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Process-aware IIoT Knowledge Graph: a semantic

model for Industrial IoT integration and analytics

Claudia Diamantinia, Alex Mircolia, Domenico Potenaa, Emanuele Stortia,∗

aDepartment of Information Engineering, Polytechnic University of Marche, via Brecce
Bianche, Ancona, 60121, Italy

Abstract

The integration of the huge data streams produced by the Industrial Internet
of Things (IIoT) can provide invaluable knowledge in the context of Industry
4.0, but is also an open research issue. The present paper proposes a semantic
approach to this issue, centered around the notion of process as the back-
bone. We build an ontology describing the fundamental elements involved in
IIoT and their relations, and discuss the construction of the Process-aware
IIoT Knowledge Graph, where raw sensor data are enriched with information
about process activities and the physical production environment. We also
propose a framework for querying the Knowledge Graph, and we demon-
strate its capabilities by considering the production of metal accessories as
case study.
The published version of this article is available at the Publisher website:
https://www.sciencedirect.com/science/article/pii/S0167739X2200320X

Keywords: Industrial Internet of Things, Data Integration, Business
Process, Semantics, Ontology, Knowledge Graph

1. Introduction

Industry 4.0 represents the fourth industrial revolution and is character-
ized by the introduction of digital and other innovative technologies in man-
ufacturing. One of the key enabling technologies is the Internet of Things
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(IoT), defined as a network of interconnected devices that collect and ex-
change data through the Internet [1]. IoT encompasses a wide variety of
application domains, with different and contrasting requirements [2, 3]. Fo-
cusing more specifically on industrial applications, the term Industrial In-
ternet of Things (IIoT) has been coined. In contrast with other applica-
tions, where humans have a central role (connected devices are consumer
electronic devices, and applications are devoted to improve human aware-
ness of the surrounding environment) [4], IoT in industry is mainly devoted
to connect machines to each other and to control systems, in order to enable
self-organization, self-optimization, self-healing, towards a more autonomous
and intelligent manufacturing system. In this respect, the focus is on the
production line. Information is sensed and exploited on-line and locally in
order to react to events, or exchanged with few peers for coordination or
remote control during manufacturing. More recently, however, larger inte-
gration scenarios have been envisaged, up to the level of the whole factory,
or even the enterprise, for collecting and analyzing flows of data enabling
optimization and planning. Correspondingly, the reference architecture is
emerging as an edge/fog-cloud architecture [5, 6].

Integration at cloud level of the huge data streams coming from the field,
and providing a uniform view of the course of events are major issues. Model-
based approaches may support the integration effort providing fundamental
reference information. In particular, processes are recognized as a major
means of integration in an organization. Processes are a set of interrelated
activities, aimed at realizing a product or service that contributes to the
achievement of the organization’s goal. In the development of interrelated
activities, many business units are involved. Operating on the same process,
business units’ resources must be integrated and coordinated for achieving
the objective of the process. The process in this sense is therefore an element
of homogenization of the organization. Recently, the work in [7] enlightens
the fact that process analytics, execution, and monitoring based on IoT data
can enable an even more comprehensive view of systems and realize unused
potential for optimization. In particular, processes can improve the IoT
by bridging the abstraction gap between raw sensor data and higher-level
knowledge and optimizing the overall decision making, provided that some
challenges are tackled and resolved.

In the present paper, we aim at moving a step forward towards this di-
rection, by providing a semantic model that formalizes and relates the fun-
damental elements involved in IIoT for cloud-level integration and analytics.
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We recognize these elements in (i) sensors, (ii) processes and (iii) related
performance indicators, and (iv) the factory, intended as machinery and the
environment that contains it. A comprehensive ontology is built following
state-of-the-art design principles, in particular reuse, and abstraction.

The ontology acts as a conceptual knowledge layer providing the structure
of the Process-aware IIoT Knowledge Graph, that includes all instances of
elements listed before. In particular, it enables the enrichment of raw sensor
data with information about process activities and the physical production
environment and, as such, their contextualization. The proposal is enriched
with a framework for querying the Knowledge Graph, whose capabilities
are demonstrated by considering the production of metal accessories as case
study.

The rest of the paper is organized as follows: Section 2 discusses the
related literature. Section 3 introduces the case study. Then, Section 4
discusses the layered-based principle adopted to organize the knowledge ar-
tifacts, while Section 5 describes the proposed ontology, illustrating the com-
ponent ontologies and the integration strategy. Sections 6 and 7 are respec-
tively devoted to discuss the construction and exploitation of the Process-
aware IIoT Knowledge Graph. Finally, Section 8 draws some conclusions and
future work.

2. Related work

Interoperability is a key challenge in IIoT [8], due to the presence of
multiple and heterogeneous data sources using different knowledge represen-
tations. In this context, ontologies are seen as a promising tool to solve
interoperability problems [9], as they provide commonly agreed data mod-
els that are understandable by both humans and machines. In the field of
IIoT, in particular, ontologies may support a wide range of activities (e.g.,
design, simulation, planning and scheduling, performance assessment and
data integration [10]). Recently, the notion of Knowledge Graph (KG) has
also attracted the interest of researchers. A KG is a semantic data model
intended to accumulate and convey knowledge of the real world, where graph
elements are defined through concepts of ontologies [11]. The following sub-
sections are devoted to present some literature relevant for the present work.
In particular, due to the adopted sensor and process perspectives, we detail
existing proposals dedicated to these kinds of resources. Then, we discuss
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work integrating and exploiting semantic technologies in the context of In-
dustry 4.0.

2.1. Sensor ontologies

Sensor ontologies support several applications, including designing sen-
sor networks, reasoning about available sensors and capabilities and querying
sensor data. Given that sensor technologies are mutable over time, and that a
manufacturing ontology should be applicable to different industrial domains,
sensor ontologies should be general purpose and easily extensible, in order to
adapt to different application domains [12]. Eil et al. [13] made an early at-
tempt to define a general purpose ontology for sensor networks by proposing
a framework based on the Suggested Upper Merged Ontology (SUMO) [14]
to represent sensor classes, attributes and data. Another general purpose
ontology is described in [15], where the authors present OntoSensor, which
combines concepts and properties from the SUMO ontology with constructs
from the Web Ontology Language [16]. To the best of our knowledge, the
most comprehensive sensor ontology is represented by the Semantic Sensor
Network (SSN) ontology [17], which has been proposed by the W3C Se-
mantic Sensor Network Incubator group. Starting from SSN, Janowicz et
al. define the Sensor, Observation, Sample, and Actuator (SOSA) ontology,
which provides a “lightweight general-purpose specification for modelling the
interaction between the entities involved in the acts of observation, actuation,
and sampling” [18]. Similarly to SOSA, Bermudez et el. propose IoT-Lite
[19], a lightweight semantic model which is an instantiation of key concepts
of the Semantic Sensor Network (SSN) ontology. IoT-Lite does not contains
constructs for modeling complex relationships but only offers a core ontol-
ogy that contains the minimum concepts and relationships that can provide
answers to most of the queries needed for IoT applications. IoT-Lite can
also be extended by combining it with ontologies for IoT data streams, such
as the Stream Annotation Ontology (SAO) ontology [20], although specific
ontologies are available for IoT data streams, such as IoT-Stream [21].

2.2. Process ontologies

Process ontologies allow representing the semantics of process elements,
which are usually formulated in natural language or semi-formal languages
such as Business Process Model and Notation (BPMN), by using concepts
of a formal ontology. The importance of defining a connection between on-
tologies and process models has been widely recognized in literature (e.g.,
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[22] [23]). A general ontology for representing processes can be found in
[24], where the authors combine existing ontologies and BPMN 2.0 in order
to define the BPMN 2.0 Based Ontology (BBO) for business process repre-
sentation. Similarly, Thomas et al. [25] propose to formally represent the
semantics of element labels in process models by means of a process ontology.
In [26] authors present a framework that connects the IoT infrastructure to
a context-aware BPM ecosystem by means of IoT-integrated ontologies and
IoT-enhanced decision models, while the work in [27] proposes to consider
IoT devices as business process resources.

For what concerns the formal representation of industrial processes, Grü-
ninger et al. [28] propose the Process Specification Language (PSL) ontol-
ogy. The primary objective of the PSL ontology is to build a framework to
formalize process information about scheduling, planning, simulation, work
flow and project management. Another ontology for modeling manufacturing
processes is the MASON ontology proposed by Lemaignan et al. [29]. The
MASON ontology formalizes the concept of Process through a class named
Operations, which allows to specify several manufacturing-related processes,
including productive activities (e.g., pressing, plating, assembly), logistic op-
erations, human operations (e.g., scheduling, programming) and launching
operations (e.g., machine setup). Besides the PSL ontology and the MASON
ontology, other ontologies developed for modeling manufacturing processes
are the MSDL ontology [30] and the ADAptive holonic COntrol aRchitecture
for distributed manufacturing systems (ADACOR) ontology [31]. Among all
the presented ontologies, the PSL ontology provides the most general concep-
tualization of processes in various domains, but its generality may represent
a limit when a specific representation of the manifacturing domain is needed.
On the contrary, the MSDL ontology is less general but can be considered
the most significant model for representing manufacturing processes, as it
captures more specific and rigorous knowledge related to the manufacturing
domain [32].

2.3. Integrated Ontologies

Several works extend the ontology scope to the modeling of different parts
of the organization and their relations. The approach is modular most of the
time and it consists in including and reusing existing resource specific ontolo-
gies, like in the present paper. Differences can be observed in the purpose
served by the ontology, and hence in the specific ontologies adopted and/or
in the structure of concepts. The work presented in [33] shares with the
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present proposal the focus on intelligent data analysis. However, it puts
emphasis on the adoption of temporal abstraction and temporal reasoning
for searching and classifying qualitative temporal patterns in order to obtain
information on the condition and state of the manufacturing process which,
however, is not modelled. In contrast, in our approach the explicit repre-
sentation of the production process is introduced, which puts data in the
context of the logical workflow, and enables further reasoning capabilities.
The idea of providing a context for sensor data is also proposed in [34]. To
this end, raw sensor data are annotated with concepts of the Context Ontol-
ogy, that provides the formal representation of the manufacturing domain,
and specifically of resources, processes, sensors, time, location and situations.
The ontology is built by reusing existing ontologies like the Time Ontology1,
the GeoSPARQL Ontology2, and the SSN Ontology. The concept of pro-
cess is barely represented, without further description of its structure, hence
the reasoning enabled, mainly devoted to recognise situations that lead to
potential failures and correlations among observations, cannot exploit this
kind of context. In a very recent paper [35], an ontology network has been
proposed, that models in detail the production process, the physical environ-
ment, equipments, (recipe) formulas, and materials. However, sensor data
is not taken into account, since the scope of the paper is the support to
planning and scheduling activities.

To the best of our knowledge, the present paper is the first attempt to link
sensor data to the process activities executed when data has been generated.

2.4. Knowledge Graphs

Knowledge graphs are used in various contexts related to Industry 4.0.
A preliminary investigation on the impact of KGs in Industry 4.0 can be
found in [36], where authors discuss potential applications of KGs in multiple
domains, ranging from maintenance, optimization and resources allocation.
In [37], Bader et al. define the Industry 4.0 Knowledge Graph (I40KG), a KG
for modelling norms, standards and specifications of Industry 4.0. The goal of
the work is to represent knowledge related to both the single norms/standards
and their mutual relations. Xie et al. [38] focus on sensors and propose to
model them as subgraphs of a larger KG, which is used as an IoT middleware

1https://www.w3.org/TR/owl-time/
2https://opengeospatial.github.io/ogc-geosparql/geosparql11/index.html
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with the aim of facilitating the integration of multiple sensors. In fact, such
an IoT middleware allows communication and interoperability among IoT
devices to be realized via attribute manipulation in the KG. The work in
[39] exploits knowledge graphs and sensor data for generating production
plans across multiple factories, by taking into account both static information
(e.g., machine capabilities) and dynamic data (e.g., machine status, machine
unavailability due to deterioration).

3. Case study

The proposed case study is a mid-size manufacturing company that pro-
duces metal accessories, which are obtained through fabrication and assem-
bly of several metal parts. Such accessories are highly customizable and are
produced in different sizes, shapes and colours, which implies that different
products may be subject to different processing phases. The company has
an industrial plant spread over two buildings, each comprising more rooms
identified by capital letters; rooms, in turn, are divided into areas and sub-
areas, identified by numbers. For instance, 1/B/1/2 refers to the subarea 2
of the area 1 in room B of the first building.

The overall production process is shown in the BPMN diagram depicted
in Figure 1. It can be noticed that the Washing activity is optional, while

Figure 1: BPMN diagram of the manifacturing process of the case study.

Material Recovery and Quality Check are parallel activities. There are also
XOR gateways as some processing steps can be performed using different
techniques, depending on the product to be produced. Consequently, it is
possible to identify macro-activities, corresponding to the set of different
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ways in which a specific activity can be performed. For instance, the macro-
activity Painting can be performed through two different techniques, i.e.
Powder Coating and Plating. The production scheduling is defined by an
Enterprise Resource Planning (ERP), which schedules production activities
on the basis on internal rules that take into account the estimated lead time,
the order priority and the delivery date. An example of production scheduling
is reported in Table 1.

Table 1: Example of a production scheduling generated by the ERP.
Order Product Input Output Qty Activity Production Estimated Estimated

Id Id Parts Parts Date Start Time End Time
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0000246 29 P004 P004 500 Deburring 14/07/2021 09:00:00 11:45:00
0000249 26 RM002 P006 350 Die casting 14/07/2021 09:00:00 10:50:00
0000246 29 P004 P004 500 Polishing 14/07/2021 12:00:00 14:00:00
0000246 31 RM004 P003 200 Pressing 14/07/2021 12:00:00 14:30:00
0000271 26 RM004 P003 450 Pressing 14/07/2021 14:30:00 18:00:00
0000249 26 P006 P006 350 Washing 14/07/2021 14:30:00 15:00:00
0000249 26 P006 P006 350 Deburring 14/07/2021 15:15:00 16:45:00
0000246 29 P004, P005 P043 500 Assembly 14/07/2021 15:30:00 17:45:00

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Information about production activities are saved in an event log for qual-
ity assessment purposes. Specifically, the human operator and the machine
involved are reported, as well as the actual execution times, the total quan-
tity of produced parts and the number of defective parts. An excerpt from
the event log is shown in Table 2.

Table 2: Excerpt from the event log.
Order Product Activity Machine Operator Production Start End Total Defective

Id Id Date Time Time Qty Parts
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0000246 29 Deburring DE002 32 14/07/2021 09:02:14 11:41:52 500 0
0000249 26 Die casting DC001 17 14/07/2021 09:01:03 10:54:41 366 16
0000246 29 Polishing PO004 19 14/07/2021 11:59:31 14:11:12 500 0
0000246 31 Pressing PR001 45 14/07/2021 12:06:10 14:33:24 230 30
0000271 26 Pressing PR002 26 14/07/2021 14:35:03 18:01:24 454 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Multiple machines, each identified by an incremental number (e.g., DE001
represents the first deburring machine), are available for each production ac-
tivity. Machines that perform the same activity can even be located in differ-
ent areas/room, as shown in Table 3, in which mappings between machines
and locations are reported.
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Table 3: Mappings between machines and locations
Activity Machine Location

Die Casting
DC1 1/A/2/1
DC2 1/B/1/3

Pressing
PR1 1/A/1/1
PR2 2/A/1/2
PR3 1/B/1/2

Washing
WA1 1/B/2/1
WA2 1/B/2/2

Deburring
DE1 1/B/2/1
DE2 1/A/2/1

Plating
PL1 2/C/1/2
PL2 2/B/1/1

. . . . . . . . .

Machines are equipped with sensors that monitor the most relevant phys-
ical quantities for each production activity, as shown in Table 4, where the
types of sensors used in each activity are reported. For instance, a thermome-
ter and a pressure sensor are equipped on the press in order to respectively
measure temperature and pressure of mould cavity, which are critical param-
eters for the Pressing activity: in fact, production quality may be affected
if pressure is out of specification. It has also to be noticed that different
machines related to the same activity may be equipped with different sets of
sensors (e.g., DC1 and DC2).

As depicted in Table 5, some sensors are not associated with a single
machine but with rooms/areas or groups of machines. For instance, the
anemometer is used to monitor the air speed of an entire subarea and evaluate
if there are draughts that may have negative effects on Powder Coating. In
some areas, several environmental sensors are placed with the purpose of
obtaining more accurate measurements.

Both sensors equipped on machines and environmental sensors are con-
nected to the Internet. For what concerns the IoT architecture, it is possible
to identify three main components:

• sensors : there are environmental sensors and sensors equipped on ma-
chines. Each sensor collects data at a certain sampling frequency and
sends them to the IoT Gateway through the Internet;

• IoT Gateway : the gateway receives raw data from sensors and performs
a series of preprocessing operations;
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Table 4: Mappings among activities and sensors on industrial machinery (excerpt).
Activity Machine Sensor Measure

Die Casting

DC1

position transducer position of the mould
thermometer temperature
pressure sensor oil pressure
force sensor clamping force

DC2
thermometer temperature
pressure sensor oil pressure
force sensor clamping force

Pressing
PR1

thermometer temperature
pressure sensor pressure of mould cavity

PR2
thermometer temperature
pressure sensor pressure of mould cavity

Washing WA1
pressure sensor water pressure
surfactant sensor concentration of degreasing agent

Deburring DE1
position transducer position of workpiece
force sensor deburring force

Plating PL1 paint thickness meter coating thickness

Polishing PO1 rotational speed sensor rotational speed

Assembly AS1
position transducer position of pieces
force sensor assembly force

Powder Coating PC1
paint thickness meter coating thickness
torque sensor motor torque

Material Recovery MR1 – –

Quality Check QC1 roughness meter surface roughness

Packaging PA1 precision scales weight

• cloud storage: data are stored in a cloud database.

More in detail, the pre-processing phase is needed since sensor data are
heterogeneous, as different sensor typologies produce different types of data
(e.g., an accelerometer produces a terne of values while a thermometer only
one). At the end of the above phase, sensor data related to the same physical
quantity are transformed into a common schema and are then sent to a
cloud database, where they are stored for further analysis. An example
of preprocessed sensor data related to temperature is reported in Table 6:
timestamps are converted to a common format and each measurement is
associated with the location of the temperature sensor, on the basis of the
mappings defined in Table 5.

Although the company collects large amounts of manufacturing data us-
ing sensors, some types of analysis are extremely difficult to perform without
integrating information related to sensors, processes, environments and KPIs.
For instance, in case of production defects, it would be very useful to analyze
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Table 5: Mappings between buildings and environmental sensors.
Location Sensor type Sensor Measure

1/A/1/1 thermometer T1 air temperature

1/A/1/1 thermometer T2 air temperature

1/A/1/1 hygrometer H1 relative humidity

1/A/1/2 thermometer T3 air temperature

1/A/2/1 hygrometer H2 relative humidity

1/A/2/1 anemometer A1 air speed

. . . . . . . . .

Table 6: Example of sensor data related to temperatures
Location Sensor Timestamp Temperature

2/A/1/2 T6 2021-07-14 15:31:42.128 25.4

1/A/1/1 T1 2021-07-14 15:31:42.333 31.1

1/A/1/1 T2 2021-07-14 15:31:42.667 31.3

2/A/1/1 T5 2021-07-14 15:31:42.698 25.4

1/A/2/1 T4 2021-07-14 15:31:43.001 31.2

2/A/1/1 T5 2021-07-14 15:31:43.128 25.3

2/B/1/2 T7 2021-07-14 15:31:43.252 23.9

1/A/1/2 T3 2021-07-14 15:31:43.336 31.5

backwards the entire process in order to find any anomalies in sensor mea-
surements. In fact, if a production defect is found during the quality control
phase, it is possible to identify the cause by evaluating, for example:

• the temperatures measured during the Die Casting activity: a too low
or too high temperature can affect the quality of die casting;

• the position of workpiece during the Deburring activity: a wrong posi-
tion may lead to inaccurate deburring;

• the air speed measured by the anemometer during the Powder Coating
activity: high speeds could indicate draughts, which may interfere with
the painting activity.

4. Layered framework

In this section we discuss how information (or “knowledge artifacts”) in
the IIoT is categorized based on its typology and the object it represents.

Firstly, we recognize two main perspectives that are intertwined in the
IoT environment, namely focusing on processes and sensors:
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• the process perspective focuses on the definition, planning and execution
of business processes, including all the process-related information;

• the sensor perspective focuses on the characterization of sensors and
their deployment on machines or in the environment. The perspective
includes information related to the configuration of sensors and their
observations, corresponding to retrieved values.

Performance indicators for the process perspective are typically aimed to
measure quantitative parameters related to the whole execution of a process
instance, to a given sub-process or even to single activities. For instance, the
Cycle time measures the end-to-end time needed to complete a (sub)process,
while the Number of defective products aims to measure how many defective
products are identified out of the total amount of manufactured ones for a
given (sub)process or activity. Conversely, indicators related to sensor obser-
vations correspond to (or are derived from) the physical parameters that are
monitored. These are typically low-level simple metrics, such as temperature
or relative humidity. Such indicators are typically not associated to specific
processes, although the value of the monitored parameters may significantly
affect some process phases. To make an example, in the wood industry, rela-
tive humidity levels should range from 55% to 60%. Levels below 40% reduce
the moisture content in the wood and may lead to variations in its size (such
as shrinking or swelling, warping and cracking), which may be irreversible.

The two perspectives are further described in terms of layers, according
to the goal of the representation:

• the design layer includes all knowledge artifacts related to the defini-
tion of a process model (e.g. BPMN, UML, Petri net diagrams) and
the detailed description of sensors, including their characterization in
terms of typology, input/output, capabilities, machine in which they
are deployed, specific organization environment. The layer manages
information that is considered to be stable across multiple executions.

• the planning layer focuses on the description of the schedule for a
given process instance. This includes information on what activities are
planned to be performed at a given time, on a given (set of) machine(s)
and by whom. Additional information related to the specific production
output are included, depending on the process type.
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Figure 2: Layers and perspectives.

• the execution layer includes the event log, which contains information
on past executions of a process instance and the related observations,
i.e. the monitored values from the sensors. This layer includes dynamic
information which is related to the specific executions.

Figure 2 outlines the relationships between perspectives and layers. In the
following, we detail some relevant knowledge artifacts for the different layers.

4.1. Process models

A process model is a description of a process in terms of business activities
to be performed and the flow among them in the organization. Although its
primary use is descriptive, i.e. to document the current flow of activities
in order to track what happens, process models can serve further purposes,
including defining prescriptions, namely to establish what steps can/must be
taken and under what circumstances.

A process modeling language, such as BPMN, provides the terminology
and the rules for defining activities and their relations in the process. In more
detail, a BPMN model, as shown in Figure 1, is expressed as a diagram in-
cluding a set of graphical elements. Among them, activities represent atomic
activities or sub-processes and are represented as rounded-corner rectangles.
They are connected through a connection, such as sequence or message flow,
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to other activities or to diamond-shaped gateways, which determine forking
and merging of paths based on the expressed conditions, e.g. parallelism
or exclusive choice. Events are shown as circles and are used to represent
something that happens, such as the start or the end of a process, while swim
lanes are a visual mechanism of organising and categorising activities, based
on cross functional flowcharting.

Other languages, such as Petri Nets or process automata, are character-
ized by a mathematical formalization and a lower-level notation.

4.2. Process scheduling

For a given process, a scheduling refers to the detailed planning of the
activities to be performed for a particular process instance. A scheduling
typically includes an identifier of the corresponding production order, along
with a set of information for each scheduled activity, such as the following:

• the resource in charge for performing the activity (hereby including
both machines and employees);

• the number and type of items that will be taken as input for being
processed by the activity;

• the number and type of items that will be produced as output;

• the expected starting and ending date and time of the scheduled activ-
ity.

4.3. Event log

Today, all enterprise information systems, including ERPs, CRMs, or
workflow management systems, have the capability to collect information
on process workflow events, which are typically related to specific activities.
The term event log refers to such a detailed record of events about a business
process, typically represented through accepted standards such as XES. An
event log can be viewed as a multi-set of traces, where each trace describes
the execution of a particular process instance as a totally ordered sequence
of recorded events. Events typically refer to the starting or the ending of an
activity, with further information including the resource (i.e. the person or
the machine) which initiated or executed the activity, the timestamp of the
event and possible data elements recorded with the event, such as the size
of the order, the number of input parts processed or output parts produced.
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Performance indicators, or KPIs, are typically recorded as well in event logs,
to keep track of the cost of an activity, or of some other quantitative measures
like the number of defective products that are discarded after performing the
activity.

In many real-world settings, obtaining an event log from (often legacy)
information systems inside the organization is however far from being trivial.
Event data may indeed come from a wide variety of sources, such as database
systems, transaction logs (e.g., a trading system), business suites/ERPs, mes-
sage logs (e.g., from IBM middleware), but they are rarely recorded explicitly.
Methodologies and guidelines on how to produce event logs from a relational
database have been proposed, e.g., in [40], starting from the assumption that
events leave footprints by changing the underlying database. In other ap-
proaches, such as [41], a framework is aimed to support domain experts in
the extraction of XES event log information from legacy relational databases,
by relying on a conceptual representation of the domain of interest in terms
of an ontology.

4.4. Domain-specific configuration

Domain knowledge on the configuration of the industrial settings is use-
ful to effectively and correctly interpret and analyse information on process
execution and sensor observations.

To provide a spatial context to tasks executed in a process and values re-
trieved by sensors, information on how the enterprise is physically structured
is needed, in terms of environments and sub-environments. In this way, the
physical space of the enterprise is represented hierarchically and in a struc-
tured way, enabling to describe the location of a given space, e.g. a room,
within the building in which it is located. IoT resources, i.e. industrial ma-
chines/platforms, are characterized in terms of the type of activity they can
perform (e.g., die casting, pressing, washing), where they are located in the
enterprise premises and the set of sensors they host. Finally, information on
sensors includes the types of measures (e.g. temperature, relative humidity)
they can provide, technical details on their functioning and where they are
deployed. We assume sensors can be either installed on a machine or directly
in the enterprise environment. The former case refers to sensors that provide
information on how a machine operates during a process, e.g., to monitor
the position of a work piece or the rotational speed of a motor. The location
of the sensor is therefore dependent on that of the platform hosting it. The

15



latter type of sensors, on the other hand, is useful to monitor parameters of
the environment where some activities of the process are executed.

4.5. Sensor observations

An observation produced by a sensor corresponds to a detected value of
a measurement, taken at a given time. As such, depending on the sampling
frequency of the sensor, multiple observations could possibly be produced by
a sensor during an executed task. Both the value and the type of measure
need to be stored along with further information such as the unit of mea-
surement and the aggregation function. This last is meant to represent the
specific mathematical function (e.g., sum, average, min, max) that can be
applied to aggregate multiple values of the measure, i.e., multiple observa-
tions. As an example, all the observations related to a thermometer sensor
hosted by an machine for a particular task can be aggregated through the
average function to derive the average temperature that was observed during
the execution of such a task.

5. A model for IIoT

This section is devoted to discuss a model for Industrial IoT. The model
is able to completely represent the knowledge artifacts introduced in the
previous section and highlight the relations among them. It is represented
as an ontology which reuses and integrates, according to the best practices
in ontology engineering, a number of existing ontological models:

• Semantic Sensor Network (SSN) [17] and Sensor, Observation, Sample,
and Actuator (SOSA) [18] ontologies for the representation of sensors,
their capabilities and related platforms;

• DogOnt [42] for the representation of smart environments;

• KPIOnto [43] for the representation of measures;

• Event ontology [44] for the representation of event logs.

We report in Table 7 the prefixes and the corresponding namespaces for the
imported ontologies.

In addition to existing ontologies, we introduce a further module, the
Business Process Ontology, for the representation of process models. Finally,
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a set of classes and relations have been defined to build the bridge ontology
capable to provide the needed connections among the different modules.

In the following, we summarize the most relevant details for each of them
and discuss the integration strategy.

Ontology Prefix Namespace
Semantic Sensor Network ssn http://www.w3.org/ns/ssn/
Sensor, Observation, Sample,

sosa http://www.w3.org/ns/sosa/
and Actuators

DogOnt dog
http://iot-ontologies.github.io/dogont/
documentation/index-en.html

KPIOnto kpi http://w3id.org/kpionto/
Business Process Ontology bpo https://kdmg.dii.univpm.it/iot/ontology/bpo/
Event ontology onp http://onprom.inf.unibz.it

Table 7: Prefixes and namespaces for the imported ontologies.

5.1. Semantic Sensor Network (ssn)

Semantic Sensor Network (SSN) [17] is an ontology aimed to describe
sensors in terms of capabilities, measurement processes, observations and
deployments. The ontology is conceptually divided into a set of modules and
includes 41 concepts and 30 object properties and an alignment to DOLCE-
UltraLight (DUL) upper level ontology is provided. The core is built around
a central ontology design pattern describing the relation between sensors,
stimulus and observations (i.e., the Stimulus-Sensor-Observation pattern).
In SSN, sensors (ssn:Sensor) are physical objects that observe, transform-
ing a stimulus into an output representation (ssn:SensorOutput). A sensor
follows (ssn:implements) a method that describes how it observes, e.g. to
measure air temperature, the sensor is placed 2m above ground and must
be protected from direct solar radiation. A sensor produces observations
(ssn:Observation) of a property (ssn:ObservationProperty), which specifies a
simple or more complex result (ssn:hasSimpleResult or ssn:hasResult) refer-
ring to a particular time (ssn:resultTime). Furthermore, a sensor is described
in terms of measurement properties (e.g., accuracy, detection limits, drift, fre-
quency, measurement range, precision, response time, resolution, sensitivity,
selectivity), describing its capabilities in various conditions.

Related concepts which are not sensor specific, such as the sensor location,
were left out of the ontology and can be described through suitable external
ontologies.
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5.2. Sensor, Observation, Sample, and Actuator (sosa)

The Sensor, Observation, Sample, and Actuator (SOSA) ontology [18] is
the result of rethinking the SSN ontology based on recent changes in technical
development and lessons learned over the last years. In particular, the re-
sulting ontology extends its scope beyond sensors and observations and also
considers actuators and sampling in a coherent framework with a flexible
representation. As such, we refer to SOSA classes for the representation of
sensors, observations and related properties. In particular, we represent sen-
sors through the class sosa:Sensor, which can be hosted on a sosa:Platform,
e.g. a smartphone is a platform typically hosting a number of sensors.

5.3. DogOnt (dog)

The DogOnt ontology [42] is aimed at providing an extensible model for
the representation of devices in a smart environment. It focuses on vari-
ous modeling aspects related to device capabilities, including low-level and
communication issues, configurations that it can assume, and the structure
of the environment where the device is deployed. As such, it can sup-
port a number of applications including reasoning on devices and integra-
tion of different technologies. In this work we refer to the DogOnt class
dog:BuildingEnvironment, which describes smart environments that can be
contained (dog:isIn) in other larger environments.

5.4. KPIonto (kpi)

KPIOnto is an ontology aimed to describe indicators and their properties
[43]. The main class is kpi:Indicator, and in this work we rely on a sub-
set of other classes and properties, including the kpi:BusinessObjective, the
kpi:AggregationFunction and the kpi:unitOfMeasure (specific units are to be
provided externally).

5.5. Business Process Ontology (BPO)

The Business Process Ontology is a lightweight core ontology we have de-
signed to provide the vocabulary describing BPMNmodels in terms of process
elements and relations among them. The ontology has been inspired by vari-
ous ontological models developed for the representation of process models in
different contexts, such as [24] and [25]. Its main class is bpo:ProcessElement,
which includes both bpo:Activity and bpo:Gateway (e.g., AND, XOR and OR
gateways) as subclasses. Activity is extended by subclasses bpo:Subprocess
(i.e., a part of the global process model which starts with and ends with
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a process element) and bpo:AtomicActivity. The control flow of the pro-
cess is described through the bpo:flows directly object property, which allows
to model a sequence between any two given process elements. Finally, a
bpo:Process consists of a number of process elements (bpo:consistsOf ).

5.6. Event ontology (onp)

An event ontology was developed to support ontology-based data access
to event log data in the context of the Onprom methodology [44]. This is
aimed to guide data and process analysts in the conceptual identification
of event data and their extraction from the Business Process Management
system of the organization.

The ontological model includes all the main concepts needed to represent
an event log: onp:Log, onp:Trace, onp:Event together with onp:Attribute. An
instance of attribute can have a key (onp:attKey), a type (onp:attType) and
a value (onp:attValue) as data properties.

As object properties, a log contains (onp:l-contains-t) one or more trace,
each of which in turn contains (onp:t-contains-e) one or more events. A
log, a trace or an event may have attributes, respectively though properties
onp:l-has-a, onp:t-has-a and onp:e-has-a. Further classes and properties are
defined for detailing the attribute types and possible extensions.

5.7. Integration strategy

The above-described ontologies have been integrated to provide a compre-
hensive model for the representation of an IoT-aware event log. To this aim,
a bridge ontology has been designed to provide the needed classes and proper-
ties capable to align the different ontological modules. As such, the resulting
ontology is equivalent to O ≡ Ososa/ssn ⊔Okpi ⊔Odog ⊔Obpo ⊔Oonp ⊔OBridge.
In the following, we refer to the prefix meta: to refer to the classes and
properties that have been defined in the bridge ontology. They are reported
below and are shown in Figure 3:

• IoTResource is a class which specializes sosa:Platform. Capabilities of
the IoT resource can specified through hasCapability as an Activity-
Type. This last describes the activities that can be performed inside
the organization. An IoTResource, as well sosa:Sensor, is locatedAt a
dog:BuildingEnvironment.
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Figure 3: Integrated ontological model.

• Task is a generalization of two subclasses, namely ScheduledTask and
ExecutedTask, to manage the representation of both a scheduled pro-
cess or an event log related to a particular executed instance. A task is
scheduled/executed on a given IoT resource (onIoTResource) and refers
to a specific bpo:Activity of the process model. A task refers to the cor-
responding event through the toEventComplete property and has the
start and complete properties representing the timestamp in which it
starts and ends. Furthermore, the task is linked to the causally fol-
lowing task in the same schedule/trace through the nextTask property,
following the approach that will be described in the next section.

• Result is a class representing a measure that is recorded in the log
and refers to a task or a trace, e.g., the number of defective products
that is measured after certain activities are performed. A result has a
Measurement type and a specific value.
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• Trace is a subclass of onp:Trace and is linked to the particular bpo:Process
through the inProcess property.

• Measurement is defined as a subclass of kpi:Indicator, and in turn it
extends sosa:ObservableProperty. It represents observable properties
that are directly measured by a sensor or refer to tasks and traces.

The final ontological model is hence capable to overall represent (i) the
process and (ii) the sensor perspectives. As for the former, this is achieved
by defining a process model and its relations with the related scheduling and
executed process instances. The scheduling and the event log are represented
through the same approach, i.e. as a Scheduled/Executed trace including
a set of scheduled or executed events. Each event is in relation with the
particular scheduled/executed activity in the process model, and with the
IoT resource which is in charge of its execution (in case of a scheduled event)
or has eventually executed it (in case of an executed event).

As for the sensor perspective, the ontology includes information on the
domain configuration, in terms of IoT resources that are located at specific
places in the organizational environment and may include a number of sensors
onboard, which are characterized in terms of observable indicators and all the
observations that have been collected over time. Each observation implicitly
refers to a given executed event which in turn refers to a particular process
instance. This link can be derived by comparing the observation to the event
timestamps, as discussed more in detail in the next section.

6. Process-aware IIoT Knowledge Graph construction

The ontological model discussed in the previous section represents the
vocabulary for the definition of the Process-aware IIoT Knowledge Graph,
which is represented as an RDF graph including all the knowledge artifacts
belonging to the layers from the perspectives introduced in Section 4. While
some of the artifacts, e.g., the process model, can be directly mapped to
corresponding classes and properties in the ontological schema, some others,
such as the event log and the observations, require proper care for adapting
them to the ontological structure, deriving hidden information or performing
data cleaning. In the following, we describe the methodology followed for
the representation of the event log and the observations.
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Figure 4: Minimal life-cycle model.

6.1. Representation of the event log

In this work, we assume that the event log contains a recording of multiple
events related to each activity in a process. This corresponds to the notion
of life-cycle of activities in the XES format for the encoding of event logs,
which is a transactional model including all the possible states of an activity.
The XES format describes a standard life-cycle model which includes, among
others, the state “start” when the execution of the activity commences, and
“complete” when it ends. Possible further states include “suspend” if the
execution is paused, “resume” if it restarts. In Figure 4 a subset of the
standard life-cycle model is shown. The gray box represents the state in which
the activity is running. As a minimal assumption, in this work we consider
event logs including two events for each activity, namely about the “start”
and the “complete” life-cycle transitions. As a consequence, given the two
timestamps of such events, we assume the corresponding activity is running
between them. To make an example, let e1 be an event related to the “start”
life-cycle transition of activity Polishing, while e2 is the event corresponding
to the “complete” transition of the same activity. If the timestamps of e1
and e2 are respectively “2022-07-20T11:30:10” and “2022-07-20T11:36:30”,
then the activity ran for 6 minutes and 20 seconds.

Representing the event log in the ontological model is however not al-
ways straightforward. In fact, the event log includes only linear traces of
events, where each trace is about a particular process instance. If the pro-
cess model is linear as well, e.g., only includes sequences between activities,
then the translation is simple. On the other hand, if the process includes
parallel branches, then from a linear trace it is not immediately possible to
determine the correct sequence of execution. Indeed, it may happen that two
directly following events actually belong to activities on separate branches.
For this reason, the causal relations among events need to be identified by
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comparing the trace against the process model. For doing so, we rely on
the approach discussed in [45], which is aimed to make causal relations be-
tween events in a trace explicit. This is done by translating a trace in an
instance graph [46], where nodes represent events of the trace, while each
edge represents a direct succession between two events, such that a causal
relation among the corresponding activities holds. As a result, for each pair
of “start” and “complete” events e1 and e2 in a trace, an instance of the class
ExecutedTask is created in the Knowledge Graph, linked to the “complete”
event e2 through the completeAt property. Such an instance of executed
task also has a property start equal to the timestamp of the event e1, and
a property complete with a value equal to the timestamps of event e2. The
instance is then linked to the causally following ExecutedTask through the
property meta:nextTask. Information on the process activity scheduled/exe-
cuted and the particular related resource are available in the corresponding
event as attributes. As such, a property meta:activity is added to link the
task at hand to the proper instance of bpo:Activity. Similarly, a property
meta:onIoTResult is added between the task and the related IoTResource.
Finally, values of possible measurements that are related to the event are ex-
plicitly represented as instances of the meta:Result class, which includes the
value and the type of measurement (as an instance of meta:Measurement).

6.2. Linking observations to the event log

An observation produced by a sensor is characterized by at least a value
related to a certain ObservableProperty that is detected at a particular times-
tamp. As such, sensors produce only simple information which is not corre-
lated to contextual information available in the environment. However, as a
requisite for a correct and meaningful analysis of processes, in case of sensors
deployed on a machine it is necessary to map each observation to the specific
executed activity (and corresponding events) during which it was generated.
To derive this information it is needed to determine: (1) the platform on
which the sensor is deployed, (2) the executed task that took place on such
a platform, such that the timestamp of the observation is included between
the values of its start and complete properties. Given an observation ⟨obs⟩,
the following SPARQL construct query creates the triple to link it to the
executed task related to the activity on which it has been observed, by per-
forming a comparison of the temporal instants in which the task and the
observation are recorded.
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CONSTRUCT <obs> meta:observedOn ?e

WHERE {

<obs> a sosa:Observation;

sosa:resultTime ?t;

sosa:madeBySensor ?s.

?s sosa:isHostedBy ?p.

?e a meta:ExecutedTask;

meta:onIoTResource ?p;

meta:start ?start;

meta:complete ?complete.

FILTER (op:dateTime-less-than(?start,?t)).

FILTER (op:dateTime-greater-than(?complete,?t)).

}

In particular, given the observation ⟨obs⟩ taken at timestamp t, at first the
platform p is retrieved. An executed task e is then found so that the values of
its start and complete properties are such that start < t < complete. A sim-
ilar query is built for sensors which are deployed directly in the environment
and are not hosted by any IoT resource. In this case, the observation will be
linked to all tasks that were running when the observation was recorded.

6.3. Discussion

To end this section, we briefly discuss the feasibility of the Knowledge
Graph creation and maintenance. First of all, we observe that the approach
requires the availability of information in digital format. Some may be un-
available but easily manageable because limited in volume and relatively
stable. This category includes information on the layout of the factory, on
the machines and their capabilities, on the sensors, their characteristics and
positioning. Other information of a more dynamic nature can be easily ob-
tained from information systems capable of producing data about production
scheduling and process executions (event logs), whilst the observations pro-
duced by the sensors are clearly available in an IIoT context. Explicit process
models instead may often be not available. The adoption of an approach such
as the one proposed could trigger greater attention towards business process
modelling, but in any case, the availability of event logs allows to resort to
process mining techniques in order to discover process models from past ex-
ecutions. The previous sections also explain how dynamic data can be easily
linked in the Knowledge Graph automatically or with minimal user effort.
It is to be noted that the proposed model is able to handle both conformant
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and non-conformant traces. The former refers to traces that adhere to the
process model, while in the latter exceptions or deviations from the process
model occur. Conformance issues at production level can be considered less
relevant than in management processes, given its routine nature, but they
cannot be excluded. For this reason, in the paper we adopt the notion of
instance graph to determine the causal relations between executed tasks and
adopt a method for the construction of instance graphs that is robust with
respect to non-conformities.

7. Graph exploration and analysis

In this section, we discuss how the model can be exploited for querying
and explorating the Process-aware IIoT Knowledge Graph. The function-
alities hereby described are aimed to define the query for extracting and
analysing data under a set of user conditions.

The graph includes two different types of quantitative measures that can
be analysed, namely those produced by sensors, which are described through
instances of the class ObservableProperty (e.g., “Temperature”), and those
attached to tasks and traces, which directly refer to the class Measurement
(e.g., “Elapsed time”, “Number of defective products”, “Power consump-
tion”). Such two typologies are different in the level of granularity at which
they are expressed. The former refers in fact to single observations performed
by sensors, hence they are atomic in nature. On the other hand, the latter
refer to tasks or to whole traces. In some cases, it may be possible to ag-
gregate observable properties from the level of sensor observation to the task
level, e.g., by aggregating all observations recorded during a task. In turn,
measures at the task level may be aggregated up at the trace level, e.g., by
summing up the power consumption for all tasks of a trace.

Measures can be analysed and aggregated along different perspectives,
which represent the focus of the analysis. For instance, if the analysts is
interested in what is happening in a given room, sensors deployed in such a
room (and observations thereof) could be considered. Likewise, if the focus is
on a specific trace, the analysis may access measures about the tasks in such a
trace, or, again, the observations recorded during its execution. Considering
the Knowledge Graph and all the artifacts represented therein, a number
of possible analysis dimensions can be considered: process model, process
scheduling/execution, IoT resources, activity types, environments.
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As such, an analogy with multi-dimensional analysis can be easily done.
However, the graph data structure we refer to in this work is such that the
extension of OLAP operations (e.g., slice and dice, roll-up/drill-down) to this
case is not always straightforward, as several authors point out, e.g., [47, 48].

As a remarkable feature, the graph structure is such that the relations
among dimensions are represented explicitly. To make an example, given
a specific environment, such as a warehouse, the activity types that are
meaningful to consider are only those that can be performed by resources
located there. The same holds for the executed tasks, the sensors and the
observations that can be considered. As a further consideration, dimension
hierarchies are defined only dynamically, by considering the actual relations
among instances. For instance, starting from a given environment, it is pos-
sible to focus the analysis on sub-environments by following the isIn relation.
Otherwise, by starting the analysis on a process model, any part of it (e.g., a
sub-process) could be considered to deepen the analysis. This interconnect-
edness can be exploited to make the exploration of the graph, and therefore
the analysis of measures, intrinsically more flexible and dynamic, by enabling
the user to move from one dimension to another, at the same time constrain-
ing the set and types of dimensions that can be meaningfully analysed.

For technically skilled user, exploration and analysis can be performed by
directly querying the graph. In such a way, all the expressivity of the query
language can be exploited to select, filter, group and aggregate information
combining dimensions in any possibly valid way. Less experienced users can
take advantage of a guided procedure for setting up the analytical task. An
analytical task on the graph requires the execution of a SPARQL query which
extracts the information of interest. Formally, a SPARQL query is a tuple
(DS,R,GP, SM) where:

• DS is an RDF Dataset;

• R is a result form;

• GP is a graph pattern;

• SM is a set of solution modifiers.

In this work, we assume DS is the RDF serialization of the IIoT Knowledge
Graph, while R is the SELECT modifier, which enables to specify the target
result. For what concerns GP , the graph pattern of the query is generated
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from the general pattern shown in Appendix A, capable to match the whole
graph. Such a basic graph pattern is then constrained through a set of
filtering conditions allowing to specify dimensions, measures of interest and
grouping attributes, as described in the following:

1. selection of the analysis dimensions : this operation is conceptually
equivalent to the identification of the subgraph of interest from the
larger Knowledge Graph. The operation is done by setting constraints
to the starting graph pattern;

2. selection of the measure to be analysed, which involves setting a con-
dition to further constrain the graph pattern;

3. application of grouping : a grouping condition is expressed and added
to the graph pattern.

Finally, the SM , namely the solution modifiers which represents the part
related to projection, includes the grouping attribute(s) and the application
of the aggregation operator on the chosen measure. The following subsections
discuss more in detail the steps for query building.

7.1. Graph and subgraph selection

As shown in Appendix A, the basic graph pattern does not constrain the
target list, showing all the variables defined in the body. As for the WHERE
part, the query defines the generic pattern which extracts all the information
which may be analysed. In the following, we refer to such a basic graph
pattern as GP .

The subgraph selection step is aimed to add constraints to GP to extract
the sub-part of the graph which is relevant according to some user requests.
A request is expressed as a condition over a dimension, hereby represented as
a class, e.g., Process, Trace, Task, IoTResource, Environment, Sensor. The
condition may be as simple as a filtering condition, which imposes that only
a particular instance of the class (or a set thereof) should be considered,
e.g., only a specific environment or specific trace of a process. More complex
conditions can however be expressed, e.g., tasks that happened within a
temporal window.

The function constrainGraph(GP ,type,condition) takes the query pat-
tern GP , a class type, a condition as input, and returns a graph pattern GP ′

which includes the specified constraint. In more detail, the function adds a
FILTER condition to the graph pattern which limits the possible values that
a certain variable can take. Each variable in the input pattern GP is bound
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to a given type, e.g. ?environment is a variable representing instances of
class dog:BuildingEnvironment. As such, the function retrieves the proper
variable depending on the type, and generates the full FILTER condition as
follows:

FILTER (?variable <condition>)

To give an example, if the condition requires that the environment should be
ex:warehouse, the condition would be written as: FILTER (?environment

= ex:warehouse). The function can be executed multiple times in case more
than one constraint needs to be expressed.

7.2. Measure selection

Once the subgraph of interest has been identified by the graph pattern
GP ′, the function getMeasures() allows to list all the available measures.
The function is implemented through SPARQL queries which return the in-
stances available in the graph for (i) the class ObservationProperty, for mea-
surements related to sensors, or (ii) the classMeasurement, for measurements
related to tasks and traces. Hereby, we show the latter query for measure-
ment related to tasks:

SELECT distinct ?task_measurement

WHERE {

<Q’>

}

Once a measure <measurement> has been chosen by the user, the func-
tion addMeasure(GP ′,measurement) updates the graph pattern in order to
include a further filtering condition, which binds the proper variable to the
chosen measurement. We show such a condition for a chosen <measurement>

related to tasks:

FILTER (?task_measurement = <measurement>)

As a result, the function returns the updated graph pattern GP ′′.

7.3. Grouping

Given a graph pattern GP ′′ and a set of classes {type1, . . . , typen}, the
function groupBy(GP ′′,{type1, . . . , typen}) returns a graph pattern includ-
ing, for each grouping type typei, a grouping condition on the variable for
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such a type. In order to make the target list compliant with the SPARQL
specification, all attributes shown in list must be grouping attributes or at-
tributes on which some aggregation is performed. For this reason, also the
variable specifying the name of the measurement is added to the groupBy()
function. As a result, the final graph pattern GP ′′′ is produced.

7.4. Target list definition

Given a graph patternGP ′′′ and a chosen measurem, the function project
returns a target list including the needed variables. The behaviour of the
function is different depending on whether a grouping has been performed
or not. If so, the function is called as project(GP ′′′,m): the target list will
include a variable for each grouping attribute and a variable for the measure
m, aggregated by its aggregation function. Conversely, the function is called
as project(GP ′′′, {type1,. . .,typen}). Since there is no grouping attribute,
the target list will include, for any class typei, the corresponding variable.

Once all the components have been set, the final SPARQL query is built
as a SELECT query with the target list defined by this last step, and a graph
pattern obtained after the grouping step.

7.5. Applications to the case study

This section is aimed to discuss some applications of the approach to the
case study presented in Section 3. The reported queries are representative of
the diverse types of analysis of interest and show how the proposed model,
together with the availability of a query language, enables powerful analyses
on the IIoT Knowledge Graph.

Let us suppose the user aims to check whether the position of workpieces
during the Deburring activity was nominal or not on trace number 554.
Through a set of filters, the query fixes the activity type, the trace and the
observational properties of the sensor that are related to the three positional
dimensions. Finally, the average position is shown by grouping the observa-
tions by task and resource, in case multiple machines were involved for the
activity.

SELECT ?task ?resource ?obsProp

(AVG(?obs_simpleResult) as ?value)

WHERE {<Q>

FILTER (?activityType = :deburring).

FILTER (?trace = :trace554).
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FILTER (?obsProp = :pos_workpiece_x ||

?obsProp = :pos_workpiece_y ||

?obsProp = :pos__workpiece_z).

}

GROUP BY ?task ?resource ?obsProp

As a second example, the user detects an unexpectedly high number of
defective products after the Powder Coating activity performed on 2022-07-
20. He/she decides to check the measured values for air speed in the room,
as high values are likely to interfere with the painting activity.

The following query sets a number of conditions: the analysis focuses on
Tasks performed on the given date in the time range 11:30 - 15:30 and the
activity type must be Powder Coating. Then, she decides to show values of
the air speed grouped by environment, resource and task. Indeed, more than
one machine may have been used for the activity, in different environments
and traces.

SELECT ?environment ?resource ?task ?obsProp_env

(AVG(?obs_env_simpleResult) as ?value)

WHERE {<Q>

FILTER (?activityType = :powder_coating).

FILTER (?start > "2022-07-30T11:30:00" &&

?end < "2022-07-30T15:30:00").

FILTER (?obsProp_env = :air_speed).

}

GROUP BY ?environment ?resource ?task ?obsProp_env

As a further example, let us suppose that, for trace number 908, the
quality check identified some defective products so that a second iteration of
the process has been performed. The user wants to analyse the differences
of pressure of the mould cavity as recorded by pressure sensor hosted by the
press machine (possibly a different machine in the two iterations). This can
be easily performed by the following query

SELECT ?obs_time ?resource ?obs_simpleResult

WHERE {<Q>

FILTER (?trace = :trace908).

FILTER (?activityType = :pressure).

FILTER (?obsProp = :pressure_of_mould_cavity).

}

ORDER BY ?obs_time

30



In this case, no aggregation is needed as all available values are shown. Hence,
the user is free to choose the attributes in the target list from those available
in the graph pattern.

8. Conclusions and future work

The paper discussed a semantic approach for the integration of data
streams coming from the field in the context of Industrial Internet of Things,
providing a more comprehensive view of systems and supporting analytic
tasks. The novelty of the approach is given by the process perspective taken
in the conceptualization of the ontology and the related Process-aware IIoT
Knowledge Graph, which allows to bridge the abstraction gap between raw
sensor data and manufacturing activities. The proposal is enriched by a
methodology for the building and management of the Knowledge Graph,
and a framework for querying the graph that allows to easily perform data
integration and powerful analyses of interest.

Future work will be devoted to design a comprehensive evaluation of the
approach on a real case study and to study the application of the approach on
relevant issues in the Industry 4.0 domain, like the analysis of data quality,
the discovery of anomalies, and the monitoring and optimization of opera-
tions. As a conceptual issue, it will be interesting to study aspects related
to the evolution of production, especially those related to changes in process
models.
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Appendix A. Basic graph pattern

#Task

?task a meta:Task;

meta:start ?start;

meta:complete ?end.

meta:nextTask ?nextTask;

meta:hasResult ?task_result;

meta:onIoTResource ?resource;

meta:activity ?processElement;

meta:toEventComplete ?event.

?task_result a meta:Result;

meta:measurementType ?task_measurement;

meta:hasValue ?task_result_value.

?task_measurement a meta:Measurement;

kpi:hasAggregationFunction ?task_measurement_aggFunction;

kpi:unitOfMeasure ?task_measurement_unit.

#Trace

?trace a meta:Trace

onp:t-contains-e ?event;

meta:hasResult ?trace_result;

meta:inProcess ?process.

?trace_result a meta:Result;

meta:measurementType ?trace_measurement;

meta:hasValue ?trace_result_value.

?trace_measurement a meta:Measurement;

kpi:hasAggregationFunction ?trace_measurement_aggFunction;

kpi:unitOfMeasure ?trace_measurement_unit.

#Process

?process bpo:consistsOf ?processElement.

?processElement bpo:flows_directly ?next_processElement.

OPTIONAL {?processElement a bpo:Activity;

meta:hasType ?activityType.}.

#IoTResource

?resource a meta:IoTResource;

meta:locatedAt ?environment;

meta:hasCapability ?activityType.
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#ActivityType

?activityType a meta:ActivityType.

#Environment

?environment a dog:BuildingEnvironment.

dog:isIn ?larger_environment.

#Sensors

?sensor a sosa:Sensor;

sosa:isHostedBy ?resource;

sosa:observes ?obsProp.

?obsProp kpi:hasAggregationFunction ?obsProp_aggr_func;

kpi:unitOfMeasure ?obsProp_unit.

?obs a sosa:Observation;

sosa:madeBySensor ?sensor;

sosa:resultTime ?obs_Time;

sosa:observedOn ?task.

OPTIONAL {?obs sosa:hasSimpleResult ?obs_simpleResult.}.

OPTIONAL {?obs sosa:hasResult ?obs_result.}.

OPTIONAL {?sensor_env meta:locatedAt ?environment;

sosa:observed ?obsProp_env.

?obsProp_env kpi:hasAggregationFunction ?obsProp_env_aggr_func;

kpi:unitOfMeasure ?obsProp_env_unit.

?obs_env a sosa:Observation;

sosa:madeBySensor ?sensor_env;

sosa:resultTime ?obs_env_Time;

sosa:observedOn ?task.

OPTIONAL {?obs_env sosa:hasSimpleResult ?obs_env_simpleResult.}.

OPTIONAL {?obs_env sosa:hasResult ?obs_env_result.}.

}.
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