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ON THE FRACTIONAL RELATIVISTIC SCHRÖDINGER OPERATOR

VINCENZO AMBROSIO

Abstract. We collect some interesting results for equations driven by the fractional relativistic Schrödinger
operator (−∆ + m2)s with s ∈ (0, 1) and m > 0. More precisely, for the linear theory, we prove Hölder-
Schauder-Zygmund regularity results and a Kato’s inequality. For the nonlinear theory, we obtain L∞-
regularity, exponential decay, a Pohozaev-type identity, and a symmetry result for solutions of certain non-
linear fractional problems.

1. introduction

In this work we deal with the relativistic Schrödinger operator

(−∆ +m2)s with m > 0 and s ∈ (0, 1), (1.1)

which may be defined via Fourier transform (see [29,30]) by

(−∆ +m2)su(x) = F−1((|ξ|2 +m2)sFu(ξ))(x), x ∈ RN , (1.2)

for any u : RN → R belonging to the Schwartz space S(RN ) of rapidly decaying functions, or equivalently
via singular integrals (see [22,36]) as

(−∆ +m2)su(x) = m2su(x) + C(N, s)m
N+2s

2 P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
2

KN+2s
2

(m|x− y|) dy, x ∈ RN , (1.3)

where P.V. stands for the Cauchy principal value, Kν is the modified Bessel function of third kind of order
ν (see [6, 51]), which satisfies the following well-known asymptotic formulas:

Kν(r) ∼ Γ(ν)

2

(r
2

)−ν
as r → 0, for ν > 0, (1.4)

Kν(r) ∼
√
π

2
r−

1
2 e−r as r →∞, for ν ∈ R, (1.5)

and C(N, s) is a positive constant whose exact value is

C(N, s) := 21−N−2s
2 π−

N
2
s(1− s)
Γ(2− s)

.

When s = 1
2 , the operator (1.1) was considered in [52, 53] for spectral problems and has a clear meaning

in quantum mechanics. Indeed the Hamiltonian for the motion of a free relativistic particle of mass m and
momentum p is given by

H :=
√
p2c2 +m2c4,

where c is the speed of the light. With the usual quantization rule p 7→ −ı∇, we get the so called relativistic
Hamiltonian operator

Ĥ :=
√
−c2∆ +m2c4 −mc2.

The point of the subtraction of the constant mc2 is to make sure that the spectrum of the operator Ĥ is
[0,∞) and this explains the terminology of relativistic Schrödinger operators for the operators of the form
Ĥ+V (x), where V (x) is a potential. Equations involving Ĥ arise in the study of the following time-dependent
Schrödinger equation

ı~
∂Φ

∂t
= ĤΦ− f(x, |Φ|2)Φ, (x, t) ∈ RN × R,

where Φ : RN ×R→ C is a wave function and f : RN × [0,∞)→ R is a continuous function, which describes
the behaviour of bosons, spin-0 particles in relativistic fields. Physical models related to Ĥ have been widely
studied over the past 30 years and there exists an important literature on the spectral properties of relativistic
Hamiltonians, most of it has been strongly influenced by the works of Lieb on the stability of relativistic
matter; see for instance [36,37,52]. On the other hand, the operator (1.1) is strictly connected to the theory
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2 V. AMBROSIO

of stochastic processes. More precisely, m2s − (−∆ + m2)s is the infinitesimal generator of a Lévy process
X2s,m
t called relativistic 2s-stable process having the following characteristic function

E0eıξ·X
2s,m
t = e−t[(|ξ|

2+m2)s−m2s], ξ ∈ RN ;

see [9, 15,27,42] for more details.
When m→ 0, then (1.1) reduces to the fractional Laplacian operator (−∆)s defined, for u ∈ S(RN ), via

Fourier transform by
(−∆)su(x) = F−1(|ξ|2sFu(ξ))(x), x ∈ RN ,

or via singular integrals by

(−∆)su(x) = CN,sP.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy, x ∈ RN . (1.6)

This operator has gained tremendous popularity during the last two decades thanks to its applications in
different fields, such as, among others, phase transition phenomena, crystal dislocation, population dynamics,
anomalous diffusion, flame propagation, chemical reactions of liquids, conservation laws, quasi-geostrophic
flows, water waves. Moreover, from a probabilistic point of view, the fractional Laplacian is the infinitesimal
generator of a (rotationally) symmetric 2s-stable Lévy process. We refer to [5, 8, 18, 21] for a very nice
introduction on this subject. Note that the most important difference between the operators (−∆)s and
(−∆ + m2)s is that the first one is homogeneous in scaling whereas the second one is inhomogeneous as
should be clear from the presence of the Bessel function Kν in (1.3).

Our paper is motivated by some recent investigations concerning the following fractional relativistic
Schrödinger equation

(−∆ +m2)su = g(x, u) in RN , (1.7)

for which many interesting existence and multiplicity results have been established via suitable variational
techniques; see [3, 4, 19, 20, 24, 33, 44]. In this work we focus our attention on the regularity, decay and
symmetry of solutions for (1.7). Such questions have been extensively analyzed for (−∆)s, see for instance
[5, 10,18,23,45], so our purpose is to go further in this direction by considering (1.1).

Firstly, we show how (1.1) interacts with Hölder-Zygmund spaces. These facts are essentially known
in the theory of Besov spaces [40, 43, 50] but here we prefer to give an alternative proof by following the
approach in [46]. We recall that Hölder estimates for (−∆)s were considered in [45] by taking advantage
of the pointwise formula (1.6) and combining a localization trick with Schauder estimates for the classical
Poisson equation. Later, in [13, 47] the authors used a semigroup approach to deduce Schauder-Zygmund
and Schauder-Hölder-Zygmund estimates for (−∆)s. Here we extend these results for (1.1) by following the
treatment of the Lipschitz spaces Λα, with α > 0, as in [46, 49]. We emphasize that one could follow the
arguments in [45] because (1.3) and asymptotic estimates (1.4) and (1.5) allow us to deduce the corresponding
Propositions 2.8 and 2.9 in [45]. However, this way does not permit the case of Hölder-Zygmund spaces; see
Remark 3.3.

Secondly, we provide a nonlocal version of Kato’s inequality [34] for the solutions of a linear problem
involving (1.1), that is, if u ∈ Hs

m(RN ,C) solves (−∆ + m2)su = f ∈ L1
loc then the inequality (−∆ +

m2)s|u| 6 <(sign(ū)f) holds in the distributional sense. As pointed out in [12], for the case m = 0, the
distributional Kato inequality for (−∆)s is essentially a consequence of the Córdoba-Córdoba inequality
(−∆)sϕ(u) 6 ϕ′(u)(−∆)su, where ϕ ∈ C2(R) is convex, and a standard approximation argument. We stress
that in [12], to prove the Kato inequality for (−∆)s, the authors invoked the extension technique [11] and
the Hopf lemma in [10]. When m > 0 and u ∈ S(RN ), we can exploit the integral representation formula
for (1.1) (see Theorem 2.2) to infer a Kato’s inequality for (1.1) in the pointwise sense; see Remark 3.4. The
desired distributional inequality deserves more effort. To our knowledge, a distributional Kato’s inequality
has been obtained in [28] for the magnetic relativistic Schrödinger operator (

√
(−ı∇−A(x))2 +m2 )α, where

α ∈ (0, 1] and m > 0, or α = 1 and m = 0, with A ∈ L2
loc(RN ,RN ), by following the original approach in [34]

and using some commutator estimates. Anyway, these arguments do not work in our context because some
estimates fail. Therefore we use a different strategy based on the choice of a suitable test function and some
convenient estimates which permit us to pass to the limit in the weak formulation of the linear problem and
achieve our goal. Note that our result is valid for all m > 0 and s ∈ (0, 1).

Next, we study the boundedness of solutions for (1.7) under appropriate growth assumptions on the
nonlinearity g, by combining a Brezis-Kato argument [7] with a Moser-iteration scheme [39]. After that,
we show that the decay of solutions to (1.7) is of exponential type, contrary to the case m = 0 for which
is well-known that the decay of solutions is of power-type; see [23]. In order to achieve our aim, inspired
by [4], we construct a suitable comparison function and we carry out some refined estimates which take
care of an adequate estimate concerning 2s-stable relativistic density with parameter m found in [27], and
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the asymptotic estimate (1.5). We recall that exponential estimates for positive solutions of (1.7) appeared
in [19] in which s = 1

2 and g(x, u) = µu + |u|p−2u + σ(W ∗ u2)u with µ < m, N > 3, p ∈ (2, 2N
N−1 ),

ν, σ > 0 (but not equal 0 booth), W ∈ Lr(RN ) + L∞(RN ), r > N
2 , W > 0, W (x) = W (|x|) → 0 as

|x| → ∞, and in [24] where s ∈ (0, 1) and g(x, t) > 0 is continuous, g(x, t) 6 C2|t|p for some p ∈ (1, N+2s
N−2s ),

t 7→ g(x,t)
t is increasing for t > 0 and all x ∈ RN , g satisfies the Ambrosetti-Rabinowitz condition, and

0 6 g(x, t) − ḡ(t) 6 C(|t| + |t|p) for some continuous functions ḡ and a(x) → 0 as |x| → ∞ such that the
Lebesgue measure of {g(·, t) > ḡ(t) for all t > 0} is positive. Nevertheless, our approach is totally different
from these papers and holds for any s ∈ (0, 1) and more general nonlinearities.

The exponential decay plays an important role in the proof of Theorem 4.2 to deduce a Pohozaev-type
identity for (1.1); see [24, 26, 33, 44] for related results on this identity. For completeness, we recall that
Pohozaev-type identities for solutions of fractional elliptic equations of the form (−∆)su = g(u) in RN can
be found in [5, 16,26,41].

Finally, when we consider positive solutions and the nonlinearity g in (1.7) does not depend on x, we
prove the radial symmetry and the monotonicity under the assumption g′(t) 6 m2s by using the moving
plane method. For the case m = 0 one can see [5, 17, 18, 23]. When m > 0, in [38] the authors used a
Hardy-Littlewood-Sobolev type inequality for the Bessel potentials to establish the radial symmetry and
monotonicity results for (1.7) with g(x, u) = up with p > 1. Their approach does not work with more
general nonlinearities so we develop a different strategy which combines a maximum principle for anti-
symmetric functions and a key boundary estimate as in [17], taking into account the properties of the
function r ∈ (0,∞) 7→ KN+2s

2
(mr)r−

N+2s
2 ; see Theorem 4.4. We also mention that the radial symmetry has

been considered in [3] in which the author studied (1.7) with g(x, u) = (m2s−µ)u+ |u|p−2u, with µ > 0 and
p ∈ (2, 2∗s), via a variant of the extension procedure [11] given in [19, 22, 48] and applying the moving plane
method.

We highlight that some of the results established in this work, such as, the L∞-estimate, the Pohozaev
identity and the radial symmetry of positive solutions, could be also proved by using the extension technique
for (1.1). However, we prefer to work directly with (1.1) by making use of fractional Sobolev spaces and
properties of Bessel functions that permit us to underline the nonlocal character of the involved operator.

The paper is organized as follows. In Section 2 we fix the notations and we collect some results of
independent interest. In Section 3 we study linear theory for (1.1). First, we treat with Hölder-Schauder-
Zygmund regularity results. Second, we give the proof of Kato’s inequality for (1.1) and we present an
application. In Section 4 we deal with nonlinear theory for (1.1). We start by showing an L∞-estimate for
the solutions of (1.7). Then we study the exponential decay of solutions and prove a Pohozaev-type identity.
Finally, we consider the question related to the radial symmetry and monotonicity of positive solutions to
(1.7) in the autonomous case g(x, t) ≡ g(t).

2. Notations and first results

Let p ∈ [1,∞] and A ⊂ RN be a measurable set. We denote by Lp(A) the set of measurable functions
u : RN → R such that

‖u‖Lp(A) :=

{ (∫
A
|u|p dx

)1/p
<∞ if p <∞,

esssupx∈A|u(x)| if p =∞.
Fix s ∈ (0, 1) and m > 0. Let Hs

m(RN ) be the fractional Sobolev space defined as the completion of C∞c (RN )
with respect to the norm

‖u‖Hsm(RN ) :=

(∫
RN

(|ξ|2 +m2)s|Fu(ξ)|2 dξ
) 1

2

.

We recall that, when N > 2s, Hs
m(RN ) is continuously embedded in Lp(RN ) for all p ∈ [2, 2∗s), where

2∗s := 2N
N−2s is the fractional critical exponent, and compactly in Lploc(RN ) for all p ∈ [1, 2∗s); see [1, 6, 14,50].

Consider the Bessel kernel in the upper-half space RN+1
+ := {(x, y) ∈ RN+1 : x ∈ RN , y > 0} (see formula

(110) in [22])
Ps,m(x, y) := C ′N,s y

2sm
N+2s

2 |(x, y)|−
N+2s

2 KN+2s
2

(m|(x, y)|),
where

C ′N,s := pN,s
2
N+2s

2 −1

Γ(N+2s
2 )

,

and pN,s is the constant for the Poisson kernel in RN+1
+ (see [11,46,48]), i.e.

Ps(x, y) := pN,s
y2s

(|x|2 + y2)
N+2s

2

, pN,s :=
Γ(N+2s

2 )

π
N
2 Γ(s)

.



4 V. AMBROSIO

We recall that Ps,m is the Fourier transform of ξ 7→ θs(
√
|ξ|2 +m2) and that∫

RN
Ps,m(x, y) dx = θs(my), (2.1)

where θs ∈ H1(R+, y
1−2s) solves the following problem{

θ′′s + 1−2s
y θ′s − θs = 0 in (0,∞),

θs(0) = 1, limy→∞ θs(y) = 0.
(2.2)

Note that θs is given by (see [22,51])

θs(y) =
21−s

Γ(s)
ysKs(y),

(observe that in the case s = 1
2 we have θ 1

2
(y) = e−y) and that satisfies the following properties:

• θs ∈ C0([0,∞)) ∩ C∞((0,∞)). This fact is obvious in the case s = 1
2 , whereas for s 6=

1
2 we use the

smoothness of Ks(y) for y > 0 (see [6, 51]) and the formula (1.4).
• θs is decreasing in [0,∞). This is evident if s = 1

2 , while in the case s 6= 1
2 we use K−ν(y) = Kν(y)

for ν ∈ R (see formula (8) at pag.79 in [51]), (yνKν(y))′ = −yνKν−1(y) for ν ∈ R (see formula (5) at
pag.79 in [51]), Kν(y) > 0 for y > 0 and ν > − 1

2 (see formula (4) at pag.172 in [51]) and s ∈ (0, 1),
to deduce that

θ′s(y) =
21−s

Γ(s)
(ysKs(y))′ = −21−s

Γ(s)
ysKs−1(y) = −21−s

Γ(s)
ysK1−s(y) < 0 for all y > 0.

Since θs(0) = 1, we also see that 0 6 θs(y) 6 1 for all y > 0.
Finally, by using (2.2), an integration by parts, the above expression of θ′s(y) and (1.4), we have∫ ∞

0

y1−2s(|θs(y)|2 + |θ′s(y)|2) dy = − lim
y→0

y1−2sθ′s(y) = 21−2sΓ(1− s)
Γ(s)

=: κs. (2.3)

With the previous notations, we can prove the following result motivated by Theorem 7.12 in [36] with s = 1
2 .

Theorem 2.1. A function u is in Hs
m(RN ) if and only if it is in L2(RN ) and

Its(u) :=
1

t2s

[
(u, u)L2(RN ) − (u, e−t(−∆+m2)su)L2(RN )

]
is uniformly bounded in t > 0, in which case

sup
t>0

Its(u) = lim
t→0

Its(u) =
κs
2s

∫
RN

(|ξ|2 +m2)s|Fu(ξ)|2 dξ.

Here (·, ·)L2(RN ) is the inner product in L2(RN ), e−t(∆+m2)s(x, y) := Ps,m(x− y, t) and

F(e−t(−∆+m2)su)(ξ) = θs(t
√
|ξ|2 +m2)Fu(ξ). (2.4)

Furthermore,∫
RN

[
|(−∆ +m2)

s
2u|2 −m2su2

]
dx =

C(N, s)

2
m

N+2s
2

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
2

KN+2s
2

(m|x− y|) dxdy (2.5)

for all u ∈ Hs
m(RN ). Consequently,

‖u‖2Hsm(RN ) = m2s‖u‖2L2(RN ) +
C(N, s)

2
m

N+2s
2

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
2

KN+2s
2

(m|x− y|) dxdy. (2.6)

Proof. The proof of formula (2.5) is contained in Proposition 6 in [22] see (iii) and (iv) of Theorem 7.12
in [36] for the case s = 1

2 ). Combining (2.5) and the definition of Hs
m-norm, we deduce that (2.6) is satisfied.

Now, we focus our attention on the first statement. It is sufficient to show that u ∈ L2(RN ) and Its(u) is
uniformly bounded in t if and only if ∫

RN
(|ξ|2 +m2)s|Fu(ξ)|2 dξ <∞.

Note that by Plancherel’s theorem

Its(u) =
1

t2s

∫
RN

[1− θs(t
√
|ξ|2 +m2)]|Fu(ξ)|2 dξ. (2.7)
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Define ψs(y) := 1−θs(y)
y2s ∈ C∞((0,∞)), and we show that ψs(y) is decreasing for y > 0. When s = 1

2 , then
ψ′1

2

(y) = y+1−ey
y2ey < 0 for all y > 0 thanks to ey > y + 1 for all y > 0, and the claim is verified. Consider the

case s 6= 1
2 . Since (y−sKs(y))′ = −y−sKs+1(y) (see formula (6) at pag.79 in [51]), we have

ψ′s(y) = y−2s−1

[
−2s+

21−s

Γ(s)
ys+1Ks+1(y)

]
.

Now, we observe that the function gs(y) := ys+1Ks+1(y) is decreasing for y > 0 because (y−νKν(y))′ =
−y−νKν+1(y) for ν ∈ R (see formula (5) at pag.79 in [51]) and Kν(y) > 0 for ν > − 1

2 (see formula (4) at
pag.172 in [51]), imply that g′s(y) = −ys+1Ks(y) < 0 for all y > 0, and that gs satisfies the following limit

lim
y→0

gs(y) = Γ(s+ 1)2s = sΓ(s)2s,

where we exploited (1.4) and the property Γ(s + 1) = sΓ(s). Therefore, 0 < gs(y) < sΓ(s)2s for all y > 0,
and this implies that

ψ′s(y) = y−2s−1

[
−2s+

21−s

Γ(s)
gs(y)

]
< 0 for all y > 0.

Hence the desired monotonicity of ψs is proved. On the other hand, by θs(0) = 1 and (2.3), we get

lim
y→0

ψs(y) = − 1

2s
lim
y→0

y1−2sθ′s(y) =
κs
2s
.

Then we can see that
1− θs(t

√
|ξ|2 +m2)

t2s
= ψs(t

√
|ξ|2 +m2)(|ξ|2 +m2)s

and that it converges monotonically to κs
2s (|ξ|2 + m2)s as t → 0. Thus if we suppose u ∈ Hs

m(RN ), Its(u) is
uniformly bounded in t. Conversely, if Its(u) is uniformly bounded in t, the monotone convergence theorem
yields

κs
2s

∫
RN

(|ξ|2 +m2)s|Fu(ξ)|2 dξ = lim
t→0

Its(u) = sup
t>0

Its(u) <∞,

that is u ∈ Hs
m(RN ). This concludes the proof of Theorem 2.1. �

Remark 2.1. Since Hs
m(RN ) is a Hilbert space with the inner product

(u, v)Hsm(RN ) :=

∫
RN

(|ξ|2 +m2)sFu(ξ)Fv(ξ) dξ, for all u, v ∈ Hs
m(RN ),

it follows from (2.6) and

‖u− v‖2Hsm(RN ) = ‖u‖2Hsm(RN ) + ‖v‖2Hsm(RN ) − 2(u, v)Hsm(RN )

that

(u, v)Hsm(RN ) = m2s(u, v)L2(RN ) +
C(N, s)

2
m

N+2s
2

∫∫
R2N

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
2

KN+2s
2

(m|x− y|) dxdy.

Remark 2.2. By (2.6), it is easily seen that if u ∈ Hs
m(RN ) and ϕ : R → R is a Lipschitz function

with Lipschitz constant L > 0 and such that ϕ(0) = 0, then ϕ(u) ∈ Hs
m(RN ). Indeed, we know that

|ϕ(t1) − ϕ(t2)| 6 L|t1 − t2| for all t1, t2 ∈ R. Choosing t1 = u(x) and t2 = 0, we deduce that u ∈ L2(RN ).
Taking t1 = u(x) and t2 = u(y), and using (2.6), we conclude that ‖ϕ(u)‖Hsm(RN ) 6 L‖u‖Hsm(RN ).

As byproduct of Theorem 2.1, we can prove the following Pólya-Szegö-type inequality which shows that the
norm in Hs

m(RN ) does not increase under rearrangement (see also [2, 25] for the case of W s,p(RN )-norm,
with s ∈ (0, 1) and p ∈ [1,∞)).

Proposition 2.1. (Pólya-Szegö-type inequality) Let u : RN → R be a measurable function that vanishes
at infinity, that is |{x ∈ RN : |u(x)| > t}| < ∞ for all t > 0, and let u∗ denote its symmetric-decreasing
rearrangement. Assume that ∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
2

KN+2s
2

(m|x− y|) dxdy <∞.

Then,∫∫
R2N

|u∗(x)− u∗(y)|2

|x− y|N+2s
2

KN+2s
2

(m|x− y|) dxdy 6
∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
2

KN+2s
2

(m|x− y|) dxdy. (2.8)

In particular, if u ∈ Hs
m(RN ) then

‖u∗‖Hsm(RN ) 6 ‖u‖Hsm(RN ). (2.9)
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The inequality in (2.8) is strict unless u is the translate of a symmetric-decreasing function.

Proof. The proof is inspired by Lemma 7.17 in [36] where (2.9) is stated without proof in the case s = 1
2 in

Remark (3). Without loss of generality, we can replace u by |u|, which does not change u∗ and only decreases
the right hand side of (2.8) because ||u(x)| − |u(y)|| 6 |u(x)− u(y)| for all x, y ∈ RN . Thus we may suppose
that u > 0. We first show that it suffices to prove (2.8) for functions in L2(RN ). Take c ∈ (0, 1) and define

uc(x) := min

{
max{u(x)− c, 0}, 1

c

}
.

It follows from the definition of the rearrangement that (uc)
∗ = (u∗)c. Since u vanishes at infinity, uc ∈

L2(RN ). Now we observe that |uc(x)−uc(y)| 6 |u(x)−u(y)| for all x, y ∈ RN . By the monotone convergence
theorem we have that

lim
c→0

∫∫
R2N

|uc(x)− uc(y)|2

|x− y|N+2s
2

KN+2s
2

(m|x− y|) dxdy =

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
2

KN+2s
2

(m|x− y|) dxdy,

and the same holds for u∗.
Now we assume that u ∈ L2(RN ). Since u ∈ Hs

m(RN ), we can see that Theorem 2.1 yields

lim
t→0

Its(u) =
κs
2s
‖u‖2Hsm(RN ).

Recalling that F(f ∗ g) = (2π)
N
2 F(f)F(g) and using (2.4), it follows from the Parseval identity and (2.7)

that

Its(u) =
1

t2s

[∫
RN

u2(x) dx−
∫∫

R2N

u(x)Ps,m(x− y, t)u(y) dxdy

]
. (2.10)

The L2(RN ) norm of u does not change under rearrangements and the second term on the right-hand side
in (2.10) increases by Riesz’s rearrangement inequality (see Theorem 3.7 in [36]). Thus, Its(u∗) 6 Its(u) and
by using Theorem 2.1 we deduce that Its(u∗) converges to κs

2s ‖u
∗‖2Hsm(RN ). Consequently, (2.9) is true, and

using (2.6) and ‖u∗‖L2(RN ) = ‖u‖L2(RN ), we obtain (2.8). The strict inequality in (2.8) is a consequence of
Lemma A.2 in [25] with J(t) = t2 that is a non-negative strictly convex function on R such that J(0) = 0,
and k(x) = KN+2s

2
(m|x|)|x|−N+2s

2 which is a L1 symmetric strictly-decreasing function. �

Remark 2.3. When m = 1 and u ∈ Hs
1(RN ), the proof of the inequality (2.9) is essentially contained in

Proposition 4 in [44] but we kept it for the sake of completeness.

We also have the following integral representation formula for (1.1) (see Theorem 4.5.2 in [5] for a proof).

Theorem 2.2. Let s ∈ (0, 1) and m > 0. Then, for all u ∈ S(RN ),

(−∆ +m2)su(x) = m2su(x) +
C(N, s)

2
m

N+2s
2

∫
RN

2u(x)− u(x+ y)− u(x− y)

|y|N+2s
2

KN+2s
2

(m|y|) dy.

Let us observe that one can define (1.1) on spaces of functions with weaker regularity. Indeed, as em-
phasized in [45], the natural space to work with the fractional Laplacian (−∆)s (that is m = 0) is given
by

Ls :=

{
u : RN → R :

∫
RN

|u(x)|
1 + |x|N+2s

dx <∞
}
.

Concerning the case m > 0, taking into account the asymptotic behaviors (1.4) and (1.5), we can see that

KN+2s
2

(t)

t
N+2s

2

∼ Γ

(
N + 2s

2

)
2−(N+2s−2

2 )t−(N+2s) as t→ 0,

and
KN+2s

2
(t)

t
N+2s

2

∼
√
π

2

e−t

t
N+1+2s

2

as t→∞.

Therefore it is natural to introduce the next space to work with (1.1)

Lexp
s :=

{
u : RN → R measurable :

∫
RN

|u(x)|e−|x|

1 + |x|N+2s+1
2

dx <∞

}
endowed with the norm

‖u‖Lexp
s

:=

∫
RN

|u(x)|e−|x|

1 + |x|N+2s+1
2

dx.
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Equivalently, u ∈ Lexp
s if and only if u ∈ L1(RN , dµ) where dµ(x) := e−|x|

1+|x|
N+2s+1

2

. Then one can check that

for all u ∈ C1,1
loc (RN ) ∩ Lexp

s

P.V.

∫
RN

(u(x)− u(y))

|x− y|N+2s
2

KN+2s
2

(m|x− y|)dy <∞

and hence the definition (1.3) makes sense for this class of functions.
Finally, we introduce the Bessel potentials and Bessel potential spaces; see [1,6,14,46,49] for more details.

The Bessel potential of order α > 0 of u ∈ S(RN ) is defined as

Jαu(x) := (−∆ + 1)−
α
2 u(x) = (Gα ∗ u)(x) =

∫
RN
Gα(x− y)u(y) dy,

where Gα given through the Fourier transform

FGα(ξ) := (2π)−
N
2 (|ξ|2 + 1)−

α
2

is the so-called Bessel kernel. If α ∈ R (or α ∈ C), one can define the Bessel potential of a temperate
distribution u ∈ S ′(RN ); see [1, 14].
We list some interesting formulas and properties of Gα with α > 0 (see section 4 in [6], chapter 4 in [49] and
chapter 5 in [46]):

• The kernel Gα is given by

Gα(x) =
1

2
N+α−2

2 π
N
2 Γ(α2 )

KN−α
2

(|x|)|x|
α−N

2 .

• The kernel Gα(x) is everywhere positive, decreasing function of |x|, analytic except at x = 0, and for
x ∈ RN \ {0}, Gα(x) is an entire function of α.

• From (1.4) and (1.5), we obtain

Gα(x) ∼
Γ(N−α2 )

2απ
N
2 Γ(α2 )

|x|α−N as |x| → 0, if 0 < α < N,

Gα(x) ∼ 1

2
N+α−1

2 π
N−1

2 Γ(α2 )
|x|

α−N−1
2 e−|x| as |x| → ∞.

• Gα ∈ L1(RN ) and
∫
RN Gα(x) dx = 1.

• We have the composition formula Gα+β = Gα ∗ Gβ for all α, β > 0.
• The following integral formula holds:

Gα(x) =
1

(4π)
N
2

1

Γ
(
α
2

) ∫ ∞
0

e−
|x|2
4δ e−δδ

α−N
2
dδ

δ
.

For p ∈ [1,∞] and α ∈ R, we define the Bessel potential space

L p
α := Jα(Lp(RN )) = {u ∈ S ′(RN ) : u = Jαf, f ∈ Lp(RN )}

endowed with the norm
‖u‖L p

α
:= ‖f‖Lp(RN ) if u = Jαf.

With respect to this norm, L p
α is a Banach space. Clearly, L p

α is a subspace of Lp(RN ) for all α > 0. We
summarize some of its properties.

Theorem 2.3. [1, 14,46]
(i) If α > 0 and 1 6 p <∞, then D(RN ) is dense in L p

α .
(ii) If 1 < p <∞ and p′ its conjugate exponent, then the dual of L p

α is isometrically isomorphic to L p′

−α.
(iii) If β < α, then L p

α is continuously embedded in L p
β .

(iv) If β 6 α and if either 1 < p 6 q 6 Np
N−(α−β)p < ∞ or p = 1 and 1 6 q < N

N−α+β , then L p
α is

continuously embedded in L q
β .

(v) If 0 < µ 6 α− N
p < 1, then L p

α is continuously embedded in C0,µ(RN ).
(vi) L p

k = W k,p(RN ) for all k ∈ N and 1 < p <∞, L 2
α = Wα,2(RN ) for any α.

(vii) If 1 < p <∞ and ε > 0, then for every α we have the following continuous embeddings:

L p
α+ε ⊂Wα,p(RN ) ⊂ L p

α−ε.
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3. Linear Theory for (1.1)

3.1. Regularity results. We collect some regularity results for linear equations involving (1.1). First, we
fix some notations. For k ∈ N∪{0}, we denote by Ckb (RN ) the set of all Ck(RN ) functions whose derivatives
up to order k are bounded. Let α ∈ (0, 1] and k ∈ N ∪ {0}. We define the Hölder space Ck,α(RN ) as

C0,α(RN ) :=

{
u ∈ C0

b (RN ) : [u]C0,α(RN ) := sup
x 6=y

|u(x)− u(y)|
|x− y|α

<∞

}
if k = 0,

Ck,α(RN ) :=
{
u ∈ Ckb (RN ) : Dγu ∈ C0,α(RN ) for all |γ| = k

}
if k > 1,

endowed with the norm

‖u‖Ck,α(RN ) :=
∑
|γ|6k

‖Dγu‖L∞(RN ) +
∑
|γ|=k

[Dγu]C0,α(RN ).

Let us now introduce the Lipschitz spaces (also called Hölder-Zygmund spaces) Λα with α > 0; see [14, 30,
35,46,49,50,54]. When α ∈ (0, 1), we set Λα := C0,α(RN ). If α = 1, we define the Zygmund space (see [54])

Λ1 :=

{
u ∈ C0

b (RN ) : sup
|h|>0

‖u(·+ h) + u(· − h)− 2u(·)‖L∞(RN )

|h|
<∞

}
,

equipped with the norm

‖u‖Λ1
:= ‖u‖L∞(RN ) + sup

|h|>0

‖u(·+ h) + u(· − h)− 2u(·)‖L∞(RN )

|h|
.

If α > 1, we put

Λα :=

{
u ∈ C0

b (RN ) :
∂u

∂xj
∈ Λα−1 for all j = 1, . . . , N

}
,

endowed with the norm

‖u‖Λα := ‖u‖L∞(RN ) +

k∑
j=1

∥∥∥∥ ∂u∂xj
∥∥∥∥

Λα−1

.

Note that Λβ ⊂ Λα if 0 < α < β, Λα is complete, and Λα = C [α],α−[α](RN ) if α > 0 and α /∈ N, where
[x] := max{k ∈ Z : k 6 x} for x ∈ R. Moreover, C1

b (RN ) ⊂ C0,1(RN ) ⊂ Λ1 and that these inclusions are
strict; see [35, 46, 49]. We recall the following useful result (see Theorem 4 at pag.149 in [46], Proposition
8.6.6 in [30] and Theorem 5 in [49]):

Theorem 3.1. [30, 46, 49] Let α > 0 and β > 0. Then J2α = (−∆ + 1)−α maps Λβ isomorphically onto
Λβ+2α.

Remark 3.1. For s > 0 and m > 0, set J2s,mu(x) := (−∆ + m2)−su(x) = (G2s,m ∗ u)(x), where G2s,m is
defined by FG2s,m(ξ) := (2π)−

N
2 (|ξ|2 +m2)−s. Clearly, J2s,1 = J2s and G2s,1 = G2s. By the scaling property

of the Fourier transform, it follows that G2s,m(x) = mN−2sG2s(mx). Then, for β > 0, J2s,m = (−∆ +m2)−s

maps Λβ isomorphically onto Λβ+2s.

As a consequence of Theorem 3.1 and the definition of Λα, we easily deduce the following Schauder-Zygmund
regularity result (see Proposition 5.1 in [13] and Proposition 2.8 in [45] for the case m = 0).

Corollary 3.1. (Schauder-Zygmund regularity) Let s ∈ (0, 1), m > 0 and α ∈ (0, 1]. Assume that f ∈
C0,α(RN ) and let u := J2s,mf . Then u ∈ Λα+2s. In particular:

• If α+ 2s < 1, then u ∈ C0,α+2s(RN ).
• If 1 < α+ 2s < 2, then u ∈ C1,α+2s−1(RN ).
• If 2 < α+ 2s < 3, then u ∈ C2,α+2s−2(RN ).
• If α+ 2s = k ∈ {1, 2}, then u ∈ Λk.

Next we give a Schauder-Hölder-Zygmund regularity result for (−∆ +m2)s with m > 0 (see Proposition 5.2
in [13] and Proposition 2.9 in [45] for the case m = 0)

Theorem 3.2. (Schauder-Hölder-Zygmund regularity) Let s ∈ (0, 1) and m > 0. Assume that f ∈ L∞(RN )
and let u := J2s,mf . Then u ∈ Λ2s. In particular:

• If 2s < 1, then u ∈ C0,2s(RN ).
• If 2s = 1, then u ∈ Λ1.
• If 2s > 1, then u ∈ C1,2s−1(RN ).
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Proof. This result is essentially known in the literature. Indeed the scale of spaces Λt = Ct∗ = Bt∞,∞ has
been defined for all t ∈ R long ago. It is a case of Besov spaces Btp,q (see [43, 50]) (denoted by Λp,qt in [46]).
The isomorphism property of Jr = (1−∆)−r/2 from Ct∗ to Ct+r∗ for all real t and r is proved, for instance,
in Proposition 8.6.6 in [30]; see also []. Since L∞ is a subset of C0

∗ (recalled e.g. Proposition 2.1 in [43]),
the fact that the solution operator J2s maps C0

∗ into C2s
∗ implies immediately that L∞ is mapped into C2s

∗ .
Nevertheless, we prefer to give a proof of this fact by following the approach in Stein’s book [46]. In view of
Remark 3.1, we can take m = 1. We show that u = G2s ∗ f ∈ Λ2s. For this purpose, we use the following
characterization for Lipschitz spaces Λα, with α > 0, in terms of the Poisson integral given in [46,49]:

u ∈ Λα ⇐⇒ u ∈ L∞(RN ) and
∥∥∥∥∂kU∂yk (·, y)

∥∥∥∥
L∞(RN )

6 Cy−k+α, y > 0,

where k := [α] + 1 and U(x, y) := (P 1
2
(·, y) ∗ u)(x) is the so-called Poisson integral of u. In the above

characterization of Λα, one can replace k by any integer greater than α. Therefore, using the fact that
s ∈ (0, 1),

u ∈ Λ2s ⇐⇒ u ∈ L∞(RN ) and
∥∥∥∥∂2U

∂y2
(·, y)

∥∥∥∥
L∞(RN )

6 Cy−2+2s, y > 0.

Since G2s ∈ L1(RN ), with ‖G2s‖L1(RN ) = 1, and f ∈ L∞(RN ), by Young’s inequality we deduce that
u ∈ C0

b (RN ) and ‖u‖L∞(RN ) 6 ‖f‖L∞(RN ). Now, we observe that

U(x, y) = [P (·, y) ∗ (G2s ∗ f)](x) = (G2s(·, y) ∗ f)(x),

where G2s(x, y) is the Poisson integral of G2s. We recall that for all integer ` greater than α it holds (see
formula (59) at pag. 149 in [46]) ∥∥∥∥∂`Gα∂y`

(·, y)

∥∥∥∥
L1(RN )

6 Cy−`+α, y > 0.

On the other hand, we can see that G2s ∗ f ∈ Λs because ‖Gs(·+ h)− Gs(·)‖L1(RN ) 6 C|h|s (see at pag. 158
in [46]), f ∈ L∞(RN ) and Young’s inequality imply

‖Gs(·+ h)− Gs(·)‖L∞(RN ) 6 C|h|s‖f‖L∞(RN ),

and that by differentiating the identity G2s(·, y) = G2s(·, y1) ∗G2s(·, y2), with y = y1 + y2, we find

∂2U

∂y2
(·, y) =

∂Gs
∂y1

(·, y1) ∗ ∂

∂y2
(Gs(·, y2) ∗ f), with y = y1 + y2.

Consequently, by using Young’s inequality, and choosing y1 = y2 = y
2 , we get∥∥∥∥∂2U

∂y2
(·, y)

∥∥∥∥
L∞(RN )

6

∥∥∥∥∂Gs∂y1
(·, y1)

∣∣∣y1= y
2

∥∥∥∥
L1(RN )

∥∥∥∥ ∂

∂y2
(Gs(·, y2) ∗ f)

∣∣∣y2= y
2

∥∥∥∥
L∞(RN )

6 Cy−2+2s‖f‖L∞(RN ), y > 0.

The proof of Theorem 3.2 is now complete.
�

Remark 3.2. If u ∈ L∞(RN ) is such that f := (−∆ + m2)su ∈ L∞(RN ) (respectively, f ∈ C0,α(RN ) for
some α ∈ (0, 1]), then we can argue as in [13,47] to obtain the estimate ‖u‖Λ2s

6 C(‖u‖L∞(RN ) +‖f‖L∞(RN ))
(respectively, ‖u‖Λα+2s 6 C(‖u‖L∞(RN ) + ‖f‖C0,α(RN ))) for some constant C > 0. We only give the details
when f ∈ L∞(RN ) because the case f ∈ C0,α(RN ) can be studied in a similar way. Let f ∈ L∞(RN ) with

compact support and u = (−∆ +m2)−sf . Set et∆u(x) := (W (·, t) ∗ u)(x), where W (x, t) := 1

(4πt)
N
2
e−
|x|2
4t is

the Gauss-Weierstrass kernel. Note that the expression below

‖u‖L∞(RN ) + [u]Λ2s
:= ‖u‖L∞(RN ) + sup

t>0
t1−s

∥∥∂tet∆u(·)
∥∥
L∞(RN )

is a norm in Λ2s equivalent to ‖ · ‖Λβ (see [49]). Using standard estimates for W and its derivatives, it is
easy to check that |∂tet∆f(x)| 6 c

t‖f‖L∞(RN ) for x ∈ RN and t > 0, Now, by the gamma function identity

λ−α =
1

Γ(α)

∫ ∞
0

e−rλ
dr

r1−α , for all λ > 0,

we have

u(x) = (−∆ +m2)−sf(x) =
1

Γ(s)

∫ ∞
0

e−m
2rer∆f(x)

dr

r1−s .
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Hence,

et∆u(x) =
1

Γ(s)

∫ ∞
0

e−m
2ret∆(er∆f)(x)

dr

r1−s ,

and recalling the semigroup property et∆er∆f = e(t+r)∆f , we get

t1−s
∣∣∂tet∆u(x)

∣∣ 6 Ct1−s ∫ ∞
0

e−m
2r
∣∣(∂wew∆f(x))|w=r+t

∣∣ dr

r1−s

6 Ct1−s‖f‖L∞(RN )

∫ ∞
0

e−m
2r

(t+ r)k
dr

r1−s

6 Ct1−s‖f‖L∞(RN )

[
t−1

∫ t

0

rs−1 dr + e−m
2t

∫ ∞
t

rs−2 dr

]
6 C‖f‖L∞(RN )

for x ∈ RN and t > 0, which implies that u ∈ Λ2s and the required estimate is true. When f ∈ L∞(RN ) ha
son compact support we only give a sketch of the proof; see [45,47] for more details. Take η ∈ C∞c (RN ) such
that 0 6 η 6 1, supp(η) ⊂ B2(0), η = 1 in B1(0), and write f = f1 + f2, where f1 := ηf and f2 := (1− η)f ,
and set u := u1 + u2, where u1 is the solution to (−∆ +m2)su1 = f1 in RN . Since f1 has compact support,
we can apply the above estimate to deduce that ‖u1‖Λ2s

6 C(‖u1‖L∞(RN ) + ‖f1‖L∞(RN )). On the other hand,
u2 ∈ L∞(RN ) solves (−∆+m2)su2 = 0 in B1(0), so u2 is smooth in B 1

2
(0) (by hypoellipticity of (−∆+m2)s

(see [29]) or by using Proposition 4 in [22]) and all its derivatives in B 1
2
(0) are bounded by

C‖u2‖L∞(RN ) = C‖u− u1‖L∞(RN ) 6 C(‖u‖L∞(RN ) + ‖f‖L∞(RN )).

Putting together the estimates for u1 and u2, we get the desired estimate for u.

Remark 3.3. In view of (1.3), and the fact that (1.4) and (1.5) imply the following useful estimate:

0 < t−
N+2s

2 KN+2s
2

(mt) 6 Ct−(N+2s) for all t > 0, (3.1)

for some C = C(N,m, s) > 0, one could proceed as in [45] to deduce some of the regularity results above
exposed (more precisely, the corresponding Propositions 2.8 and 2.9 in [45]). Anyway, here we use a different
approach in order to obtain sharp regularity when α + 2s ∈ N in Corollary 3.1, and 2s = 1 in Theorem 3.2,
which are not included in [45].

We conclude this subsection by proving a simple L∞-regularity result for a linear problem that will be used
later.

Lemma 3.1. Let µ ∈ (0,m2s) and f ∈ L2(RN ) ∩L∞(RN ). Let u ∈ Hs
m(RN ) be the unique weak solution of

(−∆ +m2)su− µu = f in RN , (3.2)

that is u satisfies (u, v)Hsm(RN ) = (f, v)L2(RN ) for all v ∈ Hs
m(RN ). Then, u ∈ L∞(RN ) and

‖u‖L∞(RN ) 6
1

m2s − µ
‖f‖L∞(RN ). (3.3)

Proof. We first note that the existence and uniqueness of u is guaranteed by the Lax-Milgram theorem.
Indeed,

‖u‖e :=
√
‖u‖2

Hsm(RN )
− µ‖u‖2

L2(RN )

is a norm in Hs
m(RN ) equivalent to ‖ · ‖Hsm(RN ) due to the fact that

µ‖u‖2L2(RN ) =
µ

m2s
(m2s‖u‖2L2(RN )) 6

µ

m2s
‖u‖2Hsm(RN )

and thus (
1− µ

m2s

)
‖u‖2Hsm(RN ) 6 ‖u‖

2
e 6 ‖u‖2Hsm(RN ).

Now we follow an argument found in the proof of Lemma 3.5 in [32]. Take r > 1
m2s−µ‖f‖L∞(RN ) and consider

the Lipschitz function ϕ : [0,∞)→ [0,∞) given by

ϕ(t) :=

{
0 if 0 6 t 6 r,
t−r
t if t > r.

Note that 0 6 ϕ < 1 in [0,∞), and t1|ϕ(t1) − ϕ(t2)| 6 t2|ϕ(t1) − ϕ(t2)| 6 |t1 − t2| for all 0 6 t1 6 t2. By
using these properties and that |u| ∈ Hs

m(RN ) (by Remark 2.2), we see that uϕ(|u|) ∈ Hs
m(RN ). Indeed,

|uϕ(|u|)|2 6 |u|2, and
|u(x)ϕ(|u(x)|)− u(y)ϕ(|u(y)|)|2 6 [|u(x)− u(y)|ϕ(|u(x)|) + |ϕ(|u(x)|)− ϕ(|u(x)|)||u(y)|]2
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6 2[|u(x)− u(y)|2 + ||u(x)| − |u(y)||2] 6 4|u(x)− u(y)|2,

which combined with (2.6) implies the claim. Then, testing (3.2) with uϕ(|u|), we have

(u, uϕ(|u|))Hsm(RN ) − µ(u, uϕ(|u|))L2(RN ) = (f, uϕ(|u|))L2(RN ),

which can be written as[
(u, uϕ(|u|))Hsm(RN ) −m2s(u, uϕ(|u|))L2(RN )

]
+ (m2s − µ)(u, uϕ(|u|))L2(RN ) =

∫
RN

fuϕ(|u|) dx.

Now we observe that the term [. . . ] in the above identity is nonnegative because, by using the fact that ϕ is
nondecreasing,

(u(x)− u(y))(u(x)ϕ(|u(x)|)− u(y)ϕ(|u(y)|))

=
1

2
(u(x)− u(y))2(ϕ(|u(x)|) + ϕ(|u(y)|)) +

1

2
(|u(x)|2 − |u(y)|2)(ϕ(|u(x)|)− ϕ(|u(y)|)) > 0.

Therefore,

(m2s − µ)

∫
RN

u2ϕ(|u|) dx 6
∫
RN

fuϕ(|u|) dx,

and recalling that ϕ(t) = 0 for 0 6 t 6 r, we obtain∫
{|u|>r}

|u|ϕ(|u|)
(
|u| − 1

m2s − µ
‖f‖L∞(RN )

)
dx 6 0.

Since r > 1
m2s−µ‖f‖L∞(RN ) and ϕ(t) > 0 for t > r, we achieve a contradiction unless {|u| > r} is of measure

zero, that is |u| 6 r a.e. in RN . By the arbitrariness of r > 1
m2s−µ‖f‖L∞(RN ), we conclude that (3.3) is

true. �

3.2. A Kato’s inequality. We present a Kato’s inequality [34] for (1.1). Along this subsection, we use the
notation Hs

m(RN ,K) with K = R,C, to emphasize when we consider functions u : RN → R or u : RN → C.
For z ∈ C, we denote by <(z) its real part and z̄ is its conjugate. The proof of the following useful inequality
is immediate.

Lemma 3.2. (Diamagnetic inequality) Let u ∈ Hs
m(RN ,C). Then |u| ∈ Hs

m(RN ,R) and

‖|u|‖Hsm(RN ) 6 ‖u‖Hsm(RN ).

Proof. This is a direct consequence of the inequality ||z| − |w|| 6 |z − w| for all z, w ∈ C and the validity of
(2.6). �

We now prove the main result of this subsection.

Theorem 3.3. (Kato’s inequality) Let u ∈ Hs
m(RN ,C) and f ∈ L1

loc(RN ,C) be such that

<

(
C(N, s)

2

∫∫
R2N

(u(x)− u(y))

|x− y|N+2s
2

KN+2s
2

(m|x− y|)(ψ(x)− ψ(y)) dxdy +m2s

∫
RN

uψ̄ dx

)

= <
(∫

RN
fψ̄ dx

)
(3.4)

for all ψ : RN → C measurable with compact support and such that∫∫
R2N

|ψ(x)− ψ(y)|2

|x− y|N+2s
2

KN+2s
2

(m|x− y|) dxdy <∞.

Then it holds (−∆ +m2)s|u| 6 <(sign(ū)f) in the distributional sense, that is

C(N, s)

2

∫∫
R2N

(|u(x)| − |u(y)|)(ϕ(x)− ϕ(y))

|x− y|N+2s
2

KN+2s
2

(m|x− y|) dxdy +m2s

∫
RN
|u|ϕdx

6 <
(∫

RN
sign(ū)fϕ dx

)
(3.5)

for all ϕ ∈ C∞c (RN ,R) such that ϕ > 0 in RN , where

sign(ū)(x) :=

{
u(x)
|u(x)| if u(x) 6= 0,

0 if u(x) = 0.
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Proof. We follow the approach used in the proof of Theorem 17.3.5 in [5]. Take ϕ ∈ C∞c (RN ,R) such that
ϕ > 0. For δ > 0, we set uδ(x) :=

√
|u(x)|2 + δ2, and we test equation (3.4) by

ωδ(x) :=
u(x)

uδ(x)
ϕ(x).

Firstly, we show that ωδ is admissible as test function. It is clear that ωδ has compact support. On the other
hand, we can observe

ωδ(x)− ωδ(y) =

(
u(x)

uδ(x)

)
ϕ(x)−

(
u(y)

uδ(y)

)
ϕ(y)

= [u(x)− u(y)]
ϕ(x)

uδ(x)
+

[
ϕ(x)

uδ(x)
− ϕ(y)

uδ(y)

]
u(y)

= [u(x)− u(y)]
ϕ(x)

uδ(x)
+

[
1

uδ(x)
− 1

uδ(y)

]
ϕ(x)u(y) + [ϕ(x)− ϕ(y)]

u(y)

uδ(y)

which implies that

|ωδ(x)− ωδ(y)|2

6
4

δ2
|u(x)− u(y)|2‖ϕ‖2L∞(RN ) + 4

∣∣∣∣ u(y)

uδ(y)

∣∣∣∣2 1

|uδ(x)|2
‖ϕ‖2L∞(RN )|uδ(y)− uδ(x)|2 + 4|ϕ(x)− ϕ(y)|2

6
4

δ2
|u(x)− u(y)|2‖ϕ‖2L∞(RN ) +

4

δ2
||u(x)| − |u(y)||2‖ϕ‖2L∞(RN ) + 4|ϕ(x)− ϕ(y)|2,

where we used the following elementary inequalities

|z + w + k|2 6 4(|z|2 + |w|2 + |k|2) for all z, w, k ∈ C,

|
√
|z|2 + δ2 −

√
|w|2 + δ2| 6 ||z| − |w|| for all z, w ∈ C,

and that |eıt| = 1 for all t ∈ R, uδ > δ, | uuδ | 6 1. Since u ∈ Hs
m(RN ,C), |u| ∈ Hs

m(RN ,R) (by Lemma 3.2)
and ϕ ∈ C∞c (RN ,R), we deduce that∫∫

R2N

|ωδ(x)− ωδ(y)|2

|x− y|N+2s
2

KN+2s
2

(m|x− y|) dxdy <∞.

Then we have

<

[
C(N, s)

2

∫∫
R2N

(u(x)− u(y))

|x− y|N+2s
2

(
u(x)

uδ(x)
ϕ(x)− u(y)

uδ(y)
ϕ(y)

)
KN+2s

2
(m|x− y|)dxdy +m2s

∫
RN

u
u

uδ
ϕdx

]

= <
(∫

RN
f
u

uδ
ϕdx

)
. (3.6)

Since <(z) 6 |z| for all z ∈ C, we see that

<

[
(u(x)− u(y))

(
u(x)

uδ(x)
ϕ(x)− u(y)

uδ(y)
ϕ(y)

)]

= <

[
|u(x)|2

uδ(x)
ϕ(x) +

|u(y)|2

uδ(y)
ϕ(y)− u(x)u(y)

uδ(y)
ϕ(y)− u(y)u(x)

uδ(x)
ϕ(x)

]

>

[
|u(x)|2

uδ(x)
ϕ(x) +

|u(y)|2

uδ(y)
ϕ(y)− |u(x)| |u(y)|

uδ(y)
ϕ(y)− |u(y)| |u(x)|

uδ(x)
ϕ(x)

]
. (3.7)

Now, we note that
|u(x)|2

uδ(x)
ϕ(x) +

|u(y)|2

uδ(y)
ϕ(y)− |u(x)| |u(y)|

uδ(y)
ϕ(y)− |u(y)| |u(x)|

uδ(x)
ϕ(x)

=
|u(x)|
uδ(x)

(|u(x)| − |u(y)|)ϕ(x)− |u(y)|
uδ(y)

(|u(x)| − |u(y)|)ϕ(y)

=

[
|u(x)|
uδ(x)

(|u(x)| − |u(y)|)ϕ(x)− |u(x)|
uδ(x)

(|u(x)| − |u(y)|)ϕ(y)

]
+

(
|u(x)|
uδ(x)

− |u(y)|
uδ(y)

)
(|u(x)| − |u(y)|)ϕ(y)

=
|u(x)|
uδ(x)

(|u(x)| − |u(y)|)(ϕ(x)− ϕ(y)) +

(
|u(x)|
uδ(x)

− |u(y)|
uδ(y)

)
(|u(x)| − |u(y)|)ϕ(y)

>
|u(x)|
uδ(x)

(|u(x)| − |u(y)|)(ϕ(x)− ϕ(y)) (3.8)
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where in the last inequality we used the fact that(
|u(x)|
uδ(x)

− |u(y)|
uδ(y)

)
(|u(x)| − |u(y)|)ϕ(y) > 0

because h(t) := t√
t2+δ2

is increasing for t > 0 and ϕ > 0 in RN . Recalling (3.1), we have

| |u(x)|
uδ(x) (|u(x)| − |u(y)|)(ϕ(x)− ϕ(y))|

|x− y|N+2s
2

KN+2s
2

(m|x− y|)

6
||u(x)| − |u(y)|| |ϕ(x)− ϕ(y)|

|x− y|N+2s
2

KN+2s
2

(m|x− y|)

6 C
||u(x)| − |u(y)||
|x− y|N+2s

2

|ϕ(x)− ϕ(y)|
|x− y|N+2s

2

∈ L1(R2N ,R).

Since |u(x)|
uδ(x) → 1 a.e. in RN as δ → 0, we can use (3.7), (3.8) and the dominated convergence theorem to

deduce that

lim inf
δ→0

<

[
C(N, s)

2

∫∫
R2N

(u(x)− u(y))

|x− y|N+2s
2

(
u(x)

uδ(x)
ϕ(x)− un(y)

uδ(y)
ϕ(y)

)
KN+2s

2
(m|x− y|)dxdy +m2s

∫
RN

u
u

uδ
ϕdx

]

> lim inf
δ→0

C(N, s)

2

∫∫
R2N

|u(x)|
uδ(x)

(|u(x)| − |u(y)|)(ϕ(x)− ϕ(y))

|x− y|N+2s
2

KN+2s
2

(m|x− y|) dxdy + lim
δ→0

m2s

∫
RN

|u|2

uδ
ϕdx

>
C(N, s)

2

∫∫
R2N

(|u(x)| − |u(y)|)(ϕ(x)− ϕ(y))

|x− y|N+2s
2

KN+2s
2

(m|x− y|) dxdy +m2s

∫
RN
|u|ϕdx. (3.9)

On the other hand, observing that |f u
uδ
ϕ| 6 |fϕ| ∈ L1(RN ,R) and f u

uδ
ϕ→ fsign(ū)ϕ a.e. in RN as δ → 0,

we can apply the dominated convergence theorem to infer that as δ → 0

<
(∫

RN
f
u

uδ
ϕdx

)
→ <

(∫
RN

f sign(ū)ϕdx

)
. (3.10)

Combining (3.6), (3.9) and (3.10), we see that (3.5) is valid. �

Remark 3.4. If u ∈ S(RN ,R), then we can obtain a pointwise Kato’s inequality. Indeed, if ϕ ∈ C1(R,R)
is a convex function, by using Theorem 2.2 and the fact that a convex function is above its tangent line, we
deduce the following (pointwise) Córdoba-Córdoba type inequality

[(−∆ +m2)s −m2s]ϕ(u(x)) 6 ϕ′(u(x))[(−∆ +m2)s −m2s]u(x). (3.11)

Taking ϕε(t) :=
√
t2 + ε2, with ε > 0, in (3.11) and sending ε→ 0 we find

[(−∆ +m2)s −m2s]|u(x)| 6 sign(u(x))[(−∆ +m2)s −m2s]u(x),

or equivalently
(−∆ +m2)s|u(x)| 6 sign(u(x))(−∆ +m2)su(x).

Finally we give a simple application of Theorem 3.3 to nonnegative potentials.

Corollary 3.2. Let V ∈ L2
loc(RN ,R) be such that V > 0 a.e. in RN . If u ∈ Hs

m(RN ,C) satisfies

(−∆ +m2)su = −(V (x) + 1)u in RN ,

in the following sense

<

(
C(N, s)

2

∫∫
R2N

(u(x)− u(y))

|x− y|N+2s
2

KN+2s
2

(m|x− y|)(ψ(x)− ψ(y)) dxdy +m2s

∫
RN

uψ̄ dx

)

= −<
(∫

RN
(V (x) + 1)uψ̄ dx

)
for all ψ : RN → C measurable with compact support and such that∫∫

R2N

|ψ(x)− ψ(y)|2

|x− y|N+2s
2

KN+2s
2

(m|x− y|) dxdy <∞,

then u ≡ 0.
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Proof. Note that f := −(V +1)u ∈ L1
loc(RN ,C) because of V ∈ L2

loc(RN ,R) and u ∈ L2(RN ,C). Then, using
Theorem 3.3 and V > 0, we deduce that, in the distributional sense,

(−∆ +m2)s|u| 6 −(V (x) + 1)|u| 6 0 in RN .

Since |u| ∈ Hs
m(RN ,R) and C∞c (RN ,R) is dense in Hs

m(RN ,R), we can find a sequence (ϕn) ⊂ C∞c (RN ,R),
ϕn > 0 for all n ∈ N such that ϕn → |u| in Hs

m(RN ,R). Hence, (|u|, ϕn)Hsm(RN ) 6 0, and by passing to the
limit as n→∞ we find ‖|u|‖2Hsm(RN ) 6 0, from which u ≡ 0 in RN . This ends the proof of the corollary. �

4. Nonlinear theory for (1.1)

4.1. An L∞-estimate. This subsection is devoted to establish the boundedness of solutions for subcritical
or critical nonlinear problems driven by (1.1). We combine a Brezis-Kato type argument [7] with a Moser
iteration scheme [39].

Lemma 4.1. (L∞-estimate) Let s ∈ (0, 1), m > 0 and N > 2s. Let u ∈ Hs
m(RN ) be a weak solution to (1.7),

where g : RN ×R→ R is a Carathéodory function such that |g(x, t)| 6 C0(|t|+ |t|p), for some p ∈ [1, 2∗s − 1]
and C0 > 0. Then, u ∈ Lq(RN ) for all q ∈ [2,∞].

Proof. We argue as in the proof of Proposition 3.2.14 in [5]. Assume that u 6≡ 0 (otherwise, there is nothing
to prove) and that {|u| > 1} has positive measure (otherwise, |u| 6 1 a.e. in RN , that is u ∈ L∞(RN ), and
using the fact that u ∈ L2(RN ) we deduce, by interpolation, that u ∈ Lq(RN ) for all q ∈ [2,∞]). For any
L > 0 and β > 0, we consider the Lipschitz function t ∈ R 7→ tt2βL , where tL := min{|t|, L}. We recall the
following elementary inequality (see Lemma 3.1 in [31]):

(a− b)(aa2β
L − bb

2β
L ) >

2β + 1

(β + 1)2
(aaβL − bb

β
L)2 for all a, b ∈ R. (4.1)

Taking uu2β
L ∈ Hs

m(RN ) as test function in the weak formulation of (1.7) and using Remark 2.1, we have

C(N, s)

2
m

N+2s
2

∫∫
R2N

(u(x)− u(y))

|x− y|N+2s
2

((uu2β
L )(x)− (uu2β

L )(y))KN+2s
2

(m|x− y|) dxdy

+m2s

∫
RN

u2u2β
L dx =

∫
RN

g(x, u)uu2β
L dx

which combined with (4.1) gives

C1

β + 1

[
C(N, s)

2
m

N+2s
2

∫∫
R2N

|wL(x)− wL(y)|2

|x− y|N+2s
2

KN+2s
2

(m|x− y|) dxdy +m2s

∫
RN

w2
L dx

]

6
∫
RN

g(x, u)uu2β
L dx, (4.2)

where wL := uuβL and C1 > 0 is a constant independent of L and β. Now, by using (2.5), the inequality
(a2 + b2)s > 2s−1a2s for all a, b > 0, Propositions 3.4 and 6.5 in [21], we see that

C(N, s)

2
m

N+2s
2

∫∫
R2N

|wL(x)− wL(y)|2

|x− y|N+2s
2

KN+2s
2

(m|x− y|) dxdy +m2s

∫
RN

w2
L dx

=

∫
RN
|(−∆ +m2)

s
2wL|2 dx

=

∫
RN

(|ξ|2 +m2)s|FwL(ξ)|2 dξ

> 2s−1

∫
RN
|ξ|2s|FwL(ξ)|2 dξ

= D(N, s)

∫∫
R2N

|wL(x)− wL(y)|2

|x− y|N+2s
dxdy

> E(N, s)‖wL‖2L2∗s (RN )
, (4.3)

where D(N, s) and E(N, s) are positive constants depending only on N and s. From (4.2), (4.3), and the
growth assumption on g, we deduce that,

‖wL‖2L2∗s (RN )
6 C2(β + 1)

∫
RN

(u2u2β
L + |u|p+1u2β

L ) dx, (4.4)
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where C2 := C0(C1E(N, s))−1 > 0. Now, we prove that there exist a constant c > 0 and a function
h ∈ LN/2s(RN ), h > 0 and independent of L and β, such that

u2u2β
L + |u|p+1u2β

L 6 (c+ h)u2u2β
L on RN . (4.5)

Firstly, we notice that

u2u2β
L + |u|p+1u2β

L = u2u2β
L + |u|p−1u2u2β

L on RN .
Moreover,

|u|p−1 6 1 + h on RN ,
for some h ∈ LN/2s(RN ). Indeed,

|u|p−1 = χ{|u|61}|u|p−1 + χ{|u|>1}|u|p−1 6 1 + χ{|u|>1}|u|p−1 on RN ,

and if (p− 1)N2s < 2 then ∫
RN

χ{|u|>1}|u|
N
2s (p−1) dx 6

∫
RN

χ{|u|>1}|u|2 dx <∞,

while if 2 6 (p− 1)N2s we deduce that N
2s (p− 1) ∈ [2, 2∗s]. Therefore, h := χ{|u|>1}|u|p−1 satisfies the desired

properties. Taking into account (4.4) and (4.5), we obtain that

‖wL‖2L2∗s (RN )
6 C2(β + 1)

∫
RN

(c+ h(x))u2u2β
L dx,

and, by Fatou’s lemma and the monotone convergence theorem, we can pass to the limit as L→∞ to infer
that

‖|u|β+1‖2
L2∗s (RN )

6 C2c(β + 1)

∫
RN
|u|2(β+1) dx+ C2(β + 1)

∫
RN

h(x)|u|2(β+1) dx. (4.6)

Fix M > 0 and let A1 := {h 6M} and A2 := {h > M}. Then,∫
RN

h(x)|u|2(β+1) dx 6M‖|u|β+1‖2L2(RN ) + ε(M)‖|u|β+1‖2
L2∗s (RN )

(4.7)

where

ε(M) :=

(∫
A2

hN/2s dx

) 2s
N

→ 0 as M →∞.

In view of (4.6) and (4.7), we get

‖|u|β+1‖2
L2∗s (RN )

6 C2(β + 1)(c+M)‖|u|β+1‖2L2(RN ) + C2(β + 1)ε(M)‖|u|β+1‖2
L2∗s (RN )

. (4.8)

Choosing M > 0 sufficiently large so that

C2(β + 1)ε(M) <
1

2
,

and using (4.8) we obtain

‖|u|β+1‖2
L2∗s (RN )

6 2C2(β + 1)(c+M)‖|u|β+1‖2L2(RN ). (4.9)

Then we can start a bootstrap argument: since u ∈ L2∗s (RN ) we can apply (4.9) with β1+1 = N
N−2s to deduce

that u ∈ L
(β1+1)2N
N−2s (RN ) = L

2N2

(N−2s)2 (RN ). Applying again (4.9), after k iterations, we find u ∈ L
2Nk

(N−2s)k (RN ),
and so u ∈ Lq(RN ) for all q ∈ [2,∞).

Now we prove that u ∈ L∞(RN ). Since u ∈ Lq(RN ) for all q ∈ [2,∞) we have that h ∈ LN
s (RN ). By the

generalized Hölder inequality, we can see that for all λ > 0∫
RN

h(x)|u|2(β+1) dx 6 ‖h‖
L
N
s (RN )

‖|u|β+1‖L2(RN )‖|u|β+1‖L2∗s (RN )

6 ‖h‖
L
N
s (RN )

(
λ‖|u|β+1‖2L2(RN ) +

1

λ
‖|u|β+1‖2

L2∗s (RN )

)
.

Then, using (4.6), we deduce that

‖|u|β+1‖2
L2∗s (RN )

6 C2(β + 1)(c+ λ‖h‖
L
N
s (RN )

)‖|u|β+1‖2L2(RN ) +
C2(β + 1)‖h‖

L
N
s (RN )

λ
‖|u|β+1‖2

L2∗s (RN )
.

(4.10)

Taking λ > 0 such that
C2(β + 1)‖h‖

L
N
s (RN )

λ
=

1

2
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we find that

‖|u|β+1‖2
L2∗s (RN )

6 2C2(β + 1)(c+ λ‖h‖
L
N
s (RN )

)‖|u|β+1‖2L2(RN ) =: Mβ‖|u|β+1‖2L2(RN ).

and the advantage with respect to (4.9) is that now we control the dependence on β of the constant Mβ .
Indeed, recalling our choice of λ, for some constant M0 > 0 independent of β it holds

Mβ 6

(
2C2c+ 4C2

2‖h‖2
L
N
s (RN )

)
(1 + β)2 6M2

0 e
2
√
β+1,

which implies that

‖u‖L2∗s (β+1)(RN ) 6M
1

β+1

0 e
1√
β+1 ‖u‖L2(β+1)(RN ).

Iterating this last relation and choosing β0 = 0 and 2(βn+1 + 1) = 2∗s(βn + 1), we get

‖u‖L2∗s (βn+1)(RN ) 6M
∑n
i=0

1
βi+1

0 e
∑n
i=0

1√
βi+1 ‖u‖L2(β0+1)(RN ).

Since 1 + βn = ( N
N−2s )n, we have that

∞∑
i=0

1

βi + 1
<∞ and

∞∑
i=0

1√
βi + 1

<∞

and from this we deduce that

‖u‖L∞(RN ) = lim
n→∞

‖u‖L2∗s (βn+1)(RN ) <∞.

This completes the proof of Lemma 4.1. �

4.2. Exponential decay. We focus our attention on the exponential decay of solutions to (1.7). We recall
that in the case m = 0 (see [23]), under the assumption limt→0

g(x,t)
t = 0 uniformly in x ∈ RN , every classical

positive solution u to (−∆)su = g(x, u) in RN , has a power-type decay at infinity, more precisely

0 < u(x) 6 C|x|−(N+2s) for all |x| > 1.

Firstly, we recall the following comparison principle for (−∆ +m2)s established in [4].

Lemma 4.2. (Comparison principle) Let Ω ⊂ RN be an open set, γ < m2s, u1, u2 ∈ Hs
m(RN ) be such that

u1 6 u2 in RN \ Ω and (−∆ +m2)su1 − γu1 6 (−∆ +m2)su2 − γu2 in Ω, that is

(m2s − γ)

∫
RN

u1(x)v(x) dx+
C(N, s)

2
m

N+2s
2

∫∫
RN

(u1(x)− u1(y))(v(x)− v(y))

|x− y|N+2s
2

KN+2s
2

(m|x− y|) dxdy

6 (m2s − γ)

∫
RN

u2(x)v(x) dx+
C(N, s)

2
m

N+2s
2

∫∫
RN

(u2(x)− u2(y))(v(x)− v(y))

|x− y|N+2s
2

KN+2s
2

(m|x− y|) dxdy

for all v ∈ Hs
m(RN ) such that v > 0 in RN and v = 0 in RN \ Ω. Then u1 6 u2 in RN .

Remark 4.1. In the case Ω = RN , the previous result reads as follows: if γ < m2s and u1, u2 ∈ Hs
m(RN )

are such that (−∆ +m2)su1 − γu1 6 (−∆ +m2)su2 − γu2 in RN then u1 6 u2 in RN .

Now we prove the following key lemma.

Lemma 4.3. Let µ ∈ (0,m2s) and φ ∈ L2(RN ). Then there exists a unique function w̄ ∈ Hs
m(RN ) which

solves
(−∆ +m2)sw̄ − µw̄ = φ in RN . (4.11)

If in addition φ ∈ L∞(RN ), supp(φ) is compact, φ > 0 and φ 6≡ 0, then w̄ ∈ C0,α(RN ), w̄ > 0 in RN and w̄
has exponential decay, that is there exist c, C > 0 such that

0 < w̄(x) 6 Ce−c|x| for all x ∈ RN . (4.12)

Proof. The existence and uniqueness of w̄ is guaranteed by the Lax-Milgram theorem. Now, taking the
Fourier transform in (4.11), we have w̄ = B2s,m ∗ φ, where

B2s,m(x) := (2π)−
N
2 F−1([(|ξ|2 +m2)s − µ]−1).

Assume in addition that φ ∈ L∞(RN ), supp(φ) is compact, φ > 0, and φ 6≡ 0. By comparison (see
Remark 4.1 with u1 = 0, u2 = w̄ and γ = µ), we see that w̄ > 0 in RN . Combining Lemma 3.1 and
Theorem 3.2, we deduce that w̄ ∈ C0,α(RN ) for some α ∈ (0, 1). Since w̄ ∈ C0,α(RN ) ∩ L2(RN ), we get
w̄(x) → 0 as |x| → ∞. Note that w̄ = G2s,m ∗ (µw̄ + φ), where G2s,m is defined as in Remark 3.1. Clearly,
‖G2s,m‖L1(RN ) = (2π)

N
2 FG2s,m(0) = m−2s. Let us show that w̄ > 0 in RN . In fact, if there exists x0 ∈ RN
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such that w̄(x0) = minRN w̄, observing that G2s,m ∗ φ > 0 (since G2s,m is everywhere positive and φ > 0 but
6≡ 0), we have

w̄(x0) =

∫
RN
G2s,m(y)[µw̄(x0 − y) + φ(x0 − y)] dy

> µ

∫
RN
G2s,m(y)w̄(x0 − y) dy

> µw̄(x0)‖G2s,m‖L1(RN ) =
µ

m2s
w̄(x0),

which combined with µ ∈ (0,m2s) gives w̄(x0) > 0 and this is impossible because w̄(x) → 0 as |x| → ∞.
Hence, w̄ does not have any global minimum on RN and thus w̄ > 0 in RN . Since φ has compact support,
the exponential decay of w̄ at infinity follows if we show the exponential decay of B2s,m(x) for big values of
|x|. After that, due to the fact that w̄ is continuous in RN , we can deduce the exponential decay of w̄ in the
whole of RN . Next we prove the exponential decay of B2s,m(x) for |x| large. We argue as in the proof of
Theorem 1.1 in [4]. Then we have

B2s,m(x) =
1

(2π)N

∫
RN

eıξ·x
1

[(|ξ|2 +m2)s − µ]
dξ

=
1

(2π)N

∫
RN

eıξ·x
(∫ ∞

0

e−t[(|ξ|
2+m2)s−µ] dt

)
dξ

=

∫ ∞
0

e−γt
(

1

(2π)N

∫
RN

eıξ·xe−t[(|ξ|
2+m2)s−m2s] dξ

)
dt

=

∫ ∞
0

e−γt ps,m(x, t) dt (4.13)

where γ := m2s − µ > 0, and

ps,m(x, t) := em
2st

∫ ∞
0

1

(4πz)
N
2

e−
|x|2
4z e−m

2zϑs(t, z) dz

is the transition density function of the relativistic 2s-stable process with parameter m (see formula (7)
in [42], and formula (2.12) and Lemma 2.2 in [9]), and ϑs(t, z) is the density function of the strictly s-
stable process whose Laplace transform is e−tλ

s

(see pag.3 in [42]). Using the scaling property ps,m(x, t) =
mNps,1(mx,m2st) (see formula (2.15) in [9]) and Lemma 2.2 in [27], we can see that that for some constant
C > 0 depending only on N, s,m,

ps,m(x, t) 6 C

(
gm2st

(
mx√

2

)
+ tν1

(
mx√

2

))
for all x ∈ RN , t > 0, (4.14)

where
gt(x) :=

1

(4πt)
N
2

e−
|x|2
4t ,

and νm is the density function of the Lévy measure of the relativistic 2s-stable process with parameter m > 0
(see Lemma 2 in [42] and formula (2.17) in [9]) given by

νm(x) :=
2s2

2s−N
2

π
N
2 Γ(1− s)

(
m

|x|

)N+2s
2

KN+2s
2

(m|x|).

Therefore, (4.13) and (4.14) yield

B2s,m(x) 6 C
∫ ∞

0

e−γtgm2st

(
mx√

2

)
dt+ C

∫ ∞
0

e−γt tν1

(
mx√

2

)
dt =: I1(x) + I2(x). (4.15)

We start with the estimate of I1(x) for |x| > 2. Observing that

γt+
m2−2s

8t
|x|2 > γt+

m2−2s

2t
for all |x| > 2, t > 0,

and that ab 6 εa2 + 1
4εb

2 for all a, b > 0 and ε > 0 gives

γt+
m2−2s

8t
|x|2 > m1−s

√
2
|x|√γ for all x ∈ RN , t > 0,

we deduce that for all |x| > 2 and t > 0

γt+
m2−2s

8t
|x|2 > γ t

2
+
m2−2s

4t
+
m1−s

2
√

2
|x|√γ.
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Thus, using the definition of gt, we can see that for all |x| > 2

I1(x) 6 C1

∫ ∞
0

e−γ
t
2

t
N
2

e−
m2−2s

4t e
−m1−s

2
√

2
|x|√γ

dt

= C1e
−C2|x|

∫ ∞
0

e−γ
t
2

t
N
2

e−
m2−2s

4t dt 6 C3e
−C2|x|, (4.16)

where we used the fact that ∫ ∞
0

e−αt

tp
e−

β
t dt <∞ for all α, β, p > 0.

Now we estimate I2(x) for large values of |x|. Recalling formula (1.5) concerning the asymptotic behavior of
Kν at infinity, we deduce that there exists r0 > 0 such that

Kν(r)

rν
6 C4

e−r

rν+ 1
2

for all r > r0,

and then
KN+2s

2
( m√

2
|x|)

( m√
2
|x|)N+2s

2

6 C4
e
− m√

2
|x|

|x|N+2s+1
2

for all |x| >
√

2

m
r0 =: r′0.

Consequently, using the definition of ν1, for all |x| > r′0 we get

I2(x) 6 C5
e
− m√

2
|x|

|x|N+2s+1
2

∫ ∞
0

t e−γt dt 6 C6
e−C7|x|

|x|N+2s+1
2

. (4.17)

Gathering (4.13), (4.15), (4.16), (4.17), we find that for any |x| > max{r′0, 2}

B2s,m(x) 6 C3e
−C2|x| + C6

e−C7|x|

|x|N+2s+1
2

6 C8e
−C9|x|.

This completes the proof of Lemma 4.3. �

Remark 4.2. When s = 1
2 , p 1

2 ,m
(x, t) can be calculated explicitly (see pag.185 in [36]) and is given by

p 1
2 ,m

(x, t) = 2
(m

2π

)N+1
2

t emt(|x|2 + t2)−
N+1

4 KN+1
2

(m
√
|x|2 + t2).

Remark 4.3. By the definitions of B2s,m and ps,m, it follows that B2s,m is radial, positive, decreasing in |x|,
and smooth on RN \ {0}.

With the help of Lemma 4.3, we establish the exponential decay of solutions to (1.7).

Theorem 4.1. (exponential decay) Let s ∈ (0, 1), m > 0 and N > 2. Let u ∈ Hs
m(RN ) be a weak solution

to (1.7), where g ∈ C0(RN × R) is such that

|g(x, t)| 6 C0(|t|+ |t|2
∗
s−1) for all (x, t) ∈ RN × R, (4.18)

for some constant C0 > 0, and

lim sup
t→0

sup
x∈RN

g(x, t)

t
∈ (−∞,m2s). (4.19)

Then there exist C, c > 0 such that |u(x)| 6 Ce−c|x| for all x ∈ RN .

Proof. From (4.18) and Lemma 4.1, we have that u ∈ Lq(RN ) for all q ∈ [2,∞]. Hence, g(x, u) ∈ L∞(RN )
and applying Theorem 3.2 we deduce that u ∈ C0,α(RN ) for some α ∈ (0, 1). Since u ∈ L2(RN )∩C0,α(RN ),
we get |u(x)| → 0 as |x| → ∞. From (4.19), we can find ` ∈ (0,m2s) and t0 > 0 such that

g(x, t)

t
< m2s − ` for all x ∈ RN , 0 < |t| 6 t0.

Since |u(x)| → 0 as |x| → ∞, there exists R1 > 0 such that |u(x)| 6 t0 for all |x| > R1 and so
g(x, u(x))

u(x)
6 m2s − ` for all |x| > R1 : u(x) 6= 0. (4.20)

By using Theorem 3.3 and (4.20), we can see that

(−∆ +m2)s|u| 6 (m2s − `)|u| in RN \BR1
(0).

On the other hand, by the proof of Lemma 4.3, we know that there exist R2 > 0 and a positive continuous
function w̄ ∈ Hs

m(RN ) satisfying (−∆ +m2)sw̄ = (m2s − `)w̄ in RN \ BR2
(0) and w̄ has exponential decay.

Let R := max{R1, R2}. Define σ := ‖u‖L∞(RN )(minBR(0) w̄)−1 > 0 and note that |u(x)| 6 σw̄(x) for all
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|x| 6 R. Since z := |u| − σw̄ solves (−∆ +m2)sz 6 (m2s− `)z in RN \BR(0), by Lemma 4.2 we deduce that
z 6 0 in RN which implies the thesis. �

Remark 4.4. Under the assumptions of Theorem 4.1 in [33] the author proved that u decays faster than any
polynomial. Here we improve this result by using Lemma 4.3.

4.3. Pohozaev identity for (1.1). Thanks to Lemma 4.3, we prove a Pohozaev-type identity for (1.7).
When m = 0, in [16] the authors used the Caffarelli-Silvestre extension method [11] to prove that any weak
u solution to

(−∆)su = h(u) in RN ,

where N > 2, s ∈ (0, 1), h ∈ C1(R) fulfills h(0) = 0, −∞ < lim inft→0
h(t)
t 6 lim supt→0

h(t)
t < 0,

lim|t|→∞
|h(t)|
|t|2∗s−1 = 0, H(t0) > 0 for some t0 > 0, with H(t) :=

∫ t
0
h(τ) dτ , satisfies the following Pohozaev

identity:
N − 2s

2

∫
RN
|ξ|2s|Fu(ξ)|2 dξ = N

∫
RN

H(u(x)) dx.

Due to the lack of scaling of (1.1), we will see that an identity of different structure holds in the case
m > 0; see [24, 33, 44] for related results in RN , and [26] for the case of bounded domains. We start by
proving a simple useful technical lemma.

Lemma 4.4. Let ρε(x) := 1
εN
ρ(xε ), with ε > 0, be a sequence of mollifiers such that supp(ρε) ⊂ Bε(0) and

‖ρε‖L1(RN ) = 1. If |u(x)| 6 C1e
−c1|x| for all x ∈ RN , with C1, c1 > 0, then |(ρε ∗ u)(x)| 6 C2e

−c2|x| for all
x ∈ RN and ε ∈ (0, 1), for some constants C2, c2 > 0 independent of ε.

Proof. By using the Young inequality and ‖ρε‖L1(RN ) = 1, we see that

‖ρε ∗ u‖L∞(RN ) 6 ‖ρε‖L1(RN )‖u‖L∞(RN ) = ‖u‖L∞(RN ) 6 C1. (4.21)

Fix ε ∈ (0, 1) and |x| > 2. Note that

|x| > 2 > 2 ε > 2|z| for all |z| 6 ε (4.22)

and

|x+ z| > |x| − |z| > |x|
2

for all |z| 6 |x|
2
. (4.23)

Then, using supp(ρε) ⊂ Bε(0), the exponential decay of u, (4.22) and (4.23), we obtain that

|(ρε ∗ u)(x)| =
∣∣∣∣∫

RN
ρε(z)u(x+ z) dz

∣∣∣∣
6 C1

∫
|z|6ε

ρε(z)e
−c1|x+z| dz

6 C1

∫
|z|6 |x|2

ρε(z)e
−c1|x+z| dz

6 C1

∫
|z|6 |x|2

ρε(z)e
− c12 |x| dz

6 C1e
− c12 |x|

∫
RN

ρε(z) dz = C1e
− c12 |x|. (4.24)

Combining (4.21) with (4.24), we get the thesis. �

Theorem 4.2. (Pohozaev identity) Let s ∈ (0, 1), m > 0 and N > 2. Assume that g ∈ C0(RN ×R) satisfies
(4.18) and (4.19). When s ∈ (0, 1

2 ], we also assume that g ∈ C1
b (RN × R). Let u ∈ Hs

m(RN ) be a weak
solution to (1.7). Then u satisfies the following Pohozaev-type identity:

N − 2s

2

∫
RN
|Fu(ξ)|2(|ξ|2 +m2)s dξ + sm2

∫
RN
|Fu(ξ)|2(|ξ|2 +m2)s−1 dξ

= N

∫
RN

G(x, u(x)) dx+

∫
RN

(x · ∇xG)(x, u) dx

where G(x, t) :=
∫ t

0
g(x, τ) dτ .
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Proof. By Theorem 4.1, we know that u has exponential decay. Moreover, in the light of Corollary 3.1 and
Theorem 3.2, we can apply a standard bootstrap argument (see for instance Lemma 4.4 in [10]) to obtain
that u ∈ C1

b (RN ). Now we follow an argument given in the proof of Theorem 1.3 in [24] (see also [33, 44])
with some appropriate modifications. Using the exponential decay of u, we have that uε := ρε ∗ u ∈ S(RN ).
Note that

(−∆ +m2)suε = (−∆ +m2)s(ρε ∗ u) = ρε ∗ (−∆ +m2)su = ρε ∗ g(x, u), (4.25)

and since x · ∇uε ∈ S(RN ) we have∫
RN

(−∆ +m2)su(x) (x · ∇uε(x)) dx =

∫
RN

g(x, u(x))(x · ∇uε(x)) dx. (4.26)

Arguing as in the proof Proposition 5.1 in [24], we see that

(−∆ +m2)su(x) (x · ∇uε(x)) = x · ∇[(−∆ +m2)suε(x)]

+ 2s(−∆ +m2)suε(x)− 2sm2(−∆ +m2)s−1uε(x)

which combined with (4.25) yields∫
RN

(−∆ +m2)su(x) (x · ∇uε(x)) dx =

∫
RN

u(x)(−∆ +m2)s(x · ∇uε(x)) dx

=

∫
RN

u(x)x · ∇(ρε ∗ g(·, u))(x) dx+ 2s

∫
RN

u(x)(ρε ∗ g(·, u))(x) dx

− 2sm2

∫
RN

u(x)(−∆ +m2)s−1uε(x) dx

=: Iε + IIε + IIIε. (4.27)

We start by considering the term Iε. Since g satisfies (4.18) and u has exponential decay, we have that
|g(x, u(x))| 6 C1e

−C2|x| for all x ∈ RN . Therefore, g(·, u) ∈ Lr(RN ) for all r ∈ [1,∞] and we get ρε∗g(·, u)→
g(·, u) in Lp(RN ) as ε→ 0 for all p ∈ [1,∞). Then, by u ∈ L2(RN ), we find

lim
ε→0

∫
RN

u(x)(ρε ∗ g(·, u))(x) dx =

∫
RN

u(x)g(x, u(x)) dx. (4.28)

Now, by Lemma 4.4, we see that ρε ∗ g(x, u) has exponential decay. This combined with |∇u| ∈ L∞(RN )
implies that for all x ∈ RN and ε ∈ (0, 1)

|x · ∇u(x) (ρε ∗ g(·, u))(x)| 6 C|x|e−c|x| ∈ L1(RN ).

By invoking the dominated convergence theorem we have

lim
ε→0

∫
RN

(x · ∇u(x))(ρε ∗ g(·, u))(x) dx =

∫
RN

(x · ∇u(x))g(x, u(x)) dx. (4.29)

Hence, using u ∈ C1
b (RN ), integration by parts, ρε ∗ g(x, u) has exponential decay, (4.28), (4.29), we deduce

that

lim
ε→0

Iε = lim
ε→0

[
−N

∫
RN

u(x)(ρε ∗ g(·, u))(x) dx−
∫
RN

x · ∇u(x)(ρε ∗ g(·, u)) (x)dx

]
= −N

∫
RN

u(x)g(x, u(x)) dx−
∫
RN

(x · ∇u(x))g(x, u(x)) dx

= −N
∫
RN

u(x)(−∆ +m2)su(x) dx−
∫
RN

(x · ∇u(x))g(x, u(x)) dx

= −N
∫
RN

(|ξ|2 +m2)s|Fu(ξ)|2 dξ −
∫
RN

(x · ∇u(x))g(x, u(x)) dx (4.30)

where in the first integral in the last identity we used the fact that u solves (1.7). Clearly, by (4.28), we
obtain

lim
ε→0

IIε = 2s

∫
RN

u(x)g(x, u(x)) dx = 2s

∫
RN

(|ξ|2 +m2)s|Fu(ξ)|2 dξ, (4.31)

Since uε → u in L2(RN ) as ε→ 0 and s ∈ (0, 1), we see that

lim
ε→0

IIIε = −2sm2 lim
ε→0

∫
RN

(|ξ|2 +m2)s−1Fu(ξ)Fuε(ξ) dξ

= −2sm2

∫
RN

(|ξ|2 +m2)s−1|Fu(ξ)|2 dξ. (4.32)
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Combining (4.27), (4.30), (4.31) and (4.32), we get

lim
ε→0

∫
RN

(−∆ +m2)su(x) (x · ∇uε(x)) dx = (2s−N)

∫
RN

(|ξ|2 +m2)s|Fu(ξ)|2 dξ

−
∫
RN

(x · ∇u(x))g(x, u(x)) dx− 2sm2

∫
RN

(|ξ|2 +m2)s−1|Fu(ξ)|2 dξ. (4.33)

On the other hand, from u ∈ C1
b (RN ), g(x, u) has exponential decay and the Young inequality, we have

|g(x, u(x))x · ∇uε(x)| 6 ‖∇uε‖L∞(RN )|g(x, u(x))||x|
6 ‖ρε‖L1(RN )‖∇u‖L∞(RN )|g(x, u(x))||x|

6 C3|x|e−C2|x| ∈ L1(RN ),

and observing that ∇uε → ∇u uniformly on compact sets of RN as ε → 0, we can use the dominated
convergence theorem to see that

lim
ε→0

∫
RN

g(x, u(x)) (x · ∇uε(x)) dx =

∫
RN

g(x, u(x)) (x · ∇u(x)) dx.

Now, noting that
g(x, u(x)) (x · ∇u(x)) = (x · ∇x)G(x, u)− (x · ∇xG)(x, u),

and using the exponential decay of G(x, u), an integration by parts yields∫
RN

g(x, u(x)) (x · ∇u(x)) dx = −N
∫
RN

G(x, u(x)) dx−
∫
RN

(x · ∇xG)(x, u) dx. (4.34)

Consequently,

lim
ε→0

∫
RN

g(x, u(x)) (x · ∇uε(x)) dx = −N
∫
RN

G(x, u(x)) dx−
∫
RN

(x · ∇xG)(x, u) dx. (4.35)

Gathering (4.26), (4.33), (4.34) and (4.35), we get the thesis. �

4.4. Radial symmetry. In this subsection we use the method of moving planes to study the radial symmetry
of positive solutions to

(−∆ +m2)su = g(u) in RN . (4.36)
In what follows, we take inspiration by the approaches in [17,18]. Put

Hν,m(t) :=
Kν(mt)

tν
(t > 0) , where ν :=

N + 2s

2
,

and observe thatHν,m(t) is positive and decreasing for t > 0 (sinceKν(t) > 0 and (t−νKν(t))′ = −t−νKν+1(t) <
0 for all t > 0). In order to use the definition (1.3), we will work with regular functions belonging to the
space Lexp

s defined as in Section 2. Firstly, we introduce some notations. Let

Tλ := {x ∈ RN : x1 = λ, for some λ ∈ R}

be the moving planes,

Σλ := {x ∈ RN : x1 < λ}

be the region to the left of the plane, and

xλ := (2λ− x1, x2, . . . , xN )

be the reflection of x about the plane Tλ. We set uλ(x) := u(xλ) and wλ(x) := uλ(x) − u(x). Obviously,
wλ is an anti-symmetric function, namely wλ(x) = −wλ(xλ). Next we establish a maximum principle for
anti-symmetric functions.

Theorem 4.3. (Maximum principle for anti-symmetric functions) Let δ 6 m2s and Ω be a bounded domain
in Σλ. Assume that wλ ∈ C1,1

loc (RN ) ∩ Lexp
s . If{

(−∆ +m2)swλ − δwλ > 0 in Ω,
wλ > 0 in Σλ \ Ω,

(4.37)

then wλ(x) > 0 in Ω. Furthermore, if wλ = 0 at some point in Ω, then wλ = 0 a.e. in RN . These conclusions
hold for unbounded region Ω if we further assume that

lim inf
|x|→∞

wλ(x) > 0. (4.38)
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Proof. We modify in a suitable way the proof of Theorem 2.2 in [17]. Suppose by contradiction that there
exists a point x0 ∈ Ω such that

wλ(x0) = min
Ω
wλ < 0. (4.39)

Then, using (1.3) and that wλ(yλ) = −wλ(y) for y ∈ Σλ, we see that

(−∆ +m2)swλ(x0)− δwλ(x0)

= (m2s − δ)wλ(x0) + C(N, s)m
N+2s

2 P.V.

∫
RN

(wλ(x0)− wλ(y))Hν,m(|x0 − y|) dy

= (m2s − δ)wλ(x0) + C(N, s)m
N+2s

2 P.V.

{∫
Σλ

[
Hν,m(|x0 − y|)−Hν,m(|x0 − yλ|)

]
(wλ(x0)− wλ(y)) dy

+ 2wλ(x0)

∫
Σλ

Hν,m(|x0 − yλ|) dy

}
=: (m2s − δ)wλ(x0) + C(N, s)m

N+2s
2 {I1 + I2}. (4.40)

Note that I2 < 0 because of Hν,m > 0 and (4.39). On the other hand, I1 < 0 due to the facts that
|x− yλ| > |x− y| for all x, y ∈ Σλ, Hν,m(t) is decreasing for t > 0, and

wλ(x0)− wλ(y) 6 0 but 6≡ 0.

Consequently, I1 + I2 < 0. This fact combined with δ 6 m2s and (4.39) gives

(−∆ +m2)swλ(x0)− δwλ(x0) < 0,

which contradicts (4.37). Hence, we must have wλ > 0 in Ω. If there is some point x0 ∈ Ω such that
wλ(x0) = 0, then x0 is a minimum point of wλ in Ω, hence (4.40) holds with I2 = (m2s−δ)wλ(x0) = 0. From
(4.37), we deduce that I1 > 0 and thus 0 6 wλ(x0) − wλ(y) = −wλ(y) for almost every y ∈ Σλ. Therefore,
we must have wλ = 0 a.e. in Σλ and from the antisymmetry of wλ we get wλ = 0 a.e. in RN . When Ω is
unbounded, under assumption (4.38), if it is not true that wλ > 0 in Σλ, then a negative minimum of wλ is
achieved at some point x0 ∈ Σλ. Repeating the above argument, we derive a contradiction. �

Finally, we present the main result of this subsection.

Theorem 4.4. (Radial symmetry and monotonicity) Let u ∈ C1,1
loc (RN )∩Lexp

s be a positive solution of (4.36)
with lim|x|→∞ u(x) = 0. Assume that g ∈ C1

loc(R) and g′(t) 6 m2s for t > 0 sufficiently small. Then u must
be radially symmetric and monotone decreasing about some point in RN .

Proof. We follow some ideas found in the proof of Theorem 4.1 in [17] combined with Theorem 4.3.
Step 1 We start by showing that for λ sufficiently negative, it holds

wλ(x) > 0 for all x ∈ Σλ. (4.41)

In the light of (4.36), we deduce that

(−∆ +m2)swλ(x) = g′(ξλ(x))wλ(x) (4.42)

where ξλ(x) is between uλ(x) and u(x). Suppose by contradiction that (4.41) is false. Since u(x) → 0 as
|x| → ∞, there exists x0 ∈ Σλ such that

wλ(x0) = min
Σλ

wλ < 0. (4.43)

Consequently,

uλ(x0) 6 ξλ(x0) 6 u(x0). (4.44)

For sufficiently negative λ, u(x0) is small, hence ξλ(x0) is small, and using the assumption on g′ we have
g′(ξλ(x0)) 6 m2s. Thus, by (4.42) and (4.43), we get

(−∆ +m2)swλ(x0) > m2swλ(x0). (4.45)

On the other hand, arguing as in the proof of Theorem 4.3, we obtain that

(−∆ +m2)swλ(x0)

= m2swλ(x0) + C(N, s)m
N+2s

2 P.V.

{∫
Σλ

[
Hν,m(|x0 − y|)−Hν,m(|x0 − yλ|)

]
(wλ(x0)− wλ(y)) dy
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+ 2wλ(x0)

∫
Σλ

Hν,m(|x0 − yλ|) dy

}
=: m2swλ(x0) + C(N, s)m

N+2s
2 {I1 + I2} < m2swλ(x0)

which is contrast with (4.45). Therefore, (4.41) is valid for λ sufficiently negative.
Step 2 Inequality (4.41) provides a starting point, from which we move the plane Tλ toward the right as long
as (4.41) holds to its limiting position to show that u is symmetric about the limiting plane. More precisely,
let

λ0 := sup{λ : wµ(x) > 0, x ∈ Σµ, µ 6 λ},

we show that u is symmetric about the limiting plane Tλ0 , or

wλ0
(x) ≡ 0, x ∈ Σλ0

. (4.46)

Assume by contradiction that (4.46) is not true. Then, the strong maximum principle (second part of
Theorem 4.3) yields

wλ0(x) > 0 for all x ∈ Σλ0 .

On the other hand, by the definition of λ0, there exist (λk), with λk ↘ λ0 as k →∞, and (xk) ⊂ Σλk , such
that

wλk(xk) = min
Σλk

wλk < 0, and ∇wλk(xk) = 0. (4.47)

Now we prove that the assumption on g′ guarantees that there exists a subsequence of (xk) that converges
to some point x0. As before, we can write

(−∆ +m2)swλk(xk) = g′(ξλk(xk))wλk(xk). (4.48)

If |xk| is sufficiently large, u(xk) is small, and thus ξλk(xk) is small, which implies g′(ξλk(xk)) 6 m2s. Hence,
by (4.47) and (4.48), we infer that

(−∆ +m2)swλk(xk) > m2swλk(xk).

This contradicts the fact that xk is a negative minimum of wλk since, arguing as in Step 1, we should have

(−∆ +m2)swλk(xk) < m2swλk(xk).

Therefore, (xk) is bounded, and there exists a subsequence of (xk) (still denoted by (xk)) such that xk → x0

as k →∞. From (4.47) and the continuity of wλ(x) and its derivative with respect to both x and λ, we find

wλ0(x0) 6 0, hence x0 ∈ ∂Σλ0 ; and ∇wλ0(x0) = 0.

Consequently,

wλk(xk)

δk
→ 0 as k →∞, (4.49)

where
δk := dist(xk, ∂Σk) ≡ |λk − xk1 |.

Now, we prove that

lim sup
δk→0

1

δk
[(−∆ +m2)swλk(xk)] < 0. (4.50)

Arguing as in Step 1, we deduce that
1

δk
[(−∆ +m2)swλk(xk)]

= m2swλk(xk)

δk
+
C(N, s)m

N+2s
2

δk
P.V.

{∫
Σλk

[
Hν,m(|xk − y|)−Hν,m(|xk − yλk |)

]
(wλk(xk)− wλk(y)) dy

+ 2wλk(xk)

∫
Σλk

Hν,m(|xk − yλk |) dy

}

=: m2swλk(xk)

δk
+ C(N, s)m

N+2s
2 {I1k + I2k}.
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Clearly, by (4.47) and Hν,m > 0, we know that I2k < 0. On the other hand, from the mean value theorem,
H ′ν,m(t) = −t−νKν+1(mt) < 0 for t > 0, |x− yλ| > |x− y| for all x, y ∈ Σλ, and observing that, as k →∞,

wλk(xk)− wλk(y)→ wλ0(x0)− wλ0(y) < 0 for all y ∈ Σλ0 ,

we have
lim sup
δk→0

I1k < 0.

Then, by using this fact, I2k < 0 and (4.49), we obtain that (4.50) holds. Combining (4.48), |g′(ξλk(xk))| 6 C
for all k ∈ N, (4.49), and (4.50), we get a contradiction.
Since the x1-direction can be chosen arbitrarily, we conclude that the solution u must be radially symmetric
and monotone decreasing about some point in RN . �
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