

UNIVERSITÀ POLITECNICA DELLE MARCHE Repository ISTITUZIONALE

FTIR spectroscopy for determination of the raw materials used in wood pellet production

This is the peer reviewd version of the followng article:

Original

FTIR spectroscopy for determination of the raw materials used in wood pellet production / Toscano, G.; Maceratesi, V.; Leoni, E.; Stipa, P.; Laudadio, E.; Sabbatini, S. - In: FUEL. - ISSN 0016-2361. -ELETTRONICO. - 313:(2022). [10.1016/j.fuel.2021.123017]

Availability:

This version is available at: 11566/297702 since: 2024-03-28T06:54:12Z

Publisher:

Published DOI:10.1016/j.fuel.2021.123017

Terms of use:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of copyrighted works requires the consent of the rights' holder (author or publisher). Works made available under a Creative Commons license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor's website for further information and terms and conditions. This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the published version.

1 FTIR SPECTROSCOPY FOR DETERMINATION OF THE RAW MATERIALS

2 USED IN WOOD PELLET PRODUCTION

- 3 Giuseppe Toscano^{1, *}, Vittorio Maceratesi¹, Elena Leoni¹, Pierluigi Stipa², Emiliano Laudadio²
- 4 Simona Sabbatini²
- ¹ Department of Agricultural, Food and Environmental Sciences D3A, Marche Polytechnic University, Via
 Brecce Bianche, I- 60131 Ancona, Italy;
- 7 ² Department of Science and Engineering of Materials, Environment and Urban Planning SIMAU, Marche
- 8 polytechnic University, Via Brecce Bianche 12, I- 60131 Ancona, Italy.
- 9
- 10 Keywords: biomass, infrared spectroscopy, densified solid biofuel, clustering analysis, ISO 17725 standards.

11

12 Abstract

13 The research investigates the possibility of distinguishing pellet wood fuels using infrared spectroscopy. It has been 14 applied Attenuated Total Reflectance - Fourier Transform InfraRed (ATR-FTIR) spectroscopy, deemed an analysis 15 technique appropriate for detecting the chemical composition of materials, to determine woody components make up 16 a wood pellet. Considering the large quantities of this solid biofuel on the market, it is necessary to guarantee the safety 17 and traceability aspects of the product, as its origin and source, in addition to the quality parameters indicated by the 18 ISO 17225-2 standards. In this study, a total of 98 samples of the most common wood used for European pellet 19 production, have been selected and collected. This set of samples include also materials coming from the wood industry, 20 as residues of the chemical process. Through clustering analysis Principal component Analysis (PCA) and Hierarchical 21 Cluster Analysis (HCA) techniques applied to spectroscopic analyzer data, it has been seen that ATR-FTIR results provide 22 information on wood pellet typology, hardwood and softwood, and pellet made by woody materials containing high 23 quantity of chemical products like glues.

24

25 **1. Introduction**

27 The European Union has recently proposed a new and stricter package of proposals fit for reducing net greenhouse gas 28 emissions by at least 55% by 2030 and aspires to world leadership in the fight against climate change. This recent 29 decision has also produced effects on the new targets for the share of renewable energy established by the Renewable 30 Energy Directive II, moving them from 32 to 40% by 2030 [1]. To fulfil the EU's climate and energy goals, the heating, 31 and cooling sector must sharply reduce its energy consumption and cut its use of fossil fuels [2]. Currently, this energy 32 sector contributes over 70% of energy consumption [3]. Half of the heat produced from biomass is consumed by the 33 residential and service sector (school, hospitals, hotels...) and this is also evident from the great number of small and 34 medium installations producing bioheat in Europe [3]. The contribution of solid biomass to the achievement of EU 35 objectives can be significant, especially from wood pellets whose production [4] has increased from about 12 million 36 metric tons in 2008 to 56 million metric tons in 2018. More than 27 million metric tons of wood pellets were consumed 37 in Europe in 2018, more than 45% of them for industrial purposes [5] mainly to produce heat for heating or process heat 38 [3]. The global pellet market is expanding and by 2050, is likely to exceed 60 Mt yr⁻¹ [6]. Primarily produced with the 39 residues of the wood processing chain, wood pellets are regulated by ISO 17225-2 and which currently identifies three 40 quality classes for domestic heating, A1, A2, B, and three industrial-type classes (I1, I2, and I3). In Italy, class I4 has 41 recently been defined by means of UNI / TS 11765: 2019. It is important to point out how the regulations have helped 42 to support the growth of this fuel in the past years by ensuring the achievement of high-quality levels also through 43 certification schemes and correct environmental performance [7]. The quality classes defined in the technical 44 specifications establish the maximum and minimum levels of physico-chemical parameters and the origin and source of 45 the material based on hierarchical classification made in ISO 17225-1. The latter, in addition to implicitly conditioning 46 the quality level of the pellet, differentiating the type of wood (eg wood from whole trees with our without roots, wood 47 with or without bark, wood from gardens vineyard, and so on ...) also signals the presence of matrices not allowed by 48 the legislation of some countries. For example, in Italy the chemically treated wood by-products, residues, fibers and 49 wood constituents (1.2.2), referring to the residues of wood processing residues, namely glue-laminated wood, oriented 50 strand board (OSB), plywood, and chipboard [8], and used wood (1.3) are not allowed as fuel biomass for powering 51 domestic systems. Finally, the knowledge of the origin and source of the solid biomass contributes on evaluating the 52 traceability and sustainability of the pellet or in general of solid biofuel. Currently, this information is always declared 53 by the pellet manufacturer and cannot be detected through a simple visual evaluation as the starting raw material is

54 deconstructed through grinding during the pelletizing process, thus losing the macroscopic characteristics of the original

55 product. Traditional methods of recognizing woody materials are based on costly and time-consuming analysis 56 techniques, such as scanning electronic microscopy (SEM). However, methods of analysis using infrared spectroscopy 57 have been proposed for some years [8, 9 and 10]. Particularly, NIR spectroscopy has been introduced as a promising 58 method for the prediction of wood properties. This technique is a sample task with no chemical destruction and easy 59 preparation of samples [11-13] Many studies have already suggested the use of time-saving analytical models based on 60 NIR spectroscopy. This allows moisture, cellulose, lignin, and extractive contents in wood or biomass to be measured 61 automatically [14-15] It was demonstrated that the FT-NIR is sensitive enough to detect minor differences in the 62 chemical composition in trees of the same species, but growing in various locations [16] FT-NIR spectroscopy can be 63 considered valid pre-screening tool for analyzing large volumes of biomass, overcoming the sampling problem and 64 allowing a total quality control if used for industrial in-line applications [17]. Near infrared energy is strongly absorbed 65 by water molecules and corresponding OH bonds. NIR spectra of biomaterials may be dominated therefore by "water 66 peaks" at ~1450 nm and ~1890 nm, which is especially noticeable in samples with higher moisture contents. In that case 67 the spectrum contains only a few strong, broad absorption bands, masking peaks due to other wood constituents [18]. 68 Band assignments can be of particular importance in quality control, because control charting methods can be utilized 69 to determine when the process is out of control based on shifts in functional groups or principal components that 70 represent key functional groups [19-20]. Any shift in the functional groups could be an indication of a change in 71 feedstock quality. Mid Infrared Spectroscopy (MIR-FTIR) is now receiving increased attention because of the availability 72 of the ATR-diamond reflectance method that has made it possible for the spectra of solid samples to be acquired in 73 seconds. In addition, the peaks of FTIR spectra are more interpretable, resulting in easier qualitative analysis [21]. One 74 hurdle for using FTIR spectroscopy on solid wood samples could be the cellular orientation in wood and its effect on 75 reflectance, absorbance, and/or transmission of light [22]. Attenuated Total Reflectance - Fourier Transform InfraRed 76 (ATR-FTIR) spectroscopy is a valuable analytical tool, which let achieve relevant information on the chemical 77 composition of organic, inorganic and biological compounds, by analyzing the interaction between matter and the 78 electromagnetic radiation in the infrared range. This technique needs a very small amount of pure sample powder 79 (usually < 1 mg); it is based on the study of the evanescent wave generated by the incoming IR radiation at the 80 interface between the sample and a crystal with high refractive index. Unlike the other common techniques, FTIR-81 ATR spectroscopy does not require laborious sample preparation steps and the interpretation of the analysis is 82 rather simple [23].

The results of these works seem to be so comforting that a technical specification has been drawn up in Italy - UNI/TS (Solid biofuels - Guidelines for the determination of the quality by near infrared spectrometry) - which allows the determination of some properties of solid biofuels by NIRS. However, the application of near infrared spectroscopy still has room for improvement and requires the experience of specific applications. Therefore, the authors found it useful to evaluate the possibility of using mid-infrared spectroscopic analysis to recognize and characterize the woody raw material of pellets compliant with UNI EN ISO 17225-2. The research objectives concern the possibility of distinguishing softwood from hardwood pellets and untreated and chemically treated wood pellets.

90

91 **2. Materials and Methods**

92 **2.1 Sample Collection and Preparation**

In this study, a total of 98 samples of hardwood and softwood of the most common European species in the energy
pellet sector, have been selected and collected. The wood samples were classified as following: 23 virgin softwood,
3 laminated softwood, 61 virgin hardwood, 3 laminated hardwood and 8 chemically treated blends (Table 1).
The material was first of all stabilized at 45 °C for 24 h; in this way, all of the samples have reached the same
moisture content of 6–7%. Subsequently, the samples were ground by means of a cutting mill (model SM 2000,
Retsch), sieved below 0.25 mm, stored in plastic containers, and analyzed in medium infrared wavelength.

99

Table 1. Dataset of virgin (V), laminated (L) and chemically treated wood samples

Softwood	Data set	Hardwood	Data set	Blends of chemically treated woods	Data set
Pine (Pinus spp.) (V)	11	Beech (Fagus sylvatica) (V)	10	Medium-density fibreboard (MDF)	2
Fir (Abies spp.) (V)	11	Valnuts (Luglans regia) (V)	10	Oriented Strand Board (OSB)	4
Larch (Larix decidua) (V)	1	Oak (Quercus petraea) (V)	10	Chipboard	2
Pine (Pinus spp.) (L)	3	Chestnut (Castanea sativa) (V)	10		
		Ash (Fraxinus excelsior) (V)	10		
		Maple (Acer pseudoplatanus) (V)	10		
		Turkey oak (Quercus cerris) (V)	1		
		Ash (Fraxinus excelsior) (L)	3		

101

102 **2.2 ATR-FTIR analysis**

All samples were analyzed by using a PerkinElmer Spectrum GX1 spectrometer (PerkinElmer, Inc, Waltham, MA, USA), equipped with the ATR accessory consisting of a crystal of ZnSe (FTIR-ATR) (Pike Technologies Miracle Universal ATR) for the analysis of solid samples in reflectance mode. On each wood sample, ten IRspectra were acquired (64 scans, spectral resolution 4 cm⁻¹) in reflectance mode in the 4000-500 cm⁻¹ spectral range and the average spectrum was reported. To perform the analysis, a small amount of sample (0.2–0.3 g) was pressed onto the crystal using a high-pressure tower. A background spectrum wascollected before each sampleacquisition to exclude the signals not associated with the sample (e.g., environment).

All raw IR spectra were converted in absorbance, interpolated in the 1800-900 cm⁻¹ spectral interval, baseline
 corrected, and vector normalized in the same range (Spectrum 10.6.1 software, Perkin-Elmer).

112 The above-described spectral parameters of each sample were submitted to Hierarchical Component Analysis (HCA)

113 and Principal Component Analysis (PCA), to evaluate similarities among samples.

114

115 **2.3** Clustering Analysis

Principal component Analysis (PCA) is an algorithm used to extract relevant information from confusing data sets highlighting similarities and differences. The original data set of variables is reduced to smaller number of orthogonal variables called the principal components (PCs). In the analysis of FTIR spectra by PCA the scores report the contribution of each spectrum related to the selected principal component and the corresponding loadings show which wavenumber is responsible for such contribution. In this work the PCA was carried out on all spectra of wood samples extracted by Hierarchical Cluster Analysis (HCA) in order to discriminate between the two classes of virgin wood (hardwood and softwood) and between the virgin samples and the corresponding chemically treated ones.

Before PCA computation, the spectral database was subjected to different pretreatments, such as Hierarchical Cluster Analysis (HCA), Standard Normal Variate (SNV) to reduce the scatter effect and spectral average of replicates in the same spectral range (1100-1800 cm⁻¹) because it contained high spectral information. PCA and all pretreatments were performed by means Pirouette 4.5.

The various clusters generated by the chemometric analysis were used as a reference model to test unknown samples.
The goal was to place the unknown samples in their respective clusters. Woods with a marked chemical treatment
would have to be placed in the treated woods clusters, while untreated samples would have to be placed in the virgin
woods clusters. To validate the PCA model, six new wood samples were added to those of the full data and subjected

to chemometric analysis again. New samples were the following: n°1 oriented strand board (OSB), n°1 chipboard, n°1
 medium density fiberboard, n°1 laminated pine, n°1 virgin Turkey oak, n°1 virgin ash.

3. RESULTS AND DISCUSSION

3.1. ATR-FTIR spectral analysis

139	The average spectra of pure softwood and hardwood samples together with the corresponding laminated and the
140	chemically treated ones are compared in Figure 1. Spectral differences between hardwood and softwood are evident.
141	The discriminating elements between the two groups are mainly due to lignin, cellulose and hemicellulose, which are
142	different in chemical composition. The most relevant wavenumbers are reported in Table 2, according to literature [24].
143	There are no significant spectral differences between pure woods and the corresponding laminated samples. Due to the
144	high quantity of glue, however, some spectral differences are evident in the chemically treated samples (MDF, OSB and
145	chipboard) in the range between 1450 and 1800 cm ⁻¹ . Table 2 shows the band allocations in the ATR-FTIR continuum of
146	wood together with the corresponding types of vibration.

Table 2. Infrared bands and related molecular bond assignments

Band (cm ⁻¹)	Band assignments	
805	Vibration of mannan in hemicellulose and CH out of plane bending in	
	phenyl rings	
825	CH out of plane bending in guaiacyl units	
860	C–H out of plane in position 2, 5, and 6 of guaiacyl units	
900	CH deformation of beta-glycosidic linkages in cellulose	
945	O–H out of plane deformation in carboxylic acid	
960	CH out of plane deformation in lignin	
985	CO stretching in cellulose	
1005	C–O stretch in cellulose	
1025	C–O stretching in primary alcohols in cellulose	
1055	C–O stretching of secondary alcohols	
1105	C–O–C stretching in cellulose and hemicellulose	
1155	C–O–C asymmetric stretching in cellulose and hemicellulose	
1185	C–O stretching in cellulose	
1225	OH vibration in guaiacyl ring, C–C, C–O, and C=O stretches in lignin	
1265	C–O vibration in guaiacyl rings	

1315	CH ₂ wagging in crystalline cellulose
1335	CH of methyl groups in methoxy in amorphous cellulose
1360	C–H deformation in cellulose and hemicelluloses
1385	C–O stretching in cellulose and hemicellulose
1405	C=O in carboxylic groups in carboxylic acid, ester
1425	C–H asymmetric deformation in methoxyl, aromatic skeletal
	vibrations, lignin
1465	C–H asymmetric deformation in methoxyl for lignin, asymmetric in—
	CH ₃ and CH ₂ in pyran for hemicellulose
1510	C=C stretching of the aromatic ring, C=O bond vibrations in extractive
	compounds
1590	Skeletal vibrations from the C–C
1610	C=O stretching conjugated to the aromatic ring, and in carboxylic
	groups in lignin, carboxylic acid, ester compounds
1635	Absorbed O–H and conjugated C–O in polysaccharides
1655	Absorbed O–H and conjugated C–O in polysaccharides
1690	C=O vibration in carboxylic group in resin acid
1730	C=O carbonyls in ester groups and acetyl groups in xylan

149

150 All samples show a broadband to \simeq 3300 cm⁻¹ corresponding to O-H stretching vibration from water, cellulose, 151 hemicellulose and lignin and two peaks at 2919 and 2858 cm⁻¹ assigned to C-H vibrations of polysaccharides 152 (glucomannans and arabinogalactan) and lignin [25]. In particular, lignin has a different composition in the two plant 153 species: in softwood, is a polymer composed mostly of guaiacyl units, with a small amount of p-hydroxyphenyl and 154 syringil units, while in hardwood is composed of syringil and guaiacyl units, with a small amount of p-hydroxyphenil 155 units. Absorption bands referred to syringil units (1594, 1326 and 1234 cm⁻¹) are easily detected in hardwood spectra, 156 while the characteristic guaiacyl unit absorption band at 1264 cm⁻¹ is more evident in softwood. The bands at about 157 1740 (stretching of acetyl group) and 1240 cm⁻¹ (stretching of C-O group) assigned to hemicelluloses, are more intense 158 in hardwoods than softwoods, due to their different chemical composition. A shift of carbonyl spectral absorption to a 159 lower wavenumber could be primarily due to the higher concentration of lignin in softwood than hardwood [25]. 160 Furthermore, softwood shows a characteristic peak at 807 cm⁻¹ (glucomann absorption) which is not evident in 161 hardwood spectra [27]. The band at 1509 cm⁻¹ is referred to stretching C=C of aromatic ring and is well evident both in 162 softwood and hardwood samples [28]. As mentioned above, the spectra of laminated softwood and hardwood does not 163 show meaningful spectral differences compared to the corresponding virgin samples. On the contrary, the wood 164 samples treated with a high quantity of glue (MDF, OSB and chipboard) show evident spectral differences especially in 165 the region between 1500 and 1800 cm⁻¹, due to the presence of higher concentration of glue.

166

Figure 1. Infrared average spectra of hardwood, softwood, laminated hardwood, laminated softwood and chemically
 treated woods: MDF, OSB, chipboard in the spectral range 4000-530 cm⁻¹

167

171 **3.2** Chemometrics analysis

PCA was performed on the spectral database to investigate the possibility of discriminating both between virgin hardwood and softwood (Figure 2) and between virgin species and the corresponding chemically treated ones with small (laminated softwood and hardwood) or very significant quantities of glue (MDF, OSB and chipboard) (Figure 3).

175

178 The spectra from all the wood samples analyzed by ATR-FTIR and divided into clusters through the HCA were subjected 179 to chemometric analysis. The spectral region between 1100-1800 cm⁻¹ was selected. Accounting for 86.8% of the total 180 initial variability, the two first principal components (PCs) were considered for further elaborations. The scores plot of 181 the first two PCs shows that hardwood and softwood samples are well-separated along PC2; softwoods have negative 182 PC2 scores, whereas hardwoods have positive PC2 scores. It is also possible to observe a separation between the 183 different species along PC1. In softwood fir woods have positive PC1 scores while pine woods have negative PC1 scores 184 (Figure 2a). The methodology guaranteed an excellent separation between the different species both along PC1 and 185 PC2, even within the same group, and could be effective in laying the foundations for the development of a laboratory 186 method for an early assessment of the type of biomass used in the production of pellets. For this reason, could be used 187 in any quality control application when the same hardwood and softwood species are used. The loading spectra of PC1 188 and PC2 showed that the PCA plots were strongly contributed by the ranges of 1680–1780 cm⁻¹, 1600–1450 cm⁻¹ and 189 1350–1150 cm⁻¹ (Figure 2b). In these wavenumber ranges, absorption caused by C=O stretching vibrations (ca. 1740 cm⁻¹ 190 ¹), C=O stretching conjugated to the aromatic ring (ca. 1610 cm⁻¹), the breathing of the aromatic ring. (ca. 1510 cm⁻¹) 191 and the stretching of the C-O group (ca. 1223 cm⁻¹) were reported. This measuring procedure might be helpful in 192 confirming that differences in the composition and structures of cellulose, hemicellulose and lignin are well recognized 193 between softwood and hardwood and that the vibrations of the chemical bonding from these chemical compositions 194 are possibly the key to the separation of softwood and hardwood PCs. The same method was applied to investigate the 195 separation between virgin and chemically treated woods. In this case, HCA classified the spectra of all samples in four 196 clusters, where separation between hardwood and softwood was still maintained. Samples with higher amount of glue 197 (chipboard, MDF and OSB) were isolated in a single cluster. The method was not able to separate the laminated woods 198 from the virgin ones for the low glue content (<0,5% w/w). So, this type of analysis considers virgin wood equal to 199 laminated wood. The results were confirmed by the PCA (Figure 3).

Figure 3. Score plots of the two first PCs about virgin and chemically treated woods

203	Figure 3 highlights a good separation along PC1, probably resulting from the presence of chemicals. PC1 scores are
204	negative in chemically treated woods while they are positive in most virgin ones. Virgin and laminated woods are not
205	well separated. This model could be used in any quality control application to distinguish samples with a high glue
206	content. It allows you to evaluate the presence of materials unrelated to the woody nature, thus providing more details
207	for their origin and provenance. It could also be used for the analysis of woods with preservatives or other chemical
208	components. The six new wood samples, used to validate the PCA model, were analyzed in triplicate and subjected to
209	the same pretreatments as above. As expected, using the PCA model developed from the reference samples, the spectra
210	of the new wood samples were correctly entered into the corresponding clusters confirming the validity of the pattern.
211	(Figure 4).

Figure 4. Score plots of the two first PCs about virgin wood and chemically treated wood. The colored symbols represent the 6 new samples used for validation of the model and placed inside the different clusters (red: MDF, OSB and chipboard; blue: virgin turkey oak; green: laminated pine ang; grey: virgin ash).

219

4. CONCLUSIONS

The FTIR technique together with the development of suitable chemometric models provides useful information able to differentiate the woody materials with which the pellet is made. <u>Because IR spectra contain robust information about</u> <u>chemical bonds, compositional information is not directly available from their results [29]; thus, chemometric</u> <u>techniques, such as multivariate models, are necessary for spectra analysis. By reducing the large amount of spectral</u> <u>data in several latent variables, the statistical methods/models could build a relationship between spectral features and</u> <u>chemical components/bonds [13]. The analysis can be applied to any solid sample and does not require pre-treatment</u> <u>except drying for samples with a high moisture content</u>. This allows to evaluate the origin and the species, as required 228 by the specifications on solid biofuels, by means of a rapid and economical laboratory analytical method and potentially 229 implementable in a qualitative pre-screening system for wood pellets.

230 The application of FTIR can support commodity problems through the distinction between woody groups, such as 231

232 recognize wood materials subject to chemical treatment, such as residues of the wood industry, is of interest to assess

softwoods and hardwoods, with good prospects also for identifying specific wood species. Furthermore, the ability to

- 233 the compliance of the product with the law and increase the guarantee of compliance with environmental aspects
- 234 related to the use of wood pellets in combustion. However, it should be noted that this analysis technique fails to detect
- 235 the presence of low quantities of chemically treated wood, as in the case of laminated ones, whose physical and

236 chemical properties are potentially in line with the ISO 17225-2 class A1 specifications and A2. This aspect leads us to

- 237 reflect on the possibility of considering this specific wood raw material for producing pellets for domestic use.
- 238 Considering the prospects deriving from mid-infrared spectroscopy, it could be useful to strengthen the research by
- 239 expanding the wood materials casuistry of interest to the wood pellet sector, as mixtures consisting of different
- 240 essences. Thus, providing the basis for proposing a specific technique to supplement the existing one - UNI / TS 11765 -
- 241 which applies near infrared spectroscopy.
- 242
- 243

5. **BIBLIOGRAPHY** 244

245 [1] – COM (2021), 557 final, 2021/0218 (COD) Proposal for a Directive of the European Parliament and of the Council 246 amending Directive (EU) 2018/2001 of the European Parliament and of the Council, Regulation (EU) 2018/1999 of the 247 European Parliament and of the Council and Directive 98/70/EC of the European Parliament and of the Council as 248 regards the promotion of energy from renewable sources, and repealing Council Directive (EU) 2015/652

- 249 [2] – Bioenergy Europe Statistical Report 2020 – Report Bioheat
- 250 [3] - Mapping and analyses of the current and future (2020 - 2030) - heating/cooling fuel deployment (fossil/renewables)

251 [4] - Hamid Gilvari, Coen H.H.van Battum, Simon A.van Dijk, Wiebrende Jong, Dingena L.Schott, Large-scale 252 transportation and storage of wood pellets: Investigation of the change in physical properties, Particuology, Volume 253 57, August 2021, Pages 146-156

254 [5] - Camia, A., Giuntoli, J., Jonsson, K., Robert, N., Cazzaniga, N., Jasinevičius, G., Avitabile, V., Grassi, G., Barredo Cano, 255 J.I. and Mubareka, S., The use of woody biomass for energy production in the EU, EUR 30548 EN, Publications Office of 256 the European Union, Luxembourg, 2020, ISBN 978-92-76-27866-5, doi:10.2760/428400, JRC122719.

257 [6] - Bruno Rafael de Almeida Moreira, Victor Hugo Cruz, Matheus Luís Oliveira Cunha, Ronaldo da Silva Viana, Full-scale 258 production of high-quality wood pellets assisted by multivariate statistical process control, Biomass and Bioenergy, 259 Volume 151, August 2021, 106159

260 [7] - Elisa Venturini, Ivano Vassura, Francesca Agostini, Andrea Pizzi, Giuseppe Toscano, Fabrizio Passarini, Effect of fuel

261 quality classes on the emissions of a residential wood pellet stove, Fuel, Volume 211, January 2018, Pages 269-277

- [8] Manuela Mancini, Veli-Matti Taavitsainen, Giuseppe Toscano, *Comparison of three different classification methods performance for the determination of biofuel quality by means of NIR spectroscopy*, Journal of Chemometrics, Volume
 33, Issue 7, July 2019.
- 265[9] Manuela Mancini, Claudia Diamantini, Daniele Duca, Giuseppe Toscano, Prediction of pellet quality through266machinelearningtechniquesandnear-infraredspectroscopy,267Community & Inducting StatementsNature 147Spectroscopy20201005500
- 267 Computers & Industrial Engineering, Volume 147, September 2020, 106566
- 268 [10] M.Mancini, Å.Rinnan, A.Pizzi, C.Mengarelli, G.Rossini, D.Duca, G.Toscano, Near infrared spectroscopy for the
- discrimination between different residues of the wood processing industry in the pellet sector, Fuel, Volume 217, 1 April
- 270 2018, Pages 650-655
- [11] Yeh, T.F., Chang, H. M., and Kadla, J.F. (2004). *Rapid prediction of solid wood lignin content using transmittance near-infrared spectroscopy*, Journal of Agriculture and Food Chemistry 52(6)
- [12] Schimleck, L. R. (2008). "Near infrared spectroscopy: A rapid non-destructive method for measuring wood properties
 and its application to tree breeding, New Zealand Journal of Forestry Science 38(1), 14-35
- [13] Xu, F., Yu, J., Tesso, T., Dowell, F., and Wang, D. (2013) *Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini review*, Applied Energy 104, 801-809
- [14] Ishizuka, S., Sakai, Y., and Tanaka-Oda, A. (2014). *Quantifying lignin and holocellulose content in coniferous decayed* wood using near-infrared reflectance spectroscopy, Journal of Forest Research 19(1) 233-237.
- [15] Li, X., Sun, C., Zhou B., and He, Y. (2015). Determination of hemicellulose, cellulose and lignin in moso bamboo by
 near-infrared spectroscopy, Scientific Reports 5(2015), 17210
- [16] Anna Sandak; Jakub Sandak; Martino Negri (2011). *Relationship between near-infrared (NIR) spectra and the* geographical provenance of timber. Springer 45(1), 35–48
- [17] M. Mancini, Å. Rinnan, A. Pizzi and G. Toscano, Use of Fourier transform near infrared spectroscopy for the detection
- of residues from wood processing industry in the pellet sector, in Proc. 18th Int. Conf. Near Infrared Spectrosc., Ed by
- 285 S.B. Engelsen, K.M. Sørensen and F. van den Berg. IM Publications Open, Chichester, pp. 77–84 (2019)
- 286 [18] J. Sandak, A. Sandak and R. Meder, J. Near Infrared Spectrosc. 24, 485–505 (2016)
- [19] Geladi, P., Sethson, B., Nystrom, J., Lillhonga, T., Lestander, T., and Burger, J. (2004). *Chemometrics in spectroscopy Part 2.* Examples, Spectrochim Acta B 59(9), 1347-1357
- [20] Kauper, P., and Ferri, D. (2004). From production to product: Part 2, FT-IR spectroscopy as a tool for quality control
 in the preparation of alkaline solutions of bagasse lignin, Ind. Crop. Prod. 20(2), 159-167
- 291 [21] Via et al. (2011). Wood density from FTIR, BioResources 6(1), 807-822
- [22] Tsuchikawa, S., and Tsutsumi, S. (1999). Directional characteristics model and light path model for biological
 material having cellular structure, Appl. Spectrosc. 53(2), 233-240
- [23] Heera Rajandas; Sivachandran Parimannan; Kathiresan Sathasivam; Manickam Ravichandran; Lee Su Yin (2012). A
 novel FTIR-ATR spectroscopy-based technique for the estimation of low-density polyethylene biodegradation., Polymer
 Testing 31(2012) 1094-1099
- [24] Daniele Duca, Andrea Pizzi, Giorgio Rossini, Chiara Mengarelli, Ester Foppa Pedretti, Manuela Mancini, *Prediction* of hardwood and softwood contents in blends of wood powders using Mid-Infrared Spectroscopy, Energy Fuels 2016, 30,
 3038–3044.
- 300 [25] Mohamed Traoré, Joeri Kaal, Antonio Martínez Cortizas. *Differentiation between pine woods according to species* 301 *and growing location using FTIR-ATR*. Wood Sci Technol. 2018; 52(2): 487–504
- 302 [26] MacLeod I.D., Richards, V.L. (1996) Wood Degradation on Historic Shipwreck Sites: *The Use of FT- IR Spectroscopy* 303 *to Study the Loss of Hemicellulose*. In al, I.I.P.H.e. (Ed.), 6th ICOM Group on Wet Organic Materials Conference (pp.
- 304 203-225). York.

- [27] Anjos O, Santos AJ, Dias T, Estevinho LM. *Application of FTIR-ATR spectroscopy on the bee pollen characterization*.
 J Journal of Apicultural Research 2017;56(3):210-18.
- 307 [28] Pavlikova, H., Sykorova, I., Cerny, J., Sebestova, E., and Machovic, V. (1993) *Spectroscopic study of degraded* 308 *woods from the Elbe river valley*. Energy Fuels, 7 351-356.
- 309 [29] Owen N, Thomas D. Infrared studies of "hard" and "soft" woods. Appl Spectrosc 1989;43:451–5.