aggregated
into a single final classification. Some recent work in literature tried to overcome
these problems by learning a single model for solving simultaneously individual bi-
nary classification tasks. However, these methodologies only model a static relation-
ship among the ordinal classes that originate on how the problem is decomposed in
binary subtasks. The threshold-based models proposed in literature often require mul-
tiple hyperparameters for setting the ordinal probability thresholds. Indeed, most of
the state of the art threshold-based approaches require highly demanding optimiza-
tion procedures, which do not always guarantee optimal convergence and robustness
against outliers.

The most related work to our proposal is the paper [93] that introduced the CLMs
and quadratic weight kappa for solving an ordinal problem. The main differences with
our work lie in the (i) loss function we adopted, (ii) the different hyperparameters (i.e.
slope) we learned in the learning process, (iii) a different unexplored task we aim to
solve (AQC task) and (iv) the multiple objectives we aim to achieve, i.e. both an
increase in generalization performance and also mitigation of unwanted bias related
to the geometry. Indeed, we solved the ordinal problem by modeling the cumulative
distribution of the AQC classes through the hyperparameters we learn in the CLM.
Moreover, in our work, we exploited the standard Categorical Cross-Entropy (CCE)
loss for solving the ordinal AQC problem. As we shall see in Section 4.4, our deep
ordinal model performs favorably over the CLMs for deep ordinal classification in
[93].

2.2.3. Regularization techniques for ordinal learning

Regularization techniques, such as label smoothing, are used for enhancing the robust-
ness of a model in presence of noisy labels: during training procedure, they encour-
ages the classifier to be less confident, giving some probability to the other classes
instead of focusing only on the true category. This is useful for ordinal problems,
where misclassifying a pattern in an adjacent class is more probable than predicting
a distant category. In this context, respect to the state of the art we proposed a more
flexible exponential function based on the introduction of the Lp norms. Lp norms
have been used in optimisation algorithms in several fields as a generalisation of L2

and L1 norms, including binary classification [94], feature selection [95] or generative
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adversarial networks [96], among others. Depending on the value of p, the objective
varies. In [97], the authors proved that L2 norm methods tend to expand or bleed out
over natural boundaries. Therefore, using a Lp norm where 1 < p < 2 should pro-
vide a more suitable alternative when it is optimised properly. The use of this type
of generalised norms has drawn a huge attention in multiple applications, such as 3D
medical image super-resolution [98].

More specifically, multiple works have discussed the potential advantages of the
alternatives to the L2 or L1 norm. In [99], the authors presented an Lp norm alter-
native to Least Squares Support Vector Machine (LSSVM) [100]. In [101], a new
method was proposed achieving robustness by replacing the L2 norm in conventional
linear discriminant analysis by Lp norm in within-class distances and by Ls norm in
between-class distances. However, for several of these tasks, the Lp norms have raised
a huge attention. Bregman divergences is one of the standard tools for analysing on-
line machine learning algorithms [102], allowing a generalisation of the least mean
squared algorithm. In this sense, the loss bounds for these Lp norm algorithms involve
others than the standard L2 or L1 norms [94].

2.2.4. Hierarchical classification

Even though the methods described in 2.2.2 were proved to improve the performance
of ordinal classification problems, none of them included the possibility of having a
hierarchical structure implicit in the categories of the problem. When dealing with
complex problems that are hierarchically labelled, using a method that exploits these
hierarchical structures can lead to better classification performance and lower cost
errors.

In the ML literature, hierarchical classification problems are usually addressed us-
ing a hierarchical Multi-label classification (HMC) approach. In HMC every instance
may belong to multiple classes simultaneously and these classes are arranged in a hi-
erarchical structure, implying that an example associated with a particular subclass
belongs at the same time to all the superclasses in the hierarchy. The state-of-the-art
approaches include traditional ML models [103] and neural networks architectures
[104, 105, 106], in which the hierarchical structure is explored in different ways.

The most naive approach (global classifier) is to employ a single classifier for mod-
eling the entire class hierarchy, where the objective is to predict the classes associated
with the leaves of the hierarchy, without considering upper levels. However, a major
limitation of this approach is that it completely ignores the class relationships and any
hierarchical constraints, while typically predicting only the leaf nodes (flat classifica-
tion).
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Multi-stages approach

A different approach (local classifiers) is to employ a set of classifiers for each node or
each parent level, as our first proposal describe in Section 4.6. Thus, each classifier is
specialized in solving the classification task associated with the child nodes. In these
terms, the Error Correcting Output Codes (ECOC) approach [107] was proposed as
a method to decompose a multi-class problem into multiple binary problems that can
be solved independently using different models. Then, the predictions of each model
are combined like in any ensemble. This method has been used in several previous
works [108] in combination with CNN models. Although this approach is not origi-
nally hierarchical, a hierarchical approach can be easily derived from it, given that the
codes generated for each of the labels can include the hierarchical dependencies of
those classes. To do that, the codes can be simply composed of Qi bits for each of the
hierarchical levels, where Qi is the number of classes in level i. The bits correspond-
ing to the correct label on each of the levels will be active while the others will remain
zero. In this way, the hierarchical structure is encoded in the generated codes. How-
ever, this approach does not take into account the ordinal information, given that each
of the bits is going to be one or zero without taking into account the rest of the bits.
Therefore, to address this problem, in [109], the authors proposed a method to gener-
ate the ECOC codes in an ordinal way, resulting in better classification performance
for ordinal problems. However, in this case, the hierarchical structure of the labels is
not represented by the codes. Also, it is worth noting that the ECOC approach usually
will spend more time for the training process, given that they decompose the original
multi-class problem in multiple binary problems, and each of them is trained using
all the training samples. Taking into account the characteristics of the approaches de-
scribed, in our work, we proposed to combine the described ordinal methods with a
new hierarchical classification approach that aims to predict the correct label for an
ordinal problem in two separate steps.

One-stage approach

However, the multi-stage approaches require a greater computation effort for learn-
ing separated multiple models [110]. More related to our final proposal, described in
Section 4.7, the HMC approach in [111], which also leverages a single hierarchical
multi-label neural network architecture (HMCN) capable of simultaneously optimiz-
ing their local and global loss functions to model the hierarchical structure of the
classification task while penalizing hierarchical violations. The benefit of this strategy
is to decompose local and global classes that may potentially represent labels of dif-
ferent nature. Different from their definition of global classes (which include all the
classes in the hierarchy), our global loss takes into account only the leaf nodes of the
proposed hierarchical problem, i.e. the classes associated with the final classification
problem we want to solve. Moreover, we consider the possibility of learning ordinal
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relationships among labels. Their formulation addresses two main concerns. Firstly,
the HMC approach proposed in [111] requires the execution of a post-processing step
to ensure that all predictions respect the hierarchical path, penalizing predictions with
hierarchical violations during training phase. This is not necessary in our approach,
because our method naturally modeled only the admissible paths (i.e. it is not possible
to obtain inconsistent labels for the global predictions). Accordingly, our formulation
allows to encode ordinal constraints within both global and local losses, assuming that
the ordinal dependencies of global loss can be different with respect to local losses.
This point takes into account the natural setting of this task. Furthermore, our formu-
lation further leads to model different ordinal relationship among different local losses
that can be associated to different hierarchical levels.
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Chapter 3.

Predictive Quality Control

In this chapter, ML methodologies, experimental procedure and results about the PQC
problem are described. Firstly, in Section 3.1 a preliminary work is presented about the
design of a DSS platform for RUL estimation of Automated Teller Machines (ATMs).
This work was performed to assess whether a state of the art ML method, i.e. Random
Forest (RF) model, could be suitable for addressing the challenges related to a PdM
task. According to this approach, in Section 3.2 the RF methodology was applied
to solve the PQC task related to the prediction of machine processing quality (see
Fig.3.1). Each section describes as first the real use case we aimed to face, then
presents the proposed ML-based framework and then the experimental setup and the
results obtained.

PREDICTIVE QUALITY CONTROL (PQC)
-

Process oriented

Production error 
prediction

Machine Health 
inspection

Machine Health 
correlation with 
Product Quality

Sensor data Machine Learning

Obtaining high-quality
labeled data

Ensuring model interpretability
and decision-making support

3D coordinate measuring 
machine for labeling process

Proposed 
methods

Extraction of 
salient KPIs

RF regression 
model

IoT platform for 
DSS integration

Challenges

Figure 3.1.: Real-world industrial PQC problem: prediction of production error in
MCM machines. PQC is designed according to the Quality 4.0 frame-
work shown in Fig. 1.1. Related challenges and proposed methods for
solving them are outlined.
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3.1. Interpretable Machine Learning approach for
RUL estimation

In recent years, in the context of Industry 4.0 and intelligent manufacturing, there
has been increasing emphasis on the Predictive Maintenance (PdM) task [112, 113,
114], as stated in Section 1.1. PdM aims to estimate when a machine might fail in
order to schedule corrective maintenance operations before the point of failure. Data-
driven algorithms for PdM imitate the normal data behaviour of a machine and use
it as a baseline to identify and report deviations in real-time. A machine monitoring
system includes input data (time-series) on a range of factors, e.g. from temperature
to pressure. The output is the desired target, i.e. a warning of a future failure or the
remaining useful life (RUL) of the tool or machinery [115]. The algorithm will then
be able to predict when a failure is likely to occur or estimate the life time of the
machine. In the literature, the two main machine learning (ML) strategies to solve
these tasks are supervised and unsupervised methodologies. The two categories of
approaches may be relevant for a different scenario and depend on the availability of
sufficient historical training data and the frequency of equipment failure [116].

In this context, the “Smart Manufacturing Machine with Predictive Lifetime Elec-
tronic maintenance” (SIMPLE) project was promoted, involving various companies
and universities in the Marche region (Italy). The aim of the project is to create inno-
vative products that can be monitored and controlled both locally and remotely, able
to implement PdM logics, connected to a new flexible platform. One of the topic of
SIMPLE project is related to the prediction of RUL of ATMs manufactured by Sigma
company. This represents a key task as these machines are subject to different types of
failures, which are difficult to predict by maintenance staff. From a practical perspec-
tive, identifying when the next failure might occur is a relevant aspect for significantly
reducing maintenance costs and avoiding lack of service delivery for long periods of
time. However the main challenges in this field lie in: i) collecting a representative
dataset, ii) correctly annotating the observations, iii) handling the imbalanced nature
of the dataset and iv) providing a model that simultaneously ensures high performance
of accuracy and interpretability.

3.1.1. Data collection

ATM devices generate a very large amount of logs associated to each individual ma-
chine. These files can contain all the information about the operation of individual
devices and are normally written in verbose mode to allow the analysis of any abnor-
mal behaviour. However, they are generally not required to be structured according to
strict rules. In the case of the SIMPLE project, the logging process was rationalised
by implementing an original log management solution with aggregation and storage
features, secure transfer, automatic parsing and transformation of logs into data. In
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addition, the data of the technical interventions was extracted, both as a result of calls
for malfunctions and linked to preventive maintenance activities, from Sigma’s ticket
management system. The information coming from the logs and the maintenance
server was then reconciled by means of automatic operations (batches specially devel-
oped to correlate the data by machines/dates) and manual operations (for labeling the
types of faults found after interpreting the unstructured notes of the technician at the
time of the intervention).

Table 3.1.: Characteristics of the ATMs dataset.

Machines # Observations
Total 89 15254

Failures x machine # Observations x cycle of fault
Max 8 533
Min 0 1
Mean 2 82
Std 1.8 91

The collected dataset represents a total of 89 different machines, and it is built on
raw ATM logs which contain information about several sub-devices. In particular, at-
tention was focused on three different devices installed in the ATM: Cash Recycling
Module (CRM), badge reader and receipt printer. The CRM is the most complex
device within the ATM as it consists of many mechanical parts that must be driven
and maintained in the best possible way to avoid problems when handling money.
The dataset resulting from the data extracted through the parsing of the logs is com-
posed of 236 features and a target variable corresponding to the information on the
failure event. A failure can be caused by a wide variety of factors, making the predic-
tion task very difficult: it may be the result of a component degradation or a sudden
and unpredictable event (such as a jam of a crumpled banknote). Input features are
data about opening and closing intervals of the device shutter, number of processed
banknotes, number and types of movements in each zone of the device and associ-
ated time to complete, number and type of low level error code occurred, information
about standard maintenance execution (cleaning of parts or their substitution), labels
about abnormal status of single parts observed during maintenance interventions, etc.
The high number of features is a consequence of the complexity of the CRM device,
which must be able to dispense banknotes, both single and bundled, from the ATMs,
and therefore it requires extremely sophisticated mechanics, control/implementation
sensors and management/monitoring software. The extracted features are aggrega-
tions on a daily basis of this data, while the labels are manually interpreted by the
tickets of technical interventions. Statistics about dataset distribution are collected in
Table 3.1. The final dataset presents the following challenges:

• the data corresponds to time-series belonging to different machines with an ex-

27



Chapter 3. Predictive Quality Control

tremely not homogeneous number of failures;

• there are a large number of variables with unknown correlation within the vari-
ous types of faults;

• there are a limited number of failure cases;

• there is a possible data leakage issue in dataset preparation, since features are
pre-aggregated and some information may be lost on generalization.

3.1.2. Machine Learning pipeline

Task definition

The problem of RUL estimation can be associated both with regression and classi-
fication tasks. In a regression approach, RUL is maintained as a continuous value
in order to predict the exact remaining time before failure. In the context of ATMs
maintenance, estimating the exact moment of failure is a very complex task accord-
ing to company expertise; for this reason, it was considered more appropriate to treat
the problem as a classification task. For the classification approach, the RUL value is
converted into a discrete value to predict if the machine will fail within a certain time
frame. Therefore two different supervised methodologies were evaluated for solving
the task:

(a) Binary classification: we convert the RUL in a binary value (class 1 high-risk
of failure, class 0 low-risk of failure). Label is considered as class 1 according
to a time window of 6 days before failure;

(b) Multi-class classification: RUL is converted into 5 classes to predict machine
failures in different time windows. In our experiments, we consider the follow-
ing label encoding:

• very high risk (class 5) : number of days before failure between 1 and 3;

• high risk (class 4) : number of days before failure between 4 and 6;

• medium risk (class 3) : number of days before failure between 7 and 9;

• low risk (class 2) : number of days before failure between 10 and 14;

• very low risk (class 1) : number of days before failure between 15 and 19.

One of the main concerns approaching the problem as a classification task is related
to the huge imbalance distribution of classes. For example, as regards the binary
approach, considering the fault class as only the day 0 of RUL implies a small number
of failures (and, from a practical perspective, no time to model and to prevent failures);
on the other side, considering the fault class as several n days before the day 0 of RUL
implies a high risk of training ML model on data which are not enough discriminative
of failures (ie. data that are too far from failures).
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Pre-processing, feature extraction and selection

The domain experts suggested the most discriminative features that can be monitored
in order to discriminate the RUL. These features represent daily statistical measures
(i.e. max, min, std, mean, median, 1-st quartile, 3-rd quartile) derived from the origi-
nal raw data. To delete redundant features, a standard correlation analysis was applied
using a threshold of Pearson correlation value equals to 0.5 (with p-value < 0.05),
which removed 135 features (Figure 3.2a). Most of the removed features regard the
type of error counters and some of the quartiles about the dispense preparation time
and deposit time of banknotes . Then, feature importance by embedded methods high-
lighted the most relevant features, as shown in Figure 3.2b.

Figure 3.2.: Feature extraction and selection procedure: a) Pearson correlation analy-
sis; b) a subset of the most important features.

Pre-processing techniques such as normalization and outlier removal were applied
together with oversampling/undersampling strategies to face the imbalance issue in
the classification task [117]. In particular, the following strategies were selected:

• SMOTE [118] to increase the number of faults. The number of faults samples
generated was the one needed to match the number of non-fault samples;

• Random undersampling [119] to decrease the number of non-fault samples (ran-
dom selection of 5000 samples);

• SMOTE + Random undersampling [120]: for increasing and decreasing both
classes to the same number of samples.

Predictive model

The selected ML algorithm to solve both binary and multi-class classification tasks is
the Random Forest (RF) model. RF represents a variant of bagging proposed by [121]
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and consists of an ensemble of decision trees (DTs) generated by independent identi-
cally distributed random vectors. RF is modeled by sampling from the observations,
from the features (i.e., n� of features to be selected) and by changing tree-parameters.
The idea behind this sampling is to maximize the diversity among trees, by sampling
from the features set and from the data set as well. In particular, the random feature
selection is carried out at each node of the tree, by choosing the best feature to split
within a subset of the original feature set. In classification problems, an ensemble of
DTs is built, which aims to split the data into subsets that contain instances with sim-
ilar values (homogeneous). For each subset, a random feature selection is carried out
at each node of the tree. In addition to predictive performance, we have also to take
into account another important factor for solving a PdM task, which is model inter-
pretability. This requirement is satisfied by the RF algorithm, which allows providing
a direct interpretation of the most discriminative features.

3.1.3. Performance evaluation and Results

Experimental procedure

The RF-based PdM approach was compared with respect to other state-of-the-art ML
approaches employed for solving PdM tasks. In particular, the following models have
been considered for comparing both binary and multi-class tasks:

• Linear Regression (LR) [122];

• K-Nearest Neighbors (KNN) [123];

• Decision Tree (DT) classifier;

• Support Vector Machine (SVM) with Gaussian and linear kernel [124];

• Support Vector Machine (SVM) with Elastic Net penalty [124];

• Gaussian Naive Bayes (NB);

• XGBoost (XGB) [6].

All the ML models have been tested only with the preprocessed dataset. A 10-
fold Cross Validation (CV) procedure stratified over machines and class values was
performed in order to evaluate the performance of the RF model. Although this exper-
imental procedure is computationally demanding, it ensures measuring the ability of
the proposed algorithm to predict RUL across unseen machines. For each algorithm,
the related hyperparameters were optimized by implementing a grid search in a nested
5-CV. Table 3.2 shows the different hyperparameters for the proposed ML models and
all competitors’ ML approaches, as well as the grid-search set. For LR, linear and
gaussian SVM the � penalty controls the 2-norm regularization. For the SVM Elastic
Net ↵ = �1 + �2 and l1 ratio= �1

�1+�2
where �1 and �2 control separately the 1-norm
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Table 3.2.: Range of hyperparameters (Hyp) for the proposed RF model and the other
state-of-the-art ML approaches.

Model Hyp Range

RF
n
� of classification trees

n
� of features to select

max depth

{100, 200}
{2, 5, 10}
{25, 50, 100}

LR � {10�3
, 10�2

, 10�1
, 100}

KNN
n
� of neighbors

weight function
distance metric

{3, 5, 7, 9}
{’uniform’, ’distance’}
{’euclidean’, ’manhattan’}

DT
split criterion
max depth
min n

� of leaf size

{’gini impurity’, ’entropy’}
{50, 100}
{1, 2, 3, 4, 5}

SVM gaussian � {10�3
, 10�2

, 10�1
, 100}

SVM elasticnet ↵

l1 ratio
{10�3

, 10�2
, 10�1

, 100}
{0, 0.25, 0.5, 0.75, 1}

SVM linear � {10�3
, 10�2

, 10�1
, 100}

NB variance smoothing {10�9
, 10�8

, 10�7}

XGBoost

learning rate
max n

� of estimators
max depth
n
� of features to select

{10�3
, 10�2

, 10�1}
{50, 100, 200}
{50, 100}
{1, 2, 4}

and 2-norm regularizations. The main metrics selected for tuning model hyperpa-
rameters and evaluating the final models are the F1 score and the balanced accuracy
(defined as the average of recall obtained on each class) [125], since we consider both
True Positives and False Positives decisive factors for our task.

Evaluation metrics

The assessment of the ML classification tasks described in Section 3.1.2 was per-
formed according to the following standard metrics:

• Correct Classification Rate (CCR), also known as accuracy, which indicates the
percentage of correctly classified samples

Accuracy =
TP + TN

TP + FP + TN + FN
; (3.1)

• Precision, also called positive predictive value

Precision =
TP

TP + FP
; (3.2)
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• Recall, also known as sensitivity

Recall =
TP

TP + FN
; (3.3)

• F1 Score
F1 Score = 2 ⇤

Precision ⇤ Recall

Precision + Recall
; (3.4)

• Balanced accuracy [125]

Bal Accuracy =
1

C

CX

i=1

Recalli; (3.5)

• Receiver Operating Characteristic (ROC), which summarizes the trade-off be-
tween the true positive rates (TPR) and the false-positive rates (FPR) for a pre-
dictive binary classifier.

where TP is True Positive, FP is False Positive, TN is True Negative, FN is
False Negative and C is the number of classes.

Classification performances

The predictive performance of the RF model is shown in Table 3.3 for binary task and
Table 3.4 for multi-class approach on the ATMs dataset. The values shown in tables
are the mean across the respective metric resulting from the single CV folds. For the
binary classification, it can be noted that the best prediction results were obtained by
our RF in all metrics except recall. This trend is also confirmed by the best Area Under
Area under the ROC Curve (AUC) value achieved by RF (see Figure 3.3). Low recall
values denote that the classifier presents a high number of false negatives, which may
be due to the imbalanced distribution of the dataset. This is confirmed also by the
F1-score, which is below 0.5. As regards the multi-class classification, it is possible to
note how the model’s performance significantly decreases. However, RF achieved the
best results for F1 score and balanced accuracy, which are the most relevant metrics
for our PdM task.

3.1.4. SIMPLE DSS for Predictive Maintenance tasks

The designed platform is composed of two server groups, each of which is composed
of three servers and a Storage Area Network (SAN). The solution includes a hardware
(HW) infrastructure consisting of two distinct server and storage groups located in two
different data centers, for ensuring the level of reliability required at the infrastructure
level. The software technical specifications of the SIMPLE project led to the design of
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Table 3.3.: Predictive performance of ML approaches for the binary approach.

Model Accuracy Precision Recall F1 BalAccuracy MAE
LR 0.933 0.652 0.211 0.319 0.601 0.067
KNN 0.934 0.679 0.208 0.317 0.600 0.066
DT 0.825 0.183 0.381 0.244 0.618 0.175
SVM gaussian 0.933 0.749 0.158 0.259 0.577 0.067
SVM elasticnet 0.925 0.659 0.179 0.279 0.562 0.069
SVM linear 0.927 0.535 0.216 0.305 0.601 0.073
NB 0.928 0.126 0.380 0.185 0.543 0.702
XGB 0.932 0.639 0.256 0.363 0.622 0.068

RF 0.938 0.766 0.243 0.368 0.621 0.062

LR_AUC = 0.69
KNN_AUC = 0.65
DT_AUC = 0.62
SVM_gaus_AUC = 0.70
SVM_elas_AUC = 0.68
SVM_lin_AUC = 0.61
NB_AUC = 0.62
XGB_AUC = 0.70
RF_AUC = 0.72

Figure 3.3.: ROC curves of ML methods for the binary approach.

the system architectural scheme illustrated in Figure 3.4. The platforms assure scal-
ability and interactions with different PdM tasks and different companies enrolled in
the SIMPLE project. Each task has their own constraints, characteristics and require-
ments, which have guided the technical choices on the communication protocol with
the devices towards a solution that should be as generic as possible, involving the sup-
port of at least two protocols (MQTT and REST). A container-based deployment tech-
nology was the basic architectural solution employed, in order to quickly manage the
scalability and the resources of containerised applications, check the integrity status
of applications and manage corrections with automatic placement, restart, replication
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Table 3.4.: Predictive performance of ML approaches for the multi-class approach. In
this case, binary metrics (precision, recall, F1) are averaged across classes.

Model Accuracy Precision Recall F1 BalAccuracy MAE
LR 0.298 0.462 0.262 0.222 0.262 1.272
KNN 0.267 0.281 0.254 0.256 0.254 1.394
DT 0.297 0.518 0.258 0.173 0.258 1.151
SVM gaussian 0.304 0.379 0.156 0.174 0.265 1.132
SVM elasticnet 0.262 0.346 0.257 0.215 0.257 1.431
SVM linear 0.302 0.317 0.272 0.247 0.262 1.294
NB 0.214 0.310 0.255 0.159 0.255 1.183
XGB 0.273 0.266 0.261 0.255 0.261 1.402

RF 0.291 0.294 0.266 0.256 0.266 1.343

and scaling. For the orchestration and monitoring of each functional module iden-
tified (i.e. Nginx, VerneMQ, Cassandra...), the installation and configuration of the
OKD (Kubernetes Container) platform on the identified HW infrastructure has been
tackled. From this basis, the software solutions considered to be the most promising
has been refined also according to the ML computing capacity required.

Figure 3.4.: System architecture diagram of predictive maintenance platform within
SIMPLE project.
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3.2. DSS for the prediction of processing quality

The proposed Predictive Quality Control (PQC) task originated from a specific com-
pany demand: the prediction of processing quality and anomaly situations during the
machining of a tool. According to the prediction of non-compliant processing during
production phase, the aim is to take preventive actions so that errors do not propagate
along the production chain. For this reason, this task falls within the PdM paradigm.

The company Benelli Armi Spa is an Italian firearms manufacturer specialized in
the production of semiautomatic sport rifles, producing more than 200k weapons per
year and exporting to 78 countries around the world. Thanks to the latest manufac-
turing technologies, Benelli produces weapons that combine excellent ballistic perfor-
mance and superb functional qualities. In recent years, the company has embraced the
typical Industry 4.0 framework that includes a strong industrial structure as well as
advanced technology to ensure high standards of production in each component of the
final product. Among all the various manufacturing processes of the factory, the QC
phase is a fundamental step in the production of a rifle as the finished product must
guarantee high performances both at mechanical and aesthetic level.

In particular, the defined PQC task, represented in Fig.3.1, aims to predict produc-
tion errors during the machining of MCM systems. These machines perform various
manufacturing processes (e.g. drilling and sanding) for the mechanical properties of
the products. Predicting the processing quality i) helps to prevent defective parts from
entering the next stage of assembly and slowing down the production cycle, ii) allows
to implement PdM actions to replace exhausted tools.

3.2.1. Data collection

The input parameters were represented by topic at level 0 (L0), i.e. processing pa-
rameters (e.g. acceleration, speed, position) collected from two different machine
centers (see Figure 3.5a). The condition monitoring data, that are the annotation
used for the supervised model training, were represented by topic at level 2 (L2) ac-
quired by a robotic part loading system for coordinate measuring machine (see Figure
3.5b). The overall flexible integrated manufacturing system includes two operator
loading/unloading stations, two robot loading/unloading stations, one automated ver-
tical parts store and one parts washing unit.

The L0 processing parameters were acquired by two different machining centers
(mc) (i.e. MCM1 clock 5-axis machining centers). On a 5-axis mc, the cutting tool
moves across the X, Y and Z linear axes and rotates on the A and B axes to ap-
proach the workpiece from any direction. The mc can be configured for multitasking
operations, such as milling, turning, grinding, boring, etc. Moreover, all mc can be
configured with a single pallet, pallet exchanger, multi-pallet systems or integrated in

1https://www.mcmspa.it
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(a) Machine center (MCM clock 5-axis machining center)

(b) Hexagon 3D coordinate measuring machine

Figure 3.5.: Experimental setup in the real industrial use case: advanced processing
(a) and measuring (b) machines.

a Flexible Manufacturing System (FMS). The level of automation can be changed or
increased during the service life of the plant, providing considerable flexibility.

The L2 condition monitoring data were acquired by a robotic part loading system
for Coordinate measuring machine (CMM) (i.e. Hexagon2 Manufacturing Intelligence
Robotic CMM part loading). The CMM system automatically identifies in real-time
parts that are out of tolerance and triggers alarm situations. The CMM can be easily
used by operators with minimal training as a cost-effective automated part loading
system that increases the throughput of CMM and maximizes operational capacity.

2https://www.hexagonmi.com
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3.2.2. Proposed DSS Framework

The proposed ML-based strategy is conceived to solve the above-mentioned PQC task
by allowing the continuous collection of an annotated dataset and the provision of a
data analytic interface for supporting the maintainer/operator. Figure 3.6 describes
the overall architecture of the proposed DSS, which is comprised of five IoT and ML
cornerstones:

• Data collection: the IoT sensing technology is based on the Message Queuing
Telemetry Transport (MQTT) broker 3 [126]. The central concept in MQTT
dispatcher is topics that collect processing parameters (e.g. acceleration, speed,
position) of the machining centers at the lower level L0. Accordingly, the status
and conditioning data collected by the Hexagon machine represents the topic
at the higher level L2. All data are synchronized and are collected in a SQL
database and then in Azure Blob cloud storage.

• Feature extraction: the Trapezoidal Numerical Integration (TNI) is performed
to compute a Key Performance Indicator (KPI) for each processing parameter
during each MCM production cycle.

• Predictive model: a RF regression model is applied in order to estimate the
status and conditioning data using the collected processing parameters as pre-
dictors.

• Cloud architecture: the ML model is deployed as a docker container with an
API endpoint for testing unseen acquired data. Azure ML service is used for
providing a cloud-based environment for deploying and updating ML model.
Azure Blob storage is adopted to store the ML model weights and the ML model
outcomes (predicted error %).

• Data analytics: the ML model outcomes are displayed in a GUI-based data
analytic interface for supporting the maintainer/operator.

Data collection

The central sensing and communication point is the MQTT broker (Mosquito), which
is in charge of dispatching all messages between the senders and the rightful receivers.
The implementation of MQTT protocol in JFMX was performed by using the Paho
Java library. Each client that published a message to the broker, includes a topic into
the message, that represents the routing information for the broker. Each client that

3MQTT is a lightweight telemetry protocol, coming from the world of M2M and now widely applied
in IoT. The central communication point is the MQTT broker, which is in charge of dispatching all
messages between the senders and the rightful receivers.
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Figure 3.6.: Flow-chart of the proposed approach: data collection, feature extraction,
prediction phase based on Random Forest predictive model, cloud storage
and data analytics.

wants to receive messages subscribes to a certain topic and the broker delivers all mes-
sages with the matching topic to the client. Therefore the clients don’t have to know
each other, they only communicate over the topic. This architecture enables highly
scalable solutions without dependencies between the data producers and the data con-
sumers. The payload of messages are just a sequence of bytes, up to 256Mb, with no
requirements placed on their format, and with MQTT protocol usually adding a fixed
two bytes header to most messages. Other clients can subscribe to these messages and
get updated by the broker when new messages arrive.

The central concept in MQTT to dispatch messages are topics. A topic is a simple
string that can have more hierarchy levels. For example, a topic for sending status data
of mc2 of an FMS is the following: JFMX/L1/fms/UNIT/mc1/STATUS. On one hand,
the client can subscribe to the exact topic or on the other hand use a wildcard. The
wildcard (+) allows arbitrary values for one hierarchy while the multilevel wildcard
(#) allows to subscribe to more than one level (e.g. the entire subtree). The MQTT
topic organization allows to guarantee the Quality of Service (QoS). The MQTT pro-
tocol handles retransmission and ensures the delivery of the message, regardless how
unreliable the underlying transport is. In addition, the client is able to choose the QoS
level depending on its network reliability and application logic:

• QoS 0 – at most once: it guarantees a best effort delivery. A message won’t be
acknowledged by the receiver or stored and redelivered by the sender. This is
often called “fire and forget” and provides the same guarantee as the underlying
TCP protocol.
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• QoS 1 – at least once: it is guaranteed that a message will be delivered at
least once to the receiver. The sender will store the message until it gets an
acknowledgement in form of a PUBACK command message from the receiver.

• QoS 2 – exactly once: it guarantees that each message is received only once by
the counterpart. It is the safest and also the slowest quality of service level. The
guarantee is provided by two flows there and back between sender and receiver.

L0 Machine Agent

L1 Work Area Agent

L2 CMM Topic

jFMX-L1

jFMX-L0

jFMX-L2

mc1

mc2

CMM

MQTT

MQTT

Figure 3.7.: Flow chart of the data layer: jFMX MQTT Namespace.

The MQTT topic namespace was defined to manage interactions with the IoT ap-
plication running on the jFMX gateway hierarchy. Figure 3.7 shows the hierarchy of
the jFMX MQTT Namespace. Based on this criterion, our IoT application running on
an IoT gateway may be viewed in terms of the resources it owns and manages as well
as the unsolicited events it reports:

• account name: Identifies a group of devices and users. It can be seen as par-
tition of the MQTT topic namespace. For example, access control lists can be
defined so that users are only given access to the child topics of a given ac-
count name.

• client id: Identifies a single gateway device within an account (typically the
MAC address of a gateway’s primary network interface). The client id maps to
the Client Identifier (Client ID) as defined in the MQTT specifications.
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• app id: Unique string identifier for application (e.g., “L0” for mc topics, “L2”
for CMM topics).

• resource id: Identifies a resource(s) that is owned and managed by a par-
ticular application. Management of resources (e.g., sensors, actuators, local
files, or configuration options) includes listing them, reading the latest value,
or updating them to a new value. A resource id is a hierarchical topic, where,
for example, “fms/mc1/spindle/temp” may identify a temperature sensor and
“fms/sh/Y/pos” a position sensor.

L0 Machine Center Topic

The jFMX MQTT publisher is executed by the L0-Gateway (Flight Recorder) and de-
livers message related to different application included inside the L0-MachineAgent.
All the topics published by the L0 MachineAgent is related to the processing parame-
ters of mc and have an app id defined as: JFMX/L0/workAreaName/unitName where
the workAreaName is the absolute unique name of the workarea and the unitName
is the name of the unit inside the workarea. For our PdM task we refer to the topics
related to the Working Step Analyzer application embedded in the L0-Machine Agent
related to the two different mc (see Table 3.5) The topics related to the dataObj field
represent the considered processing parameters (see Table 3.6) acquired by mc (i.e.
computer numerical control [CNC] and accelerometer). The CNC and accelerometer
data were acquired by a sampling frequency of 24 and 100 Hz respectively.

L2 CMM Topic

The L2 CMM topics represents the condition monitoring data that were acquired by
a robotic part loading system for coordinate measuring machine (see Table 3.7). The
condition monitoring data reflect the quality of processing in terms of the measured
deviation (deviation) with respect to the optimal condition. The optimal condition
highlighted no deviation compared to the planning processing. The alarm situation is
triggered once the measured deviation overcomes the admitted tolerance.

All the L2 CMM Topic and L0 Machine Center Topic were synchronized by consid-
ering the physical tool (tl, identifier of the tool formatted as <tooltype>/<tool serial
number>), the part machined (pt) and the type of processing (frindex). Although
the system could consider all the type of processing we took into account the drilling
procedure (i.e. FRINDEX=10,20,30). This procedure has the intrinsic advantage of
being standard, i.e. independent of the tl. The synchronized L2 CMM Topic together
with the L0 Machine Center Topic were saved in a SQL database.

Feature extraction

All the computed KPIs (speed, pow, pos, curr) represent the predictors of the ML
model for each observation/physical tool (i.e. specific triplet tl, pt and frindex). The
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Table 3.5.: Topics related to the working step analyzer application embedded in the
L0-Machine Agent.

Field Type Description
ts Date start date of the episode according to the

clock of the mc
l2mc String mc code
l2wa String workArea code
ordNo String order number
ptType String identifier of the part type
opNo String operation number
dType String identifier of the workingstep message type

(”wsEv”: in case of sensor coming from
mc, ”accTrace”: in case of sensor coming
from Accelerometer)

slot Int sub section as indicated by the part pro-
gram

pt String identifier of the part machined
tl String identifier of the tool formatted as

¡tooltype¿/¡tool serial number¿
life Int life of the tool at the beginning of the step
sensor String name of the sensor
unit String measure unit for the specifc sensor
sampling Int milliseconds sampling interval
dataObj Object complex object containing two elements:

n[int] segment of the acquisition, data: Ar-
ray[Double] data acquired

mc String machine name
wa String workArea name

output of the ML model was represented by the percentage measurement error (error
%).

Notation
We let a candidate univariate time series of a specific sensor S collected from a CNC
sensor as X = {x0,x1, . . . ,xT } where T denotes the number of observations. No-
tice how this time series is relative to the signal of a specific sensor and relative to a
specific triplet comprised of physical tool (tl), the part machined (pt) and the type of
processing (frindex). We denote the error% as a direct quantitative measure about
the machine quality and the deviation and tolerance the measured deviation and
tolerance reported in Table 3.7.

Our feature extraction strategy is based on a geometric area analysis (GAA) and
trapezoidal area estimation (TAE) procedure that is widely used for solving novelty
and anomaly detection task [127, 128]. The relative KPI is computed by temporally
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Table 3.6.: Topics related to the dataObj field.

Sensor (CNC) unit Description
SP SPEED rpm spindle rotation speed
SP POW W spindle power consumption
X AXIS CURR A x-axis current consumption
Y AXIS CURR A y-axis current consumption
Z AXIS CURR A z-axis current consumption
B AXIS CURR A B-axis current consumption
A AXIS CURR A A-axis current consumption
X AXIS POS µm X-axis position
Y AXIS POS µm Y-axis position
Z AXIS POS µm Z-axis position
B AXIS POS µm B-axis position
A AXIS POS µm A-axis position
FRINDEX None type of processing

Sensor (accelerometer) unit Description
velMOD RMS mm/sec 3 directions vibratory speed module

Table 3.7.: L2 CMM topics.

Field Type Description
ts Date start date of the episode according to the

clock of the mc
pt String identifier of the part machined
tl String identifier of the tool formatted as

¡tooltype¿/¡tool serial number¿
FRINDEX Int type of processing
measured Double measured value
deviation Double measured deviation
tolerance Double admitted tolerance

normalizing the TAE as follows:

KPI =
1

T

Z T

1
xtdt

=
1

T

TX

t=1

Z t

t�1
xtdt

⇡
1

2

1

T

TX

t=1

(t � (t � 1))[xt � xt�1] (3.6)
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All the computed KPI for each specific sensor S is depicted in Table 3.8. For the
position and current a global KPI was extracted by computing the euclidean distance
of X,Y,Z axis.

Table 3.8.: Extracted KPIs for specific sensor. KPIs are related to rotation speed
(speed), power consumption (pow), position (pos) and current consump-
tion (curr).

Sensor (CNC) KPI
SP SPEED speed
SP POW pow
X,Y,Z AXIS POS pos
X,Y,Z AXIS CURR curr

For each observation, the error % was computed by considering the measured devi-
ation and the associated tolerance as follows:

error% =
deviation

tolerance
⇤ 100 (3.7)

The error % measurement reflects a direct and quantitative measure about the ma-
chining quality. In particular, an error % greater than 100 reflects an out of tolerance
machining while an error % lower than 100 correspond to a machining that does not
exceed the tolerance limits.

The final dataset consist of 438 observations/physical tools collected by two differ-
ent mc from the 1st October 2019 to the 31st May 2020.

Predictive model

For solving the regression task we have taken into account predictive performance,
interpretability, and predictive accuracy. These factors represent also the three fun-
damental requirements defined by the company for solving the PdM task. For this
reason, the Random Forest (RF) model was selected for solving the regression task.
In this case, it consists of an ensemble of regression trees (RTs) (i.e., n� of RT) gen-
erated by independent identically distributed random vectors. Since we aim to solve a
regression problem, the best splitting features for each node was computed according
to the sum of squared error.

Although RF allows learning a non-linear decision boundary, the RF originated as
ensemble tree based model ensures an intuitive notion of interpretability: it allows
providing a direct interpretation of the most discriminative KPIs. However, the degree
of interpretability depends on the model size (i.e., number of weak learners/regression
tree and depth of the tree) [129]. Hence, the interpretability of RF was encouraged by
constraining the number of weak learners and the depth of the tree in the validation
set. This lead also to control the computation effort for the training phase.
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The importance of a specific KPI in the RF model to identify the percentage mea-
surement error (error %) was measured according to a permutation of out-of-bag fea-
ture observation [130]. A KPI is considered relevant to identify the error %, if per-
muting its values should affect the model error. On the other hand, if a KPI was not
relevant, then permuting its values should not affect significantly the model error. The
permutation importance of each feature is computed as: 1 � error (after permuting
the feature values). Compared to the standard impurity-based importance the permu-
tation approach is unbiased towards high cardinality features and measure directly the
ability of feature to be useful to make prediction [131].

Cloud architecture

A container logic was adopted for packaging the ML application and all its depen-
dencies, so the application runs reliably from one computing environment to another.
A docker image is essentially a snapshot of a container. Microsoft Azure IoT portal
was adopted for providing a cloud-based environment based on virtualized contain-
ers. This environment can ensure hardware and software isolation, flexibility, and
inter-dependencies between the IoT devices and data collection, features extraction,
and prediction phases. These properties are suitable for our industrial use case since
the proposed DSS is currently designed to work with four operating machines and it
provides the capability to be scaled up to collect a huge amount of data from different
interconnected machines. This advantage also lies the foundations to continuously
update the model, once a new machine is connected to the system.

The proposed architecture is depicted in Figure 3.8 Cloud Architecture. We used a
Python ML library for training and testing our feature extraction stage and RF model
with respect to other state-of-the-art ML approaches. Afterward the feature extrac-
tion procedure and the containerized RF model was pushed to Azure Container Reg-
istry. During this step, we included the azureml-monitoring and azureml-defaults for
enabling respectively the data collection feature and the deployment to Kubernetes.
Consequently, the ML model was deployed to Azure Kubernetes Service (AKS). For
our purpose we configured the AKS with 3 agent nodes of type Standard D3 v2 (4
vCores), thus leading to a total of 12 vCores. Additionally, in our AKS configura-
tion, we explicitly enable data collection (input data and predictions outcome). The
L2 CMM Topic together with the L0 Machine Center Topic were exported from SQL
database to azure blob storage, by allowing a continuous testing and update/retraining
of the ML model once, for instance, a drift situation was detected. All the prediction
results together with the model weights (i.e. decision rule of the ensemble trees) were
stored in the Azure Blob storage.
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Figure 3.8.: Cloud architecture: ML workspace, Azure Container Registry, Azure Ku-
bernetes and Azure Blob

Data analytics

A GUI interface was created to display the predicted error % over different tl, pt,
frindex. In particular, the GUI was finalized to provide a timely indication to the
machine operator when the error % exceeds a certain tolerance threshold that may be
different for each tl, pt, frindex. Additionally the Azure Application Insights instance
was enabled for providing a high level overview of the deployed API in terms of
featuring failed requests, response time, number of requests and availability. The
log analytic feature of the Application insights allows to view and inspect the logs
provided from our containerized model in terms of stdout and stderr.

3.2.3. Performance evaluation and Results

In this Section the experimental results for the proposed DSS specifically tailored for
solving PdM task are shown. The prediction of the processing quality represents the
main task we aim to solve. All the results related to the predictive performance and
computation effort of the proposed approach with respect to the state-of-the-art ap-
proaches are depicted whit the results related to the model interpretability, i.e. the
most relevant KPIs. In addition, more details on the implemented GUI for the pro-
posed DSS are reported.

Experimental procedure

The RF-based PdM approach was compared with respect to other state-of-the-art ML
approaches employed for solving PdM tasks. In particular, the following models have
been considered:

• LR with ridge penalty (LR ridge) [132];

• LR with elastic net penalty (LR elastic) [132];

• Regression Tree (RT) [54, 24];
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• XGB [6];

• SVM with Gaussian Kernel [124]

• Multi-Layer Perceptron (MLP) [45, 46]

• LSTM [47, 48]

A 10-fold CV procedure was performed in order to evaluate the performance of the
RF model. The hyperparameters were optimized by implementing a grid search in
a nested 5-CV. Hence, each split of the outer CV loop was trained with the optimal
hyperparameters (in terms of mean squared error) tuned in the inner CV loop. Despite
this model checking procedure is expensive in terms of computation effort it allows to
obtain an unbiased and robust performance evaluation [133].

Table 3.9 shows the different hyperparameters for the proposed ML models and
all competitors’ ML approaches, as well as the grid-search set. For the LR ridge the
� penalty controls the 2-norm regularization. For the LR Elastic ↵ = �1 + �2 and
l1 ratio= �1

�1+�2
where �1 and �2 control separately the 1-norm and 2-norm regular-

izations.

Table 3.9.: Range of Hyperparameters (Hyp) for the proposed ML models and all
competitors’ ML approaches.

Model Hyp Range

RF n� of regression trees
n� of features to select

{5, 10, 15, 20, 25}
{1, 2, 4}

LR ridge � {10�4, 10�3, 10�2, 10�1}

LR elastic ↵
l1 ratio

{10�4, 10�3, 10�2, 10�1}
{10�4, 10�3, 10�2, 0.1, 0.2, 0.3, 0.4, 0.5}

RT max depth
min n� of leaf size

{5, 10, 15, 20, 25}
{5, 10, 20, 50, 100}

XGBoost

learning rate
max n� of estimators
max depth
n� of features to select

{0.001, 0.01, 0.10}
{5, 10, 15, 20, 25}
{5, 10, 15, 20, 25, 50, 75}
{1, 2, 4}

SVM Gaussian Box Constraint
Kernel Scale

{1, 5, 10, 50, 100, 500, 103, 5 · 103, 5 · 104, 104}
{10�2, 0.1, 1, 10, 102, 103, 104}

MLP
learning rate
n� of hidden layers
n� of units

{10�5, 10�4, 10�3, 10�2}
{1, 2, 4}
{4, 8, 16, 32}

LSTM
learning rate
n� of hidden layers
n� of units

{10�5, 10�4, 10�3, 10�2}
{1, 2, 4}
{4, 8, 16}
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3.2. DSS for the prediction of processing quality

Evaluation metrics

The following metrics were considered to evaluate the predictive performance of the
regression task described in Section 3.2.2:

• Mean Absolute Error (MAE), which measures the absolute difference between
the predicted and the ground truth error %

MAE =
1

n

nX

i=1

kyi � ŷik; (3.8)

• Mean Squared Error (MSE), which measures the squared difference between
the predicted and the ground truth error %

MSE =
1

n

nX

i=1

(yi � ŷi)
2; (3.9)

• R2 score (coefficient of determination), which is a proportion between the vari-
ability of the data and the correctness of the model used. It varies in range:
[�1; 1][134]

R2 = 1 �

Pn
i=1(yi � ŷi)2Pn
i=1(yi � ȳ)2

(3.10)

where n is the number of data points, ŷi is the predicted value of yi and ȳ is the
mean value of y. The statistical significance of the R2 score was evaluated at the
5% significance level with respect to the zero value. The R2 score distribution over
each CV fold was found to follow a normality distribution according to the Anderson-
Darling test (A = 0.436, p = 0.246). Hence, we used the parametric paired t-test
(↵ = 0.05) to compare the performance of the proposed approach with respect to
state-of-the-art work.

Predictive performance

The predictive performance of the RF regression model is shown in Table 3.10. It
can be noted that the best prediction results were obtained for our RF and XGboost
model (R2 score 0.868 and 0.877 respectively), while the LR model achieved the
lowest predictive performance (R2 score 0.591). Accordingly the RF and XGboost
models show similar and competitive performance in terms of MAE (0.089 and 0.088

respectively) and MSE (0.018 and 0.017 respectively). R2 score distribution of RF
is significantly higher (p < .05) than ML based regression model (i.e. LR ridge, LR
elastic net, RT, SVM Gaussian) and DL based regression model MLP and LSTM. In
particular, the performance of sequential DL approaches might be limited by the low
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presence of a huge amount of annotated sequential data in this PdM scenario, in order
to learn spatio-temporal dependencies. Figure 3.9 shows the comparison between the
predicted error % from RF and its real values obtained from the L2 CMM Topic. We
focused on a subset of 42 testing samples (one fold of CV-10 procedure).

Table 3.10.: Predictive performance and computation effort of ML approaches. ⇤ indi-
cate whether R2 distribution over the 10-fold is significantly higher than
0.

Model MAE MSE R2 Train + Val (sec) Testing (sec)
LR ridge 0.166 0.054 0.591⇤ 0.521(0.007) < 10�3(0)
LR elastic 0.166 0.054 0.591⇤ 0.531(0.058) < 10�3(0)
RT 0.100 0.023 0.835⇤ 0.310(0.022) < 10�3(0)
XGBoost 0.088 0.017 0.877⇤ 80.740(10.057) < 10�3(0)
SVM Gaussian 0.151 0.047 0.648⇤ 1.223(0.101) < 10�3(0)
MLP 0.161 0.051 0.618⇤ 39.454(0.651) 0.062(0.002)
LSTM 0.156 0.044 0.667⇤ 89.549(2.618) 0.570(0.023)

RF 0.089 0.018 0.868⇤ 2.353(0.328) < 10�3(0)

Figure 3.9.: Predictive performance of RF for the estimation of the error % over a
subset of observations (tl, pt, frindex): red line ground truth, blue line
prediction.

Computation effort

Taking into account the high performance achieved by the proposed approach, we
decided to test the computation effort with respect to other state-of-the-art ML ap-
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proaches. Table 3.10 compares the time effort (test and training+validation stage) of
the proposed RF algorithm with respect to other state-of-the-art algorithms. All the
experimental comparisons were performed on Intel Core i7-4790 CPU 3.60 GHz with
16 GB of RAM and NVIDIA GeForce GTX 970. Although the predictive performance
of RF is similar to XGboost, the training and validation of RF model are significantly
(p < .05) faster than XGboost with a gain of 34x. This peculiarity ensures the pos-
sibility to retrain the ML model in the cloud with an average latency of 2.353 sec for
learning from around 400 new samples. At the same time the RF prediction latency
may be neglected < 10�3 sec and the RF model can give a timely and consistent
prediction.

Interpretability

The interpretability of the proposed RF model was measured according to the fea-
ture/permutation importance (Figure 3.10). The speed KPI achieved, on average,
the highest permutation importance score, thus highlighting the most discriminative
power of this KPI with respect to the other features. The feature importance together
with the predicted error % values are the salient ML outcomes of the proposed DSS for
supporting the maintainer/operator during the machining quality task. For instance,
taking into account the predicted error %, the operator may exploit preventive action
in order to avoid future errors during the machine processing. At the same time, the
localization of the most discriminative KPI may address the human operator to detect
the source of the error, while optimizing the overall equipment effectiveness, produc-
tivity, and quality of production.

Figure 3.10.: Feature/permutation importance of RF model.
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(a) GUI interface observation
tl:PM0500T3/00024277 pt:81945
frindex:30

(b) GUI interface observation
tl:USPU1080/00024207 pt:84201
frindex:30

(c) GUI interface observation
tl:PM0500T3/00024277 pt:84631
frindex:20

(d) GUI interface observation
tl:USPU1080/00025277 pt:87075
frindex:20

Figure 3.11.: Examples of GUI interface of the proposed DSS for four different obser-
vations (tl, pt, frindex): the predicted error % is represented by blue line
and reported below the gauge chart, the black line represents the admis-
sible tolerance threshold that can change across different triplets. Red
bar: alarm event; yellow bar: potential risk situation; green bar: within
tolerance limit.

Figure 3.12.: Example of the proposed GUI interface displaying the average value of
the KPI predictors for a specific tl across different pt and frindex.
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Figure 3.13.: Example of the proposed GUI interface displaying the trend of KPI pre-
dictors (blue line) together with the life parameter (red line) (i.e. life of
the tool at the beginning of the step) for a specific tl and frindex across
pt (top graph) and across time (bottom graph).

Data analytics: GUI interfaces

Figure 3.11 shows an examples of GUI interfaces of the proposed DSS for four differ-
ent observations (tl, pt, frindex). We represent the predicted error % and the tolerance
limits, which can be different for each observation. In particular, a predicted error %
greater than the admissible threshold (red bar) represents a significant machining error
(i.e. alarm event), while an error % that falls within the yellow bar correspond to a
potential risk situation (i.e. machining error below but close to tolerance limits). The
green bar reflect how the machining is properly executed within the tolerance limit.

Taking into account the high predictive results and the interpretability of the pro-
posed approach, our GUI interface is not limited to show only the predicted error %
(i.e. Figure 3.11). In fact, we go further by supporting the operator by showing the
average value of the KPI predictors (see Figure 3.12) for a specific tl across different
pt and frindex. Additionally, the trend of KPI predictors together with the life param-
eter (i.e. life of the tool at the beginning of the step) is displayed for a specific tl and
frindex across pt and across time in a separated dashboard, as shown in Figure 3.13.
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Aesthetic Quality Control

The Aesthetic Quality Control (AQC) task is an unexplored and challenging QC ap-
plication related to the aesthetic evaluation of a material, where the aesthetic aspect
of the product is not measurable and is based on expert observation (see Section 1.1).
This task is usually done by a technician that classifies each of the items one by one
merely using its expert knowledge and focusing on qualitative and subjective analy-
ses. In particular, in this chapter we will discuss about the QC task of wooden stocks,
which refers to a real industrial case study of Benelli Armi Spa: it is related to assign a
certain grade to each item according to the aesthetic properties of wood (see Fig.4.1).
In order to prevent the sale of a product that does not meet the expectations of the cus-
tomer, the company conducts QC on wooden part made by external suppliers defining
whether it complies with the quality requirements.

Wooden stocks are characterized by their uniqueness: each one is different from
all the others. This difference between all of them leads to a classification problem
of the samples according to the aesthetic aspect. It is possible to pass from woods
with minimum variations of color to others with remarkable contrasts between light
and dark veins that fit together in a twisted and variegated way. Grade increases as
the grain in wood increases, and therefore the item will have a higher value from an
aesthetic point of view and, consequently, also from an economic one. Generally, the
commercial classification of wooden stocks is defined in five major categories ranging
from grade 1 up to 5, where grade 1 indicates almost veinless wood and grade 5 a very
twisted and variegated grain pattern. Each different type of rifle model manufactured
by the company is equipped with a stock belonging to a specific grade class and this
coupling is at the total discretion of the company according to its market decisions.

Today the aesthetic QC of wooden stocks is only based on the evaluation of the
human eye. At first, the operator has to verify the conformity and integrity of the ma-
terial, then decide whether the item has the right characteristics to be part of the grade
class given by its manufacturer. If there is no agreement, the stock can be sent back
or reclassified in another grade. As there is no the support of an objective method, the
entire process is solely entrusted to the ability and experience of the technical staff,
and this implies several main limitations and drawbacks. First of all, the results are
affected by a high subjectivity that could give different responses depending on the
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AESTHETIC QUALITY CONTROL (AQC)
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Product oriented

Product class 
decision

Rifle stocks
quality control

Aesthetic quality 
classification

Deep LearningRGB images

Challenges Mitigating
unwanted Bias

Limited data in 
unbalanced setting

Minimizing errors
between

distant classes

Exploit 
Ordinal-Hierarchical
structure of classes

Reducing
intra-operator 

variability

Nominal
DL approach

HUVGG-16
framework

Voting Ensemble 
DSS

Ordinal approach
CLM VGG-16

Lp Exponential
regularisation

Two–stage
hierarchical
approach

HOBD & HCLM
methodologies

Proposed 
methods

Figure 4.1.: Real-world industrial AQC problem: support the human operator in clas-
sifying the aesthetic quality of wooden stocks. AQC is designed according
to the Quality 4.0 framework shown in Fig. 1.1. Related challenges and
proposed methods for solving them are outlined.

time when the classification takes place and by which operator. Like all aesthetic
evaluations, the personal judgement leads to intrinsic variations in results and there-
fore alterations are routine, especially on high quality woods. Moreover, a training
period is necessary for each operator to acquire the required expertise, and this im-
plies a significant investment in time and resources. Another issue to consider is that
the number of samples to be checked depends on the lot size, but the QC is a time-
consuming task: for this reason, the operator inspection consists in examining only
a minimum part of the stocks delivered by suppliers, following that many pieces are
considered right without being evaluated. The application of ML and DL techniques
offers great opportunities to solve these issues and automatize the overall AQC pro-
cess, saving time and resources and maximizing the performances reducing the high
intrinsic variability across different human operators.

In this chapter, Section 4.1 and Section 4.2 present the collected wooden stocks
dataset and how our AQC task can be addressed by standard DL method, respec-
tively. Then, in Section 4.3 two different strategies are proposed for bias mitiga-
tion: HUVGG-16 framework (Section 4.3.1) and Voting ensemble approach (Section
4.3.2). Section 4.4 describes the proposed ordinal DL methodology based on CLM
VGG-16 architecture. Section 4.5 introduces a novel exponential loss regularisation
based on Lp norm. Section 4.6 refers to the proposal of a hierarchical DL framework
for exploiting also the hierarchical property of the dataset. Section 4.7 proposed the
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HCLM and HOBD methodologies for simultaneously learning hierarchical-ordinal
constraints with a single network. Finally, in Section 4.8 the design of the proposed
DSS for AQC is shown. For each section, the proposed methodologies, experimental
procedure and results are described.

4.1. Data collection

The first version of the collected dataset is composed of both left and right side images
belonging to 951 different rifles, for a total of 1902 images with a size of 1000 ⇥ 500

pixels. According to the aesthetic quality of wood, the stocks have been classified into
4 main grades (1, 2, 3, 4) and their relative minor grades (2�, 2+, 3�, 3+, 4�, 4+),
resulting into 10 different classes as reported in Table 4.1. All the grades are re-
ported together with the number of stocks. The majority class is the grade 4 (270
stocks) while the minority class is the grade 4+ (106 stocks). Note that the class 1

has not been divided into minor labels because the company produces model series
with higher quality classes. Figure 4.2 shows an example of stock for each of the 10
classes. The images were acquired with a high-definition RGB camera placed in the
top-view configuration. During the annotation procedure, a highly specialized tech-
nician accurately inspects the item and assigns the labels of the stock using a custom
data annotation platform (see Figures 4.3,4.4). Table 4.2 shows the classes distribution
for each rifle series. With the aim of deeply investigating the relationship between the
most confounding classes (i.e. 3 and 3+), additional images were acquired leading to
the final dataset configuration shown in the Table 4.1 comprising of 2120 images. The
distinction between the above classes is important also from a business point of view:
most of the rifles series produced by the company mount these wood grades.

The detention and conservation of the acquired dataset are regulated by an agree-
ment between Benelli Armi Spa and Università Politecnica delle Marche.

a) Class 1 b) Class 2- c) Class 2 d) Class 2+ e) Class 3-

f) Class 3 g) Class 3+ h) Class 4- i) Class 4 j) Class 4+

Figure 4.2.: Example of different stocks for each aesthetic quality class belonging to
the collected dataset.
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Table 4.1.: Aesthetic quality classes distribution for both versions of the rifles stocks
dataset.

Label 1 2� 2 2+ 3� 3 3+ 4� 4 4+

First version 165 148 212 177 168 250 198 208 270 106
Final version 165 148 212 177 179 306 344 208 275 106

Table 4.2.: Aesthetic quality classes distribution for each rifle series for the first dataset
version.

Rifle series (ID code) 1 2� 2 2+ 3� 3 3+ 4� 4 4+

ACCADEMIA GR3+ (2) 0 0 0 0 0 24 85 9 2 0
RAFFAELLO 2013 GR3 (3) 0 0 0 11 130 9 0 0 0 0
RAFFAELLO 2013 GR2 (4) 0 32 149 26 14 3 0 0 0 0
ANNIVERSARY 5O° GR4 (6) 0 0 0 0 0 1 19 101 252 61
828 NIKEL GR3+ (8) 1 0 0 0 11 176 14 0 0 0
828 CAL20 GR3+ (9) 0 0 1 0 2 35 70 12 2 0
MONTFELTRO EUROPE GR1 (10) 151 19 18 4 7 1 0 0 0 0
MONTEFELTRO CLARO GR2 (11) 3 79 27 105 4 0 0 0 0 0
ARGO E GR4 (12) 0 0 0 0 0 0 0 8 2 18
FRANCHI EUROPE GR2 (13) 10 18 17 31 0 0 0 0 0 0
ANNIVER. 50° CAL.20 GR4 (14) 0 0 0 0 0 1 3 35 1 14
RAFFAELLO CAL.12 GR4 (15) 0 0 0 0 0 0 7 43 11 13

Acquisition bench

The bench is composed of an industrial lamp and a high-definition RGB camera in-
stalled at the top of a photographic box, as shown in Figure 4.3. The box shields from
external lights: this configuration guarantees the acquisition of images at high reso-
lution with a uniform brightness, avoiding the reflection produced by curvature and
polishing of stocks. Once the final configuration had been chosen, the internal staff
of Benelli prepared the templates to facilitate the insertion of the items inside the box
and to guarantee the homogeneity of the acquisitions.

Annotation Software

A custom software product has been developed to allow operators to acquire images,
to note the quality class of the item and to store all in a dedicated database. The
user must indicate for both sides of each stock-rod pair: a) the article typology; b)
the overall quality class between stock and rod; c) the quality class of stock and rod
individually. The interface of the annotation software is shown in Figure 4.4. In a
second phase, in the same software the predictive models have been integrated so that,
when the operator acquires the image, the classification obtained by the models is
returned.
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Figure 4.3.: Custom data annotation platform. The stock is placed in the box where
the RGB camera and an industrial lamp are mounted. The annotation
software allows the operator to capture the image and to record the grade.

Figure 4.4.: The custom data annotation software presents several panels: “Classifica-
tion”, where the user selects the overall quality class between stock and
rod and the quality class of each item individually; “Article type” for the
item typology and the rifle series it belongs to; “Current view” represents
the field of view of the camera; “Acquisition toolbar” by which the user
can take, cancel or save the image; “Acquired images” which allows a
temporary display of the acquisitions.
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4.2. Nominal Deep Learning approach

4.2.1. Task definition

For solving the AQC task corresponding to the classification of rifles stocks wood
grade, the problem was firstly subdivided into different classification tasks, sorted
according to the level of difficulty established by the company itself:

(a) prediction of middle quality classes: Y = {1, 2, 3, 4};

(b) prediction of meta quality classes: Y = {1⇤, 2⇤, 3⇤, 4⇤
}, where 1⇤ = {1},

2⇤ = {2�, 2, 2+
}, 3⇤ = {3�, 3, 3+

}, 4⇤ = {4�, 4, 4+
};

(c) prediction of all quality classes: Y = {1, 2�, 2, 2+, 3�, 3, 3+, 4�, 4, 4+
};

where X and Y are respectively the input and the output space. We are interested to
learn an agnostic model that classifies the quality classes without being given informa-
tion about the specific rifle series. This is because, in the real-industrial case situation,
the technician is engaged in the QC procedure where the rifle series is not known a
priori.

4.2.2. Classification models

The proposed classification tasks are based on the fine-tuning strategy of state-of-the-
art CNNs for image classification, i.e. AlexNet [135], VGG-16 [136] and ResNet50
[137]. A transfer learning approach was used to fine-tune the networks on ImageNet
[138] pre-trained weights. These architectures were chosen for two main reasons: i)
they achieved competitive performances on ImageNet challenge, ii) they are relatively
simple (i.e. not too deep), allowing to obtain low-level features for fine-tuning. For
all the networks, the last fully-connected layer was modified from 1000 to K neurons,
where K is the dimension of output space for each task as defined in Section 4.2.1 -
Task definition.

AlexNet

The architecture consists of 5 convolutional layers followed by 3 fully-connected ones.
Rectified linear unit (ReLU) activation function is applied after every convolutional
and fully-connected layer and Dropout is inserted before the first and the second fully-
connected layers. The output of the last fully-connected layer is fed to softmax which
produces a distribution over the class labels.

VGG-16

This network is composed of 13 convolutional layers that extract image features.
Each convolutional block has filters with a 3×3 pixels receptive field and is followed
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by a ReLU activation function. For CNN-parameter dimensionality reduction, max-
pooling layers are used after 2 or 3 convolutional blocks. Finally, 3 fully-connected
layers followed by a softmax layer are used to predict a probabilistic label map.
Dropout regularization layers were inserted after the first and second fully-connected
layers with a rate of 0.3. As regards the fine-tuning, the first 4 convolutional blocks
were frozen. The VGG-16 architecture is depicted in Figure 4.5.

Frozen Layers

Class

OutputInput

6464 22
4

224

conv1

128 128 11
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256 256 256 56

conv3

512 512 512 28

conv4

512 512 512 14
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40
96 1

fc7+dropout

40
96

1

fc8+softmax

5
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Max-Pooling Layer
Fully-Connected Layer
Dropout Layer
Softmax Layer

K

Figure 4.5.: The VGG-16 architecture.

ResNet50

It is a Residual Network having 50 layers. Compared to VGG-16, ResNet50 has an
additional identity mapping capability that allows to bypass a CNN weight layer if the
current layer is not necessary. This shortcut reduces the vanishing gradient problem
and it prevents to avoid overfitting. In ResNet50, each ResNet block is 3 layers deep.
In our case, all the modules were fine-tuned.

Loss functions

As regards loss functions, each multi-class classification task a), b) and c) was inde-
pendently solved by considering respectively i) a standard Categorical Cross-Entropy
(CCE) and ii) an ordinal categorical cross-entropy (OCCE). The standard CCE loss
function is defined as follows:

Lc =
KX

i=1

(tilogpi + (1 � ti)log(1 � pi)) (4.1)

where K is the number of quality classes |Y |, ti is the target class vector and pi is
the posterior probability vector. The target class vector is computed by encoding the
ground-truth category y = k with t = (0, . . . , 0, 1, 0 . . . , 0) where only the element
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tk is set to 1. In addition, a custom ordinal categorical cross-entropy (OCCE) was
defined to encourage an ordinal structure, which penalized the ranking as follows:

Lo = 1 + � · Lc (4.2)

where

� = argmax(t � t̂) (4.3)

The main idea behind the loss function defined in Equation 4.2 is to penalize the
error between the target class vector (t) and the predicted target class vector (t̂) accord-
ing to the ranking (i.e. by penalizing more non-consecutive misclassified samples).

4.2.3. Performance evaluation and Results

Experimental procedure

All the networks considered were fed with stock images resized to 224x224 pixels in
order to match the ImageNet input dimension. The first version of the dataset was
employed. The mean value was removed from each image. A mini-batch stochastic
gradient descend (SGD) was adopted as optimizer. The best batch size, the initial
learning rate and the momentum in the range {32, 64, 128}, {1 · 10�4, 1 · 10�3,
1 ·10�2

}, {0.8, 0.9} were explored respectively. For each task, these hyperparameters
have been validated in a separate validation set using a grid-search approach. The
number of epochs was set to 30.

The dataset was split by a startified holdout procedure, i.e. using 60% of images
as training, 20% as validation and 20% as test. Images belonging to the same rifle
ID were maintained in the same set. This checking was performed to ensure that the
algorithm may be able to generalize across different unseen rifle stocks. Due to the
small dimension of the dataset, data augmentation was performed on-the-fly on the
training set, applying horizontal flip, rotation and zoom to original images. To cope
with the slight unbalance of the dataset, class weights were computed for weighting
the loss function.

All the experiments were performed using TensorFlow 2.0 and Keras 2.3.1 frame-
works on Intel Core i7-4790 CPU 3.60GHz with 16GB of RAM and NVIDIA GeForce
GTX 970.

Evaluation metrics

The classification performance was evaluated according to CCR, Precision, Recall and
F1 score, defined as in Section 3.1.3.
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4.2. Nominal Deep Learning approach

Classification performance

The results for solving the task a), b) and c) described in Section 4.2.1 are reported.
Figure 4.6 shows the training and validation accuracy of VGG-16, ResNet50 and
AlexNet across each epoch for solving task a) on the first version of the dataset. The
validation accuracy of VGG-16 overcomes both that of the ResNet50 and AlexNet.

Figure 4.6.: Accuracy curves across each epoch during training and validation phases
for VGG-16, ResNet50 and AlexNet using O-CCE loss for solving task
a).

Table 4.3 shows the classification performance of VGG-16, ResNet50 and AlexNet
for solving task a), b) and c) using the standard CCE loss on the test set.

For each task, the VGG-16 overcomes the ResNet50 and AlexNet in terms of CCR,
Recall, Precision and F1. Hence, we show in Table 4.4 the performance of VGG-16
using the CCE and O-CCE as loss functions for solving tasks a), b) and c).

The O-CCE loss is more reliable for solving all tasks. The performance of the
model decrease according to an increase in the difficulty of the task. Figure 4.7 shows
the confusion matrices of the best performing model (VGG-16 O-CCE) for solving
task a), task b) and c).

4.2.4. Bias detection

Starting from these results, we go further by analyzing any possible unwanted bias
that may influence the classification performance. In particular, the bias may be un-
known and embedded in the dataset/images. In this scenario, following the com-
pany’s suggestion, we have pointed out different possible bias factors: rifle series,
the instant of time (hour of the day) where the QC is carried out, stock sale id, pro-
duction time (minutes). Considering the Cramer’s correlation [139], we have ana-
lyzed how these possible bias factors are correlated with respect to the quality classes
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Table 4.3.: Classification performance of VGG-16, ResNet50 and AlexNet for solving
task a), b) and c) using the standard CCE loss on the test set. The best
performing model in terms of F1 is reported in bold for each task.

Model CCR Precision Recall F1
Task a
VGG-16 0.961 0.954 0.962 0.952
ResNet50 0.923 0.922 0.933 0.922
AlexNet 0.954 0.947 0.956 0.945

Task b
VGG-16 0.912 0.873 0.908 0.884
ResNet50 0.882 0.862 0.874 0.845
AlexNet 0.896 0.843 0.874 0.853

Task c
VGG-16 0.632 0.612 0.623 0.601
ResNet50 0.585 0.562 0.583 0.558
AlexNet 0.605 0.586 0.588 0.563

Table 4.4.: Classification performance of VGG-16 for solving task a), b) and c) using
the CCE and O-CCE loss on the test set. The best performing model in
terms of F1 is reported in bold for each task.

Loss CCR Precision Recall F1
Task a
CCE 0.961 0.954 0.962 0.952
O-CCE 0.961 0.962 0.962 0.964

Task b
CCE 0.912 0.873 0.908 0.884
O-CCE 0.925 0.884 0.923 0.901

Task c
CCE 0.632 0.612 0.623 0.601
O-CCE 0.657 0.643 0.658 0.633

Y = {1, 2�, 2, 2+, 3�, 3, 3+, 4�, 4, 4+
}. Table 4.2 shows that each specific rifle se-

ries is bounded to a specific quality class. Different rifle series have different exclusive
characteristics, i.e. size, shape, color, polishing, plastic insert and other specific treat-
ments (see some examples in Figure 4.2). The Cramer’s analysis found that the rifle
series is significantly correlated (0.67, p < .05) with respect to the ground-truth qual-
ity classes Y . As a consequence, the rifle series represents a bias in the VGG-16
model, due to the inherent production requirements. The detected bias is also demon-
strated by the high significant Cramer’s correlation (0.70, p < .05) found between
the VGG-16 prediction of task c) and the rifle series. This fact is also confirmed by
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4.3. Bias mitigation

Figure 4.7.: Confusion matrices of the best performing VGG-16 models with O-CCE
loss for solving task a), b), c) respectively.

exploring the saliency map of the VGG-16 (see Figure 4.8, left side) according to the
approach proposed by [140]. The most discriminative pattern of the network is placed
on the rifle edge, thus reflecting a more focus on the geometry (shape of the stock
head) respect to the evaluation of wood grain.

Figure 4.8.: Saliency maps of a grade 2 stocks belonging to Raffaello series. Left:
VGG-16 model trained for task c); right: VGG-16 sub-network trained
for solving the quality task on Raffaello series.

4.3. Bias mitigation

Starting from the assumption that the objective is to classify the quality classes with-
out being given information about the specific rifle series, the model should be able
to classify the quality grades independently from the geometry and the specific rifle
characteristics. To achieve this purpose, first a hierarchical networks approach, named
HUVGG-16, was proposed as described in Section 4.3.1. Then, a voting ensemble
approach that better suited the AQC task from a practical perspective was designed,
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reported in Section 4.3.2 .

4.3.1. HUVGG-16 framework

HUVGG-16 framework is designed to learn separately two-stage hierarchical net-
works that are able to predict respectively the rifle series (model task) and the quality
classes (quality task). The single network of the first stage predicts all the rifle se-
ries; based on the rifle series predicted, we assign a specific second stage sub-network
for classifying the quality classes. Each sub-network is conceived to predict only the
quality classes associated with respect to the rifle macro-series. Each macro-series is
defined according to the company’s knowledge by aggregating rifle series which have
the same geometrical characteristic. According to this, the first stage network was
trained with all images of first version dataset; each second stage sub-network was
trained only with specific classes associated with that series by production require-
ments (e.g. for Montefeltro series only classes 1, 2�, 2 and 2+ have been considered).
Figure 4.9 shows in detail the workflow of the proposed approach.

Input

2 - Quality task

• 2
• 3-

• 1
• 2-
• 2+

• RAFFAELLO 
2013 GR3

• RAFFAELLO 
2013 GR2

• MONTFELTRO 
EUROPE GR1

• MONTEFELTRO 
CLARO GR2

Raffaello series

Montefeltro series

1 - Model task

Series

Grade

Grade

Pre-trained VGG16

Pre-trained VGG16

… …

Convolutional blocks FC1 FC2

Predictions

Pre-trained VGG16

Figure 4.9.: Workflow of the proposed bias mitigation approach HUVGG-16. The
first VGG-16 is conceived to learn the rifle series (model task) while each
sub-networks is specialized to classify the quality classes (quality task)
for each rifle macro-series. Each macro-series is defined according to the
company’s knowledge by aggregating rifle series which have the same
geometrical characteristic.

Performance evaluation and Results

The same experimental procedure and preprocessing described in Section 4.2.3 was
performed. The classification performance was evaluated according to CCR, Preci-
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sion, Recall and F1 score, defined as in Section 3.1.3, and the results are reported
in Table 4.5. Figure 4.10 shows the confusion matrix of HUVGG-16 for solving the
model task and Figure 4.11 the ones for solving the quality task on Raffaello and
Montefeltro series. The model task appears to be very easy for the CNN to solve,
demonstrating that rifle characteristics largely affect the classification. Despite the
similar classes considered for each quality task, the results are quite promising. Ac-
cordingly, the extracted saliency maps are constrained to focus on wood grains rather
than the geometrical edges (see Figure 4.8 right side). Thus, this strategy allows to
alleviate the bias by separating the two task and providing the prediction of quality
classes for each rifle macro-series model.

Table 4.5.: Classification performance of HUVGG-16 for solving Model and Quality
tasks and O-CCE loss on the test set.

Task CCR Precision Recall F1
Model task 0.973 0.982 0.973 0.972

Quality task
Raffaello series 0.952 0.948 0.962 0.954
Montefeltro series 0.831 0.852 0.842 0.803

Figure 4.10.: Confusion matrix of model classification task of HUVGG-16. Labels
represent the codes of rifle series as defined in Table 4.2.

Limitations

Despite the effectiveness of this approach, the proposed HUVGG-16 framework presents
two main limitations:

• training one model for each rifle series is not convenient. Each time the com-
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Figure 4.11.: Confusion matrices of quality classification task of HUVGG-16: Left:
Raffaello series [codes 3,4]; right: Montefeltro series [codes 10,11].

pany defines a new rifle, there is the need to retrain the first stage network and
to train a new sub-network related to the new product;

• second stage models predictions are “constrained” on the classes on which the
models are trained for the quality task, but this does not meet the practical needs
of the company for the QC task that should be solved.

To overcome these issues, a voting ensemble approach was designed as described
in next Section 4.3.2.

4.3.2. Voting ensemble strategy

With the aim of reducing the bias due to the characteristics of the rifle model (shape,
geometry, plastic inserts, size, knurling, etc.) and focusing only on the evaluation of
wood grain, two key manipulations were applied to the dataset images (Figure 4.12):
i) the extraction of a Region Of Interest (ROI) as focused as possible on the wood part
and ii) the application of a ridge filter to enhance the grain pattern. These images were
used as input for a voting ensemble approach, comprising of three different ML/DL
models, according to the scheme reported in Figure 4.13.

Preprocessing and feature extraction

This step is useful to extract in a fully automated way a ROI where the percentage
of wooden stock in the image is maximise in order to encourage the model to focus
only on the aesthetic evaluation of the material. To obtain the ROI, the following steps
were defined:
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Class 4 RGB

Class 1 RGB Class 1 Ridge

Class 4 Ridge

Figure 4.12.: Preprocessing steps for bias mitigation. Left: from each dataset image,
a ROI focused on wood part was extracted. Right: ridge filter applied to
class 1 and 4 images.
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Figure 4.13.: The workflow of the VE predictive algorithm essentially consists of 4
steps: preprocessing, feature extraction, VE method consisting of 3 par-
allel ML-DL models and the classification output.

• Grabcut algorithm: it is image segmentation method based on graph cuts, which
allows to remove the background of the image, obtaining a crop of the object
of interest. The hyperparameters to be defined are the approximate area around
the foreground region and the number of algorithm iterations (20 iterations were
validated for this task);

• Thresholding: a boolean mask of the previously segmented region is obtained;

• FindContours algorithm: the contours of the previous mask are outlined;

• Centroid detection: the centroid of the area is calculated based on the defined
contour points;

• ROI definition: a ROI (470⇥270 pixels) is defined as a surround of the centroid.
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Considering that AQC classes are based on the grain pattern, the cropped images
were converted into a grayscale images to enhance the properties of the wood. A
binary Ridge filter with � = 2.0 was applied. Figure 4.12 shows how effective the
filter is to highlight wood grain and differentiate the various grades.

Classification models

The classification task is assigned to a Voting Ensemble (VE). A VE is an ensemble
ML model that combines the predictions from multiple other models. This technique
is often used in challenging ML problems to improve model performance, where com-
bining more algorithms ideally allows to achieve better performance than any single
model used in the ensemble. A VE works by combining the predictions from multiple
models. In the case of classification, the predictions for each label are summed and the
label with the majority vote is predicted. In particular, the soft voting method consists
in summing the predicted probabilities for each class label and predicting the class
label with the largest probability. VE are most effective when combining multiple fits
of a model with different hyperparameters or when combining different models which
consider different data features. In this case, the following methods were employed
(Figure 4.13):

• pre-trained VGG-16 on RGB images;

• pre-trained VGG-16 on ridge images;

• SVM with ElasticNet regularization on ridge images.

Performance evaluation and Results

For the VGG-16 network, the same experimental procedure and preprocessing de-
scribed in Section 4.2.3 was performed. For the SVM algorithm, hyperparameters
weighing L2 and L1 were validated on a a separate validation set.

The classification performance was evaluated according to CCR metric and the re-
sults for solving the task a), b) and c) described in Section 4.2.1 are reported in Table
4.6. Also in this case, it is worth to noting that models performances decrease accord-
ing to an increase in the difficulty of the task. However, VE performance outperforms
that of all single models in every task, except for the VGG-16 in task b which are
comparable.

Validation by human annotator

The VE model was validated with a blind test performed by the same operator who
annotated the employed dataset. A subset of 18 test images in which the model pre-
dictions were different from the ground-truth (GT) classes was selected. The operator
evaluated the images without knowing the grade he had previously assigned and the
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Table 4.6.: Classification performance (CCR) of each single model and VE method for
solving task a), b) and c). Best model for each task are reported in bold.

Input Model CCR CCR VE
Task a
RGB VGG-16 0.821

0.838Ridge VGG-16 0.773
Ridge SVM 0.788

Task b
RGB VGG-16 0.762

0.760Ridge VGG-16 0.723
Ridge SVM 0.745

Task c
RGB VGG-16 0.481

0.509Ridge VGG-16 0.446
Ridge SVM 0.463

prediction of the VE model. The validation results are reported in Table 4.7. It is
interesting to note that only in 5 cases the operator repeated the same classification,
proving that the task is very challenging even for an expert human eye. Moreover, in
4 cases out of 18 the new classification corresponds to the same one provided by the
model.

Table 4.7.: Result of the blind test. Red rows: cases where validation class is equal
to the test class (GT). Green rows: cases where validation class is equal to
the class predicted by the VE model.

ID stock GT VE prediction Validation

1865 3+ 3 4�

1875 1 2 2
352 2 1 2+

242 3+ 3 3+

586 3+ 3 3+

27 3+ 4 4�

220 3+ 3 3
282 2 1 2
1650 1 2 2
267 1 2 2�

644 3 1 3+

201 1 3 3�

54 3+ 4 3+

1887 1 3 2
3 3+ 4 4
7 3+ 4 4�

241 3+ 3 4�

276 2 1 2
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4.4. Ordinal Deep Learning approach

As described in Section 4.1, the collected AQC dataset implies a natural order between
classes, because the more rich and fancy is the veining pattern, the higher is the qual-
ity class for the item. Following the previous results, approaching this problem with
a nominal DL classification method (which does not exploit class order) causes: i) a
substantial drop in accuracy performance as the number of classes to be considered
is higher and ii) an increase in misclassification errors even between widely distant
classes, which represents the main fault from the industrial production perspective.
Considering the ordinal nature of the problem, these issues can be addressed by over-
coming the limitation of the nominal approach, in which the classes are not arranged in
an appropriate ordered scale, by exploiting the gradual rank of the dataset classes with
specific methodologies for ordinal classification. This impression has been supported
by the fact that exploiting an ordinal loss (i.e. OCCE) allowed to achieve slightly
higher performances (see Table 4.4).

This section introduces a DL ordinal methodology for the AQC classification. Dif-
ferently from other deep ordinal methods, we combined the standard Categorical
Cross-Entropy (CCE) with the Cumulative Link Model (CLM) and we imposed the
ordinal constraint via the thresholds and slope parameters.

4.4.1. CLM VGG-16 architecture

In this section, we present the proposed deep ordinal model, which consists of convo-
lutional modules for extracting feature maps and an ordinal classification module (see
Figure 4.14). The main aspect of the ordinal module is the integration of the CLM
in the output layer, parameterized by slope and thresholds, for encoding the ordinal
nature of the label.
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Figure 4.14.: The proposed CLM VGG-16 architecture, which consists of convolu-
tional layers for features extraction and an ordinal head based on CLM.
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Feature extractor

We adopted as feature extractor the convolutional part of VGG-16 CNN [136] with 13
convolutional layers. Each of the 5 convolutional blocks has filters with a 3×3 pixels
receptive field and is followed by a ReLU activation function. For CNN-parameter
dimensionality reduction, max-pooling layers are used after 2 convolutional layers for
the first 2 convolutional blocks and after 3 convolutional layers for the other blocks.
The activation of the last convolutional block is used as the embedded features (F 2

RK) learned from the feature extractor and is then fed to the ordinal classification
head, which computes the output decision of the model. We let x 2 X ✓ RK the
input space and y 2 Y = {y1, y2, . . . , yQ} the output space of Q different ordinal
classes defined for the problem.

Ordinal classification module

The output of the convolutional part of the CNN is fed to a sequence of 2 Fully Con-
nected (FC) layers, followed by the output layer. Dropout regularization layer was
inserted between the first and the second FC layer with a rate of 0.3. The dropout
rate was chosen in the validation stage (see Table 4.8). A batch normalization layer
was added in order to stabilize the learning process and reduce the number of training
epochs. The last FC layer has only one neuron as it provides the model projection in
a 1-dimensional space: its value is used to classify the sample into the correspond-
ing class according to the threshold model. In fact, one common approach to address
ordinal classification problems taking into account the ordinal information is to use
threshold-based models. Inspiring from [93], the threshold-based approach we adopt
in the output layer of the CNN is the Cumulative Link Model (CLM).

CLM [141] are one type of thresholds models which try to predict the probability
for each of the categories accounting for the order information implicit to the problem
using a set of thresholds that separate different categories and a projection obtained
from the input data. Concretely, these models create a 1-dimensional linear projection
from the input data, which can be denoted as f(x) 2 R. This 1-D space is divided
in Q segments by using a set of thresholds which can be conveniently defined to suit
the classes distribution of the current ordinal problem. However, in literature work
they are often learned from the training data instead of setting them manually. Thus,
the threshold vector can be defined as ttt = {t0, t1, ..., tQ}. To divide the output space
properly, these thresholds should be in ascending order, satisfying the expression t0 <

t1 < ... < tQ. The first threshold is always �1 and the last one +1.
In the CLM formulation [142], the class order is enforced by the following latent

constraint:

f�1P (y � yq|x) = tq � f(x) (4.4)
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where q = 1, . . . , Q � 1, f�1 : [0, 1] ! 1 is a monotonic function (inverse link
function) and tq is the threshold defined for class yq . Hence, the class yq is predicted
if and only if f(x) 2 [tq�1, tq]. It is worth noting that the function f is learned from
the training data.

We integrated in the output layer of the architecture different forms of CLM explor-
ing many link functions [143]:

• logit(p) = log
p

1 � p
,

• probit(p) = ��1(p),

• cloglog(p) = log(� log(1 � p)),

where p = P (y � yq|x), � = 1
2

⇣
1 + erf

⇣
x�µ
�

p
2

⌘⌘
is the standard normal cumulative

distribution function and erf(z) = 2p
⇡

R z
0 e�t2dt is the Gauss error function.

4.4.2. Setting the slope and thresholds parameters

CLMs are highly influenced by the right choice of thresholds and slope. The thresh-
olds represent the cutting point between adjacent ordinal classes, while the slope con-
trols the transient of P (y � yq|x). For instance, a small slope value may lead to a
high transient in the CLM that does not enable the ordinal structure modeling (see Fig.
4.15). Following this assumption, the previous defined link functions were defined as
follows:

• logit:

P (y � yq|x) =
1

1 + e�s(tq�f(x))
(4.5)

• probit:

P (y � yq|x) =

Z tq�f(x)

�1

s
p

2⇡
e

1
2x2

dx (4.6)

• clog-log:
P (y � yq|x) = 1 � e�es(tq�f(x))

(4.7)

where s controls the slope of the CLM. Notice how the introduction of the slope
represents one of the main contributions of the proposed work to control the transient
between each monotonic link function with the purpose to be adapted according to the
specific ordinal problem. We have explored different formulations for the optimization
of the thresholds (t = {t1, t2, . . . , tQ�2, tQ�1}) and the slope (s):

• A): learning the slope s and the thresholds t from data;

• B): preliminary fixing the values of the slope s and the thresholds t;
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6� �� 6� ���

Figure 4.15.: The effect of the slope parameter s regularization in logit link function
for defining the C � 1 thresholds.

• C): preliminary fixing the values of the slope s and learning the thresholds t

from data.

In formulation A), both the slope s and the thresholds are learned during the training
process. In particular, the threshold are learned from the following equation:

tq = t1 +
Q�1X

i=2

�2
i , (4.8)

where t1 is learned to obtain the first threshold, � is learned to obtain the other thresh-
olds and Q is the number of classes. This formulation for the thresholds ensures that
the constraints t1  t2  · · ·  tQ�1 are fulfilled, which is needed for obtaining
increasing P (y � yq|x) with q.

In formulation B), rather than learning the parameter s in the training stage, we have
tuned this parameter in the validation stage. Moreover, the imbalanced setting of the
ordinal classes is taken into account by fixing the thresholds instead of learning them
during the training stage. In particular, we set the thresholds according to the prior
probability of each class as follows:

t1 =

PN
i=1 1y=y1

N
, (4.9)

�q =
q

P (y = yq|x) =

sPN
i=1 1y=yq

N
, (4.10)

where t1 is the value of the first threshold related to the prior probability of the first
class, �q is the vector of the prior probabilities P (y = yq|x) associated to each class
q = {2, . . . , Q � 1} and N is the total number of training points.

In the hybrid formulation C), only the thresholds are learnable parameters while the
slope is tuned in the validation stage.
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Loss function

The loss function was defined in terms of standard Categorical Cross-Entropy (CCE)
as follows:

L(ŷ, y) = �

QX

i=1

yi log(ŷi), (4.11)

where Q is the number of classes indicating the output size, ŷi is the i-th scalar value
in the model output and yi is the corresponding target value.

4.4.3. Performance evaluation and Results

Experimental comparisons

It is worth noting that the goal here is to predict the aesthetic quality classes of the rifle
models in the most challenging task, i.e. considering all the quality classes (task c,
Section 4.2.1). The second version of the collected dataset was employed (Table 4.1).
We decided to perform experimental comparisons with respect to baseline nominal
VGG-16 [136] and other state-of-the-art ordinal DL methodologies, including ordinal
binary decomposition VGG-16 [72] and CLM VGG-16 with weight kappa loss [93].
Figure 4.16 shows the architectures of the state-of-the-art methodologies employed
for comparisons.
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Figure 4.16.: The other state-of-the-art architectures: a) baseline nominal VGG-16
and b) ordinal binary decomposition VGG-16.

Nominal VGG-16

In the nominal classification, the VGG-16 model presents the classic architecture,
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4.4. Ordinal Deep Learning approach

where the convolutional part is followed by 3 FC layers and the last one has dimension
Q as the number of class labels, as described in Section 4.2.2. The output of this last
FC layer is fed to a softmax activation function which maps the output of the CNN
model into a set of probabilities belonging to each class. The loss function is the CCE
loss, as defined in 4.4.2.

Ordinal Binary Decomposition VGG-16

The Ordinal Binary Decomposition (OBD) is an ordinal approach that consists of
decomposing the ordinal problem into a set of Q � 1 binary problems, where each
problem q must determine if y > yq conditioned to 1  q < Q. Following the
implementation in [72], the convolutional part of the VGG-16 is the input of multiple
FC blocks, all of the same dimension. Each block consists of a FC layer, followed by
a Leaky ReLU activation function and dropout layer. A final output layer computes
the final classification given by the model solving an individual binary classification
subproblem. The output of each of the Q � 1 FC blocks has a sigmoid activation
function representing the probability ok = P (y � yk|x) 2 (0, 1).

The adopted loss functions include MSE defined as follows:

L(ŷ, y) =
1

Q � 1

Q�1X

k=1

(yk � ŷk)2, (4.12)

and MAE:

L(ŷ, y) =
1

Q � 1

Q�1X

k=1

kyk � ŷkk, (4.13)

where Q is the number of classes indicating the output size, ŷk is the predicted prob-
ability of the model output to be greater than yk and yk is the corresponding target
value that is equal to 1 when yi = yq and 0 otherwise.

Cumulative Link Model VGG-16 with Quadratic Weighted Kappa loss

Differently from our approach, in the work made by [93] the CLM structure in the out-
put layer is combined with the continuous version of the Quadratic Weighted Kappa
(QWK) loss function. We employed the QWK according to [144] as follows:

QWK = 1 �

PN
i,j !i,jOi,j

PN
i,j !i,jEi,j

, (4.14)

where N is the number of training data, Ni is the number of samples for each i-th
class, ! is the penalization matrix, O is the confusion matrix, Eij = Oi•O•j

N , Oi• is
the sum of the i-th row and O•j is the sum of the j-th column. In our experimental
comparisons, linear weights (!i,j = (i�j)

(C�1) , !i,j 2 [0, 1]) and quadratic weights

(!i,j = (i�j)2

(C�1)2 , !i,j 2 [0, 1]) are considered.
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Experimental design

A transfer learning approach was used to fine-tune the networks on ImageNet pre-
trained weights, in order to reduce computational time while improving the general-
ization performance [145]. For this reason, all the convolutional layers were frozen.
As a preprocessing step, the mean value was removed for each image.

The dataset was split by a stratified holdout procedure, i.e. using 60% of images as
training, 20% as validation and 20% as a test. Images belonging to the same shotgun
(front and back) were maintained in the same set, ensuring that the model may be able
to generalize across different unseen shotgun stocks.

In order to cope with the small dimension of the dataset and the slight unbalance
of the classes, a balanced data augmentation strategy was performed on the fly on all
the training set samples, applying a horizontal flip to original images. In this process,
we ensure that, during training, the number of samples per class follows a uniform
distribution, performing an oversampling of the minority classes.

We adopted Adam as optimizer and we explored the best batch size, the initial
learning rate and dropout rate as network hyperparameters (see Table 4.8). These
network hyperparameters together with the slope parameter for formulations B) and
C) were tuned in a separate validation set using a grid-search approach. The number
of training epochs was set to 50 while adopting the early stopping strategy with the
patience of 10 epochs monitoring validation loss.

All the experiments were performed using TensorFlow 2.0 and Keras 2.3.1 frame-
works on Intel Core i7-4790 CPU 3.60GHz with 16GB of RAM and NVIDIA GeForce
GTX 970. All the code used in the experiments and the employed dataset is available
in a public repository 1.

Table 4.8.: Network hyperparameters and Cumulative Link Model parameters ex-
plored in the validation set.

CLM Parameters Values
Slope 10, 50, 100

Netowork Hyperparameters
Dropout rate 0.1, 0.3, 0.5
Batch size 8, 16, 32
Learning rate 10�4, 10�3, 10�2

Evaluation metrics

Both nominal and ordinal metrics were considered to provide quantitative perfor-
mance results of the proposed classification models. Regarding the former, the assess-

1https://github.com/rosati1392/AQC Ordinal.git
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ment of the DL classification task was performed according to the following metrics:

• Correct Classification Rate (CCR) or accuracy, indicating the percentage of
correctly classified samples, is the most standard metric for evaluating classifi-
cation models, also defined as follows:

CCR =
1

N

NX

i=1

1{ŷi = yi}, (4.15)

where N denotes the number of test samples, yi is the class label for sample xi

and ŷi is the predicted label for sample xi;

• Top-2 CCR and Top-3 CCR, which are the accuracy where true class matches
with any one of the two or three, respectively, most probable classes predicted
by the model;

• Minimum Sensitivity (MS)[146], which expresses the lowest percentage of sam-
ples correctly predicted to belong to a certain class:

MS = min

⇢
Sc =

Oqq

Oq•
, q = 1, ..., Q

�
, (4.16)

where O is the confusion matrix, Q is the number of classes and Sq is the
sensitivity computed for the class q;

• other standard classification metrics such as Precision, Recall and F1 Score,
defined as in Section 3.1.3

In our application context, standard nominal classification metrics may not be sig-
nificantly representative. For instance, CCR presents two main problems:

• when in presence of class imbalance, it can become an unreliable measure of
model performance, as it can be trivially increased by assigning all patterns to
the majority class;

• all the prediction mistakes are equally penalized, without considering how much
is the deviation from the ground-truth (according to the ordinal scale).

Taking into account the ordinal nature of the AQC task, ordinal metrics are poten-
tially more relevant for evaluating the defined ordinal classification task. The follow-
ing metrics were considered:

• Quadratic Weighted Kappa (QWK), which is a relevant metric for ordinal prob-
lems as it gives a higher weight to the errors that are further from the correct
class [144]. The continuous formulation of QWK has been reported (for the
results, the values reported are generally those from discrete QWK, while the
continuous version is used only for the state-of-the-art experimental comparison
in the training process [93]) according to Equation 4.14;
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• 1-off accuracy, which indicates that the predicted label is off at most by 1 adja-
cent class from the ground-truth one;

• MAE, which is the average absolute deviation of the prediction from the ground-
truth, defined as:

MAE =
1

N

QX

i,j=1

ki � jkOij , (4.17)

where N is the number of test samples, Q is the number of classes and O is the
confusion matrix.

Classification performance

The predictive performance of the proposed approach was provided by tuning the net-
work hyperparameters. For formulation A the CLM parameters were learned in the
training set while for formulations B and C the slope was tuned in a separate vali-
dation set and kept fixed during the training stage. Table 4.9 shows the predictive
performance of the proposed approach (in terms of QWK and MS) for each formu-
lation and for each final activation. The adoption of these two metrics is related to
the aim of our classification task: we want to maximize the model performance in
the ordinal problem while being consistent in prediction among all the dataset classes
despite the imbalanced setting.

Table 4.9.: Predictive performance on the test set of the proposed approach for each
formulation and for each final CLM activation. In bold, the experiment that
leads to the best results both in terms of Quadratic Weight Kappa (QWK)
and Minimum Sensitivity (MS) are reported.

Formulations Final Act Slope Thresholds BS LR QWK" MS"

Experiment A logit Trainable Trainable 16 10�2 0.926 0.128
probit Trainable Trainable 16 10�2 0.928 0.205
clog-log Trainable Trainable 16 10�2 0.892 0.179

Experiment B logit Fixed Fixed 16 10�2 0.846 0.000
probit Fixed Fixed 16 10�2 - -
clog-log Fixed Fixed 16 10�2 - -

Experiment C logit Fixed Trainable 16 10�2 0.937 0.231
probit Fixed Trainable 16 10�2 0.922 0.282
clog-log Fixed Trainable 16 10�2 0.927 0.282

With respect to these formulations, experiment C achieved the best results both in
terms of QWK (with logit as CLM link function) and MS (with probit and clog-log).
Notice how in this formulation we fixed and tuned the optimal slope value in the
validation set. This procedure provides better generalization performance than fully
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learn slope and thresholds in the training procedure. Another relevant aspect is that
fixing the thresholds to a preset value does not allow the model to converge for probit
and clog-log activations. This highlights that the slope parameter has no effect if the
flexibility provided by the threshold model structure, where the threshold of each class
is independently adjusted during training, is not guaranteed.

Figure 4.17 shows the test confusion matrices of the proposed approach and the
baseline approach (nominal approach). The confusion matrix of the proposed method
is more focused on the diagonal, thus penalizing the error among distant AQC classes.

Nominal VGG-16 Ours (Experiment C + logit)

Figure 4.17.: Confusion matrices for nominal and ordinal approaches.

Table 4.10 shows the experimental results of our approach with respect to the base-
line approach (nominal approach) and other state-of-the-art deep ordinal methods
(OBD VGG-16 [72] and CLM VGG-16 [93]). Experiment C was chosen as the best
formulation of our proposed approach. Our proposed deep ordinal model outperforms
the nominal approach in terms of QWK, MS, and 1-OFF of about 8%, 68.9%, and
17.4% respectively. It is worth noting that QWK, MS, and 1-OFF represent the most
important metrics in order to reduce misclassification errors among distant classes.
This requisite fully corresponds to the original company’s demand, i.e. the reduction
of errors among distant AQC classes. Moreover, the proposed approach overcomes
in terms of QWK, MS, and 1-OFF the OBD [72] of about 1,8%, 282% and, 4,3%
respectively and CLM [93] of about 0.03%, 37.6%, and 1% respectively.

The comparison with the other ordinal methodologies and the highest values of
QWK, MS, and 1-OFF highlighted how the proposed method is more effective to
model the ordinal structure of the AQC classes by penalizing the distance of incorrect
prediction from the ground truth class.

4.4.4. Model interpretability and Bias mitigation

From the point of view of a domain expert (such as a human operator who is respon-
sible for AQC task), model explanation and interpretability are key points that may
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Table 4.10.: Experimental results comparison on the test set in terms of both ordinal
and nominal metrics of the proposed approach with respect to baseline
nominal VGG-16 model (NOM), ordinal binary decomposition (OBD)
implementation for CNN and state-of-the-art cumulative link models
(CLM) for deep ordinal classification. The best value for each metric
is highlighted in bold. For the final activation, the learnable parameters
are specified in parentheses, where “th” stands for thresholds.

Method Final Act Loss BS LR QWK" MS" MAE# CCR" TOP 2" TOP 3" 1-OFF"

NOM softmax CCE 16 10�2 0.867 0.167 0.124 0.481 0.731 0.863 0.788

OBD sigmoid MSE 16 10�2 0.920 0.000 0.158 0.528 0.783 0.906 0.880
OBD sigmoid MAE 16 10�2 0.923 0.000 0.142 0.554 0.802 0.896 0.887

CLM logit(th) QWK 16 10�2 0.924 0.000 0.128 0.424 0.709 0.851 0.875
CLM probit(th) QWK 16 10�2 0.929 0.000 0.124 0.429 0.726 0.868 0.908
CLM clog-log(th) QWK 16 10�2 0.911 0.000 0.132 0.394 0.670 0.863 0.835
CLM logit(th) LWK 16 10�2 0.918 0.000 0.122 0.443 0.715 0.844 0.877
CLM probit(th) LWK 16 10�2 0.917 0.000 0.127 0.392 0.698 0.851 0.858
CLM clog-log(th) LWK 16 10�2 0.909 0.000 0.135 0.382 0.687 0.849 0.844
CLM logit(th,slope) QWK 16 10�2 0.925 0.205 0.113 0.460 0.776 0.911 0.894
CLM probit(th,slope) QWK 16 10�2 0.934 0.180 0.112 0.467 0.776 0.910 0.915
CLM clog-log(th,slope) QWK 16 10�2 0.928 0.051 0.112 0.462 0.743 0.858 0.899

Ours logit(th) CCE 16 10�2 0.937 0.231 0.137 0.455 0.774 0.927 0.925
Ours probit(th) CCE 16 10�2 0.922 0.282 0.140 0.434 0.729 0.901 0.881
Ours clog-log(th) CCE 16 10�2 0.927 0.282 0.137 0.451 0.776 0.927 0.889

increase the usefulness and the trustworthiness of the overall DSS. An explanation,
specifically tailored to the end-users, on how the DL model achieved the prediction
is relevant in order (i) to uncover valuable information that otherwise would have re-
mained hidden within the complexity of the model and (ii) to empower users with
powerful new insights.

Starting from this concept, our objective was to encourage the prediction of the
proposed model to be as aligned as possible with the human annotation. By designing
an ordinal DL methodology, our claim was to penalize large errors (misclassification
errors among distant classes) that do not usually happen in human evaluation. After
being demonstrated this outcome, we would go further by describing that from one
side the model is potentially able to provide new insights on finer-grained wood pat-
terns that can be sometimes unseen by a human operator, and from the other side the
model is aligned on what the human operator is checking, thus focusing on the aes-
thetic quality classification of rifles based on the analysis of wood grains and avoiding
the unwanted bias related to the characteristics of the rifle series (see 4.2.4.

This fact is confirmed by exploring the saliency map of the proposed ordinal DL
approach, according to the approach proposed by [140]: the extracted saliency maps
are constrained to focus on wood grains rather than, for instance, the geometrical
edges, as shown in Figure 4.18). Thus, this strategy allowed to further alleviate the
bias by separating the two tasks and providing the prediction of quality classes for
each rifle macro-series model.
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Class 1 Class 3- Class 1 Class 3+
Nominal approach Proposed approach

Figure 4.18.: Saliency maps obtained from test images correctly predicted by the nom-
inal and proposed approach. In class 1, it can be seen how the nominal
approach is more focused outside the stock, whereas for the proposed
approach the map does not show any hot point because veins are not
relevant in this class. For the higher classes, notice how the proposed
model better focuses on the wood features, following the attention on
the pattern of grains.

4.5. Exponential loss regularisation

The described CLM usually achieves good performance when classifying ordinal cat-
egories. However, there are some limitations: these kinds of models are affected by
the optimal choice of the selected parameters, i.e. the performance of this model is
highly influenced by the learned or fixed thresholds. For this reason, the key point was
to combine the CLM with a soft labeling approach based on a unimodal regularisation,
which is described in Section 4.5.1.

In particular, we have proposed a more flexible exponential regularisation method
based on introducing a Lp norm into a previously proposed exponential regularised
loss, explained in Section 4.5.2. This loss regularisation is appropriate for ordinal
problems where the misclassification errors should be in adjacent classes instead of
distant classes, encouraging labels distribution to be soft and unimodal, being centred
in the middle of the real class interval.

This approach is useful also for enhancing the classification quality and reflecting
possible noise or errors in labeling process. This is especially the case of our AQC
task, where the labeling procedure of the QC task may be affected by different sources
of error namely the human operator variability, the different operating condition, the
different processing steps and the novel and never seen wood aesthetic appearance, as
demonstrated by the validation procedure in Section 4.3.2.
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4.5.1. Soft labels and unimodal regularisation

Label smoothing [147] is a regularisation technique that is applied to the representa-
tion of the labels. When used to train a model, it encourages the classifier to be less
confident, giving some probability to the other classes instead of focusing only on the
true category. This enhances the robustness of the model in the presence of noisy la-
bels. Label smoothing can be very useful for ordinal problems, where misclassifying
a pattern in an adjacent class is more probable than predicting a distant category. The
way the label smoothing is performed depends on the problem characteristics and is
a way to introduce the ordinal information of the problem into the model. This extra
ordinal information usually accelerates the convergence of the model and reduces the
number of training examples needed to achieve a good model fitting.

In [148], the authors proposed to sample ordinal smooth labels from a Poisson
distribution and a binomial one. Then, they also used an exponential function to obtain
soft labels. The Poisson distribution is given by:

pq = P (X = q) =
�qe��

q!
, (4.18)

where X ⇠ Poisson(�), q = 0, 1, ..., Q � 1, and � 2 R+. Its mean and variance is
determined by the value of its parameter �. Thus, for some classes, it is not possible
to obtain a distribution that is centred in the middle of the class interval while keeping
the variance low. For this reason, these kinds of distributions are not very adequate to
obtain soft labels with small variance. Therefore, the authors introduced the binomial
distribution, which they stated that is more flexible and provides better results. This
distribution is given by:

pq = P (X = q) =

✓
Q

q

◆
pq(1 � p)Q�q, (4.19)

where X ⇠ Bin(Q, p) and q = 0, 1, ..., Q � 1. In this case, the binomial distri-
bution has two parameters: Q, or the number of classes, and the probability of the
event (belong to a specific class). Note that, even though the mean (E[x] = Qp) and
the variance (V [x] = Qp(1 � p)) are determined by different expressions, it is not
easy to achieve distributions correctly centred in the middle of the class interval and
with a small variance. Finally, they proposed to use a exponential function as a third
alternative. This function was defined as follows:

f(q) = e�|q�y|, (4.20)

where q is the current label and y is the ground truth, both represented as integers in
the ordinal scale. However, it provides limited flexibility and, sometimes, when using
the softmax function to obtain a probability value from the exponential function, the
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probability mass is not sufficiently concentrated in the middle of the interval.

4.5.2. Lp norm exponential regularised cross-entropy loss

The exponential regularised soft labeling in (Eq. 4.20) applies a L1 norm. In this
work, we proposed to sample on a more flexible exponential function based on the
introduction of the Lp norm. Lp norms have been used in optimisation algorithms in
several fields as a generalisation of L2 and L1 norms. Basically, in this proposal there
is an extra tunable parameter that can be adjusted by the learning algorithm. In this
way, a more flexible Lp normalised exponential function can be defined as:

fp(q) = e�|q�y|p , 1  p  2, (4.21)

where the p parameter can be tweaked manually or cross-validated. Hence, the p

parameter controls how much a pattern is penalised when it is classified in class q

and its real class is y (both represented as integers). Lower values of p mean that less
relevance is given to that error. In this context, cost functions other than the Squared
Euclidean norm (L2) or the Manhattan Distance norm (L1) might provide better results
due to its enhanced flexibility. The range of possible values for the aforementioned
parameter should be restricted to the interval of real numbers to respect the formal
definition of a geometrical norm, i.e. p 2 [1, 2].

This regularisation of the labels is applied as an alternative to the standard categor-
ical cross-entropy loss function:

L = �

QX

q=1

h(q)[� log p(y = yq|x)], (4.22)

where h(q) = �q,y , q and y are the predicted and ground truth classes, respectively,
represented as integers, and �q,y is the Dirac delta, which equals to 1 for q = y, and 0

otherwise. h(q) can be replaced with a soft version h0(q), which can be obtained by
applying the aforementioned exponential function. In this way, the standard definition
of the loss function can be replaced by:

L =
QX

q=1

h0(q)[� log p(y = yq|x)], (4.23)

where h0(q) = (1 � ⌘)�q,y + ⌘fp(q) and ⌘ is a parameter that ranges from 0 to 1

controlling the smoothness of the labels. When ⌘ = 0, no smooth factor is applied.
On the other side, when ⌘ = 1, the labels are completely smooth and the standard
labels are not used.

Figure 4.19 shows classes distributions for the proposed exponential function along
with the Poisson, binomial and standard exponential distributions that were described
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before. The colour represents the true class of the pattern, while the x-axis represents
the class being examined and the y-axis represents the soft label applied. In the case
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Figure 4.19.: Different types of distributions for a problem with 5 classes. The x-
axis represents the evaluated class, the y axis represents the value of the
smooth label given for the class and the colours are associated to the
true class (red: 0, green: 1, blue: 2, pink: 3, and cyan: 4). Thus, each
line represents the probability distribution for one real label. In the Lp
Exponential plot, different intensities of the colour show different values
of the p parameter (1.0, 1.5 and 2.0, where higher intensity means higher
value).

of the Lp exponential, the distributions obtained with the lower and upper bounds
and an intermediate value of the parameter is also considered. Therefore, for each
class, the distributions for p 2 {1.0, 1.5, 2.0} are shown. Any other distribution that
can be obtained by tweaking this parameter will be in-between the lower and upper
bounds distributions. p = 1.0 is represented with the darkest colours while p = 2.0

has the most intense colours in the plot. As mentioned before, the L1 exponential is
equivalent to using the Lp exponential with p = 1, as the latter is a more general and
flexible version of the exponential function.
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4.5.3. Classification model

The proposed method was applied to the same architecture (i.e. VGG-16) with the
same pre-trained weights of previously described methodologies in order to achieve
fair comparisons for solving our AQC task.

For the convolutional part of the model, the pre-trained ImageNet weights are used
and the parameters of these layers are set to be non-learnable, adjusting only the top
part of the model. This method accelerates the convergence and reduces the compu-
tational time significantly. In the fully-connected part of the model, a 50% dropout is
applied before two dense layers with 4096 units and ReLU activation. To sum up, the
whole model comprises a total of 266M of parameters where 251M are trainable, and
the remaining are fixed parameters that belong to the convolutional layers that use the
pre-trained ImageNet weights.

The function used in the output layer is the softmax, for the baseline experiments,
and the CLM with different link types for the rest of the experiments.

4.5.4. Performance evaluation and Results

Experimental procedure

The same dataset images as describe in Section 4.4.3 were used. The performed ex-
periments follow a 10-fold cross-validation scheme that is repeated 3 times (with 3

different seeds) to achieve 30 executions. Each of these partitions defines different
and non-overlapping train and test splits with 90% of data for training and 10% for
test. Also, for each of the training partitions, a holdout is performed to divide this
whole set into train and validation. In this way, the validation set can be used to lead
the early-stopping strategy that stops the training process when the validation loss has
not improved for several epochs. Moreover, validation metrics are used to adjust the
hyperparameters.

Training data is fed into the model during the training process using a generator
that performs data augmentation based on random horizontal flips and also creates
balanced batches regarding the different classes of the problem. For the problem con-
sidered, it is important to use balanced batches as the dataset is fairly imbalanced.

The Adam [149] algorithm is used to optimise the model, and the learning rate is
fixed to 0.01 for the whole learning process. During the training process, the training
data is processed in batches of size 16 and the learning stage is run for a maximum of
50 epochs.

For comparison purposes, different sets of experiments are performed:

1. Baseline. Softmax in the output layer and standard categorical cross-entropy
(CCE) as loss function.

2. CLM with logit, probit and complementary log-log links in the output layer, and
Poisson regularised CCE.
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3. CLM with logit, probit and complementary log-log links in the output layer, and
binomial regularised CCE.

4. CLM with logit, probit and complementary log-log links in the output layer, and
exponential regularised CCE.

5. Proposed method. CLM with logit, probit and complementary log-log links,
and Lp exponential regularised CCE.

As shown in Section 4.5.2, the proposed loss function has an hyperparameter (p)
that must be adjusted. In this work, this hyperparameter is adjusted by cross-validation
taking into account the validation Quadratic Weighted Kappa (QWK) [144] metric for
each fold and seed. Therefore, different values of the p parameter can be obtained for
different folds and seeds, as we noticed that the optimal value of p depends on the
data considered. Thus, the experimental procedure to adjust this hyperparameter is
described in Algorithm 1.

Algorithm 1 p parameter cross-validation procedure.

foreach seed do
Split whole dataset in 10 folds that will be used for training and test. foreach p do

foreach fold do
Split all the data not included in the current fold into 80% for training and
20% for validation.
Train for the number of epochs determined by early stopping and evaluate
on the validation set.

end
end

end
foreach seed do

foreach fold do
Find p value that achieved the best validation QWK for this fold and seed.
Evaluate on the test set (current fold) with the best validation p value.

end
end

The ⌘ parameter has been fixed to ⌘ = 1.0, which achieves fully soft labels, instead
of combining the standard labels with the soft labels obtained through the unimodal
distributions.
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Evaluation metrics

We considered three metrics that are appropriate for ordinal problems and imbalanced
datasets: QWK [144], MS [146] and MAE [146]. The metrics are defined as reported
in Section 4.4.3.

Classification performance

Table 4.11 contains the mean results for 30 executions of each of the experiments.
For the experiments where the Lp-exponential regularised categorical cross-entropy is
used, the value of the p parameter was adjusted through cross-validation for each fold
and seed, and the mean value is displayed under the Mean p column.

Table 4.11.: Mean results for 30 executions of each of the alternatives on the test set.
The best value for each metric is highlighted with bold font face.

Loss Output N Mean p QWK" MS" MAE#

CCE Softmax 30 - 0.88712 0.14839 0.76572

CCE-Poisson CLM Logit 30 - 0.78042 0.00000 1.73867
CCE-Poisson CLM Probit 30 - 0.77503 0.00000 1.78581
CCE-Poisson CLM CLogLog 30 - 0.77921 0.00000 1.65733

CCE-Binomial CLM Logit 30 - 0.92068 0.19775 0.70338
CCE-Binomial CLM Probit 30 - 0.91929 0.20380 0.71846
CCE-Binomial CLM CLogLog 30 - 0.89189 0.06812 0.86134

CCE-Exp-Lp CLM Logit 30 1.61 0.92391 0.21883 0.70563
CCE-Exp-Lp CLM Probit 30 1.70 0.92391 0.19875 0.71013
CCE-Exp-Lp CLM CLogLog 30 1.66 0.91368 0.15572 0.77624

CCE-Exp-L1 CLM Logit 30 - 0.92237 0.18290 0.72664
CCE-Exp-L1 CLM Probit 30 - 0.91596 0.10117 0.78666
CCE-Exp-L1 CLM CLogLog 30 - 0.89992 0.04978 0.85809

As can be observed from the results in this Table, the Lp-exponential regularised
categorical cross-entropy with the logit link obtained the best result for QWK and
MS and the second-best for MAE. Also, the same loss function with the probit link
achieved the same result for QWK.

The confusion matrices of the best alternative proposed (CCE-Exp-Lp + CLM
Logit) and the baseline method (CCE + Softmax) are shown in Figures 4.20, 4.21
and 4.22. Each figure represents the confusion matrices of each of the 3 seeds con-
sidered. Each matrix is obtained by accumulating the confusion matrices of all the 10

folds. From these matrices, it can be observed that the baseline method misclassifies
some patterns in distant classes, which implies an important cost for this real problem,
while the proposed ordinal method has almost all the errors in the adjacent classes.
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Figure 4.20.: Confusion matrices obtained for the seed 0.
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Figure 4.21.: Confusion matrices obtained for the seed 1.
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Figure 4.22.: Confusion matrices obtained for the seed 2.

Statistical analysis

A statistical analysis was performed to check whether the proposed alternative pro-
vides significantly better results than the baseline and previous proposed methods. To
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do that, each of the metrics has been analysed separately.
First, using the QWK metric, a Kolmogorov-Smirnov [150] test has been performed

to check if the 30 QWK test values are normally distributed. The test confirmed that
the values of this metric follow a normal distribution (p-value< 0.05). After that, a
Friedman rank test [151] has been performed to obtain the rank related to each method.
The results of this test are shown in Table 4.12.

Table 4.12.: Friedman test results for the QWK metric.

Method Rank
CCE + Softmax (Baseline) 5.43
CCE-Exp-Lp + CLM CLogLog 8.20
CCE-Exp-Lp + CLM Logit 10.87
CCE-Exp-Lp + CLM Probit 10.90
CCE-Exp-L1 + CLM CLogLog 5.77
CCE-Exp-L1 + CLM Logit 10.17
CCE-Exp-L1 + CLM Probit 8.73
CCE-Poisson + CLM Probit 2.00
CCE-Poisson + CLM Logit 1.97
CCE-Poisson + CLM CLogLog 2.07
CCE-Binomial + CLM Probit 9.70
CCE-Binomial + CLM Logit 10.13
CCE-Binomial + CLM CLogLog 5.07

The results of the Friedman test show that the proposed Lp Exponential regularised
CCE with the probit link achieved the best rank concerning the QWK metric. Also,
the same loss with the logit link obtained the second-best rank, which is very close to
the first one.

Given that the CCE-Exp-Lp + CLM Logit and the CCE-Exp-Lp + CLM Logit have
similar ranks, and the logit link function has better overall results considering all the
methods, the Lp Exponential regularised CCE with logit link has been compared with
the other methods using a paired sample t-test. The results of this test are shown in
Table 4.13. The Paired differences columns show the mean and standard deviation
of the differences between both methods indicated in the first column. The t column
shows the value of the statistical, the df column indicates the degrees of freedom and,
finally the p � value column shows the p-value obtained, which indicates significant
differences with a significance level of ↵ = 0.05 when it is higher than that value.

As can be observed in Table 4.13, the logit and probit links perform similarly with
the Lp exponential regularisation (p-value = 1.0). Also, it shows no significant dif-
ferences with the standard exponential with logit link (p-value = 0.129), and the
binomial regularisation with probit (p-value = 0.129) or logit link (p-value = 0.314).
However, it performs significantly different than the rest of the methods.

Also, in Table 4.14, the results of the paired t-test comparing the baseline with the
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Table 4.13.: Paired sample t-test to compare Lp Exponential regularised CCE + CLM
Logit with other methods regarding QWK.

Paired differences
Methods Mean Std. Dev. t df p-value

Exp-Lp + Logit - Exp-Lp + CLogLog 0.01023 0.00917 6.110 29 < 0.001
Exp-Lp + Logit - Exp-Lp + Probit �0.00001 0.00676 0.000 29 1.000
Exp-Lp + Logit - CCE + Softmax 0.03679 0.02132 9.454 29 < 0.001
Exp-Lp + Logit - Exp-L1 + CLogLog 0.02400 0.01069 12.393 29 < 0.001
Exp-Lp + Logit - Exp-L1 + Logit 0.00154 0.00620 1.562 29 0.129
Exp-Lp + Logit - Exp-L1 + Probit 0.00795 0.00995 4.377 29 < 0.001
Exp-Lp + Logit - Poisson + Probit 0.14888 0.05688 14.336 29 < 0.001
Exp-Lp + Logit - Poisson + Logit 0.14350 0.05042 15.587 29 < 0.001
Exp-Lp + Logit - Poisson + CLogLog 0.14471 0.06075 13.047 29 < 0.001
Exp-Lp + Logit - Binomial + Probit 0.00484 0.16969 1.562 29 0.129
Exp-Lp + Logit - Binomial + Logit 0.00303 0.01619 1.024 29 0.314
Exp-Lp + Logit - Binomial + CLogLog 0.03202 0.01793 9.782 29 < 0.001

other approaches is shown. These results show that there are significant differences
between the baseline and all the other methods (except the binomial regularisation
with the complementary log-log link). The method proposed in this work obtained
better results than the baseline with all the link functions.

Table 4.14.: Paired sample t-test to compare Lp CCE + Softmax (baseline) with other
methods regarding QWK.

Paired differences
Methods Mean Std. Dev. t df p-value

CCE + Softmax - Exp-Lp + CLogLog �0.02656 0.02171 �6.702 29 < 0.001
CCE + Softmax - Exp-Lp + Logit �0.03679 0.02131 �9.454 29 < 0.001
CCE + Softmax - Exp-Lp + Probit �0.03679 0.02132 �9.453 29 < 0.001
CCE + Softmax - Exp-L1 + CLogLog �0.01279 0.02208 �3.173 29 0.004
CCE + Softmax - Exp-L1 + Logit �0.03525 0.02157 �8.951 29 < 0.001
CCE + Softmax - Exp-L1 + Probit �0.02884 0.02331 �6.776 29 < 0.001
CCE + Softmax - Poisson + Probit 0.11209 0.05466 11.232 29 < 0.001
CCE + Softmax - Poisson + Logit 0.10670 0.05949 9.824 29 < 0.001
CCE + Softmax - Poisson + CLogLog 0.10792 0.05823 10.150 29 < 0.001
CCE + Softmax - Binomial + Probit �0.03195 0.03031 �5.774 29 < 0.001
CCE + Softmax - Binomial + Logit �0.03376 0.02759 �6.703 29 < 0.001
CCE + Softmax - Binomial + CLogLog �0.00477 0.03090 �0.845 29 0.405

The same analysis has been performed accounting for the MS metric results on
the test set. The Kolmogorov-Smirnov test reported that the values are distributed
following a normal distribution (p-value< 0.05). Therefore, a Friedman rank test has
been performed and the results are shown in Table 4.15.

In this case, the Lp exponential regularised CCE loss combined with the CLM with
logit link obtained the best rank (10.87). The same loss function with the probit link
obtained also high results. After this test, a paired sample t-test has been performed
to compare the best alternative according to the ranking with the other methods. The
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Table 4.15.: Friedman test results for the MS metric.

Method Rank
CCE + Softmax (Baseline) 8.02
CCE-Exp-Lp + CLM CLogLog 8.43
CCE-Exp-Lp + CLM Logit 10.87
CCE-Exp-Lp + CLM Probit 10.10
CCE-Exp-L1 + CLM CLogLog 4.78
CCE-Exp-L1 + CLM Logit 9.40
CCE-Exp-L1 + CLM Probit 6.15
CCE-Poisson + CLM Probit 2.50
CCE-Poisson + CLM Logit 2.50
CCE-Poisson + CLM CLogLog 2.50
CCE-Binomial + CLM Probit 10.30
CCE-Binomial + CLM Logit 10.08
CCE-Binomial + CLM CLogLog 5.37

results of this test are shown in Table 4.16.

Table 4.16.: Paired sample t-test to compare Lp Exponential regularised CCE + CLM
Probit with other methods regarding MS.

Paired differences
Methods Mean Std. Dev. t df p-value

Exp-Lp + Logit - Exp-Lp + CLogLog 0.06311 0.07868 4.393 29 < 0.001
Exp-Lp + Logit - Exp-Lp + Probit 0.02009 0.05444 2.021 29 0.049
Exp-Lp + Logit - CCE + Softmax 0.07044 0.11548 3.341 29 0.002
Exp-Lp + Logit - Exp-L1 + CLogLog 0.16905 0.07357 12.585 29 < 0.001
Exp-Lp + Logit - Exp-L1 + Logit 0.03593 0.05634 3.494 29 0.002
Exp-Lp + Logit - Exp-L1 + Probit 0.11766 0.07202 8.949 29 < 0.001
Exp-Lp + Logit - Binomial + Probit 0.02193 0.10174 1.181 29 0.247
Exp-Lp + Logit - Binomial + Logit 0.01418 0.10152 0.765 29 0.450
Exp-Lp + Logit - Binomial + CLogLog 0.15071 0.08263 9.990 29 < 0.001

The results related to the Poisson regularisation have been omitted in this table
since all the MS results for this method obtained a value of 0. As can be observed
in Table 4.16, the Lp exponential regularised loss with logit link resulted significantly
better than most of the other alternatives. Only the binomial regularised loss with
probit and logit links obtained similar results. Another paired t-test was performed
to compare the baseline with the rest of the methods. The results of this test shown
that the proposed method obtained better results than the baseline and is significantly
better when using the logit (p-value = 0.002) or probit (p-value = 0.036) links.

Finally, the results concerning the MAE metric have been analysed in the same
way that in the previous analyses. First, a Kolmogorov-Smirnov test has been used to
confirm that the results are normally distributed (p-value< 0.05). Then, a Friedman
rank test has been performed to obtain a ranking of the methods regarding the MAE
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metric. The results are shown in Table 4.17.

Table 4.17.: Friedman test results for the MAE metric.

Method Rank
CCE + Softmax (Baseline) 5.75
CCE-Exp-Lp + CLM CLogLog 6.48
CCE-Exp-Lp + CLM Logit 3.23
CCE-Exp-Lp + CLM Probit 3.48
CCE-Exp-L1 + CLM CLogLog 9.13
CCE-Exp-L1 + CLM Logit 4.13
CCE-Exp-L1 + CLM Probit 7.20
CCE-Poisson + CLM Probit 12.17
CCE-Poisson + CLM Logit 12.17
CCE-Poisson + CLM CLogLog 11.67
CCE-Binomial + CLM Probit 3.87
CCE-Binomial + CLM Logit 2.90
CCE-Binomial + CLM CLogLog 8.82

The test reported that the best method is the one that uses the Binomial regulari-
sation combined with the CLM with logit link. However, the method that uses the
Lp exponential regularisation with the logit link obtained very close results. In these
terms, to compare this method with rest of alternatives, a paired sample t-test was
performed. The results of the aforementioned test are shown in Table 4.18.

Table 4.18.: Paired sample t-test to compare Lp Exponential regularised CCE + CLM
Probit with other methods regarding MAE.

Paired differences
Methods Mean Std. Dev. t df p-value

Exp-Lp + Logit - Exp-Lp + CLogLog �0.07061 0.06233 �6.205 29 < 0.001
Exp-Lp + Logit - Exp-Lp + Probit �0.00450 0.04988 �0.494 29 0.625
Exp-Lp + Logit - CCE + Softmax �0.06009 0.09471 �3.475 29 0.002
Exp-Lp + Logit - Exp-L1 + CLogLog �0.15246 0.06992 �11.943 29 < 0.001
Exp-Lp + Logit - Exp-L1 + Logit �0.02101 0.03605 �3.192 29 0.003
Exp-Lp + Logit - Exp-L1 + Probit �0.08103 0.06855 �6.475 29 < 0.001
Exp-Lp + Logit - Poisson + Probit �1.08018 0.32809 �18.033 29 < 0.001
Exp-Lp + Logit - Poisson + Logit �1.03304 0.28901 �19.578 29 < 0.001
Exp-Lp + Logit - Poisson + CLogLog �0.95170 0.34386 �15.159 29 < 0.001
Exp-Lp + Logit - Binomial + Probit �0.01324 0.09093 �0.798 29 0.432
Exp-Lp + Logit - Binomial + Logit 0.00266 0.07882 0.185 29 0.854
Exp-Lp + Logit - Binomial + CLogLog �0.15571 0.07550 �11.296 29 < 0.001

The analysed method shows significant differences with almost all the other alterna-
tives. However, the Lp exponential regularisation with the probit link and the binomial
regularisation with probit or logit link are not statistically different. In the same way
we did for the other metrics, another paired t-test was performed to compare the base-
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line with the other approaches. The test reported significant differences between the
baseline and the proposed method when using the logit (p-value = 0.002) or probit
(p-value = 0.001) links.

To sum up, the Exp-Lp + Logit obtained the best overall results for most of the met-
rics. It is the best in terms of QWK and MS metrics, showing significant differences
for the latter. Also, it is better than the standard exponential regularisation (L1) in all
the three metrics and provides significant improvements for MS and MAE. Finally, the
Binomial regularisation with logit link achieved slightly better results than the Exp-Lp

with the same link concerning the MAE metric, but there are no significant differences
between these methods. Nevertheless, it is worth mentioning that the Lp exponential
improved not only the baseline results but also the results of the standard exponential
function.

4.6. Hierarchical Deep Learning framework

As described in Section 4.1, apart from following an ordinal relation, the 10 categories
of our AQC problem are grouped in four macro classes: 1, 2, 3, and 4. The macro
classes can be easily classified by an expert. However, each of these macro classes
contains several micro labels (�, ·, +) which are harder to classify. Figure 4.23 shows
the hierarchical structure of the classes in a more detailed manner.

Hence, the aim of this work was to propose a hierarchical approach that simplifies,
generalises and automatises the AQC task by using multiple ordinal CNN models to
predict hierarchically the final label in two steps: one for the macro label and one for
the micro. A similar approach was introduced in a previous work [152], where, in
a medical application, an initial prediction was done to obtain a positive or negative
result, and, a posterior classification determined different grades when the first result
was positive. However, in this work, instead of using a binary classifier for the first
step, an ordinal classifier with four classes is used. For the second step, three different
ordinal classifiers are employed to obtain the micro label. A combination of the labels
obtained in both steps results in the final label.

The description of the hierarchical method is divided into two parts: in Section
4.6.1 the ensemble architecture and the method to combine the predictions obtained
from the individuals models, and in Section 4.6.2 the architecture of the deep network
that is used for each individual model that the hierarchical structure contains.

�

�� � ��

� �

�� � ��

�

�� � ��

Figure 4.23.: Hierarchical dataset classes structure.
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4.6.1. Ensemble architecture

In this work, we propose a new hierarchical method to build a classifier a classifier that
exploits the hierarchical and ordinal properties of our AQC problem. The main idea
behind this method is to do a multi-step classification, where, in the first step, we try
to distinguish the macro classes (1, 2, 3 or 4, in this case) and, in the second step, we
aim to classify the micro classes (�, · or +). Completely independent models are used
for each step: for the first step, a single model is used to derive the macro class. In the
second step, one separate model is used to determine the micro class for each of the
aforementioned macro classes. Therefore, for this problem, four different models are
used to obtain the final prediction. The number of models can vary for other problems
where the number of classes or their hierarchy is different.

The model used to predict the macro class is defined as fM (x) ! yM , where yM

is the predicted macro label. On the other hand, the models used to predict the micro
classes are denoted as fmi(x) ! ymi , where i-th classifier is associated with macro
class i, and ymi is the micro label predicted by the classifier associated with i-th macro
class. The predictor yM is trained using all the samples in the training set, but these
samples are labelled using only their macro class. In the same way, the classifiers
ymi are trained using only the samples that belong to the i-th macro class and they
are labelled using only the micro labels. Therefore, the complete hierarchical model
can be defined as a ensemble model which is composed of 4 independent classifiers,
whose decision function can be defined as:

f(x) =

(
fM (x), if O(fM (x)) = 1,

fM (x) [ fmi(x), if O(fM (x)) > 1,
(4.24)

where i = O(fM (x)), and O(·) represents the order of any given ordinal class. There-
fore, the final labels predicted by the hierarchical model can be denoted as:

y =

(
yM , if O(yM ) = 1,

yM [ ymi , if O(yM ) > 1,
(4.25)

where i = O(yM ).

Taking into account the problem tackled in this work, yM 2 {1, 2, 3, 4}, and ymi 2

{�, ·, +}, where i 2 {2, 3, 4}.

Figure 4.24 illustrates the hierarchical scheme that has been described. On the left
side, the models considered for this approach are defined, followed by the training
procedure and the way that the final predictions are obtained.
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4.6.2. Classification models

In order to obtain more robust results regarding the proposed hierarchical methods,
three different well-known architectures have been used: VGG-16 [136], ResNet-
101 [137] and DenseNet-121 [153]. In this way, we can prove that the proposed
methodology is not architecture dependant, and it can work with any CNN model.

Also, the convolutional parts of the models use the pre-trained ImageNet weights
instead of adjusting them from a random initialisation. Therefore, only the top part
of the model needs to be adjusted. For the top part of the model, a 50% dropout is
performed before two dense layers with 4096 units. In the output layer, two different
functions have been employed:

• Softmax function, which is the standard output function for classification tasks;

• Cumulative Link Model (CLM),as described in Section 4.4.1, that enhance or-
dinal classification performance. In this case, two different link functions have
been used: logit and probit.

The VGG-16, ResNet-101 and DenseNet-121 contain 266M (251M trainable), 67M
(25M trainable) and 493M (486M trainable) parameters, respectively. There are some
fixed parameters due to the transfer learning approach. It is worth noting that the
ResNet-101 has less parameters compared to the other alternatives. However, the
residual neural network architectures have demonstrated having an outstanding gen-
eralisation capability with a reduced number of parameters.

4.6.3. Performance evaluation and Results

Experimental procedure

The models described in Section 4.6.2 were evaluated following a holdout scheme,
where 80% of the whole set is used to adjust the model while the remaining 20%

forms the test set. From the training set, another 15% of the samples are taken for the
validation set, which is used to stop the training process when the model performance
stops improving. All the experiments were repeated 30 times using different seeds to
create the data partitions and initialise the model parameters. In this way, we obtained
robust results from the point of view of a statistical analysis.

When using the hierarchical approach, different loss functions can be employed for
the model which predicts the macro class and the models that predict the micro class.
The experiments are performed using different loss functions to guide the optimisation
algorithm:

• Categorical cross-entropy (CCE): the standard CCE is commonly used for nom-
inal classification problems where classes do not follow any order, as defined in
4.11;
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• Quadratic Weighted Kappa (QWK) Loss: the quadratic weighted kappa loss
function for ordinal classification, as defined in 4.14;

• Beta regularised categorical cross-entropy (CCE-Beta): the unimodal regularised
CCE that was described in [154].

In this way, we tested different loss functions combinations. Also, the output function
can vary from one model to the others, leading to using an ordinal output like the CLM
in the first step and the standard softmax in the second one.

Regarding the proposed hierarchical methods, different methodologies were used
for the first classifier, where 4 classes are considered: C1 = {1}, C2 = {2�, 2, 2+

},
C3 = {3�, 3, 3+

} and C4 = {4�, 4, 4+
}, and the second classifier, which consid-

ers only three different classes (�, ·, +). These methodologies are listed below and
summarised in Table 4.19:

1. Hierarchical baseline. Softmax in the output layer and the standard CCE for
both the first classifier and the next three classifiers.

2. Hierarchical CLM with logit link in the output layer and Beta regularised cross-
entropy as loss function for the first and the subsequent classifiers.

3. Hierarchical CLM with probit link in the output layer and Beta regularised
cross-entropy as loss function for the macro and the micro classifiers.

4. Hierarchical CLM with logit link in the output layer and Beta regularised cross-
entropy loss for the first model and softmax function with the standard CCE loss
for the micro models of the second stage.

5. Hierarchical CLM with probit link in the output layer and Beta regularised
cross-entropy loss for the first model and softmax function with the standard
CCE loss for the micro models of the second stage.

6. Hierarchical CLM with logit link in the output layer for the first and the next
three models and QWK loss function for all of them.

7. Hierarchical CLM with probit link in the output layer and QWK loss function
for the first and the second stage.

Models described in items 4 and 5 use an ordinal output function and an ordinal
loss function for the first models, which tries to distinguish between 4 classes, and a
nominal approach, for the next three models. Even though the problem that is solved
in the second step is ordinal too, the number of classes is too small to benefit from
the advantages of using an ordinal approach. Therefore, using a nominal approach for
these models has been considered as a good alternative and is going to be compared
with the rest of the experiments that have been proposed.
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Table 4.19.: Hierarchical experiments types. Number of classes refers to the classes
considered for each task.

Macro loss Macro output # classes Micros loss Micros output # classes

1 CCE Softmax 4 CCE Softmax 3, 3, 3
2 CCE Beta CLM Logit 4 CCE Beta CLM Logit 3, 3, 3
3 CCE Beta CLM Probit 4 CCE Beta CLM Probit 3, 3, 3
4 CCE Beta CLM Logit 4 CCE Softmax 3, 3, 3
5 CCE Beta CLM Probit 4 CCE Softmax 3, 3, 3
6 QWK CLM Logit 4 QWK CLM Logit 3, 3, 3
7 QWK CLM Probit 4 QWK CLM Probit 3, 3, 3

For comparison purposes, the non-hierarchical alternatives previously proposed in
Section 4.2.2 and 4.4.1 were also run. In these cases, the number of classes considered
is 10. These alternatives are listed below and summarised in Table 4.20:

8. Baseline. Softmax function in the output layer and the standard CCE as loss
function.

9. CLM with logit link in the output layer and Beta regularised CCE as loss func-
tion.

10. CLM with probit link in the output layer and Beta regularised CCE as loss
function.

11. CLM with logit link in the output layer and QWK loss function.

12. CLM with probit link in the output layer and QWK loss function.

13. ECOC with codes that represent the hierarchical structure of the classes [107].
In this case, each code is composed of 7 bits, where the first 4 bits are related to
the macro class and the last 3 bits represent the micro class (e.g. for class 2+,
0100 001).

14. ECOC with codes that contain the ordinal information of the labels [109], also
defined as Ordinal Binary Decomposition (OBD) approach, describe in 4.4.3.
They are composed of Q � 1 bits and each bit q is set to 1 when the class that
the code is associated to is higher than q (e.g. for class 2+, which is the 4th

class, q = 4, 111000000).

The optimisation algorithm used for all the experiments is the Adam algorithm with
a learning rate of 0.01. Taking into account the size of the dataset, the mini-batch size
is fixed to 16. The model is trained for a maximum of 50 epochs. However, the early
stopping strategy stops the training process when the validation loss stops improving.
This strategy uses a patience value of 15, which determines the number of epochs
without validation loss improvements before stopping the training process.
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Table 4.20.: Different sets of non-hierarchical experiments. The ECOC alternatives
(13 and 14) consist of 7 and 9 binary tasks respectively, given that the
multi-class problem is decomposed in multiple binary tasks.

Loss Output # classes
8 CCE Softmax 10
9 CCE Beta CLM Logit 10

10 CCE Beta CLM Probit 10
11 QWKL CLM Logit 10
12 QWKL CLM Probit 10
13 CCE Softmax 2 (7 tasks)
14 CCE Softmax 2 (9 tasks)

Evaluation metrics

We considered four metrics that are appropriate for ordinal problems and imbalanced
datasets: QWK [144], MS [146], MAE [146] and CCR. The metrics are defined as
reported in Section 4.4.3. QWK, MS and CCR should be maximised, while MAE
should be minimised.

Classification performance

The results of the experiments with the three different architectures are shown in Ta-
bles 4.21, 4.22 and 4.23. The experiments that are marked as hierarchical were run
using the proposed hierarchical approach, while the non-hierarchical methods were
run for comparison purposes.

Table 4.21.: Mean results for the test set and 30 executions using the VGG-16 architec-
ture. The Hier. column indicates whether the method uses the proposed
hierarchical methodology or not.

Hier. Macro loss Macro output Micros loss Micros output QWK" MS" MAE# CCR"

1 Yes CCE Softmax CCE Softmax 0.8921 0.2311 0.7435 0.5129
2 Yes CCE Beta CLM Logit CCE Beta CLM Logit 0.9088 0.1778 0.7058 0.4908
3 Yes CCE Beta CLM Probit CCE Beta CLM Probit 0.9099 0.1782 0.7012 0.4937
4 Yes CCE Beta CLM Logit CCE Softmax 0.9055 0.2400 0.6947 0.5238
5 Yes CCE Beta CLM Probit CCE Softmax 0.9033 0.1893 0.7057 0.5230
6 Yes QWK CLM Logit QWK CLM Logit 0.9056 0.1349 0.7097 0.5031
7 Yes QWK CLM Probit QWK CLM Probit 0.9062 0.1334 0.7152 0.4948

8 No CCE Softmax - - 0.8713 0.1643 0.8253 0.4839
9 No CCE Beta CLM Logit - - 0.9192 0.2152 0.7121 0.4478
10 No CCE Beta CLM Probit - - 0.9161 0.2110 0.7299 0.4389
11 No QWK CLM Logit - - 0.9106 0.0000 0.7370 0.4544
12 No QWK CLM Probit - - 0.9123 0.0000 0.7358 0.4517
13 No CCE Softmax - - 0.8735 0.1552 0.8625 0.4666
14 No CCE Softmax - - 0.8852 0.0457 0.8420 0.4313
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Figure 4.25.: Boxplots for all the test metrics using the ResNet-101 architecture.
Methods are identified with the numbers defined in Table 4.22.

Table 4.22.: Mean results for the test set and 30 executions using the ResNet-101 ar-
chitecture. The Hier. column shows whether the method uses the pro-
posed hierarchical methodology or not.

Hier. Macro loss Macro output Micros loss Micros output QWK" MS" MAE# CCR"

1 Yes CCE Softmax CCE Softmax 0.9080 0.2310 0.6647 0.5479
2 Yes CCE Beta CLM Logit CCE Beta CLM Logit 0.9165 0.2221 0.6737 0.5075
3 Yes CCE Beta CLM Probit CCE Beta CLM Probit 0.9155 0.2036 0.6863 0.5031
4 Yes CCE Beta CLM Logit CCE Softmax 0.9129 0.2469 0.6612 0.5408
5 Yes CCE Beta CLM Probit CCE Softmax 0.9108 0.2126 0.6765 0.5352
6 Yes QWK CLM Logit QWK CLM Logit 0.9065 0.0429 0.7599 0.4500
7 Yes QWK CLM Probit QWK CLM Probit 0.9059 0.0953 0.7586 0.4517

8 No CCE Softmax - - 0.9002 0.1981 0.7050 0.5318
9 No CCE Beta CLM Logit - - 0.9215 0.1910 0.7162 0.4427

10 No CCE Beta CLM Probit - - 0.9239 0.2314 0.7075 0.4435
11 No QWK CLM Logit - - 0.9091 0.0000 0.8078 0.4166
12 No QWK CLM Probit - - 0.9169 0.0000 0.7461 0.4357
13 No CCE Softmax - - 0.8120 0.0010 1.1705 0.3306
14 No CCE Softmax - - 0.8228 0.0000 1.0966 0.3395

From a solely descriptive point of view, the results show that the hierarchical method
achieved the best results for CCR, MAE and MS for all the architectures. However,
the non-hierarchical model that uses the Beta regularised cross-entropy with the CLM
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Table 4.23.: Mean results for the test set and 30 executions using the DenseNet-121
architecture. The Hier. column indicates whether the method uses the
proposed hierarchical methodology or not.

Hier. Macro loss Macro output Micros loss Micros output QWK" MS" MAE# CCR"

1 Yes CCE Softmax CCE Softmax 0.8880 0.1988 0.7261 0.5276
2 Yes CCE Beta CLM Logit CCE Beta CLM Logit 0.8924 0.1508 0.7869 0.4560
3 Yes CCE Beta CLM Probit CCE Beta CLM Probit 0.8912 0.1506 0.7910 0.4631
4 Yes CCE Beta CLM Logit CCE Softmax 0.8888 0.1551 0.7621 0.5031
5 Yes CCE Beta CLM Probit CCE Softmax 0.8827 0.1703 0.7825 0.4997
6 Yes QWK CLM Logit QWK CLM Logit 0.8823 0.0906 0.8380 0.4344
7 Yes QWK CLM Probit QWK CLM Probit 0.8859 0.0933 0.8234 0.4435

8 No CCE Softmax - - 0.7696 0.0299 1.1420 0.4081
9 No CCE Beta CLM Logit - - 0.8867 0.1548 0.9041 0.3663
10 No CCE Beta CLM Probit - - 0.8992 0.1797 0.8314 0.4049
11 No QWK CLM Logit - - 0.8710 0.0000 1.0047 0.3467
12 No QWK CLM Probit - - 0.8790 0.0000 0.9606 0.3608
13 No CCE Softmax - - 0.8776 0.1773 0.8390 0.4707
14 No CCE Softmax - - 0.8921 0.1148 0.7996 0.4651

logit resulted in better performance for the QWK metric. For the VGG-16 models, the
hierarchical alternative which uses the Beta regularised cross-entropy for the macro
model combined with the CLM with logit link, and the standard cross-entropy loss
with the standard softmax output for the micro models obtained the best results. In the
case of the ResNet-101 architecture, the best results regarding MS and MAE were pro-
duced by the same alternative that achieved the best results in VGG-16. However, the
best value for CCR was obtained when using the standard cross-entropy loss and the
softmax for both, the macro and the micro models. Finally, when using the DenseNet-
121 architecture, the best results are achieved with the standard cross-entropy and the
softmax function for both steps. Also, in Figure 4.25, a boxplot is represented for
each of the metrics considered for the architecture that obtained the best results (i.e.
ResNet-101). For a more in depth comparison, the boxplots corresponding to the other
model architectures have been added in A.1.

Another important aspect to consider is the model computational cost. It is worth
noting that the ECOC approach usually spend more time for the training process,
given that it decompose the original multi-class problem in multiple binary problems,
and each of them is trained using all the training samples. Then, the computational
cost of the proposed hierarchical approach should be lower than the cost associated
with the ECOC approaches. To confirm this fact, the mean time required to complete
both experiments was compared for each of the architectures. In these terms, for the
VGG-16 architecture, the hierarchical approach took 20s while the ECOC needed 45

seconds per epoch. For the ResNet-101 model, the first took 27s and the second 91s.
For the DenseNet-121 model, they took 23s and 51s respectively.

To sum up, the following conclusions can be obtained from the results tables:
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• Our hierarchical approaches obtained the best results for MS, MAE and CCR
considering all the model architectures.

• Our hierarchical model that uses the CCE Beta + CLM Logit for the macro task
and CCE + Softmax for the micro classifiers obtained the best performance in
most of the cases. The second best alternative is the hierarchical model which
uses CCE + Softmax for both steps.

• The computational cost of the proposed hierarchical approach is lower than the
cost associated with the ECOC approaches.

Statistical analysis

Even though the hierarchical method obtained the best performance for most of the
metrics in all the model architectures, a statistical analysis was performed to determine
which of the tested alternatives are significantly better than the others. Also, the aim
was to check whether the proposed approach obtains better results than the baseline
approach and previously proposed methods. To do that, we considered all the model
architectures and each of the metrics was analysed separately.

First, for each of the four analysed metrics, a Kolmogorov-Smirnov [150] test was
performed to check whether the 30 test values obtained, for each method and archi-
tecture, from the different seeds are normally distributed. The test confirmed that the
values are normally distributed (p-value < 0.001) for all the metrics and methodolo-
gies and architectures, except for the MS metric when using the QWK loss. Therefore,
an Analysis of variance II (ANOVA II) [155] test, where the factors considered are the
methodology applied and the model architecture used, was performed for each of the
metrics. It is worth noting that the statistical tests where performed using 90 points
for each method (30 for each architecture).

First, the CCR metric was considered. CCRij , (i = 1, ..., 12; j = 1, 2, 3) denotes
all the methodologies considered. The observations fit the following equation:

CCRijk = µ + ↵i + �j + �ij + ✏ijk, k = 1, ..., 30, (4.26)

where µ is the fixed effect that is common to all the populations, ↵i is the effect
associated with the i-th level of the first factor, �j is the effect associated with the j-th
level of the second factor, �ij is the interaction between the i-th level of the first factor
and the j-th level of the second factor, and the term ✏ijk is the influence of the random
effects in the final result. The results of this test are shown in Table 4.24.

When the p-value represented in the ANOVA table is smaller than 0.01, the factor
effect is statistically significant at a level of confidence of 99%. The results obtained
from this test reported that the methodology and the architectures used significantly
influence the test accuracy value obtained. Also, there is an interaction between both
factors that also influences the final result.
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Table 4.24.: Results of the ANOVA II test for the CCR metric. SS stands for Sum
of Squares, DF refers to the Degrees of Freedom, MSq are the Mean
Squares, and F is the F-ratio.

Source SS DF MSq F p-value
Corrected model 3.843 41 0.094 42.924 < 0.001

Intercept 267.244 1 267.244 122396.130 < 0.001
Method 2.252 13 0.173 79.338 < 0.001
Model 0.346 2 0.173 79.255 < 0.001

Method * Model 1.245 26 0.048 21.923 < 0.001
Error 2.659 1218 0.002
Total 273.746 1260

Corrected total 6.502 1259

Given that there are significant differences in mean CCR depending on the method-
ology considered, a post-hoc HSD Tukey’s [156] test was performed to compare the
mean CCR values in the test set between all the methodologies. The results of this test
are summarised in Table 4.25. It groups the methodologies into four different subsets
according to their performance such that the elements within a subset are not signif-
icantly different between them, while the differences between members of different
groups are significant. The first subset contains the worst methodologies while the
last subset groups the best ones.

Table 4.25.: Results of the post-hoc HSD Tukey’s test for the CCR metric.

Subsets

Hier. Macro loss Macro out Micro loss Micro out 1 2 3 4

11 No QWK CLM Logit - - 0.4059
14 No CCE Softmax - - 0.4120
12 No QWK CLM Probit - - 0.4161
9 No CCE Beta CLM Logit - - 0.4189

13 No CCE Softmax - - 0.4226
10 No CCE Beta CLM Probit - - 0.4289
11 Yes QWK CLM Logit QWK CLM Logit 0.4625
12 Yes QWK CLM Probit QWK CLM Probit 0.4633 0.4633
8 No CCE Softmax - - 0.4746 0.4746
2 Yes CCE Beta CLM Logit CCE Beta CLM Logit 0.4848 0.4848
3 Yes CCE Beta CLM Probit CCE Beta CLM Probit 0.4866
5 Yes CCE Beta CLM Probit CCE Softmax 0.5193
4 Yes CCE Beta CLM Logit CCE Softmax 0.5226
1 Yes CCE Softmax CCE Softmax 0.5295

p-values 0.060 0.080 0.052 0.975

The results in Table 4.25 depict that the ordinal methodologies tend to reduce the
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accuracy even though they improve the performance regarding ordinal metrics. How-
ever, using the proposed hierarchical approach, the accuracy metric is statistically im-
proved, obtaining higher values than the standard nominal approach. In this case, the
best methodology was the hierarchical one that used the standard categorical cross-
entropy loss and the softmax output for both, the macro and the micro models. How-
ever, there are no significant differences with the hierarchical methods which use the
Beta regularised CCE and the CLM with logit or probit link for the macro model,
and the standard CCE + softmax for the micro models. The fact that using a nominal
approach for the second phase achieves better results is due to the lower number of
labels in the micro-tasks.

The same statistical analysis has been performed for the QWK metric. The ANOVA
II test also reported significant differences for the different factors (p-value < 0.001)
and a significant interaction between them. Therefore, the results of the post-hoc HSD
Tukey’s test for the different methods considered are shown in Table 4.26.

Table 4.26.: Results of the post-hoc HSD Tukey’s test for the QWK metric.

Subsets

Hier. Macro loss Macro out Micro loss Micro out 1 2 3 4

8 No CCE Softmax - - 0.8470
13 No CCE Softmax - - 0.8544 0.8544
14 No CCE Softmax - - 0.8667
11 No QWK CLM Logit - - 0.8952
1 Yes CCE Softmax CCE Softmax 0.8960
6 Yes QWK CLM Logit QWK CLM Logit 0.8982
5 Yes CCE Beta CLM Probit CCE Softmax 0.8989 0.8989
7 Yes QWK CLM Probit QWK CLM Probit 0.8993 0.8993
12 No QWK CLM Probit - - 0.9007 0.9007
4 Yes CCE Beta CLM Logit CCE Softmax 0.9024 0.9024
3 Yes CCE Beta CLM Probit CCE Beta CLM Probit 0.9056 0.9056
2 Yes CCE Beta CLM Logit CCE Beta CLM Logit 0.9059 0.9059
9 No CCE Beta CLM Logit - - 0.9091 0.9091
10 No CCE Beta CLM Probit - - 0.9130

p-values 0.916 0.198 0.076 0.065

In this case, the results show that the best methodology is the non-hierarchical one
that uses the Beta regularised cross-entropy and the CLM with logit link in the out-
put. However, there are no significant differences with the other methods in the same
group. The worst results were obtained by the standard nominal approach and the
ECOC methods. The ordinal and hierarchical methodologies highly improved the
performance concerning the standard nominal approach.

Following the same methodology, the MS metric was analysed. Again, the ANOVA
II test performed over the MS test results reported that there are significant differences
between the methodologies and between the different architectures. Moreover, there is
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a significant interaction between these two factors. Therefore, a posthoc HSD Tukey’s
Test taking into account the methodologies was performed and the results are shown
in Table 4.27.

Table 4.27.: Results of the post-hoc HSD Tukey’s test for the MS metric.
Subsets

Hier. Macro loss Macro out Micro loss Micro out 1 2 3 4 5 6 7

11 No QWK CLM Logit - - 0.000
12 No QWK CLM Probit - - 0.000
14 No CCE Softmax - - 0.080
6 Yes QWK CLM Logit QWK CLM Logit 0.090 0.090
7 Yes QWK CLM Probit QWK CLM Probit 0.107 0.107
8 No CCE Softmax - - 0.1308 0.1308
13 No CCE Sofmtax - - 0.166 0.166
3 Yes CCE Beta CLM Probit CCE Beta CLM Probit 0.178 0.178
2 Yes CCE Beta CLM Logit CCE Beta CLM Logit 0.184 0.184 0.184
9 No CCE Beta CLM Logit - - 0.187 0.187 0.187

10 No CCE Beta CLM Probit - - 0.207 0.207 0.207
5 Yes CCE Beta CLM Probit CCE Softmax 0.208 0.208 0.208
4 Yes CCE Beta CLM Logit CCE Softmax 0.214 0.214
1 Yes CCE Softmax CCE Softmax 0.220

p-values 1.000 0.667 0.064 0.220 0.063 0.179 0.173

In this case, the same hierarchical approach that performed the best for the CCR
metric also obtained the best MS results.

By analysing the composition of each of the seven subsets, some conclusions can
be obtained:

1. The non-hierarchical methodologies that use the QWK loss function fail to clas-
sify at least one of the classes, obtaining always a value of 0 for the minimum
sensitivity. Therefore, they should be discarded even though they perform well
regarding the other metrics.

2. The hierarchical approach solves the problem related to the QWK loss: all the
classes are represented in the final predictions.

3. Five out of seven methods grouped in the best three subsets are hierarchical,
including the three methods that obtained the best average performance.

Finally, for the MAE metric, the same analysis was performed. The ANOVA II test
reported significant differences between the methods considered and the architectures
tested (p-value < 0.001). Also, there is a significant interaction between factors (p-
value < 0.001) Then, a post-hoc HSD Tukey’s test was performed to determine which
methods achieve better performance. The results of this test are given in Table 4.28.

The results in this table show that the best mean result was obtained by the hierar-
chical methodology which employs the Beta regularised cross-entropy loss with the
CLM Logit in the first model and the CCE with softmax for the others. However,
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Table 4.28.: Results of the post-hoc HSD Tukey’s test for the MAE metric.
Subsets

Hier. Macro loss Macro out Micro loss Micro out 1 2 3 4 5 6 7 8

4 Yes CCE Beta CLM Logit CCE Softmax 0.706
1 Yes CCE Softmax CCE Softmax 0.711 0.711
5 Yes CCE Beta CLM Probit CCE Softmax 0.722 0.722 0.722
2 Yes CCE Beta CLM Logit CCE Beta CLM Logit 0.722 0.722 0.722
3 Yes CCE Beta CLM Probit CCE Beta CLM Probit 0.726 0.726 0.726

10 No CCE Beta CLM Probit - - 0.756 0.756 0.756 0.756
7 Yes QWK CLM Probit QWK CLM Probit 0.766 0.766 0.766 0.766
6 Yes QWK CLM Logit QWK CLM Logit 0.769 0.769 0.769
9 No CCE Beta CLM Logit - - 0.778 0.778
12 No QWK CLM Probit - - 0.814 0.814
11 No QWK CLM Logit - - 0.850 0.850
8 No CCE Softmax - - 0.891 0.891

14 No CCE Softmax - - 0.913 0.913
13 No CCE Softmax - - 0.957

p-values 0.063 0.086 0.113 0.084 0.791 0.590 0.995 0.442

there are no significant differences with the other methods in group 1. Also, the table
shows that most of the methods in group 1 are hierarchical methods. The last four
groups only contain non-hierarchical methods and the ECOC approaches. Therefore,
the overall results with hierarchical methods are better than the ones obtained by the
corresponding non-hierarchical ones.

After comparing the different methods using the post-hoc tests, the three model ar-
chitectures were compared too. The post-hoc HSD Tukey’s test shown that the VGG-
16 and the ResNet-101 are not significantly different and they both are significantly
better than the DenseNet-121 concerning the QWK and MS metrics. For the CCR
metric, the ResNet-101 is significantly better than the other two architectures, which
also are significantly different between them. Finally, regarding the MAE, the VGG-
16 architecture achieved the best mean results. The complete statistical comparison of
the architectures can be found in A.2.

Therefore, taking into account all the metrics, some general conclusions can be
derived:

1. The proposed hierarchical methodologies perform significantly better concern-
ing the CCR, MS and MAE metrics, while the non-hierarchical ones achieve
better results for the QWK. However, there are no significant differences con-
cerning QWK with most of the other methodologies.

2. Using an ordinal loss function and output function for the macro classifier and
the standard nominal approach for the micro classifier usually obtained the best
results.

3. The ResNet-101 obtained the best results followed by the VGG-16 architecture.
Nevertheless, the proposed methodology obtains a significant performance en-
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hancement for all architectures tested. Therefore, the proposed method can be
generalised to different types of architectures.

4.7. Learning ordinal-hierarchical constraints
simultaneously

In previous sections, we first described how to deal with the ordinal nature of the pro-
posed AQC problem. Then, we faced the hierarchical structure of dataset categories,
highlighting that our classification task can be defined as a hierarchical ordinal prob-
lem where the categories are displayed in an ordinal structure on different hierarchical
levels. However, the simultaneous managing of both the hierarchical and ordinal na-
ture is not a trivial problem, involving the use of multiple models to perform the task
(see Section 4.6.1).

Hence, we proposed to simultaneously learn hierarchical-ordinal constraints by us-
ing a DL methodology consisting in a single network. The proposed approach is
designed according to a novel hierarchical formulation that models local and global
losses, where local losses act as auxiliary losses to strengthen the hierarchical-ordinal
dependencies. To integrate ordinal relation within global and local losses we proposed
to include a CLM combined with QWK loss and an OBD approach with MAE loss.

The overall methodology is described in Figure 4.26. The hierarchical-ordinal prob-
lem is represented using a graph structure. Our hierarchical problem is decomposed
by local and global classes to learn consistently different classes in the hierarchy. Note
that the order of nodes within a level reflects the natural ordinal structure of the classes.
However, this natural order in the labels does not necessarily correspond with the order
defined by the corresponding super-classes. Accordingly, the ordinal constraints are
integrated using CLM and OBD approaches. Thus our framework leads to the design
of two different methodologies called Hierarchical cumulative link model (HCLM)
and Hierarchical ordinal binary decomposition (HOBD) that can be generalized for
solving generic and real-world hierarchical ordinal problems.

In Section 4.7.1, the notation we used to formulate our approach is set and the
formulation of the proposed HCLD and HOBD approaches is described. Network
architecture and prediction phase are treated in Section 4.7.2.

4.7.1. HCLM & HOBD methodologies

Notation

The adopted notations are described in Table 4.29. Figure 4.27 shows an example of
general hierarchical constraint settings in terms of graph structure. In our problem
definition, the labels of each child node associated with different parent nodes can be
completely different, reflecting different structures (i.e. h|

TY h
L

i=1 children(yh
i ) = ;).
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Table 4.29.: Commonly used notations.

Notation Description
X Input space (R)
M Number of training points
H Number of hierarchical levels of the task
Q Number of classes of the general problem
Y Set of classes of the general problem
Y

h
L Subset of local classes of the h-th level

YL Set of all the local classes
|Y h

L | Number of local classes of the h-th hierarchical level
YG Subset of global classes
|YG| Number of global classes
YT Set of global and local classes
y
h
i i-th class label of h-th hierarchical level

children(yh
i ) Set of child classes of yh

i

f(·) Predictive model
F(·) Set of Predictive models
L Set of all the possible loss functions
L

h
L Local loss related to local classes associated to the h-th level

LG Global loss related to global classes
LT Total loss

Definition 1 The local classes of the h-th level of the hierarchy (Y h
L ) are defined as

follows:

Y h
L =

|Y h
L |[

i=1

yh
i (4.27)

where h 2 {1, 2, . . . , H � 1}. Note that the local classes include all the nodes that
are not in the last hierarchical level (see Figure 4.27).

Definition 2 The global classes (YG) are defined as follows:

YG =
H[

h=1

2

4
[

i|children(yh
i )=;

yh
i

3

5 , (4.28)

where children(·) represents the set of child classes of a given node, and those nodes
fulfilling children(yh

i ) = ; correspond to leaves of the graph. Indeed, the global
classes consist of classes which have not any descendants (see Figure 4.27), thus
reflecting the original categories of the classification problem without considering the
parent nodes.

This definition of local and global classes allows to deal with classification problems
that can also be arranged on different hierarchical levels. As shown in the example of
Figure 4.27, the global classes consists on the set
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YG = {yH
1 , yH

2 , yH
3 , yH

4 , yH
5 , yH

6 , yH
7 , yH

8 , yH
9 , y2

4 , y2
6 , y2

9 , . . . } while the local classes
consists on Y 1

L = {y1
1 , y1

2 , y1
3}, Y 2

L = {y2
1 , y2

2 , y2
3 , y2

4 , y2
5 , y2

6 , y2
7 , y2

8 , y2
9}, . . . .

Definition 3 The definition of local and global classes leads to:

YT = YL [ YG, (4.29)

where

YL =
H�1[

h=1

Y h
L . (4.30)

Note that those classes which are leaves but are not placed on the H-th level (last
level) will be simultaneously global and local classes. The reason is that they are
part of the original global classification task but should also be taken into account to
represent the ordinal structure of the corresponding level.

Considering the proposed AQC task, the local classes consist on
Y 1

L = {y1
1 , y1

2 , y1
3 , y1

4} = {1, 2, 3, 4}, while the global classes consist on the set
YG = {y1

1 , y2
1 , y2

2 , y2
3 , y2

4 , y2
5 , y2

6 , y2
7 , y2

8 , y2
9} = {1, 2�, 2c, 2+, 3�, 3c, 3+, 4�, 4c, 4+

}

(see Figure 4.26, panel b).

!!! !"!1st level

2nd level

!#!

!""!!" !#" !$" !%" !&" !'" !(" !)"

Hth level !"* !#* !$*!!* !%* !&* !'* !(* !)*

Figure 4.27.: Example of the definition proposed for global and local classes when
describing the hierarchical task. In this example, the global classes
consists on the set YG = {yH

1 ,yH
2 ,yH

3 ,yH
4 ,yH

5 ,yH
6 ,yH

7 ,yH
8 ,yH

9 ,y2
4 ,y2

6 ,y2
9 ,

. . . } while the local classes consists on Y 1
L = {y1

1 ,y1
2 ,y1

3}, Y 2
L =

{y2
1 ,y2

2 ,y2
3 ,y2

4 ,y2
5 ,y2

6 ,y2
7 ,y2

8 ,y2
9}, . . . , while the relationships between lev-

els are described by children(y1
1) = {y2

1 ,y2
2 ,y2

3}, children(y1
2) =

{y2
4 ,y2

5}, children(y1
3) = {y2

6 ,y2
7 ,y2

8 ,y2
9}, children(y2

4) = ;,
children(y2

6) = ;, children(y2
9) = ;, . . . .
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Hierarchical formulation

We let f(·) be the predictive model for mapping the input vector to the global and
local classes. In our formulation we combine local and global losses as follows:

LT = �

PH�1
h=1 Lh

L

H � 1
+ (1 � �)LG, (4.31)

where � 2 [0, 1] is the hyperparameter that regulates the trade-off regarding local and
global information. Lh

L refers to the local loss computed according to the h-th level:

Lh
L 2 L(X, Y h

L ), (4.32)

where L(X, Y h
L ) is the set of loss functions computed using the input data, X , and the

classes of the h-th hierarchical level, Y h
L .

On the other hand, LG refers to the global loss computed:

LG 2 L(X, YG), (4.33)

where L(X, YG) considers in this case the set of global classes.
In our formulation we both aggregate and minimize the local losses (i.e. specific

models responsible for the prediction of local classes) and the global loss (i.e. global
model responsible for the prediction of global classes). The rationale behind this
choice lies in both maximizing a consistent global prediction in the final hierarchical
level and obtaining a consistent prediction for each local node. By considering also
the ordinal nature of the task we aim to solve, we also ensure that each local loss
function reinforces the propagation of gradients leading to proper local-information
ordering among classes of the corresponding hierarchical level. At the same time, the
global loss function keeps track of the label dependency in the hierarchy as a whole,
adapting, at the same time, the ordinal constraint according to the leaves nodes. This
aspect is described in details in the next paragraph.

Hierarchical-ordinal formulation

Here the proposed hierarchical-ordinal methodologies, namely Hierarchical cumula-
tive link model (HCLM) and Hierarchical ordinal binary decomposition (HOBD) are
presented.

A) Hierarchical cumulative link model

In this method, we integrated the CLM, defined as in Section 4.4.1, for modeling both
the local and global losses (see Equation 4.31). Thus, the candidate classes Y become
YG and YL, and the number of classes Q becomes |YG| and |Y h

L |, for the global and
local losses, respectively.
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The employed loss function is the QWK loss. Starting from the definition in 4.14,
the QWK local loss computed for the h-th level is reformulated as follows:

Lh
L =

MP
m=1

P

yi2Y h
L

!iP (y = yi|xm)

|Y h
L |P

i=1

Mi
M

P

yj2Y h
L

(!i,j

MP
k=1

P (y = yj |xk))

, (4.34)

where xm is the input data of the m-th sample, Mi is the number of training samples
of the i-th local class, P (y = yi|xm) is the model posterior probability that the m-th
sample belongs to local class yi, and !i,j are the elements of the penalization matrix
(for the quadratic version, !i,j = (i�j)2

(|Y h
L |�1)2

).
Similarly, the QWK global loss is defined as follows:

LG =

MP
m=1

P
yi2YG

!iP (y = yi|xm)

|YG|P
i=1

Mi
M

P
yj2YG

(!i,j

MP
k=1

P (y = yj |xk))

, (4.35)

where P (y = yi|xm) is the model posterior probability that the m-th sample belongs
to global class yi.

B) Hierarchical ordinal binary decomposition

As introduced in 4.4.3, OBD is an ordinal approach that is based on decomposing
the classification task of Q classes of the original problem into a set of Q � 1 binary
problems, where each problem q consists in determining, for a given class yq , if y � yq

conditioned to x (1  q < Q) [72], given that y � yQ is trivially false.
In this case, the employed loss function is the MAE loss. For the local losses, the

MAE computed for the h-th hierarchical level is defined as follows:

Lh
L =

1

|Y h
L | � 1

X

yi2Y h
L

k1{y � yi} � P (y � yi|x)k, (4.36)

where x is the input data matrix and P (y � yi|x) is the model posterior cumulative
probability for local class yi, and 1{y � yi} is the corresponding target vector.

The MAE global loss is defined as follows:

LG =
1

|YG| � 1

X

yi2YG

k1{y � yi} � P (y � yi|x)k, (4.37)

where P (y � yi|x) is the model posterior cumulative probability for global class yi,
and 1{y � yi} is the corresponding target vector.
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4.7.2. Classification model

Architecture

The structure of F(·) does not require any special assumption, thus different model
structures are equally acceptable. The hierarchical constraint is modulated on the top
fully-connected (FC) layers of the networks, by forming a multi-output classification
head to achieve both local and global ordinal optimizations. This classification head is
composed of H � 1 local outputs and one global output. The main flow is composed
of H FC layers with ReLU activation to which local sub-modules are connected. Each
local sub-module is characterized by its own FC layer before the local output. In our
approach, this ensures that each local sub-module learns the ordinal constraint from
a given hierarchical level. In our architecture, Batch Normalization (BN)[157] was
inserted to accelerate the convergence of the networks and to improve the stability of
training.

As regards the proposed HCLM approach, each local output and the global one
present only one neuron, which provides the model projection in a 1-dimensional
space. This value is used to classify the sample into the corresponding class accord-
ing to the CLM with logit activation function. Accordingly, for the proposed HOBD
approach, each local sub-module FC layer is decomposed into a set of |Y h

L | � 1 FC
blocks (with the same dimension). Each block consists of a FC layer, followed by a
Leaky ReLU activation function and a dropout layer. Each final output layer with sig-
moid activation function solves an individual binary classification subproblem. The
global output also assumes the same decomposition, presenting |YG| � 1 binary out-
puts. These structures are reported in Figure 4.27, panel a).

In our experiments we employed a VGG-16 architecture as feature extractor, main-
taining the pre-trained ImageNet weights for the convolutional part of the model ac-
cording to a transfer learning approach. Also in this case, the choice of VGG-16 archi-
tecture as baseline model is related to our earlier work, where VGG-16 achieved the
best results among other state-of-the-art classification models in the standard nominal
classification (see Section 4.2.3. Nevertheless, as previously stated, our approach can
be generalized to different types of architecture (i.e. F(·)). A dropout regularization
layer was inserted in the first FC layer of the classification head. The rate of dropout
and the size of all dense layers are selected within the hyperparameters optimization
procedure (Table 4.30).

Prediction

According to the formulation in 4.7.1, predictions can be obtained both for local or
global classes. Predicted classes are differently obtained depending on the considered
methodology (HCLM or HOBD). As CLM provides us with posterior probabilities,
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the predicted classes of HCLM are obtained by:

ŷh
L = argmax

yi2Y h
L

P (y = yi|x), (4.38)

ŷG = argmax
yi2YG

P (y = yi|x). (4.39)

In the case of HOBD, we compute the distance between the model posterior prob-
ability vector and the ground-truth of global and local labels. The predicted label is
the one that has the minimum distance and can be computed for the global and local
classes as follows:

ŷh
L = argmin

y2Y h
L

||ph
L � th

L(y)||, (4.40)

ŷG = argmin
y2YG

||pG � tG(y)||, (4.41)

where ph
L =

�
P (y � yi|x) : yi 2 Y h

L

�
and pG = (P (y � yi|x) : yi 2 YG) are two

vectors containing all posterior cumulative probabilities (associated to the independent
binary subproblems of OBD) for global and local classes, respectively, and th

L(y) =�
1{y � yi} : yi 2 Y h

L

�
and tG(y) = (1{y � yi} : yi 2 YG) are the corresponding

target vectors for global and local classes, respectively.
Note that, in our experiments, we have evaluated only the prediction for global

classes, as these are the most important ones in terms of cost for the considered real
problem. However, local predictions could also be useful for other practical contexts.

4.7.3. Performance evaluation and Results

Experimental procedure

HCLM and HOBD methodologies were evaluated following a stratified over rifles
holdout procedure: the dataset was split by maintaining 80% of the whole set for the
training phase and the remaining 20% for the test set. From the training set, another
15% of the samples were taken for the validation set. Experiments with on-the-fly data
augmentation strategy were performed for balancing global classes of AQC dataset,
randomly applying a horizontal flip to all the training samples.

Adam [149] was adopted as optimizer and the best learning rate, batch size and
dropout rate were selected as hyperparameters. Moreover, we evaluated also the con-
tribution of local and global ordinal losses exploring values for the � parameter in
range {0.2, 0.5, 0.8}. All hyperparameters were tuned in the separate validation set
using a grid-search approach (see Table 4.30).

For all the experiments, the number of training epochs was set to 50 while adopting
the early stopping strategy with a patience value of 15 epochs monitoring validation
loss. To achieve robust results from a statistical perspective, all the experiments were
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performed 30 times using different seeds to create the data partitions and initialize the
model parameters.

All the experiments were run using TensorFlow 2.0 and Keras 2.3.1 frameworks on
an Intel Core i7-4790 CPU 3.60GHz with 16GB of RAM and NVIDIA GeForce GTX
970.

Table 4.30.: Model hyperparameters explored in the validation set. All hyperparame-
ters were tuned in the separate validation set using a grid-search approach.

Model Approach Hyperparameters Range
FC neurons {2048, 4096}

Dropout rate {0.1, 0.3, 0.5}

VGG-16 HCLM Batch size {8, 16, 32, 64}

Learning rate {10�4, 10�3, 10�2
}

� {0.2, 0.5, 0.8}

FC neurons {2048, 4096}

Dropout rate {0.1, 0.3, 0.5}

VGG-16 HOBD Batch size {8, 16, 32, 64}

Learning rate {10�4, 10�3, 10�2
}

� {0.2, 0.5, 0.8}

Experimental comparisons

Different from other state-of-the-art work, our proposed methodologies are conceived
for learning both ordinal and hierarchical dependencies. For that reason we decided
to compare the proposed HCLM and HOBD with respect to other hierarchical and
ordinal formulations widely employed in the ML literature. The state-of-the-art com-
parisons include:

• Global (GLB) approach [104]. This approach maps hierarchical problem into a
standard classification problem that fully embeds the parent level information.
The nominal global approach (GLB-NOM) ignores the class hierarchy predict-
ing only leaf nodes classes as a standard multi-class classification [110] with
categorical cross-entropy (CCE) loss. The ordinal variant of this approach was
implemented by integrating ordinal relationship through OBD [72] (GLB-OBD)
and CLM [93] (GLB-CLM);

• Local Classifier per Parent Node (LCPN) [158, 159, 160] approaches. Models
are trained for solving each local task (i.e. a separate model for each parent
node) using nominal (LCPN-NOM) or ordinal classifiers. The ordinal relation-
ship was encoded with an OBD (LCPN-OBD) and a CLM (LCPN-CLM) layer,
by considering, respectively, MAE and QWK as loss functions. Binary sub-
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problems were treated with a sigmoid activation function on the output neuron
and Binary Cross-Entropy (BCE) loss;

• Multi-Task Learning (MTL) approach [161]. The hierarchical constraints is
decomposed in two different tasks: this strategy is viable only when the global
label can be handled as a combination of labels from two distinct tasks (i.e.
macro ({1, 2, 3, 4} classes) and micro ({+, , �} classes) task for AQC dataset).

In the MTL-CLM formulation, we computed the QWK macro and micro losses
related to the macro and micro classes respectively. We also extended this com-
parison (MTL-CLMloc) with the aim of including a hierarchical constraint by
minimizing the micro loss locally for each macro class. Considering that class
1 has no child labels, a further post-processing step was necessary to put this
hierarchical constraint. It is worth noting that this further step is not need in our
approach. In MTL-OBD and MTL-OBDloc, OBD approach is applied to both
decomposable tasks and MAE losses are minimized.

• Hierarchical multi-label classification network (HMCN) [111]. This method
consists of a multi-label binary encoding strategy in which a BCE loss is mini-
mized for each hierarchical level. In this case, the output is a binary class vector
(expected output) containing all classes in the hierarchy. It is worth noting that
in contrast with our approach, in this case, the model may lead to the predic-
tion of non-admissible paths, thus requiring a further post-processing stage (i.e.
violation constraint) to avoid inconsistent global classes.

Evaluation metrics

Note that the proposed HCLM and HOBD approach can be used for both predicting
local and global classes. However, we decided to focus in evaluating the more rele-
vant classes (i.e. global aggregated classes for AQC task) related to the real dataset
we used. Considering the ordinal nature of global and local classes, ordinal metrics
were chosen for evaluating our hierarchical-ordinal problem, in addition to standard
nominal CCR. As highlighted in previous sections, these metrics (i.e. QWK, MAE,
and 1-off accuracy, defined in Section 4.4.3) properly reflect the deviation of a mis-
classification error from the actual class. CCR, QWK and 1-off accuracy are to be
maximized, MAE is to be minimized.

Classification performance

Table 4.31 shows the comparison of the proposed approach with respect to GLB,
LCPN, MTL and HMCN competitors for the AQC dataset. With QWK=0.921(0.009)

and MAE = 0.635(0.048), the HOBD approach outperforms all the baseline algo-
rithms. Moreover the averaged ranking in terms of QWK (RQWK = 2.100(1.213))
and MAE (RMAE = 2.000(1.203)) for HOBD are higher than those reported by all
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state-of-the-art competitors. The HCLM discloses lower performance compared with
HOBD and comparable results with respect to state-of-the-art methods. Overall, the
proposed HOBD approach is consistent to the imbalanced setting of this task. Indeed,
the adoption of the data augmentation procedure reflects no improvement in terms of
QWK and an improvement of 0.6% in terms of MAE.

Statistical Analysis

We evaluated the statistical significance of our best performing approach with respect
to other competitors. First, we performed an Anderson-Darling test [162] to test that
the values of the metrics follow a normal distribution considering ↵ = 0.05. In this
way, the QWK (p = 0.697) and MAE (p = 0.894) scores for the proposed HOBD
approach were found to follow a normal distribution.

Hence, a paired-sample one-sided t-test (↵ = 0.05) was performed to compare the
QWK and MAE of the best-performing HOBD with respect to the best-performing
state-of-the-art methodologies. QWK scores were found to be significantly (↵ = 0.01)
higher for HOBD than all GLB, LCPN, MTL and HMCN models. Accordingly, we
also found the MAE scores to be be significantly (↵ = 0.01) lower for HOBD than all
GLB, LCPN, MTL and HMCN models

Therefore, HOBD method proved to be effective in dealing with an hierarchical-
ordinal problem as the AQC one, by overcoming the other state-of-the-art nominal,
hierarchical and ordinal approaches. Thus, the proposed approaches can be suited for
solving any other real-world classification tasks that exhibits hierarchical and ordinal
properties.

4.8. DSS for AQC classification

The main function of AQC is to build a method to objectify the result of visual inspec-
tions, which are still purely dependent on the evaluation of human operators, mitigat-
ing the inter- and intra-operator variability. Thus, a DSS based on the AI techniques
previously described can make this control more reliable, fast, and standardized. The
integration of the proposed methodologies as the main core of a DSS for solving AQC
task is described in Figure 4.28. The DSS platform is comprised of the acquisition
bench, GUI interface and cloud architecture.

As regards the cloud environment, a container logic was adopted for packaging the
predictive model and all its dependencies, allowing the inference phase to run reliably
from one computing environment to another. A docker image is essentially a snapshot
of a container. Microsoft Azure framework was adopted for providing a cloud-based
environment using virtualized containers. This environment can ensure hardware and
software isolation, flexibility, and inter-dependencies between data collection, model
building, and prediction phases. Indeed, the proposed approach is integrated into a
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GUI interface

Azure Blob
Data collection

DL workspace 
Model checking 

Azure Container Registry
Containerized Model 

Azure Kubernetes
Service  

Model building  

Input data Final class

Model outcome

Cloud architecture

Final class

Data Analytics

Data Acquisition

Acquisition bench

RGB Camera

Lamp

Operator 
classification

Class 
confirmation

Class 
change

Decision
phase

DSS 
prediction

Predictions

Final class

Figure 4.28.: DSS cloud interface.

AQC serverless platform where the predicted quality class is obtained by ingestion
event. The technician may trigger a cloud function that could invoke the DL model
to provide the inference. This setting may ensure the high scalability of the system
while allowing the continuous fine-tuning of the model based on new images of rifles
available. All prediction results were stored in the Azure blob storage and displayed
to human operator in a GUI interface.

The GUI software presents three basic features:

• Levels registry: define the quality labels on which the ML/DL algorithms are
trained and, consequently, the classes considered for model prediction. The
levels are stored on the system in the working database.

• Annotation: collect and store images of the annotated dataset. The software,
once the item has been placed on the acquisition bench, allows photo acquisi-
tion and awaits the operator annotation. Images are stored in the file system as
.png files and associated with the annotation tag (including date and time of col-
lection) on database. The DSS platform was also used to collect the employed
image dataset described in Section 4.1.

• Supervised inference: this is the operational working mode of the system once
it comprises trained models. The software, after photo acquisition, waits for the
operator classification. After, it allows the operator to view the results of the
predictive models. The operator can then decide whether to confirm his or her
initial assessment or perform a class change based on the results of the models.
Recording of these case histories can allow the network to be retrained in future
(continuous learning).
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Chapter 5.

Discussions

In this Section the author discusses and answers the research questions provided in
Section 1.2. In particular, in Section 5.1 the experimental results and findings about
1.2.1 are discussed, and in Section 5.2 research questions raised in Section 1.2.2 are
treated.

5.1. Predictive Quality Control problem

The aim of this study was to design and develop a DSS for predicting the processing
quality during the machining of a tool with the purpose of implementing PdM ac-
tions. In this work we firstly presented a ML based solution for solving a PdM task
in an unexplored application, that is the RUL estimation for ATM devices. Then, we
introduced and tested a DSS for solving the machining quality prediction in a real
industrial use case, demonstrating the capabilities of the proposed approach in sup-
porting the human operator during a PQC task. In particular, the proposed approach
led to the following answers:

i) How can supervised ML model be applied to predict the processing quality of a tool
starting from a machine sensors raw data?
Starting from industrial Big Data scenario, it was highlighted the importance of de-
sign i) a feature engineering stage, performed in collaboration with domain expert
maintainers, to ensure the building of a representative dataset and ii) a feature extrac-
tion strategy for transforming raw data into numerical features that can be processed
while preserving the information in the original data set. In particular, the Trapezoidal
Numerical Integration (TNI) was performed to compute a Key Performance Indicator
(KPI) for each processing parameter during each production cycle. The feature ex-
traction was based on specific topics published in the MQTT broker and collected on
the lower and upper levels of the production system. In particular, lower level topics
were used to extract salient KPI predictors for feeding ML model.

ii) How is it possible to obtain and manage reliable data annotation?
The upper-level topics reflect the ground-truth variables that are closely related to pro-
cessing quality and thus to productivity losses and maintenance issues. These condi-
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tion monitoring data were acquired by a robotic part loading system for 3D coordinate
measuring machine. This system allows the acquisition of high-quality labeled data,
which are suitable for a supervised ML approach.

iii) Is it feasible to ensure at the same time high predictive performance and model
interpretability?
Taking into account the achieved experimental results in Section 3.2.3, we demon-
strated the effectiveness of our theoretical frameworks into a real industrial environ-
ment. In fact, our DSS approach based on RF model was demonstrated to be the best
trade-off between predictive performance, computation effort, and interpretability. In
particular, the interpretability of the proposed RF model was measured according to
the feature/permutation importance (see Fig. 3.10).

iv) Does the proposed ML algorithm outperform standard algorithms widely used in
literature?
We proved how RF algorithm is suitable both to predict whether a machine will fail
or not in the next 6 days (classification task) and to estimate the error % related to the
machining quality (regression task). In particular, as reported in Section 3.2.3 - pre-
dictive performance, R2 score distribution of RF is significantly higher (p < .05) than
state of the art ML based regression models and DL based regression models. Despite
the predictive performance of RF is similar to XBG, the training and validation of RF
model are significantly faster.

v) How can the proposed algorithm be integrated in a DSS to provide suitable feed-
back for supporting human operator during production stages?
A GUI interface was created to display the predicted error % and to provide a timely
indication to the machine operator when the error exceeds a certain tolerance thresh-
old. Moreover, the average value of the KPI predictors and their trend over a spe-
cific tool are shown. This GUI interface may empower the overall machining quality
process by supporting the operators to (i) predict alarm situation (i.e. significant ma-
chining error) and (ii) interpret and localize the source of the error by focusing on the
average and temporal value of the most discriminative KPI predictors.

vi) How should DSS be designed to support real-time data acquisition and model in-
ference?
The ML algorithm was integrated in a scalable cloud-based architecture, which is the
main core of the DSS (see Fig. 3.8). This environment can ensure hardware and soft-
ware isolation, flexibility, and inter-dependencies between machine. These properties
are suitable for working with more machines at the same time and provide the capa-
bility to be scaled up to collect a huge amount of data from different interconnected
machines.
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5.1.1. Limitations and Future work

A current limitation is represented by the employed ML model, which is re-trained ev-
ery time from scratch when a certain amount of new data is stored. As future work, we
aim to integrate a fully-automated incremental learning procedure by updating contin-
uously the model parameter [163]. The new data continuously acquired and stored
over time in the proposed cloud framework can be used to refine ML model and im-
prove its predictive performance according to an incremental learning procedure. As
a further limitation, the proposed model only works for certain tools installed on the
processing machines. However, as future work, for the proposed ML model we aim
to improve the generalization performance of the proposed approach across different
tools and types of processing. In addition, meta-heuristic algorithms [164, 165] could
be implemented to help in selecting the optimal hyperparameters for ML model to
improve the stability and the testing predictive performance [166, 41]. For the full
applicability of PdM in all the company’s tasks, another future work direction could
be addressed to build integrated cost-benefit models that include the impact and the
benefit of our approach on the entire asset management of the company [167]. How-
ever, approaching the RUL estimation as a nominal classification task leads to lose
some relevant information about the risk of failure. Future work could be addressed
by considering ML ordinal methodologies and recurrent neural networks to embrace
both ordinal and temporal constraints in raw time series data.

5.2. Aesthetic Quality Control problem

The aim of this study was to design and develop a DSS for assessing the aesthetic
classification of wooden stocks with the purpose of supporting the human operator in
the final decision. We introduced and tested several DL methodologies for solving
the challenges in this AQC task. In particular, the proposed approaches led to the
following answers:

i) How can supervised DL model be applied to perform a classification task based on
qualitative aesthetic properties of a material?
Being trained on examples annotated by experts rather than composed of strict de-
scriptive rules, as first we demonstrated how a nominal state of the art DL approach,
i.e. VGG-16 network with an ordinal categorical cross-entropy (CCE) loss, with the
proper training procedure, is able to generalize across different unseen rifle stocks, au-
tomatizing and standardizing the overall AQC process. In particular, in Section 4.2.3 it
was demonstrated how VGG-16 outperforms other state of the art classification mod-
els in terms of CCR, Recall, Precision and F1 score.

ii) How is it possible to detect and mitigate unwanted bias in data?
Performing a Cramer’s analysis correlation, it was demonstrated how a significant cor-
relation was present between VGG-16 predictions and rifles series, also greater than
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between rifle series and ground-truth classes. This was also confirmed by exploring
the saliency map of the VGG-16 model, demonstrating how the presence of bias in the
dataset and in the learning procedure could be a disruptive finding that may lead to an
overestimation of the performance. The proposed HUVGG-16 solution based on two-
stages hierarchical networks (see Fig. 4.9), even if specific for this use case, allows
to mitigate the detected bias by learning the characteristics that properly describe the
quality of wood, rather than other confound characteristics.

Moving toward a more scalable solution, after a image preprocessing stage, a vot-
ing ensamble approach comprising of standard ML/DL algorithms (based on different
data features) was proposed, for combining different models predictions according to
a majority vote. Despite the lower performance (0.509 CCR, Table 4.6), the effective-
ness of this method was proven with a validation stage performed by human operator.

iii) How can errors between distant classes be minimized?
A DL ordinal methodology, specifically tailored for solving the proposed AQC task,
was introduced, based on CLMs and VGG-16 as a feature extractor. The proposed
method driven by ordinal constraints was properly conceived to model the natural
ordinal structure of the dataset classes while penalizing the misclassification errors
that are far from the correct label. The introduction of the slope parameter allows to
model the transient between CLM functions for each learnable ordinal threshold.

The higher performance obtained by the CLM VGG-16 for quality class prediction
with respect to a nominal and other ordinal DL approaches suggests how the proposed
method represents a valuable solution for automatizing the overall AQC procedure.
Moreover, the experimental findings shown in Section 4.4.3 demonstrated how a stan-
dard CCE together with CLM can be sufficient to model the ordinal structure of the
label, also without requiring the minimization of an ordinal loss. This is also in line
with recent findings in the ordinal classification literature [168]. As additional gain,
the ordinal constraint allows the network to better learn the characteristics that prop-
erly describe the quality of rifle (i.e. wood grains), rather than other confounds.

iv) How is it possible to mitigate noise or errors in labeling process?
It was proposed to apply the Lp norm into a previously proposed exponential regu-
larised loss for obtaining soft labels with a more flexible distribution for an ordinal
classification problem. Comparing with a baseline approach, which uses the standard
categorical cross-entropy loss and the softmax at the output of the model, and also
with using state of the art regularisation methods, the results in Section 4.5.4 demon-
strated that the proposed alternative achieved the values for QWK and MS, and the
second-best result for MAE. Also, the statistical tests demonstrated the robustness
and the effectiveness of the proposed approach and the gain with respect to previous
alternatives. Moreover, as regards the AQC task we aimed to solve, we achieved a
high QWK value, which implies small classification errors, where most of them occur
in the adjacent classes.
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5.2. Aesthetic Quality Control problem

v) Is it feasible to design a DL methodology for exploiting ordinal and/or hierarchical
properties of the dataset?
For exploiting both the ordinal and hierarchical properties of our AQC dataset, firstly a
hierarchical approach was proposed for learning ordinal classes in two separate phases
(see Fig. 4.24). In the first one, a single model was used to predict the macro label of
each pattern. In the second one, one model was used for each macro label to predict
the corresponding micro class. This method was combined with an ordinal loss regu-
larisation and an output layer based on the CLM to encourage, at the same time, the
ordinal classification. Different alternatives were tested with three different model ar-
chitectures and the experimental results showed that the hierarchical methods obtained
the best results for most of the metrics and architectures. In general terms, the hier-
archical approaches obtained better results than other state of the art non-hierarchical
approaches. The main benefit of the described approach is that it improves the perfor-
mance of this kind of tasks at the same time that it simplifies the problem by dividing
the classification task into multiple models.

In order to overcome the limitation of learning separated multiple models, then we
proposed novel approaches where a single model is used for solving the overall prob-
lem, which simultaneously learn hierarchical and ordinal constraints (i.e. HCLM and
HOBD). These approaches are able to model the ordinal structure within different
hierarchical levels of the labels. Considering the experimental comparisons reported
in Section 4.7.3, the proposed HOBD proved to be effective in dealing with these
hierarchical-ordinal tasks, by overcoming all the other state of the art nominal, hierar-
chical and ordinal approaches.

vi) How can the proposed algorithm be integrated in a DSS to provide suitable feed-
back for supporting human operator during final QC decisions?
A DSS platform comprised of acquisition bench, GUI interface and cloud architecture,
as described in Section 4.8, can make the QC procedure more reliable, fast, standard-
ized, and scalable at the same time. The integration of the proposed DL methodologies
in the cloud environment represents the main core of a DSS for solving the AQC task.
The setup of the system is fairly simple, as it only requires the acquisition box, which
takes the pictures of the items, and the DL based DSS interfaced with a GUI. Thanks
to these features, it helps the human operator in taking the final decision, significantly
reducing the inference time.

5.2.1. Limitations and Future work

As regards the exploiting of structural properties of the dataset, given that the proposed
ordinal-hierarchical approaches improved the state of the art methodologies, in future
work these methodologies can be extended to deal with other tasks respect to the
AQC problem solved in this thesis work. In these terms, new DSS for other real
problems can be developed. Possible applications include, but are not limited, to
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any other type of QC problem, also related to the overall quality of a product from
the engineering point of view. The only limitation of the proposed approach is that
the labels must follow a natural order and must also be decomposed hierarchically.
However, there are some problems where the hierarchical structure is not given a
priori, but can be inferred from the characteristics of data. In this context, our approach
could be extended via meta-learning formulation to simultaneously customize and
preserve ordinal and hierarchical task knowledge [169].

Moreover, the proposed approach does not take into account the presence of sparse
or missing labels. In different application scenarios, some classes in the hierarchy
could be potentially missing or not available. For example, in cross-domain rec-
ommendation, providing reliable recommendations to newly joined users (so-called
cold-start users) is a challenging task, i.e. the unlabeled data are easily available and
large while labeled data are difficult to collect. Future work may be handled to gen-
eralize the proposed methodology to weakly-supervised and semi-supervised settings
scenarios, using self-learning [170] and incremental learning approaches [171].

Another interesting future direction includes the possibility to model inter-operator
variability by providing multiple annotations from different operators for the same
image. This direction includes the possibility to design a MTL deep ordinal approach
to simultaneously monitor correlation and variability among raters. Moreover, the
regularised loss function with the ordinal output model described in this work can be
applied to more complex CNN models, which could lead to enhanced performance.

Finally, although the bias problem is not always present or easily detectable, other
bias mitigation approaches can be investigated in future work, such as the adversarial
learning method [172].
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Conclusions

6.1. Conclusive remarks

The main contribution of this thesis is the design and implementation of Decision Sup-
port Systems, based on different Machine Learning and Deep Learning algorithms, for
supporting the human operator during Quality Control procedure. In particular, the
role of DSS to bridge the gap between smart factory advances and the application of
these technologies in a Quality 4.0 real scenario has been highlighted, facing several
challenges in this context. Two problems were formulated and answered:

• Design and implementation of a DSS in Predictive Quality Control for predict-
ing the processing quality and anomaly situations during the machining of a
tool;

• Design and implementation of a DSS in Aesthetic Quality Control for evaluat-
ing the aesthetic properties of a material for the manufactured product.

The effectiveness of the proposed approaches was proven on two real-world in-
dustrial use cases. The DSSs described in this thesis have been developed and are
currently up and running in the company, representing a valuable technological trans-
fer between the University and industrial world. Implementing these industrial sys-
tems for monitoring the health and quality of the instrumentation/products/materials
enables manufacturers to support the technicians during the process while reducing
resource costs, intrinsic variability and improving productivity.

The thesis has presented reviews, perspectives, new methods and applications in
the field of ML/DL methods for Industry 4.0 scenario, leading to the publication of 8

scientific papers. The described contributions reflect a significant advancement both
in the state of the art methodologies as well as for the application scenarios.

Chapter 1 presents an in-depth analysis of the Quality Control tasks and the corre-
sponding importance of DSS in the Industry 4.0 scenario, highlighting the challenges
present in this context. Chapter 2 describes the state of art, with a specific focus on the
methodologies employed in literature to solve the identified challenges and the main
contributions of this thesis with respect to the research gaps. Chapter 3 and Chapter 4
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describe the faced PQC and AQC problems respectively, treating the real use cases and
the proposed ML/DL based DSS frameworks, demonstrating how to solve the related
domain challenges. Chapter 5 discusses the obtained results and revisits the scientific
contributions of this thesis in terms of new methodologies and knowledge created to
benefit Quality 4.0 scenario and their validity in real-world industrial applications.

6.2. Future perspectives

To conclude, it has been done the first step in introducing these methodologies for
real and challenging Quality Control applications. These approaches can be extended
to deal with other tasks respect to the PQC and AQC problems solved in this thesis
work. In fact, the generalization and extension of Quality 4.0 solutions is a relevant
issue in this context. As it has been noticed also from the state of the art analysis,
the focus of applied research tends to be on implementing specific solutions within
the boundaries of manufacturing companies. The problems of horizontal and vertical
data integration and methodologies extension are due to the lack of data fusion from
different sources (e.g. ERP, MES and PLM) and data sharing among companies [13].
To this end, research directions in this field focus on generalizing predictive models for
scalable solutions, developing secure and standardized communication protocols, and
elaborating advanced data mining procedures. In this sense, also the introduction and
release of open benchmark datasets could attract the Machine Learning community in
quest toward advancing the state of the art and generalizing methodologies.
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Chapter 4.6 - Performance
evaluation and Results

A.1. Boxplots of VGG-16 and DenseNet-121

The boxplots corresponding to the results of the VGG-16 and DenseNet-121 archi-
tectures are shown. Figure A.1 shows the boxplots for each metric for the VGG-16
architecture, while Figure A.2 shows the boxplots for the DenseNet-121 architecture.

Figure A.1.: Boxplots for all the test metrics using the VGG-16 architecture. Methods
are identified with the numbers defined in Table 4.21.
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Figure A.2.: Boxplots for all the test metrics using the DenseNet-121 architecture.
Methods are identified with the numbers defined in Table 4.23.

A.2. Model architectures statistical comparison

In addition, to complete the statistical analysis performed in Section 4.6.3, the three
model architectures considered in our work are compared using statistical tests. Dur-
ing the general statistical analysis, the ANOVA II tests reported significant differences
between the architectures for all the metrics. Therefore, a post-hoc HSD Tukey’s test
is performed for each of the metrics.

First of all, the statistical test was performed for the accuracy metric. The results
of the post-hoc test are shown in Table A.1. The two best architectures for the CCR
metric are the VGG-16 and the ResNet-101. They are significantly better than the
DenseNet-121 model.

For the QWK metric, the same analysis is performed. The results are shown in
Table A.2, and, this time, they show that all the architectures are significantly different.
The DenseNet-121 model is, again, the worst, but, in this case, the VGG-16 and the
ResNet-101 show significant differences and the residual network is better.

Then, the MS metric values are analysed. The results of the post-hoc test are shown
in Table A.3. In this case, the conclusions are the same that were obtained for the
accuracy metric. The ResNet-101 and the VGG-16 architectures obtained the best
results and are significantly better than the DenseNet-121.
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Table A.1.: Results of the post-hoc HSD Tukey’s test for the model and the CCR met-
ric.

Subsets
Model 1 2 3

DenseNet-121 0.4393
ResNet-101 0.4626

VGG-16 0.4797

p-values 1.000 1.000 1.000

Table A.2.: Results of the post-hoc HSD Tukey’s test for the model and the QWK
metric.

Subsets
Model 1 2

DenseNet-121 0.8776
VGG-16 0.8987

ResNet-101 0.9006

p-values 1.000 0.624

Table A.3.: Results of the post-hoc HSD Tukey’s test for the model and the MS metric.

Subsets
Model 1 2

DenseNet-121 0.1190
VGG-16 0.1519

ResNet-101 0.1562

p-values 1.000 0.734

Table A.4.: Results of the post-hoc HSD Tukey’s test for the model and the MAE
metric.

Subsets
Model 1 2 3

VGG-16 0.7443
ResNet-101 0.7736

DenseNet-121 0.8565

p-values 1.000 1.000 1.000
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Finally, the MAE metric is analysed. The results are shown in Table A.4. Again, the
results are similar: the ResNet-101 and the VGG-16 models obtained the best results.
The differences between the results obtained using these two architectures and the
results obtained using the DenseNet-121 model are significant.

Therefore, from these tests, we can conclude that the best model architecture is
ResNet-101, given that it is significantly better than the other alternatives regarding
the QWK metric, and it is as good as the VGG-16 model considering the other metrics.
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Other publications

The following publications, which are only partially related to the topic of the doctor-
ate and will not be discussed in the thesis, result from intra- and inter-VRAI research
group collaborations:

• Rosati, R., Romeo, L., Silvestri, S., Marcheggiani, F., Tiano, L., & Frontoni, E.
(2020). Faster R-CNN approach for detection and quantification of DNA dam-
age in comet assay images. Computers in Biology and Medicine, 123, 103912.

• Rosati, R., Romeo, L., Goday, C. A., Menga, T., & Frontoni, E. (2020). Ma-
chine Learning in Capital Markets: Decision Support System for Outcome
Analysis. IEEE Access, 8, 109080-109091.

• Pazzaglia, G., Martini, M., Rosati, R., Romeo, L., & Frontoni, E. (2022). A
Deep Learning-Based Approach for Automatic Leather Classification in Indus-
try 4.0. In International Conference on Pattern Recognition (pp. 662-674).
Springer, Cham.

• Manilii, A., Lucarelli, L., Rosati, R., Romeo, L., Mancini, A., & Frontoni, E.
(2021). 3D Human Pose Estimation Based on Multi-Input Multi-Output Con-
volutional Neural Network and Event Cameras: A Proof of Concept on the
DHP19 Dataset. In International Conference on Pattern Recognition (pp. 14-
25). Springer, Cham.

• Pierdicca, R., Tonetto, F., Mameli, M., Rosati, R., & Zingaretti, P. (2022). Can
AI Replace Conventional Markerless Tracking? A Comparative Performance
Study for Mobile Augmented Reality Based on Artificial Intelligence. In Inter-
national Conference on Extended Reality (pp. 161-177). Springer, Cham.

• Pauls, A., Romeo, L., Rosati, R. & Kuznetsov, A. (2022). Deep Learning
Model for Detecting Copy-Move Attack in Images: Testing and Verification.
In Next Generation Cybersecurity Systems and Applications 2022.

• Kuznetsov, A., Luhanko, N., Romeo, L. & Rosati, R. (2022). Deep Learning
Based Image Steganalysis. In 2022 IEEE International Conference on Problems
of Infocommunications Science and Technology.
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• Kuznetsov, A., Zakharov, D., Romeo, L. & Rosati, R. (2022). Deep Learn-
ing Based Fuzzy Extractor for Generating Strong Keys from Biometric Face
Images. In 2022 IEEE International Conference on Problems of Infocommuni-
cations Science and Technology.

• Kuznetsov, A., Kvaratskheliia, N., Romeo, L. Rosati, R., Maranesi, A. & Mus-
catello, A. (2022). Deep Learning Based Face Liveliness Detection. In 2022
IEEE International Conference on Problems of Infocommunications Science
and Technology.
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