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Experimental crack identification of API X70 steel pipeline using improved Artificial Neural 

Networks based on Whale Optimization Algorithm 
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Magd Abdel Wahab4,5 

 

ABSTRACT 

Intelligent systems have recently received recognition for their ability to solve extremely 

complicated and multidimensional problems. Artificial Neural Networks (ANN) has quite a lot of 

success in overcoming such issues, but some limitation can be found. The present study discusses in 

detail the application of the WOA-ANN hybrid model for predicting the crack length based on 

different input values, i.e. strains, stresses, and dis- placements, to test the accuracy of the presented 

technique. The proposed technique is compared with GA-ANN, AOA-ANN, and WOABAT-ANN. 

Coupled metaheuristic optimization algorithms with ANN aim to increase its effeciency. The 

connectivity between neurons carries some weight. Neurons are also connected to some biases. 

Connection weights and biases are modified to give the smallest possible error function based on 

the input values, and corresponding target output values supplied. Back Propagation (BP) is the 

usual name for this approach. The investigated approach is related to real engineering applications 

and controls the structures’ state. Standard ASTM test specimens are chosen to study the evolution 

of fracture mechanics parameters. Next, an analytical model is developed by simulating the tests 

using the Finite Element Method (FEM) and validated with experimental results. FEM is used to 

analyse the tensile failure process of the one-sided notch samples with the mesoscopic GTN damage 

model and extract the data required for WOA-ANN. After collecting the database, our model is 
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ready for predicting different scenarios. The obtained results using WOA-ANN are efficient 

compared to other techniques. 

 

Keywords: GTN damage Model; GA-ANN; AOA-ANN; WOA-BAT-ANN; WOA; Crack 

identification.  



1. Introduction 

Structural Health Monitoring (SHM) of pipeline structures is of great interest and constitutes a 

fundamental element for the transport of hy- drocarbons. API 5L X70 is among the steels used for 

construction (Ouladbrahim et al., 2021a), which occupies a very important place in the mechanical, 

naval and especially oil industry. High-strength steel pipelines allow the transportation of oil and 

gas at high pressure to in- crease the capacity, because the thickness of the pipes can be reduced 

when the strength of the steel of the pipeline is increased, and then the weight can be reduced. In the 

pipeline industry, pipes need high strength and durability as well as formability, which are 

important components, as mentioned in Refs. (Xie et al., 2021; Cabrini et al., 2015). The high 

strength and durability of steel allow natural gas and crude oil to be transported over long distances 

and under high pressure (Bott et al., 2005). The resistance of cracking due to hydrogen is an 

important property, which is added to other properties in an acid medium as described in Ref. (Sha 

and Li, 2016; Shi et al., 2016). In the H2S envi- ronment problem, resistance to stress corrosion 

cracking was studied in Refs (Mohtadi-Bonab et al., 2013; Contreras et al., 2005). and the phe- 

nomenon of fatigue in Refs.(Han et al., 2012; Zhong et al., 2006). The chemical composition of 

metal alloys and thermomechanical processing has been shown to affect the properties and 

microstructure of the steel of the transport pipeline (Sun et al., 2002). Ensuring the integrity of large 

structures and industrial components involves considering the presence of faults and determining 

the conditions for initiating, propagating, and stopping cracks due to the presence of these faults 

(Capozucca and Magagnini, 2018, 2020). In order to identify this propagation phe- nomenon, we 

analysed the evolution of the crack within the framework of the elastoplastic fracture mechanics 

(Nilsson et al., 2010). It consists essentially of experimental tests and numerical simulations to 

allow the measurement of critical fracture properties from samples at the labo- ratory scale and to 

reduce the critical value of the fracture energy. More information can be found in the text books 

(Broek, 2012; Cruse, 2012; François et al., 2012). Other works are oriented towards the practical 

use of fracture mechanics (Hertzberg et al., 2020; Antolovich et al., 2018). A good suitable design 



of tubes in terms of weight and strength requires advanced and high strength materials, and more 

details can be found in Ref. (Noell et al., 2018). At the beginning of the development of the failure 

model, the emphasis was placed on the triaxiality of the constraints and since the in-depth 

experimental studies. There is a trend within the natural gas transportation industry towards lower 

operating pressures, temperatures, and the use of higher quality pipeline materials (Fang et al., 

2015). Moreover, the emergence of these changes in char- acteristics has come to a great need to 

accurately predict the stopping behaviour of ductile fracture in metal under these conditions. 

However, many experts believe that forecasting methods found in the industry require significant 

improvement, as they are suitable for lower grades of steel and lower operating pressures by the 

standards of the operating environment as described in Ref. (Rudland et al., 2004). In the pipeline, 

there are two types of crack, namely ductile crack, and brittle crack. Since ductile crack occurs at a 

higher temperature where virtually all pipelines are in service. In pipeline industry applications, it is 

important to control the propagation and stop the ductile cracks. An elastic crack propagates 

unstably for a long time as the crack velocity is less than the decompression rate during initial 

compression. This is because the decompression rate and crack rate decrease as pressure decreases 

at the bottom crack (Nakai et al., 2016). The damage model of GTN is widely applied to simulate 

the dynamic propagation of ductility fractures. Due to the limited set of parameters in this model, it 

is often adopted in engineering applications (Jackiewicz, 2011). The GTN mesoscopic damage 

model is used as a tool to support the FE model of the experi- mental test process. The provided 

results have shown that the fracture speed and the pronounced opening angle were in good 

agreement with the experimental results. Lian (Lian et al., 2018) simulated the failure process of an 

X70 high steel pipeline under loading conditions and established a damage mechanics model with 

hole expansion being a damage variable. Gholipour et al. (2019) presented an application based on 

the GTN damage model, the model simulates with acceptable pre- cision of material fracture and 

damage evolution for SAE 1010 plain carbon steel. Recently, ANN has been widely used for 

different appli- cations, such as surface texture, mechanical properties, the effects of processing 



parameters on the alteration of mechanical properties, the phenomenon of corrosion and fatigue, 

damage identification (Khalaj et al., 2013; O ̈zel and Karpat, 2005; Brahme et al., 2009; 

Ouladbrahim et al., 2021b; Zenzen et al., 2020). Besides, ANN was improved based on some 

challenges using optimization techniques for damage identification in several structures as 

mentioned in Refs. (Khatir et al., 2020, 2021; Seguini et al., 2021). 

In this paper, the application of GTN damage is developed to predict ductile fracture in the case of 

tensile tests including different crack lengths. The tensile fracture simulations are used to model a 

high- strength pipe material, namely API X70. The numerical model results are utilized to construct 

results based on different outputs (strains, stresses, and displacements). Next, the investigated 

results are compared with experimental ones for validation. The provided results are collected for 

WOA-ANN techniques to predict the crack lengths compared with GA-ANN, AOA-ANN, and 

WOA-BAT-ANN. The objective of hybrid optimization techniques is to improve the bias and 

weight parameters for better results. 

 

2. GTN model constitutive description 

Plastic damage is the process of plastic deformation until fracture. The damage mechanism denotes 

the damage evolution process of the micro-hole formed by the internal inclusions or two-phase 

particles of the metal being nucleated, growing up, and converging under external forces. In order to 

describe the mechanism of meso-damage of plastic materials and its evolution process, a suitable 

model should be estab- lished as presented in Ref (Xue, 2007). Gurson (Aldakheel et al., 2018), 

based on McClintock, Rice, and Tracey (Aldakheel et al., 2018), assumed that plastic deformation 

of the material is mainly caused by micro-hole damage. Gurson (Jiang et al., 2016) did not use the 

assumption of the infinite matrix, but proposed a finite matrix with a microporous cell model. Next, 

Tvergaard and Needleman have modified some parameters of the Gurson model, which 

significantly improved its prediction with more accuracy in Ref (Li et al., 2015). The Gurson yield 

surface function corrected by Tvergaard and Needleman as presented in the following formulation: 



        (1) 

where σeq denotes the macroscopic Von Mises equivalent stress; σe is the yield stress of the base 

metal in the element; σm is the macroscopic mean stress, and ƒ is the pore volume fraction. q1, q2, q3 

are the correction parameters taking into account the micro-hole around the non-uniform stress field 

and the adjacent holes in the middle of the interaction, which are usually taken equal to q3=q12, 

q1=1.5, q2=1.0, q3=2.25. 

         (2) 

In the above formula, f∗ is the equivalent void volume fraction, which explains the gradual decrease 

of the bearing capacity of the material due to pore polymerization; fc is the pore volume fraction at 

the time when the hole starts to polymerize; fF is the broken void volume fraction when the material 

is destroyed; f*u =1/q1 is the limit void volume fraction when the stress-bearing capacity is zero. 

The evolution of void volume fraction, ƒ*, can be considered as a combination of existing void 

growth, ƒ*growth, and nucleation of new voids, ƒ*nucleation: 

             (3) 

Void growth can be written as a function of the rate of plastic volume change, εkkpl: 

             (4) 

Void nucleation is defined in a strain-controlled nucleation function that considers a normal 

distribution for the nucleation strain. Consequently, the void nucleation rate can be written as: 

          (5) 

where ƒn defines the void volume fraction of nucleated voids, εn and Sn indicate the mean value and 

standard deviation of the nucleation strain, respectively, 𝜀!""""" indicates the equivalent plastic strain 



and 𝜀̅!"̇ defines the equivalent plastic strain rate. Finally, the initial void volume fraction ƒ0 denotes 

the presence of initial voids and is a measure for the relative density of the material. In this 

investigation, the GTN damage parameters, listed in Table 1, are considered as typical material 

constants as obtained in Ref (Jang et al., 2019; Ouladbrahim et al., 2021a). The plasticity based on 

the true stress-strain relations can be shown in Fig. 1. 

 

Table 1 - GTN damage parameters for API X70. 

 

 

Figure 1 - True stress-strain curve for API X70. 

 

3. Numerical models 

FE model of the tensile test of base metal is constructed using ABA- QUS software. A 3D solid FE 

model was implemented in order to reproduce the fracture tensile experiment in a laboratory scale 

test.  

ABAQUS explicit solver allowed the application of the GTN damage model for the simulation of 

dynamic crack propagation. For this pur- pose, a model called “porous metal plasticity” is used. 

The geometry was created based on the standard dimensions of the specimen (ASTM). In each 

model, the mesh was created using an eight- node linear brick (C3D8R). 



The accuracy of the numerical calculation is strongly linked to the quality of the mesh around at the 

crack tip. The mesh size has more significant importance when the GTN damage model is used. In 

this study, the element size is 0.2. Using the data from the results of the previous uniaxial tensile 

tests, we have implemented the materials plasticity properties as shown in Fig. 1. The boundary 

conditions in the numerical model is fixed in the bottom end including all degree of freedom 

(DOF). Next, The other side at the top of the model is allowed to move only in the direction of the 

load in the y-axis, as shown in Fig. 2. 

 

Figure 2 - Boundary conditions for the modeled tensile test specimens of base metal. 

 

In this section, the numerical simulation is performed to be used for different crack lengths in the 

critical zone. The refinement mesh is considered where the high-stress concentration is expected, in 

particular at the interface as indicated in Fig. 3-a. The dimensions of the specimen are presented in 

Fig. 3-b. 

3.1. Load-displacement simulation curve 

Based on the experimental results, the obtained load-displacement curve from FE simulation in 

ABAQUS is plotted in Fig. 4. Three re- gions are considered in this curve: I-before the yield point, 

II-between the yield point and the ultimate point, and III-after the maximum point till the final 

fracture. All points P1, P2, P3, and P4, are represented in Fig. 4. 

 



 

Figure 3 - a- Mesh refinement in the critical zone b-The geometry. 

 

Figure 4 - Simulated load-displacement curve of single edge crack of API X70. 

 

In Fig. 4, firstly, in region I, the load increases linearly with the displacement to the yield point P1, 

and the material API X70 steel deformes plastically. Secondly, in region II, between P1 and P2, the 

load with the displacement continuously increases. Thirdly, in region III, the necking is observed 

and is represented by the specimen area reduced to the final separation observed at P4. Crack 

behavior is presented based on experimental analysis using a camera at different times see Fig. 5-a. 



A good agreement of the specimen geometries predicted in the simulation based on stress contours 

is presented in Fig. 5-b. 

 

Figure 5 - Fracture process of API X70 steel during the test: Experiment (a) and FE simulation (b). 

 

4. Experimental tensile test of pipeline steel 

4.1. The tensile test of a specimen without crack 

The material of our study is a manganese carbon steel used for the transport of hydrocarbons under 

a working pressure of 70 bars with the name API X70. In order to determine the load displacement 

curves and the mechanical properties of API X70 steel, flat specimens according to standard NF EN 

10002–1 (Bouledroua et al., 2017; Ouladbrahim et al., 2021a) were used under simple traction at 

room temperature in the tensile testing machine (ZwickRoell) at ALFAPIPE (Algerian 

manufacturing pipes laboratory) as shown in Fig. 6. The initial material is presented in coils of the 

same casting. The thickness of the test spec- imens and the geometrical dimensions of all the 

specimens are shown in Fig. 3-b.  

 



 

Figure 6 - Test specimen with a tensile extensometer in the tensile testing machine. 

 

Figure 7 - Stress-strain diagrams of API X70 pipeline steel. 

 

The experimental results for the tensile tests 1, 2, and 3 give the evolution of the stress according to 

the strain of the material as shown in Fig. 7. The general appearance of these curves shows ductile 

behaviour. Table 2 shows the mechanical properties of API X70 pipeline steel, which can be used 

for numerical simulation, with E Young’s modulus, ν Poisson’s ratio, YS yield strength according 



to the standard. UTS is the ultimate tensile strength, EL% is the elongation at break, and k and n are 

the parameters of Hollomon. 

Table 2 - Mechanical properties of API X70 steel. 

 

The tensile tests were carried out using a Zwick/Roell materials testing machine type tensile 

machine, which is directly connected with a computerized system for the acquisition of 

experimental data. 

After evaluating the test data provided in “API X70 tensile test”, the variation of the load F as a 

function of the displacement ΔL, is obtained as shown in Fig. 8. 

Comparison between experimental and numerical results using the GTN model are shown in Table 

3. 

 

Figure 8 - Engineering load-displacement curves of the test data. 

Table 3 - Comparison between the experimental and numerical results of the tensile test. 

 



4.2. The tensile test of a specimen with cracks 

In this section, different crack lengths are considered, namely L = 4, 7, and 10 mm. Two specimens 

are tested for each crack length to obtain highly accurate results. To realize the test specimens, we 

have extracted a large plate that we have cut from the pipe. Next, a smaller plate is taken from this 

sample, one transverse to the shell, which contains only the base metal, see Fig. 9-b. The obtained 

plate is illustrated in Fig. 9-c.  

To produce the specimens, a mechanical saw was used in order to cut the plate into two parts 

sufficient for the production of two specimens per plate. After cutting the plate, the specimens are 

manufactured by the milling process to obtain the specimens standard dimensions, see Fig. 10. 

Next, different crack lengths, i.e. 4, 7, and 10 mm, are cut as illus- trated in Fig. 11. 

 

 

Figure 9 - A part of a pipe (a), Removal of the transverse base metal (b), and Plate “1′′ completely 

from base metal (c). 

 

Figure 10 - Specimens used for tensile testing.  



 

Figure 11 - Test specimens carried out for tensile tests according to different crack lengths. 

 

The mechanical properties of the test specimen with three different crack lengths (l = 4 mm,7 mm, 

and 10 mm) from the experimental analysis and FEM results are presented in Table 4. 

The obtained results in Table 4 are more effective, and the percent- age error between the 

experimental and FEM is less than 4.05% for test specimens with notches. Therefore, to better 

predict the crack length using WOA-ANN, more data are collected from the FE model for different 

crack lengths after validation. 

 

Table 4 - Comparison between experimental and FEA stress results for different crack length. 

 



5. Improved Artificial Neural Network for crack prediction using WOA 

Once an ANN is adequately trained, it can be used as a black-box model to link complex input and 

output datasets. Weights and biases connect the neurons together. The input layer, hidden layer, and 

output layer are the three layers of an ANN network. The hidden and output layers contain all 

neurons, while the input layer is devoid of them. Fig. 12 illustrates a typical ANN model.  

 

Figure 12 - A typical ANN architecture. 

 

wij is the weights of neuron connection between ith input node and jth neuron in the hidden layers. 

bj represents the bias associated with jth neuron in the hidden layer. wj is the weight of neuron 

connection between jth neuron in a hidden and single neuron in the output layers. b1 represents bias 

associated with the single neuron in output layer neuron. Indices i=1,2,...,m and j=1,2,...,n are input 

features and hidden layer neurons, respectively. The total number of parameters used in the network 

is n*(m + 2) + 1. Following the creation of the ANN model’s structure, training with known input 

and output sets is carried out to determine the optimum weights and biases of the neurons. Various 

strategies are typically used to determine the optimum weights and biases for the ANN. In this 

study, MATLAB was used to perform optimum network training using WOA. Whales are creatures 

of fancy. They are considered as the world’s largest mammals. Up to 30 m long and 180 tons 

weight, an adult whale can grow. This kind of Whale never sleeps because they have to breathe 



from the ocean floor. Seven different species of this giant mammal exist, such as killer, Sei, 

humpback, Minke, finback, right, and blue. Whales are known mainly as predators. Half of the 

brain simply just sleeps. The remarkable thing about whales is that they are viewed with emotion as 

highly intelligent creatures. The location of prey can be recognized and encircled by humpback 

whales. The optimal design location in the search space is not known in advance. WOA assumes 

that the target prey is close to the optimum and is the current best candidate solution. Other search 

agents will then try to update their positions to the best search agent when it is identified. The 

following equations represent this behaviour:  

            (6) 

            (7) 

where the latest iteration is defined by t, coefficient vectors are 𝐴 and 𝐶, 𝑋⃗ position vector, and 𝑋∗))))⃗  

is a position vector of the best solution obtained so far. 

𝐴 and 𝐶 can be calculated using the following formulations: 

             (8) 

              (9) 

Then, a spiral equation is created to approximate the helix-shaped movement of humpback whales 

between the location of Whale and prey as presented in the following formulation: 

        (10) 

where: , (X, Y): Whale located. (X*, Y*): Prey located. 

Humpback whales swim within a decreasing circle around the prey and along a spiral-shaped 

direction at the same time. Furthermore, to model this concurrent behaviour, we expect that there is 



50% chance of choosing between either the shrinking encircling process or the spiral model to 

adjust the location of whales through optimization. The mathematical model is given as follows: 

       (11) 

where p is a random number in [0,1]. For more details, the author may refer to Ref. (Mirjalili and 

Lewis, 2016). 

The mathematical model is expressed as: 

          (12) 

          (13) 

where 𝑋$%&')))))))))))⃗  is a random position vector (a random whale) chosen from 

the current population. More details about this algorithm can be found in Ref (Mirjalili and Lewis, 

2016). 

The objective function used to minimize root-mean-square error (RMSE) of the network, which is 

described in the following formulation: 

          (14) 

where Ol denotes the output corresponding to lth data point in the training set by the network, Il 

denotes the actual output as consider in the target set. nd is the number of data points used in the 

training dataset. The RMSE has been used as the objective function as mentioned of the ANN 

whose parameters (weights and biases) have to be optimised to improve the training. WOA is 

compared with GA, AOA, and WOA- BAT using different inputs. The number of collected data are 

61 using different crack lengths from 4 mm to 34 mm. 

 

 



5.1. Results and discussion 

To study the effectiveness of WOA, different optimization techniques, such as GA, AOA, and 

WOA-BAT, are used with different inputs, such as stress, strain, and displacement, to adapt the 

weights and biases of ANN. The number of hidden layer sizes (Hidden neurons) is considered to 

select the adequate number using three scenarios with crack length 10 mm, 15 mm, 32 mm. The 

parameters used for all optimization techniques are 100 populations and 100 iterations. The 

characteristics of the computer used for the calculation are Intel(R) Core(TM) i7-6700HQ CPU @ 

2.60 GHz 2.59 GHz and Ram Memory is 16 GB. The results are shown in Fig. 13. 

 

Figure 13 - Different hidden layer sizes (Hidden neurons) with different scenarios. Notation:Crack 

length: a = 10 mm, b = 15 mm, and c = 32 mm.  



The results showed that the most optimum network obtained considering WOA, WOA-BAT, AOA, 

and GA combined with ANN has eight hidden neurons using different inputs based on the fitting 

exami- nation. Next, five scenarios with actual crack lengths 10 mm, 15 mm, 24 mm, 28 mm, and 

32 mm are considered using eight hidden neurons to predict the exact crack lengths. Based on the 

previous results, GA fails to predict the precise crack length. However, the population size is 

increased from 100 to 2000 after several tests. Fig. 14 shows the training performance of the best 

network using different inputs (displacement, strain and stress), including different optimization 

techniques. 

 

 



 

Figure 14 - Regression analysis: a) Displacement, b) Strain, c) Stress. 

 

After the training performance, the model is ready to predict the five considered scenarios. The 

obtained results are presented in Fig. 15. 

Based on the presented results, the most effective predicted results can be found by WOA compared 

with the actual crack length using different inputs. For better evaluation, the errors between exact 

and predicted crack length for all scenarios using various optimizations techniques are presented in 

Fig. 16. 

Table 5 summarized the results of three inputs (strain-stress- displacement) compared with actual 

crack length, including errors be- tween actual and predicted. Thus, the CPU times are computed for 

each scenario and shown in Table 6.  



The obtained results demonstrate the effectiveness of the used optimization techniques. First, a 

critical observation was made from the results using GA-1 using different inputs. Furthermore, the 

results are improved after increasing the population size (GA-2 (2000 populations)). 

The best computational time can be found in WOA and AOA between 75 and 95 s compared with 

significant differences in WOABAT and GA- 2. 

 

 

Figure 15 - Predicted crack length using 61 collected databases; a-Displacement, b-Strain, c-Stress. 



 

Figure 16 - Percentage error using 61 collected databases; a-Displacement, b-Strain, c-Stress. 

 

 

 

 



Table 5 - Percentage error of predicted WOA, WOA-BAT, AOA, GA-1, and GA-2 for each crack 

length scenario. 

 

Table 6 - CPU time of WOA, WOA-BAT, AOA, and GA for each crack length scenario. 

 



7. Conclusion 

A comprehensive analysis was done for the development of hybrid ANN with optimization 

techniques to predict crack length using different parameters (Hidden layer neurons, bias, and 

weight). Recently developed optimization techniques are used to improve ANN for better prediction 

compared with other approaches to describe the effectiveness of the presented method. Different 

inputs such as strains, stresses, and displacements are compared using WOA, GA, AOA, and WOA-

BAT. Numerical and experimental tests are investigated for validation in both cases of uncracked 

and cracked specimens. After validating the model, different crack lengths are supposed to build a 

database. The following observations have been reached based on this study: 

• The Artificial Neural Network (ANN) with eight neurons in the hidden layer is the most 

optimum network in all optimization techniques. 

• GA has a critical result with less population and generation (100-100). 

• The best CPU time found by WOA and AOA compared with GA and WOA-BAT. 
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