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Highlights 10 

• Acoustic stimulation detection useful in many application fields (e.g. assistive technologies)  11 

• Signals generated by wearable devices can be used to detect human reactions 12 

• Multimodal physiological signals are more effective and reliable respect to single assessment 13 

• Machine learning algorithms effective in the stimulus presence identification through arousal 14 

 15 

Abstract: The presence of stimuli and the consequent reactions undoubtedly reflect in experience-related 16 
changes of physiological parameters, which can be monitored by wearable devices. Generally, reactions 17 
related to the sympathetic nervous system activity are assessed through heart rate variability analysis. 18 
However, the exploitation of multimodal physiological signals provides a broader fingerprint. This study aims 19 
to identify the elicitation of acoustic stimulation through a wearable device; physiological signals, including 20 
electrodermal activity and skin temperature, were measured on a test population wearing a wrist-worn medical 21 
device. Eight machine learning algorithms were evaluated in a binary classification (presence/absence of 22 
stimuli), using 22 meaningful metrics from the collected data. The experimental results showed that Linear 23 
Regression (LR) algorithm, followed by Support Vector Machine (SVM), performed satisfactorily across all 24 
the evaluation metrics, achieving 75.00% and 72.62% of accuracy rate, respectively. Finally, the trained LR 25 
and SVM algorithms have been validated on a publicly available dataset (WESAD). 26 

Keywords: Acoustic stimulation detection; wearable devices; measurement systems; multimodal 27 
physiological signals; features selection; machine learning. 28 

 29 

1. Introduction 30 

Human emotions can be usefully classified on a discrete scale according to  Plutchick, who defined a 31 
taxonomy based on  eight distinct emotions: joy, trust, fear, surprise, sadness, disgust, anger, and anticipation 32 
[1]. Later on, given that an emotion can have different intensities, multi-dimensional space-models have been 33 
developed, taking into account both valence (pleasant/unpleasant) and arousal (high/low) [2]; subsequently, 34 
also dominance (submissive/dominant, reflecting the control ability of people) has been added [3]. The research 35 
on emotions, their recognition, and their elicitation through specific stimuli is an active field of research, where 36 
affective computing plays a pivotal role [4], even if there are also different application contexts, such as safe 37 
driving, health care, and social security [5]. Emotions can be thought as the subject’s reaction to a stimulus, and 38 
this reaction undoubtedly reflects in unconscious changes in the subject’s physiological state. Therefore, the 39 
monitoring of physiological signals could provide useful information on the presence/absence of stimuli 40 
influencing the subject’s state. To this aim, different physiological signals can be considered [6], given that 41 
human psycho-physiological mental state is always correlated with physical and physiological reactions to 42 
internal/external stimuli [7]. In fact, if it is true that a subject can mask or pretend her/his facial and/or 43 
behavioural appearance (e.g. face expressions [8] or body gestures [9]), on the other hand it is undoubtable that 44 



 

 

the fluctuations of physiological signals are under the control of the sympathetic nervous system (SNS), thus 45 
cannot be controlled voluntarily [10]. For this reason, physiological sensors should be preferred to systems like 46 
cameras, which can push someone towards hiding emotional reactions, also depending on her/his own cultural 47 
habits [11]). To this aim, several signals have been used in the literature, such as the electrocardiogram (ECG) 48 
[12], the electroencephalogram (EEG) [13], the electromiogram (EMG) [14], the photoplethysmogram (PPG) 49 
[15], the electro-dermal activity signal (EDA) [16], and the skin temperature (SKT) signal [17]. All these signals 50 
can be obviously measured in ambulatory conditions by means of medical devices, but current healthcare 51 
provisioning paradigm is shifting towards remote monitoring and telemedicine [18], [19]. In particular, in the 52 
latest years wearable devices have gained more and more popularity, not only for activity tracking or fitness 53 
applications, but also in telemedicine and with clinical purposes [20]. Examples consist in their use in Ambient 54 
Assisted Living (AAL) domain [21], [22] or for promoting healthy and active ageing [23], [24], up to possible 55 
applications during a pandemic emergency [25]. However, the accuracy requirements should be always taken 56 
into account [20] in order to give a valuable contribution to decision-making processes [26], depending on the 57 
purpose of the measurement itself. Wearable devices allow to easily collect a great amount of data also in non-58 
controlled environments [27], [28], representing a double-edge sword: on the one hand, they enable continuous 59 
(remote) monitoring, on the other hand the “big data” represent a challenge both for their accuracy and the 60 
computational requirements for their analysis. In the recent years, data coming from wearable devices have met 61 
the potentiality of Artificial Intelligence (AI) and Machine Learning (ML) approaches [29], empowering the 62 
capability of these devices to analyse physiological data for deriving significant parameters describing different 63 
human spheres, from physiological, through behavioural, to psychological ones, also for applications in Industry 64 
4.0 context [30]. Furthermore, in the present COVID-19 pandemics, the combination of AI and big data is 65 
giving a valuable contribution in tracking people and trying to limit the contagion [31], [32]. 66 

Multimodal recordings of physiological signals can provide a broader fingerprint with respect to a single 67 
signal [33]. For example, Zhao et al. [34] used a wearable device to measure Blood Pressure Volume (BVP), 68 
EDA and SKT for emotion recognition through Support-Vector Machine (SVM) classifier; also Gjoreski et al. 69 
used the same model of wearable (Empatica E4), considering the same three signals plus accelerometer for 70 
stress monitoring [35]. It is worth underlining the high subjectivity of emotions, since their perception depends 71 
on many factors, among which we can mention experience, gender, age and culture [36]. Fear, surprise and 72 
stress were classified by Park et al. using SKT, EDA, ECG and PPG and different ML algorithms, namely linear 73 
discriminant analysis, classification and regression tree, self-organizing map, and Naïve Bayes, with 10-fold 74 
cross-validation [37]. In [38], after selecting the optimal set of features, joy, anger, sadness and pleasure were 75 
correctly discriminated, reaching a high recognition performance (i.e. 100% for joy and anger). Multimodal 76 
acquisition systems can also improve the motion artefacts identification, largely affecting the data quality, and 77 
consequently the analysis. Indeed, the reduction of noise and the increase of measurement accuracy are 78 
generally outcomes of a data fusion algorithm, including both physiological signals and a 3-axis accelerometer 79 
used as reference sensor to detect and estimate the movements [39], [40].  80 
In this context, this article aims at investigating the possibility to correctly identify the presence or the absence 81 
of an acoustic stimulus by the use of signals measured by a wrist-worn wearable device, and exploring different 82 
ML approaches (namely Random Forest, Decision Tree, Naïve Bayes, K-nearest neighbour, Bagging, Boosting, 83 
Support Vector Machine, and Linear Regression), using features extracted from the measured data, whose 84 
effectiveness has been evaluated by means of the correlation-based feature selection method [41]. In our study, 85 
a wrist-worn, multimodal, medical device (Empatica E4) has been used to acquire a collection of physiological 86 
data (hereinafter referred as “Lab_dataset”) from which features have been extracted to feed ML algorithms 87 
aiming at the detection of an acoustic stimulation. The overall workflow of the proposed work is described in 88 
Fig. 1. 89 

 90 



 

 

 91 
Fig. 1 Overall workflow of the proposed study.  92 

In our study, we have considered the following physiological signals: Inter-Beat Intervals (IBI), BVP, EDA 93 
and SKT. In particular, the BVP signal is obtained through a PPG sensor and permits to derive Heart Rate 94 
Variability (HRV, i.e. the physiological variability in time intervals between consecutive heartbeats), which, 95 
among other purposes, can be exploited for emotion recognition [42]; it is worthy to note that, since PPG sensor 96 
is prone to motion artifacts (for example, in the literature Empatica E4 is said to correctly detect heartbeats 97 
during sitting and household work for 68% and 9% of the cases, respectively [43]), proper correction algorithms 98 
should be adopted [44]. Electrodermal activity reflects eccrine sweat gland activity [45] and can consequently 99 
provide the measurement of the so-called “emotional sweating”, independent from the thermoregulatory 100 
system, hence evaluating SNS function and limbic activity. EDA can be used for stress detection and emotion 101 
recognition [10], [46]; in particular, the relaxed state is characterised by a low variability signal with a 102 
decreasing trend, whereas the stressed state is characterised by a high variability and an increasing trend. It is 103 
important to note that after the electrodes application the conductivity increases over time until reaching the 104 
subject’s skin conductivity value; this process takes time, hence before recording it should be waited at least for 105 
20 minutes [46] – even if others consider only 5 minutes [47]. The signal acquired with wearable devices is 106 
vulnerable to several types of disturbances; artifacts can derive from electronic noise or variations in contact 107 
between electrodes and skin [48] and they need to be recognised and corrected. The EDA signal (and 108 
particularly the magnitude of its changes [49]) seems to be associated more to arousal (i.e. the level of emotions, 109 
low/high) than to valence (i.e. the pleasantness of emotions, positive/negative). Moreover, given that arousal 110 
can have similar intensity of response for positive/negative stimuli (this can be confirmed through Self-111 
Assessment Manikin – SAM – questionnaire, enabling to assess valence, arousal and dominance associated to 112 
a presented stimulus [50]), the authors have chosen to consider a binary classification of presence/absence of 113 
stimuli starting from the measured physiological signals, also considering that the accuracy of arousal 114 
discrimination seems to be higher than that of valence differentiation [49]. In the literature it has been evidenced 115 
that the combination of EDA and HRV measurements can provide an improved quantification of sympathovagal 116 
balance, since EDA is related to sympathetic activity, whereas HRV spectral estimates to parasympathetic one 117 
[51]. Moreover, also SKT data have been considered, since it can vary consequently to changes in blood flow 118 
associated to the modulation of local vascular resistance operated by the smooth muscle tone, which in turn is 119 
mediated by the SNS [34]. For the data processing, the authors used the Kubios software tool [52] for HRV 120 
analysis and algorithms for BVP, EDA and SKT, employing the Biosignal-Specific Processing (Bio-SP) Tool 121 
from Matlab® [53], [54] for the analysis of EDA and the extraction of its related features. In order to elicit 122 
emotions, audio stimuli chosen from the International Affective Digitized Sound system (IADS-2) database, 123 
which are already classified in terms of valence and arousal through the SAM scale, were used [55]. 124 

Finally, in order to validate the proposed measurement method, it was tested on a publicly available 125 
multimodal dataset, the Wearable Stress and Affect Detection (WESAD), which is available online and it is 126 
commonly used for stress and affect detection from data acquired by means of wearables [56]. Specifically, the 127 
validation phase aims to provide an additional analysis, thanks to the WESAD dataset collected under daily 128 
external stimuli in free living conditions. 129 

The paper is organized as follows: Section 2 describes materials and methods adopted in this research, 130 
whereas results are presented in Section 3. Finally, in Section 4 the authors comment on the results and provide 131 
conclusions. 132 
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2. Materials and Methods 133 

A. Participants 134 

The experimental tests involved a population of 7 subjects (5 females and 2 males) in healthy conditions, 135 

aged between 15 and 52 years and with a Body Mass Index (BMI) between 20.8 and 26.8 kg/m2. All the 136 

participants were informed about the purpose and the methods of the experiment and decided voluntary to be 137 

part of the study, by signing the informed consent before starting the tests (which were performed following the 138 

principles outlined in the WMA Declaration of Helsinki - Ethical Principles for Medical Research Involving 139 

Human Subjects [57]).  140 

B. Experiment procedure and data collection 141 

Since the measurement protocol was intended to acquire data in a relaxed situation, the participants were 142 

tested individually at their own home, in a quiet room with lights turned off to reduce any potential interfering 143 

input. In particular, they were in supine position on a bed with closed eyes, in order to focus on the presented 144 

stimuli and avoid disturbances on the measured data due to movements. 145 

In this study, the individual physiological changes were simultaneously measured by wearing a wrist-worn, 146 

medical device (Empatica E4 - Fig. 2) [58], on the dominant wrist. 147 

 148 

Fig. 2 Wrist-worn medical device (mod. Empatica E4 device): front (left) and back (right) view. 149 

In order to induce an emotional reaction, audio recordings were extracted from the International Affective 150 

Digitized Sounds 2nd Edition (IADS-2) standardized database, in which 167 natural sounds of daily life are 151 

categorized in terms of arousal, valence and dominance [55]. The following sounds were selected: 1 neutral event 152 

(i.e. Walking sound no. 722), 1 pleasant event (i.e. Rock’n’roll sound no. 815) and 1 unpleasant event (i.e. Scream 153 

sound no. 275). Because of the short duration (6 s) of audio recordings in the database, all sounds were repeated 154 

to obtain 1-minute long stimuli. Participants completed three trials, each lasting 10 minutes. In detail, after 155 

recording 5 minutes of baseline of physiological parameters, one sound was randomly selected among the others, 156 

and played through a Bluetooth speaker for 1 minute to collect physiological changes through the wearable 157 

device. It is worthy to underline that the sensors were positioned at least 5 minutes before starting the acquisition, 158 

in order to reach stable measured data, e.g. for EDA signal. Then, 4-minute-long signals were collected in rest 159 

condition. All the subjects listened to the three audio clips twice, for a total of 42 recordings. Simple self-160 

annotations, by pressing the event-marker button on E4 device, were performed by the subjects to label the 161 

beginning and the end of each acoustic stimulation. Thanks to data-labelling, for each measurement we well-162 

categorized the first and the second part of acquisitions, i.e. in absence and in presence of stimulus, respectively. 163 

From the beginning of the stimulation to the end of the recording, the data portion was labelled as presence of 164 

stimulus due to the potential prolonged psychological reaction after the stimulus [59]. 165 



 

 

C. Acquisition device 166 

The wrist-worn medical device utilised in our experiment is the Empatica E4, a wireless multi-sensor device 167 

(Class IIA Medical Device according to the 93/42/EEC Directive) for comfortable and real-time data acquisition. 168 

The E4 has four embedded sensors, namely PPG, EDA, 3-axial MEMS accelerometer and infrared (IR) 169 

thermometer. According to the definition of the acquisition protocol, i.e. at rest physical conditions of users, the 170 

signals acquired from the accelerometer sensor were not included in this study. All the others were included in 171 

the analysis, specifically: 172 

- PPG sensor samples at 64 Hz. In particular, BVP is the input signal to the algorithm that provides the Heart 173 

Rate (HR) and the IBI signal as outputs. The digital sensor output, with a resolution of 0.9 nW/Digit, is generated 174 

by the light produced with 4 light emitting diodes (LEDs, 2 green and 2 red ones) and 2 photodiodes with a total 175 

sensitive area of 14 mm2. The light during the green exposure mainly contains the information on the heartbeats, 176 

while the red exposure helps the reduction of motion artifacts that are dynamically compensated by firmware. 177 

- EDA sensor measures the changes in skin electrical conductance with a sampling rate of 4 Hz, in the range 178 

of [0.01, 100] µS and with a resolution of 900 pS. Through the Ag/AgCl electrodes placed on the ventral wrist, 179 

a small alternating current (8 Hz frequency – max 100 μA) is applied to the user’s skin. 180 

- IR thermometer is configured with a sample frequency of 4 Hz. SKT values are measured by an optical 181 

thermopile sensor. The reported accuracy within the range of human skin temperature (i.e. 36-39 °C) is ± 0.20°C. 182 

Calibration is valid in the range [-40, 115] °C. 183 

The multi-parameter sensor can operate either in streaming mode for real-time data visualization using a 184 

Bluetooth Low Energy (BLE) interface and the E4 Realtime app from supported mobile devices, or in-memory 185 

recording mode storing temporarily data in the internal flash memory (memory capacity > 48 hours of continuous 186 

data). In any case, the recording sessions associated to the serial number of the used Empatica E4 are saved as 187 

available from the E4 Connect remote platform for data management and can be download as .csv files. 188 

D. Data pre-processing  189 

As mentioned above, the approach proposed in this study analysed the following data: IBI, EDA, SKT and 190 

BVP. The pre-processing pipeline, first in MATLAB environment and then in WEKA [60], included mainly the 191 

following phases: segmentation, filtering, feature extraction and features selection. Then, these features were 192 

used to feed 8 different machine learning algorithms, which will be detailed in the following.  193 

Firstly, raw data were split into two segments, representing the first and the second part of acquisitions, 194 

labelled as absence and presence of stimulus, respectively. Each segment lasted 5 minutes. Secondly, to reduce 195 

the artifacts and interference recorded during the acquisition phase, each measured signal was separately filtered 196 

according to the related literature. 197 

IBI data, consisting in the duration (in ms) of successive heartbeats, were correctly and successfully 198 

reconstructed in our previous work [44]. Therefore, we used the same artifact correction method and extracted 199 

the same meaningful features through the Kubios toolbox [61]. EDA signals were pre-processed by using the 200 

Bio-SP toolbox [62] to reduce noise and artifacts attributable to wrist motion and physiological properties at skin 201 

level. More specifically, a Gaussian low-pass filter (with a 40-point window and a sigma of 400 ms), as 202 

recommended in a previous study, was applied for the filtering process of EDA [63]. Since SKT data change 203 

slightly and slowly under rest physical condition, as in the defined acquisition protocol, no filter was applied. 204 

The same for BVP data, also to avoid potential signal distortion. 205 



 

 

E. Features extraction  206 

 In the features extraction phase, meaningful metrics were extracted in both time and frequency domains, 207 

from each data portion (i.e. absence/presence of stimulus) to characterize the different segments of data. 208 

Additional non-linear and information theory-based parameters were extracted from IBI signal according to the 209 

Kubios toolbox. Regarding the BVP signal, the features were extracted from the blood volume amplitude (BVA) 210 

representing the blood flow, while EDA features were computed on both the filtered EDA signal and the skin 211 

conductance response (SCR) component, strictly related to the SNS activity and stimuli response. Table 1 details 212 

the 33 statistical features, successfully applied in previous works [64], [65] and selected to quantify each signal.  213 

 214 

Table 1: Features extracted from the physiological signals grouped by the domain. 215 

F. Features selection  216 

A preliminary investigation was conducted using the full set of features. In fact, although a higher number of 217 

features means greater information available to the algorithms, the use of redundant and irrelevant features results 218 

in a poor classification performance [66]. Such a strategy was applied in [67], where the correlation-based 219 

algorithm, along with the genetic algorithm, was able to reduce the features from more than 300 to 69, limiting 220 

the computing time while increasing the ML algorithm performance. Therefore, in order to optimize the learning 221 

accuracy, we performed a feature selection analysis with the correlation-based filter [41], a common and reliable 222 

technique for features selection [68]. Such algorithm evaluates the worth of an attribute by measuring the 223 

(Pearson’s) correlation of the attribute with the class to predict. The output of Pearson’s correlation varies 224 

between high positive correlation (values close to 1) and high negative correlation (values close to -1) – 0 means 225 

no correlation. Generally, the threshold from which defining two variables correlated can be arbitrarily selected 226 

Signals Features 

IBI 

Time Domain 

IBIs mean (RR_mean, ms), IBIs standard deviation (RR_std, ms), HR 

mean (HR_mean, bpm), HR min (HR_min, bpm), HR max (HR_max, 

bpm), root mean square of successive IBIs (RMSSD, ms) 

Frequency domain 

Absolute powers in the VLF (0-0.04 Hz), LF (0.04-0.15 Hz), HF (0.15-

0.40 Hz) frequency bands (VLF_abs, LF_abs, HF_abs, ms2), total 

power (P_tot, ms2) 

Non-linear and 

information theory-

based measures 

HRV short- and long-term variability (SD1, SD2, ms) and their balance 

SD2/SD1, approximate and sample entropy (ApEn, SampEn), short- 

and long-term fluctuation analysis (alpha1, alpha2) 

BVP Time Domain 

Mean and standard deviation of BVA (BVA_mean, nW, and BVA_std, 

nW, respectively), mean and standard deviation of the BVP 1st 

derivative (BVAˈ_mean, nW/s, and BVAˈ_std, nW/s, respectively), 

mean and standard deviation of the BVA 2nd derivative (BVAˈˈ_mean, 

nW/s2), and BVAˈˈ_std, nW/s2, respectively) 

EDA Time Domain 

SCR mean duration (SCR_D_mean, s), SCR mean amplitude 

(SCR_A_mean, µS), SCR mean rise-time (SCR_RT_mean, s), EDA 

mean signal (EDA_mean, µS), no. of SCRs (SCR_n) 

SKT Time Domain 
Mean (SKT_mean, °C), standard deviation (SKT_std, °C), minimum 

(SKT_min, °C) and maximum (SKT_max, °C) values 



 

 

[69]; hence, after running the correlation filter in WEKA tool to generate a rank for each feature, all the attributes 227 

with a rank below 0.10 were discarded.  228 

G. Emotions and physiological reactions: stimulation detection by machine learning algorithms 229 

After estimating the informative content of the physiological signals by extracting the related features, the 230 

correlation-based filter was used to establish the goodness of features extracted and to select a subset according 231 

to the high correlation between features and class. The resulting subset of features was used as input to the ML 232 

classifiers, from which an output identifying the class label related to the presence/absence of a stimulus is 233 

returned.  234 

For the model evaluation, the ML algorithms were tested with the 10-fold cross validation configuration 235 

setting, in which the entire features dataset was randomly divided into 10 subsamples, namely 9 subsamples as 236 

training data and 1 as validation data for testing the model. After using the available subsamples as validation 237 

data, the resulting accuracy percentage is the average over the 10 iterations. 238 

Given the large inter-individual variability for the physiological signals, especially considering the emotion 239 

recognition (indeed, individual differences can hinder emotion pattern discrimination [34]), several well-known 240 

classifiers were selected in WEKA tool for the classification task: Support Vector Machine (implemented with 241 

SMO algorithm in WEKA, that is Sequential Minimal Optimization), Random Forest (RF), Decision Tree (J48), 242 

Naïve Bayes (NB), K-nearest neighbour (kNN), Bagging, Boosting (LogitBoost) and Linear Regression 243 

(SimpleLogistic). 244 

Finally, the performance of these algorithms was evaluated in terms of the ability of classifying the presence 245 

or absence of a stimulation, as a binary classification task. In detail, the classification performance was evaluated 246 

in terms of Accuracy (1), Sensitivity (2), Precision (3) and F-measure (4), as defined in [70]: 247 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (1 −
|𝑁𝑐𝑐𝑖 − 𝑁𝑡𝑖|

𝑁𝑡𝑖

) ∙ 100 (1) 

being Ncci the number of correctly classified instances and Nti the number of total instances considered by the 248 

classifier. The Sensitivity was computed as: 249 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 and Precision as: 250 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

where TP denotes True Positives, FN False Negatives, and FP False Positives, respectively. 251 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
(1 + 𝛽2) ∙ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝛽2 ∙ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (4) 

 F-measure is the harmonic mean of Sensitivity (or equivalently Recall) and Precision, with the weight 252 

coefficient β = 1 in WEKA tool. 253 

Additionally, for a visual interpretation among the classification results for the two classes, a confusion matrix 254 

has been realized to compare the predicted and actual classes. 255 

H. Validation of the best performing algorithms on a different dataset 256 

After having determined the best subset of features and the two best ML algorithms in terms of stimulation 257 

detection, trained and tested on the dataset acquired through Empatica E4 as described in Section 2. B, the authors 258 

validated their performance on a public dataset, namely WESAD. WESAD includes data measured on 15 259 

participants (three females and twelve males, aged 27.5 ± 2.4 years, expressed as mean ± standard deviation) 260 



 

 

during laboratory studies aimed to detect whether stress or affect (both representative of daily external stimuli) 261 

from data acquired by means of wearable devices. In particular, Empatica E4 wrist-worn device was used to 262 

measure BVP, EDA, SKT and acceleration signals (as already described in Section C). Moreover, the chest-strap 263 

device RespiBAN [71] was employed for the measurement of ECG, EDA, EMG, SKT and acceleration signals; 264 

the sampling frequency was equal to 700 Hz for all of them. Laboratory studies were performed during three 265 

different affective states, namely neutral, stress and amusement; in particular, funny video clips were showed 266 

during the amusement conditions, whereas the Trier Social Stress Test (TSST) was used to cause a high mental 267 

load and, consequently, a stress condition. In order to have a ground truth, self-assessment questionnaires were 268 

administered to the participants (also to verify the effective elicitation of the different affective states); 269 

specifically, Positive and Negative Affect Schedule (PANAS, for positive and negative affect assessment) and 270 

some items from the State-Trait Anxiety Inventory (STAI, for the anxiety level quantification) and from the Short 271 

Stress Questionnaire (SSSQ, for the type of stress determination) were considered. Since the authors aimed to 272 

analyse the WESAD dataset following the same procedure described above for Lab_dataset, only data acquired 273 

through the Empatica E4 on 7 subjects in baseline and the stress conditions were selected among the signals 274 

collected. Additionally, in this case the ML algorithms were trained on our dataset and tested on WESAD one. 275 

This means that the ML algorithms were trained with data collected in rest physical state under acoustic 276 

stimulation, and then tested with data recorded in tasks typical of free-living conditions, which can be associated 277 

to daily external stimuli. More specifically, in the WESAD experimental protocol, Schmidt et al. [56] made the 278 

volunteers perform a public speaking (a 5-minute speech in front of a three-person panel, speaking of their own 279 

personality, highlighting strengths and weaknesses) and a mental arithmetic task (to count from 2023 to zero, 280 

with steps of 17) to elicit stress. This widens the application context where the algorithms were trained (i.e. 281 

laboratory controlled conditions with emotions elicited by audio stimuli). 282 

3. Results 283 

Data measured from Empatica E4 were pre-processed and analysed to extract features from each recording. More 284 

specifically, attributes were computed for the two data portions, which were labelled as absence (i.e. before 285 

playing the sound clip) and presence of stimulus (i.e. during and after playing the sound clip). Then, the selected 286 

features for feeding the ML algorithms are reported, together with the ranks obtained with the correlation-based 287 

feature selection method. 288 

A. Features selection 289 

Before the application of ML classifiers, the correlation-based feature selection algorithm was used to 290 

establish the importance of features over the whole dataset. The resulting subset of features included 22 metrics 291 

(from the highest to lowest ranked attributes) as shown in Fig. 3. 292 



 

 

 293 
Fig. 3 Ranks listed in order of importance for each feature extracted from the Empatica E4 signals (the red horizontal line 294 

indicates the threshold of 0.10 over which the features are considered significant). 295 

In summary, the features selected to feed ML algorithms were the following ones: 296 

• HRV analysis (from IBI signal): mean and standard deviation of RR intervals (RR_mean and 297 
RR_std), mean, standard deviation, minimum and maximum values of HR (HR_mean, HR_std, 298 
HR_min, HR_max), root mean square of successive RR intervals (RMSSD) in the time domain; 299 
absolute powers in the VLF, LF and HF frequency bands (VLF_abs, LF_abs, HF_abs) and total 300 
power (P_tot) in the frequency domain; short- and long-term variabilities (SD1 and SD2) and their 301 
ratio as balance (SD2/SD1), approximate and sample entropies (ApEn and SampEn) and short- and 302 
long-term fluctuation analysis (alpha1 and alpha2) as non-linear and information theory-based 303 
features; 304 

• BVP signal: the standard deviation of vasoconstriction (BVA_std) and the standard deviation of the 305 
1st derivative of BVP signal (BVAˈ_std); 306 

• EDA signal: the number of SCRs (SCR_n); 307 

• SKT signal: the standard deviation of skin temperature (ST_std). 308 

Such potential optimal subset of features, composed by the parameters more sensitive to stimuli, was examined 309 

for correctly discriminating the absence or presence of stimuli by means of different ML algorithms.  310 

B. Classification of the presence/absence of acoustic stimuli 311 

Eight different machine learning classifiers, trained with a 10-fold cross-validation scheme, were used for the 312 

binary classification of stimulation events. Herein, the performance of the proposed scheme to classify the 313 

presence or absence of acoustic stimulation (i.e. pleasant, unpleasant and neutral sound clips) are listed. Each 314 

algorithm was evaluated in terms of Accuracy percentage, Sensitivity, Precision and F-measure (Table 2).  315 



 

 

Table 2: Performance of classifiers in terms of Accuracy (%), Sensitivity, Precision and F-measure. 316 

 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 

The highest average accuracy (75.00%) was achieved for the Linear Regression classifier (grey-highlighted 325 

raw in Table 2), while an average accuracy of 58.33% was found concerning the worst classifier, i.e. K-nearest 326 

neighbour. On the other hand, the highest sensitivity was reported for Support Vector Machine classifier, even if 327 

its value (0.78) is very close to the Linear Regression one (0.75). Similar considerations can be done for precision: 328 

the highest value (0.78) was reached by Naïve Bayes, but Linear Regression one is comparable (0.76). 329 

Regarding the two best classifiers, i.e. the Linear Regression followed by the Support Vector Machine, the 330 

number of correctly classified and misclassified instances is reported also by their confusion matrices ( 331 

 332 

 333 

 334 

 335 

Classifiers Accuracy (%) Sensitivity Precision F-measure 

Support Vector Machine 72.62 0.78 0.73 0.71 

Random Forest 70.24 0.70 0.72 0.70 

Decision Tree 71.43 0.71 0.71 0.71 

Naïve Bayes 67.86 0.68 0.78 0.65 

K-nearest neighbour 58.33 0.58 0.58 0.58 

Bagging 70.24 0.70 0.71 0.70 

Boosting 71.43 0.71 0.72 0.71 

Linear Regression 75.00 0.75 0.76 0.75 



 

Table 3 and Table 4, respectively). 336 
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 339 

 340 

 341 

Table 3: Confusion matrix related to Linear 342 

Regression. 343 

  Predicted class 

  
Absence of 

stimulus 

Presence of 

stimulus 

A
ct

u
a

l 
c
la

ss
 Absence of 

stimulus 
28 14 

Presence of 

stimulus 
7 35 

Table 4: Confusion matrix related to Support 344 

Vector Machine. 345 

  Predicted class 

  
Absence of 

stimulus 

Presence of 

stimulus 

A
ct

u
a

l 
c
la

ss
 Absence of 

stimulus 
21 21 

Presence of 

stimulus 
2 40 

346 

 347 

A similar behaviour of misclassification was found in both the classifiers: poor ability to distinguish the 348 

absence of stimulus, that were often predicted as presence of stimulus (Linear Regression: 14 wrong instances; 349 

Support Vector Machine: 21 wrong instances, resulting in a lower FP number for the former). Contrarily, the 350 

presence of stimulus was well-classified with a low number of misclassification (i.e. Linear Regression: 7 wrong 351 

instances; Support Vector Machine: 2 wrong instances, resulting in a lower FN number for the latter). 352 

C. Validation of Linear Regression and Support Vector Machine algorithms on WESAD dataset 353 

The discrimination performance of the two best ML algorithms, i.e. Linear Regression and Support Vector 354 

Machine algorithms, resulted good also in the analysis of signals from the WESAD dataset. In particular, the 355 

classification accuracy was equal to 71.43% and 64.29%, respectively, which are values not so far to those found 356 

on our laboratory data (75.00% and 72.62%, respectively). The related performance metrics are reported in Table 357 

5. Finally, the confusion matrices are reported in 358 

Table 6 and Table 7, respectively. 359 

Table 5: Performance of classifiers in terms of Accuracy (%), Sensitivity, Precision and F-measure (WESAD 360 

dataset). 361 

 362 

 363 

 364 

Table 6: Confusion matrix related to Linear 365 

Regression – WESAD dataset. 366 

  Predicted class 

  
Absence of 

stimulus 

Presence of 

stimulus 

A
ct

u
a

l 
c
la

ss
 Absence of 

stimulus 
7 0 

Presence of 

stimulus 
4 3 

Classifiers Accuracy (%) Sensitivity Precision F-measure 

Support Vector Machine 64.29 0.71 0.63 0.67 

Linear Regression 71.43 1.00 0.64 0.69 



 

 

Table 7: Confusion matrix related to Support 367 

Vector Machine – WESAD dataset. 368 

  Predicted class 

  
Absence of 

stimulus 

Presence of 

stimulus 

A
ct

u
a

l 
c
la

ss
 Absence of 

stimulus 
5 2 

Presence of 

stimulus 
3 4 

369 

4. Discussion and Conclusions 370 

In this study, a multimodal physiological system was proposed to analyse physiological signals measured 371 

with a wearable device on a test population before and after listening to three acoustic stimuli twice. In order to 372 

evaluate the effect of stimuli, causing reactions in the subjects’ physiological state, a binary classification was 373 

considered to identify the absence and presence of acoustic stimulation More specifically, after extracting the 374 

meaningful features from the physiological signals, the correlation-based feature selection algorithm was used to 375 

both improve the detection rate of the acoustic stimulation and to limit the number of involved parameters. 376 

Specifically, 22 features were selected from the whole dataset. An interesting finding is that most of the features 377 

that achieved the best results (considering a rank > 0.20) were inherent to the HRV analysis derived from the IBI 378 

signal, except for the SKT_std, from SKT signal, which reached a quite high rank. Also, note that among the 379 

BVP features only the standard deviation of vasoconstriction value (i.e. BVA_std) and the standard deviation of 380 

the peaks detected on the 1st derivative of BVP signal were above the selected rank threshold (i.e. 0.10), while 381 

the others resulted not meaningful according to the correlation-based features selection method. This means that, 382 

for the stimulation detection, the dispersion of both SKT and BVP attributes resulted to be more important than 383 

their average values. Furthermore, it is worthy to note that the whole HRV analysis starts from BVP signal, from 384 

which IBI is directly derived by Empatica E4. Similarly, for EDA signal only the number of peaks in the phasic 385 

component (i.e. SCR_n) had a rank higher than the threshold: this confirms that SCR_n is the main expression 386 

of SNS activity from the EDA point of view. All the features below the threshold may not provide significant 387 

improvement in the classifiers performance.  388 

Although the attributes related to HRV signal are the most discriminating for the classification of the 389 

presence/absence of acoustic stimuli events, by considering only a single physiological signal (i.e. HRV) the 390 

classification performance reaches low values. For example, comparing the multimodal recordings system 391 

proposed in this work and our previous study [44], the classification performance of SVM algorithm improved 392 

from 66.67% to 72.62%, as it is evident also looking at the related confusion matrices. This underlines the 393 

importance of using multimodal recordings to have a more complete description of the analysed situation, which 394 

can be particularly useful when data were acquired in free-living conditions, hence compensating also for the 395 

effect of movement artifacts (in particular on signals like PPG). However, comparing the results obtained for 396 

each classifier, Linear Regression reached the highest results followed by the SVM (which was employed in the 397 

authors’ previous study [44]), which therefore confirms to be one of the most powerful in this type of analysis. 398 

Both Linear Regression, building linear logistic regression models, and SVM, implementing the optimization 399 

algorithm, are basically two-classification methods [72], [73]. As a result, they allowed to well-separate and 400 

distinguish the presence/absence classes of stimulation in our binary classification system, aligned with the 401 

literature [74], [75]. 402 

Further confirmation was observed from precision, sensitivity and from their harmonic mean (F-measure) 403 

that were evaluated for each single classifier. F-measure values confirmed the accuracy trend, achieving 404 

simultaneously the highest accuracy and F-measure with the Linear Regression approach. The good 405 

performances of the Linear Regression and SVM classifiers were also observed in detail, by examining both 406 



 

 

classified and misclassified instances (see the confusion matrices for more details). A point of interest is to notice 407 

how the presence of a stimulus is better classified with respect to the absence of a stimulus. A possible motivation 408 

is that the performance of stimulation detection across subjects depends on many factors, especially on individual 409 

characteristics (and the related reactions to stimuli), both physical and psychological ones measured by the 410 

wearable device. More specifically, the first portion of signal (absence of stimulus) can be considered as a 411 

physiological baseline (where the inter-subject variability plays a dominant role), while the second portion of 412 

signal (presence of stimulus) is a sum of the physiological baseline and physiological responses elicited by the 413 

specific stimulus, which prevails in determining the physiological response.  414 

The remaining classifiers achieved lower values for all the considered metrics; a possible motivation of these 415 

unexpected low percentages may be a consequence of the small dataset size (the tested population consisted of 7 416 

subjects, each performing 3 tests repeated twice), which affects the classification performance. On the other hand, 417 

this assumption could influence the high percentages of Linear Regression and SVM algorithms. For this reason, 418 

the second experiment implied the validation phase on signals extracted from the WESAD dataset. Not 419 

surprisingly, a discrepancy between the performances was observed, but the good performances of both Linear 420 

Regression and Support Vector Machine algorithms were confirmed, reporting accuracies of 71.43% and 421 

64.29%, respectively. This means that the subset of features and the selected algorithms trained on the data 422 

collected by the authors in laboratory during elicitation with audio stimuli can be successfully applied to detect 423 

the presence of different stimuli, such as stressors from the TSST.  424 

Despite the above-mentioned limitations, the proposed measurement method achieved a high performance in 425 

the detection of different types of daily external stimulation (e.g. acoustic and visual). Specifically, this work 426 

confirms that it is possible to recognize the elicitation of a stimulus through the variations in measured 427 

physiological signals acquired in a living home environment through a wearable device. This means that, 428 

similarly, the presence of stress can be easily detected and inferred in daily life, since the signals involved in the 429 

analysis are nearly the same. Therefore, this point opens to some developments for the study of multimodal 430 

physiological systems to assess the human psychological, physical and social well-being. In particular, future 431 

works may be conducted by evaluating the proposed methodology on data gathered during emotional tasks from 432 

a wider population (which, moreover, would be useful to counterbalance eventual side effects, e.g. movement 433 

artifacts in PPG signals), also using different models of wearable devices in order to evaluate the influence of 434 

their metrological characteristics on the results. Furthermore, tests performed on a wider population could provide 435 

a database large enough to train the classifier to distinguish the valence and arousal among external stimuli of 436 

different intensities, thus discriminating emotions, which was outside the scope of the present study. 437 
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