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Abstract

This thesis describes the study of Machine Learning techniques for the op-
timization of digital filters for Multipoint Audio Equalization and Personal
Sound Zones (PSZ) in a car scenario. Multipoint Audio Equalization is a topic
that aims to improve the audio quality in a loudspeaker system using digital
filters. The Personal Sound Zones is a task that allows the reproduction of dif-
ferent sounds in several regions contained within a listening environment where
multiple listeners are present.
An up-to-date state of the art on digital filter design, Multipoint Audio

Equalization and PSZ techniques have been reported in this thesis. Neu-
ral network-based optimization techniques, referred to as Deep Optimization,
proved to be the best performing and the most analyzed methods within the
proposed approaches. The technique exploits neural networks to iteratively
optimize the filter parameters using the feed-forward and backpropagation,
updating the weights with an optimizer. A new Deep Optimization architec-
ture has been analyzed, called Bias Network (BiasNet), which uses the bias
terms as input and updates its weights to obtain the optimal filters.

Experiments for Multipoint Audio Equalization with FIR filters were per-
formed within various automotive scenarios, achieving better results than the
state-of-the-art techniques. Other experiments were carried out with Paramet-
ric IIR filters, achieving better performance than baseline IIR and FIR filter
design methods. Furthermore, analyzing the computational cost, Parametric
IIR filters require less operations and memory.

Finally, experiments were conducted to design FIR and Parametric IIR filters
for PSZ, introducing regularization and penalty terms to eliminate artefacts
generated by FIR filters. The results are very promising, achieving a high
acoustic contrast keeping high sound quality. IIR filters achieved comparable
results with a lower computational cost than FIR filters.
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Sommario

Questa tesi descrive lo studio di tecniche di Machine Learning per l’ottimizzazione
di filtri digitali per l’Equalizzazione Audio Multipunto e la Personal Sound
Zones (PSZ) all’interno di uno scenario automotive. L’Equalizzazione Audio
Multipunto è un argomento che mira a migliorare la qualità audio in un sistema
di altoparlanti utilizzando filtri digitali. La Personal Sound Zones è un task che
permette la riproduzione dei suoni in diverse regioni contenute in un ambiente
d’ascolto dove sono presenti più ascoltatori.

In questa tesi, è stato riportato uno stato dell’arte aggiornato sulla proget-
tazione di filtri digitali, tecniche di Equalizzazione Audio Multipunto e di PSZ.
In questa dissertazione, le tecniche di ottimizzazione basate sulle reti neurali,
denominate Deep Optimization, hanno dimostrato di essere le più performanti
tra i metodi proposti. L’approccio sfrutta le reti neurali per ottimizzare itera-
tivamente i parametri dei filtri utilizzando la feed-forward e la backpropagation
e aggiornando i pesi con un ottimizzatore. È stata analizzata una nuova ar-
chitettura di ottimizzazione profonda, chiamata Bias Network (BiasNet), la
quale utilizza i termini di bias come input e aggiorna i suoi pesi per ottenere i
filtri ottimali.

Gli esperimenti per l’equalizzazione audio con filtri FIR sono stati eseguiti
all’interno di vari scenari automotive, ottenendo risultati migliori rispetto alle
tecniche presenti nello stato dell’arte. Altri esperimenti sono stati eseguiti con
i filtri Parametrici IIR, ottenendo prestazioni migliori rispetto alle tecniche di
progettazione dei filtri IIR e FIR. Infine, analizzando il costo computazionale,
i filtri IIR Parametrici richiedono meno operazioni e meno memoria.

Infine, sono stati condotti esperimenti per progettare filtri FIR e IIR para-
metrici per PSZ, introducendo termini di regolarizzazione e penalità per elim-
inare gli artefatti generati dai filtri FIR. I risultati sono molto promettenti,
ottenendo un alto contrasto acustico mantenendo una qualità del suono alta. I
filtri IIR hanno ottenuto dei risultati comparabili con un costo computazionale
inferiore rispetto ai filtri FIR.
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Chapter 1

Introduction

In recent years the use of vehicles has been continuously growing, becoming an
increasingly used listening environment: from music, radio, calls to the use of
voice assistants, infotainment systems are widely used inside the car; for this
reason, they are improving their quality, with increasingly high performance
hardware. Indeed, Digital Signal Processing (DSP) allows the control of audio
systems, designing digital filters of, theoretically, unlimited orders, but actually
with a limitation of filter coefficients due to the necessity to keep the cost of
hardware components low in the automotive industry. Furthermore, several
complex techniques are implemented within the DSP systems, i.e., the Active
Noise Control and Speech Enhancement, reducing the computational resources
available to improve sound quality in real-time.
A wide variety of interior configurations characterizes the automotive listen-

ing environment: speaker locations, glass surface area, seat surface materials,
plastic, geometry, and small size of the cabin [1] could affect the response of
an audio system aspects [2]. In particular, early reflections and standing waves
are the most critical in the car cabin, causing a high degradation due to the
Hass effect, the Masking and the spatial sensation [1]. Depending on the ab-
sorbing or reflecting materials, the speaker positions and the shape of the car
cabin, the reflected sounds could attenuate or amplify the direct sound from
the loudspeakers [3].

In the research community and, in particular, in the automotive industry,
new techniques for digital filter design for Multipoint Audio Equalization and
Personal Sound Zones (PSZ) are being studied and improved. These two tasks
are the main topics of this thesis work, and their deployment will focus on
different automotive scenarios.

The Multipoint Audio Equalization task has the goal to improve sound qual-
ity within the listening environment. This technique usually provides a fre-
quency curve in order to modify the listening experience. The curve could be
referred to the listening of particular musical genres to boost low frequencies
in the presence of background noise coming from the engine noise, as the au-
tomotive equalization [4]. In some cases, the filters are designed to perform a
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virtual displacement of the sound sources to give to the listener the subjective
impression of hearing at a pair of virtual loudspeakers [5].
The Personal Sound Zones is the other task discussed in this thesis: in a

region of space composed of multiple listeners, the goal is to reproduce a sound
source in a particular zone, minimizing the interference to the listeners located
in the other zones. The idea is to deliver different interface-free audio to multi-
ple listeners in the same environment without physical isolation or headphones.
In the automotive scenario, the PSZ could be applied to listen different sound

sources without the use of headphones. For example: the voice navigator
assistant is directed to the driver position, while the radio is straight to the co-
driver, and the audio from a video file is directed towards the rear passengers.
For conciseness, from here, the term PSZ will be referred only to the two

zones used for experiments, the driver and co-driver position,
A widespread issue is to analyze the performance using objective metrics:

the most common ones are based on frequency response but they do not take
into account the psychoacoustic aspects. In literature, many works discuss
perceptual metrics that depend strongly on the results obtained by a small
group of persons or experts, so they are referred to as subjective analysis.
Particularly in the case of PSZ, many analyses have been performed on the
effectiveness of the contrast between two zones, concluding that much depends
on the media content reproduced, the contrast, the acoustic scene, and the
listeners (whether they are experts, have hearing problems, and so on).

1.1 Problem Statement and Motivation

Multipoint Audio Equalization and Personal Sound Zones are similar tasks:
the second one is an extension of the first because, in one zone, the goal is
to achieve a quiet zone, whereas, in the other zone, the aim is to improve the
sound quality.
Multipoint Audio Equalization is a complex task, although it is a linear prob-

lem (see Figure 1.1): several sources and microphones involve a large number
of impulse responses to equalize. The complexity increases with the number of
sources and microphones.
Multipoint Audio Equalization is usually performed using filters [6]: in a

scenario with S speakers andM microphones, the filter gs(t) of the s-th loud-
speaker filters the input signal x(t). The signal on the m-th microphone is the
combination of the S filtered signals:

ym(t) =
S∑
s=1

hm,s(t) ∗ (gs(t) ∗ x(t)) (1.1)
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Figure 1.1: Multipoint Audio Equalization problem.

where hm,s(t) is the impulse response between the s-th speaker and the m-th
microphone.

The frequency response at the m-th microphone is given by the Fourier
transform of the output signal ym(t).

Ym(ω) = |F (ym(t))| (1.2)

where F is the Fourier transform.

When the input signal is a Dirac impulse response (x(t) = δ(t)), the Equation
1.1 could be written as:

h̃m(t) =
S∑
s=1

h̃m,s(t) =
S∑
s=1

hm,s(t) ∗ (gs(t) ∗ δ(t)) =
S∑
s=1

hm,s(t) ∗ (gs(t)) (1.3)
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and the frequency responses at the m-th microphone is:

H̃m(ω) = |F (h̃m(t))| (1.4)

Filtering allows to obtain the different characteristics desired by the end-
user. In the research community, a desired amplitude flat band of 0 dB is
usually used, although there are other very common shapes, such as having a
higher amplitude of a fewdB at low frequencies to accentuate the bass.
However, it is necessary to consider that filters can add artefacts, in particular

Finite Impulse Response (FIR) filters which can bring reverberation, ringing,
pre-ringing and most importantly, a delay. For this reason, some Multipoint
Audio Equalization algorithms take these psychoacoustic aspects into account,
or symmetric FIR filters are made at least to reduce artefacts [7].
Infinite Impulse Response (IIR) filters do not suffer from these problems, but

they can lead to instability and non-linear phase if poorly designed [6].
The Personal Sound Zones has similar characteristics to the Multipoint Audio

Equalization: digital filters need to be designed to improve sound quality in
one zone and attenuate the sound pressure in the other one.
In this thesis, Deep Neural Networks (DNNs) are used to optimize FIR filters

coefficients and Parametric IIR filters parameters: since these tasks are opti-
mization problems, the neural networks must not generalize, but they should
provide the output values that will serve to equalize or to separate the sounds
in the two zones. The reasons why it was chosen to optimize instead of general-
izing are the following: the impulse responses are measured with very different
instruments; the acoustic scenes, in particular inside the car cabin, have differ-
ent characteristics; few data are available to generalize the issue.

1.2 Thesis Outline
The thesis is organized as follows. In Chapter 2, Machine Learning techniques,
Evolutionary Algorithms, Deep Neural Networks and Deep Optimization are
explained, while in Chapter 3 a description of FIR and IIR filter design is pre-
sented. In Chapter 4, Multipoint Audio Equalization is discussed, describing
the state-of-the-art algorithms used for the task and the new proposed meth-
ods. Finally, the experiments and the results are presented. In Chapter 5,
the Personal Sound Zones is debated: the state-of-the-art algorithms are dis-
cussed, then the new proposed methods and the perceptual metrics used for the
evaluation are presented. Finally, the experiments and the results are shown.
Chapter 6 shows the other contribution relying on Artificial Intelligence but

not concerns the Multipoint Audio Equalization and PSZ. The Road Type
Classification using Deep Learning methods is described, implementing the
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method in a DSP system. In particular, roughness and wetness road classifi-
cation is studied, starting from a separate investigation of the two tasks and
a going to joint analysis. Then, Voice Activity Detection and Speaker Lo-
calization in a Multi-Room environment are discussed, jointly implementing
a data-driven method for the two tasks. Finally, Sound Event Detection and
Source Separation systems are discussed, using Deep Learning and Machine
Learning approaches.
Finally, Chapter 7 concludes the thesis, also formulating some proposals for

future works.

5





Chapter 2

Machine Learning Techniques and
Optimization Problems

Machine Learning is a subset of Artificial Intelligence that build a mathe-
matical model based on sample data [8]. The goal is to make predictions or
decisions without being explicitly programmed to perform the task. It derives
from statistics, computer science, engineering, optimization theory and other
disciplines of science and mathematics [9].
Machine Learning can be classified according to the kind of learning:

• Supervised learning: given a set of input and output variables, the aim
is to learn a mapping to predict the outputs for unseen data [10];

• Unsupervised learning: given a set of unlabelled inputs, the goal is to
find a solution on its own with no supervised target [10]: the algorithm
builds representations of the input data for decision making and predicts
the unknown inputs. An example of unsupervised learning is clustering;

• Semi-supervised learning: given a small amount of labelled data and a
large amount of unlabelled data, the goal is to teach itself to predict
unseen labels [8];

• Reinforcement learning: the goal is to map situations to actions in order
to maximize a reward. The algorithm must discover which actions yield
the most reward by trying them. Actions may affect reward or a penalty
[11];

• Transfer learning: the goal is to improve learning in a new task by lever-
aging knowledge from a related task that has already been learned [12].

The optimization problems arise throughout Machine Learning because the
objective is to design a classifier or a predictor to give a correct value for any
unknown input vector.
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An optimization problem is the task of finding the best solution from all the
feasible solutions [13]. Given the optimization variable and the bounds for the
constraints to the problem, the goal is to minimize the objective function:

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, · · · ,m.

(2.1)

where x = (x1, · · · , xn) is the optimization variable of the problem, the function
f0 is the objective function, fi, i = 1, · · · ,m are the constraint functions and
bi are the limits or bound for the constraints. A vector x∗ is called optimal or
a solution if it has the smallest objective value among all vectors that satisfy
the constraints.
The optimization problems can be divided into two main classes. The first

is the linear program if the objective functions are linear:

fi(αx+ βy) = αfi(x) + βfi(y) (2.2)

where α and β are constant values. If the optimization problem is not linear,
it is called a nonlinear program.
A solution method is an algorithm that computes a solution to the problem.

The effectiveness of the technique depends on factors such as the particular
forms of the objective and constraint functions, how many variables and con-
straints are present, and their particular structure, i.e. sparsity.
An optimization problem is convex if the objective and constraint functions

are convex (see Figure 2.1.a); thus, they satisfy the following inequality:

fi(αx+ βy) ≤ αfi(x) + βfi(y) (2.3)

Because the inequality is more restrictive than equality and is held only
for specific values of α and β, the convex optimization can be considered a
generalization of the linear program.

An optimization problem is not convex when the objective function or any
of the constraints are non-convex [14]. Local optimization methods have been
studied to find a local and global minimum point. Usually, straightforward
problems with many variables can be intractable, so an optimal solution is
determined at a local minimum. This kind of optimization problems presents
feasible and flat regions, a widely varying curvature, several saddle points and
multiple local minima within each region (see Figure 2.1.b).

Local optimization methods are sensitive to algorithm parameter values. The
optimization may require an initial guess, which is critical and can significantly
affect the objective value of the local solution.
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Figure 2.1: Example of convex and non-convex optimization problem: convex
optimization problem (a) is composed of local minimum that is the
same of the global minimum; non-convex optimization problem is
composed of several local minimums and saddle points and a global
minimum.

A multi-objective optimization problem is an optimization problem that in-
cludes multiple objective functions:

minimize (f0,1(x), f0,2(x), · · · , f0,K(x))
subject to fi(x) ≤ bi, i = 1, · · · ,m.

(2.4)

In a multi-objective optimization problem, does not exist a feasible solution
that minimizes all objective functions simultaneously [15]. For this reason, the
solutions improve one objective function but degrade at least one of the other
objective functions. The set of Pareto optimal outcomes is called Pareto front,
Pareto frontier or Pareto boundary. A Pareto optimal solution dominates any
other feasible solution in the search space [16]. In Figure 2.2 is presented an
example of the Pareto frontier using two generic objective functions. Diamonds
and circles represent the feasible choices: the first ones are the Non-Pareto
optimal choices because they are dominated by the other points (circle marks).
Circles are Pareto optimal because any other points do not dominate them.
Hence they lie on the frontier (red curve).

In [17] a Pareto Active Learning is performed to maximize progress on de-
signs, identifying the set of Pareto-optimal in a multi-objective scenario. A
Fully Connected Neural Network (FCNN) is used in [18] for the Drop-on-
Demand Bioprinting, optimizing the voltage to print droplets. In [19] is dis-
cussed the first use of neural networks for multi-objective optimization.

Multi-Objective Evolutionary Algorithms are used to update neural networks
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f0,2(x) < f0,1(x)

f0,1(x) < f0,2(x)

f0,1(x)

f0,2(x)

Pareto Optimal

Non Pareto Optimal

Figure 2.2: Example of Pareto frontier with two objective function. Circles and
diamonds are the feasible choices; diamonds are not Pareto optimal
solutions; circles are Pareto optimal solutions. The Non Pareto
optimal solutions are dominated by the Pareto optimal solutions.

that dominate in several Pareto optimal solutions [20]. In [21] Multi-Objective
Particle Swarm Optimization (MOPSO) is used to tune hyperparameters of
several Machine Learning algorithms, as the Back-Propagation Neural Network
(BPNN), Random Forest (RF), Support Vector Regression (SVR), Regression
Tree (RT), k-Nearest Neighbor (KNN) and the Logistic Regression, to optimize
the concrete mixture proportions. A new hybrid method has been described in
[22], in which a Neural Evolutionary Algorithm, called Multi-Objective Neu-
ral Evolutionary Algorithm based on Decomposition and Dominance (MON-
EADD) is used for combinatorial optimization problems.

2.1 Evolutionary Algorithms
Evolutionary algorithms [23] are optimization techniques inspired by biology
and natural phenomenon. According to the criteria and constraints of the prob-
lem, these methods can be distinguished between single-objective and multi-
objective evolutionary algorithms [24].
Briefly, all evolutionary algorithms present the following steps: a population

of individuals (agents, particles, genes etc.) is created; the values of objective
functions are calculated for each individual; a fitness value is determined; the
selection phase is executed, where solution candidates with bad or good fitness
are selected, then the worst candidates are usually discarded; the reproduction
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phase is performed, in which there is the combination of the selected individu-
als. Finally, the evolution is stopped when the criteria are met; elsewhere, the
algorithm continues to optimize.
Evolutionary algorithms can be divided into three main classes [25]: biology-

based algorithms, physics-based algorithms and geography-based algorithms.
The biology-based methods present characteristics of natural evolution and
biological behaviours, emulating cooperative behaviours of swarms, like the
Particle Swarm Optimization (PSO). Physics-based techniques are inspired by
physical phenomenons and rules. Finally, geography-based algorithms use ge-
ographics information to optimize problems; an example is the Tabu Search
algorithm [26].

Many evolutionary algorithms are present in literature [23], from Genetic Al-
gorithms [27] to new techniques such as Gravitational Search Algorithm (GSA)
[28].

Evolutionary Algorithms are used for many purposes: PSO is used in [29]
to analyze the multi-variable optimization problems, while in [30] an Adaptive
PSO is described. Differential Evolution is presented in [31] to minimize non-
linear and non-differentiable continuous space functions, analyzing it also in a
multi-objective optimization problem [31].

Artificial Immune System [32] is a recent evolutionary algorithm based on
antigens. Several works used the Artificial Immune system for multi-objective
optimization [33, 34].

Gravitational Search Algorithm is the most recent analyzed algorithm [35]:
in [25], a hybrid Gravitational Search and Pattern Search Algorithm (GSA-PS)
approach is used to optimize and manage the energy in a grid network, whereas
in [36], the GSA achieved better performance than the PSO in a multi-objective
optimization analysis.

In this thesis, the techniques used for Multipoint Audio Equalization, both
FIR and IIR, will be explained: the PSO is described in Section 2.1.1, while
the GSA is explained in Section 2.1.2.

2.1.1 Particle Swarm Optimization

The Particle Swarm Optimization is an optimization algorithm based on the
social behaviour of bird flocking and fish schooling [37]. The PSO is based
on a population, or a swarm, of individual particles. Each particle crosses
through the solution space to search for the global optimum. Each particle
then modifies its position using the information of the distance between the
current position, the local best pbest and the global best gbest. The algorithm
iteratively evaluates the fitness function at different locations creating a map
of the best fitness values.
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The algorithm starts with the generation of particles in a random position
in the solution space. Then the fitness function is evaluated for each particle,
calculating the pbest in the current iteration and the gbest. Finally, the position
xdi and the velocity vdi at instant k is calculated:

vdi (k+1) = W ·vdi (k)+ c1 ·ζ(k) · (pbest−xdi )+ c2 ·ζ(k) · (gbest(k)−xdi (k)) (2.5)

xdi (k + 1) = xdi (k) + vdi (k + 1) (2.6)

where W is the inertia weight, ζ(k) is a random value in the range [0, 1] and
c1 and c2 are constants.

2.1.2 Gravitational Search Algorithm

Gravitational Search Algorithm [38] is a metaheuristic method based on the
law of gravitational and mass attraction forces. The solution vectors A are
considered as agents attracted by each other by a force. The i-th agent is
defined by the position Xi = [x1

i , · · · , xdi , · · · , xDi ], where xdi is the position of
the i-th agent in the d-th dimension and n is the dimension of each space. The
mass of each agent Mi is calculated as:

Mi(k) = qi(k)∑A
j=1 qj(k)

(2.7)

where qi is calculated by:

qi(k) = fiti(k)− worst(n)
best(k)− worst(k) (2.8)

where fiti(k) is the fitness value of the i-th agent, best(k) and the worst(k)
are the best and the worst fitness value of all agents at k-th iteration.
The force of each agent Fi is calculated considering a set Abest of heavier

masses:

F di (k) =
∑

j∈Abest
j 6=i

randj · G(k) · Mj(k)Ṁi(k)
Rij(k) + ε

· (xdj (k)− xdi (k)) (2.9)

where ε is a small value, Rij(k) is the Euclidean distance between two agents,
defined as Rij(k) = ||Xi(n), Xj(k))|| and Abest is the set of A agents with the
best fitness value and biggest mass. G is the gravitational constant, with an
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initial value G0 and then it will be reduced with time:

G(k) = G(Go, k) (2.10)

After, the acceleration of the agent adi is computed:

adi (k) = F di (k)
Mi(k) =

∑
j∈Abest
j 6=i

randj · G(k) · Mj(k)
Rij(k) + ε

· (xdj (k)− xdi (k)) (2.11)

Finally, the velocity and position of the agent, vdi and xdi respectively, are
calculated:

vdi (k + 1) = randi · vdi (k) + adi (k) (2.12)

xdi (k + 1) = xdi (k) + vdi (k + 1) (2.13)

where randi and randj are two uniformly distributed random numbers in
the interval [0, 1].
The main differences between PSO and GSA are described in [28]: in PSO,

the direction of a particle is calculated considering the local and global best
position, while in GSA is based on the overall force obtained by all other agents;
in GSA, the force is proportional to fitness value, and it is proportional to the
distance between solutions. Finally, GSA is memory-less. Only the current
position of the agents plays a role in the updating procedure.

2.2 Deep Optimization
The scope of this dissertation is to optimize digital filters with limited informa-
tion (IRs, number of microphones and speakers), employing neural networks
with a different approach than the common classification and regression prob-
lems: the neural network iteratively adjusts the filters accordingly to several
objective functions, regularization and penalty terms by fitting its weights.

The neural networks can solve non-convex, non-linear or complex problems
through the minimization of the cost function [39]; in fact, the training of a
neural network is an optimization problem, where the loss term is minimized
by the backpropagation of the error through the neural network. In this thesis,
the proposed DNNs are used to solve optimization problems. This idea is not
completely new, but it has already been proposed in recent years [40, 41]. In
[42], the authors analyzed the MultiLayer Perceptron (MLP) for multi-objective
and multi-level programming. In [39], neural networks are used to solve non-
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Figure 2.3: Diagram of a Deep Optimization process.

convex optimization problems, achieving good performance, possibly due to
their parameter redundancy [43].
The Deep Optimization network process is divided into two steps (see Figure

2.3): the first is the prediction step, in which the neural network outputs the
parameters to optimize. Then the simulation is performed and the fitness
function is calculated. The second step is the backpropagation step: the partial
derivatives are calculated from the local derivatives of the loss functions and
the simulations. Finally, the weights and the parameters are updated using an
optimizer.

2.3 Deep Neural Networks

Deep Neural Networks are mathematical models inspired by neuroscience [44].
The hidden layer of the network can be represented by a vector in which each
element could be interpreted as a neuron, also called unit. Each neuron receives
input from other units and computes its activation value.
Deep Neural Networks exploits backpropagation [45] to compute the gradi-

ents and update weights and bias using optimization algorithms like Stochastic
Gradient Descent [44].
The advantage of using a neural network with respect to linear models is the

non-convex optimization, resulting in a better loss function decrease.
DNNs were implemented to design filters for both Multipoint Audio Equal-

ization and Personal Sound Zones. As described in Section 2.2, the proposed
DNNs optimize parameters to solve problems with limited information. Several
common neural architectures were analyzed, and a new architecture, named
Bias Network (BiasNet) and described in Section 2.3.5, was implemented for
the optimization problems under consideration.

2.3.1 MultiLayer Perceptron

The MultiLayer Perceptron is a feed-forward neural network composed of an
Input layer, a cascade of hidden layers, and the Output layer [44] (see Figure
2.4). The network maps the input values to output values, achieving a function
composed of non-linear activation functions.
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The hidden layers are composed of computation nodes, called hidden neu-
rons. Each neuron applies an activation function over the weighted sum of its
inputs.

In Figure 2.4 is presented an example of a MLP: the input examples are
fed into the Input layer, then the resulting output is propagated through the
hidden layers towards the output layer. In the backpropagation, the error,
calculated by the loss function, is sent back through the layers, and the network
parameters are tuned with an optimization algorithm.

Input
Layer

Input

Hidden layers

Output
Layer

Figure 2.4: Example of MLP

2.3.2 Convolutional Neural Network

Convolutional Neural Network (CNN) is a neural network that is used to pro-
cess data that has grid-like topology [44, 46]. This architecture has the prop-
erties to use the convolution between the input and the kernel (see Figure 2.5),
achieving as output the feature map. The input is a multidimensional array
(tensor) of data, and the kernel is usually a tensor adapted by the learning
algorithm.
The input tensor is divided into local receptive fields, a region of the same

size as the kernel. The convolution kernel processes the receptive field and
slides it across the entire input. The whole input tensor is handled, repeating
the convolution across its receptive field and achieving the feature map. The
receptive field is convolved with the kernel, a bias term is added, and the
activation function is performed. The weights of each feature map are shared.

Usually, a CNN is composed of convolutional layers, max pooling and hidden
layers. Pooling layers reduce the dimension of the tensor using a mathemati-
cal rule, such as selecting the maximum value from a submatrix or averaging
the submatrix [44]. These kinds of layers are useful because they introduce
tolerance against shifts in the input patterns.
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Input
Convolutional layers

Hidden layers

Outputs

Figure 2.5: Scheme of a CNN.

The convolution process for a generic kernel is determined by:

ym = f
( D3∑
d=1

Wm ∗ ud + bm

)
(2.14)

where ym ∈ RD1×D2 is the feature map, Wm is the m-th kernel, bm ∈ RD1×D2

is the bias vector and ud ∈ RD1×D2 is the matrix of the input tensor u ∈
RD1×D2×D3 .

2.3.3 Autoencoder

Autoencoder (AE) is a neural network that is used to attempt to copy its input
to its output [44]. The architecture is described in Figure 2.6. It is composed
of a code in the network which forces a compressed knowledge representation
of the original input. Usually, the code is a hidden layer that represents the
input. The network consists of an encoder function that converts the input
data into a different representation and a decoder function that converts the
new representation back into the original format. Their scope is to preserve
as much information as possible when the input runs through the encoder
and the decoder. Indeed, the model learns the useful properties of the data
[44]. Recently, AEs have been used as generative models [47] or Denoising
Autoencoders [48].

Input Encoder Bottleneck Decoder
Reconstructed

Input

Figure 2.6: Scheme of an Autoencoder.
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2.3.4 Generative Adversarial Network

Generative Adversarial Network (GAN) [44] is a generative model that learns
to map samples, obtained from a random distribution, that are as similar as
possible to training examples. This architecture is composed of the Gener-
ator that learns to get an effective mapping that can imitate the real data
distribution to generate novel samples related to the training set, and it does
not memorize input-output pairs. The other component is the Discriminator,
which is typically a binary classifier. Its inputs are either real samples coming
from the training set or fake samples given from the Generator. In Figure 2.7
is presented the diagram of a GAN.

Random
input

Generator

Discriminator

Training
Dataset

Real/Fake

Fake

Real

Figure 2.7: Scheme of a GAN.

The Discriminator attempts to learn correctly classify samples as real or
fake. At the same time, the Generator attempts to fool the Discriminator into
believing its samples are real. When the loss function converges, the Generator
outputs indistinguishable samples from real data, and the Discriminator gives
as output a value equal to 0.5.

2.3.5 Bias Network

In a Deep Optimization scenario, a neural network can be seen as a unidirec-
tional graph of non-linear computations. With a fixed input, only the weights
can change, then the convergence is only determined by the update of the net-
work weights. If the activation functions satisfy the relation f(0) = 0, an input
tensor with 0s will not produce any output, so the computation will be 0s.
To inject an input to the network, bias terms of the input layer can be used
because they are learnable parameters. Therefore, they will be updated during
the optimization procedure.
Bias Network is presented in Figure 2.8. The vector of bias terms of input

neurons b0 can be seen as a learnable input vector. The network provides
parameters that are used in the simulation process. Then, as described in
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Figure 2.3, the loss function is calculated, and the partial derivatives of the
simulation process are used to learn the optimal network weights and input
bias terms.

b0
· · · p

Hidden
Layer 0

Hidden
Layer 1

Hidden
Layer N-1

Output
Layer

Figure 2.8: Bias Network.

The advantages of using this architecture lie in the absence of input, which
avoids tweaking the input size and content, and the low number of network
parameters to be learned, influencing the convergence speed.
The proposed BiasNet is composed of a cascade of fully connected layers. The

neurons of the first hidden layer (Hidden layer 0 in Figure 2.8) is calculated as:

y0 = f(w0 · x+ b0) (2.15)

where y0 is the vector of the neuron outputs, w0 is the matrix of the weights,
and x is the input of the network. To change the weights in biases, x must be
a constant value, like 0 or 1. For simplicity, if x = 0, the neuron output could
be:

y0 = f(b0) (2.16)

and the partial derivative of the output with respect to the bias is:

∂y0

∂b0 = ∂f(b0)
∂b0 (2.17)

Assuming x = 1, the output is:

y0 = f(w0 + b0) (2.18)

and the partial derivatives are:

∂y0

∂w0 = ∂f(w0 + b0)
∂w0 (2.19)
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∂y0

∂b0 = ∂f(w0 + b0)
∂b0 (2.20)
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Chapter 3

FIR and IIR Filter Design

Digital filters are used to process the input signal [49], add digital effects or
equalize either the acoustic scene or the channel communications. They are
classified as FIR and IIR filters. The two groups of filters are Linear Time
Invariant (LTI) systems [50].
FIR filters are systems with finite impulse responses. The difference equation

is given by:

y(n) =
K−1∑
k=0

bk · x(n− k) (3.1)

and the finite impulse response is:

h(n) =
K−1∑
k=0

bk · δ(n− k) (3.2)

thus, the impulse response is given by the weighted sum of the present sample
and the past K samples. By the feed-forward characteristic, these types of
filters are non-recursive. The transfer function in Z-domain is given by:

H(z) = b0 + b1 · z−1 + · · ·+ bK−1 · z−(K−1) (3.3)

FIR filtering operation can be used to operate on a block or sample-by-sample
basis [50]. In block processing, the input signal is considered as a single block
of signal samples. It is filtered by convolving it with the filter, generating the
output signal as another block of samples. In the sample processing case, the
signal samples are processed one at a time when they arrive at the input. In this
case, the filter is used as a state machine. Each sample is used in conjunction
with the current state of the filter to calculate the current output sample and
update the internal state of the filter in preparation for the process of the next
signal sample. The second approach is useful in real-time and adaptive filtering
applications.

IIR filters are systems with an impulse response of infinite duration [51]. The
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difference equation is given by:

y(n) =
K−1∑
k=0

bk · x(n− k)−
N−1∑
l=0

al · y(n− l) (3.4)

and the transfer function in Z-domain is:

H(z) =
∑K−1
k=0 bkz

−k

1 +
∑N−1
l=1 alz−k

(3.5)

IIR filters present poles in the transfer function, obtaining filters with a
slightly non-linear phase [51]. Another characteristic due to the presence of
the poles is stability; if the poles are outside the unit circle in Z-domain, the
system is unstable.
IIR filters are designed using optimization techniques [51]. The classical

approach in the time domain is the System Identification (SI) approach, in
which the IIR system is designed by recursively updating the filter coefficients
until the response is close to the unknown system [52]. Linear optimization
techniques minimize the gradient of the error function with respect to filter
coefficients. Fletcher-Powell algorithms [53], Linear Programming approach
[54] and Least Squares techniques [55, 56] are examples of linear optimization
techniques used for the IIR filter design [51].
Digital filters can be realized as direct form, canonical form and cascade form

[50].
The direct form, called direct form I realization, is the block diagram repre-

sentation of the difference equation:

y(n) = −a1 ·y(n−1)−a2 ·y(n−2)+· · ·+b0 ·x(n)+b1 ·x(n−1)+b2 ·x(n−2) (3.6)

In Figure 3.1 is presented a graphical example of the direct form I realization.
The canonical form, called direct form II, is achieved by the direct form I:

the equation is split into two subgroups, the recursive and non-recursive terms:

y(n) = (b0 ·x(n)+b1 ·x(n−1)+b2 ·x(n−2))+(−a1 ·y(n−1)−a2 ·y(n−2)) (3.7)

resulting in a realization of the cascade of two filters: one consists only of the
feed-forward terms and the other of the feedback terms, the numerator and the
denominator, respectively:

H(z) = N(z) · 1
D(z) (3.8)
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x(n) +

z−1

z−1

··
·

··
·

z−1

y(n)

z−1

z−1

··
·

··
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z−1

b0

b1

b2

bN

−a1

−a2

−aN

v0

v1

v2

vN

w0

w1

w2

wN

Figure 3.1: Direct form I realization of a generic IIR filter

The order of the cascade factors can be mathematically changed, thus:

H(z) = 1
D(z) ·N(z) (3.9)

The output signal of the filter 1
D(z) becomes the input of the second filter

N(z). The delays can be merged in one set, shared by both the first and second
filters, leading to the canonical realization form, as shown in Figure 3.2.

A Second Order Section (SOS) is a second order transfer function:

H(z) = b0 + b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2 (3.10)

The cascade realization form of a general transfer function assumes that the
transfer function is the product of the SOS’s:

H(z) =
K−1∏
i=0

Hi(z) =
N−1∏
i=0

bi,0 + bi,1z
−1 + bi,2z

−2

1 + ai,1z−1 + ai,2z−2 (3.11)

with real valued coefficients.
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,
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··
·

··
·

··
·

z−1

y(n)

w(n) = w0(n) b0

w1(n)

w2(n)

wN (n)

b1

b2

bN

a1

a2

aN

Figure 3.2: Direct form II realization of a generic IIR filter.

3.1 Parametric IIR Filter
The Parametric IIR filters are used to implement tunable low/high/band-pass
and band-reject filters [57]. Several filters are needed to shape the spectrum,
connecting them as a cascade of first and second-order filters.
In this thesis, Parametric IIR filters are used for the Multipoint Audio Equal-

ization and PSZ task. The band-pass filters are designed, optimizing the central
frequency fc, the quality factor Q, the gain G0 of each SOS, and the overall
gain of the speaker GS . The two typologies of filters to design are Boost filters
and Cut filters: the first ones amplify the spectrum in a specific band region,
while the Cut filters attenuate it [57]. In Tables 3.1 and 3.2 are described
the calculus of the IIR filter coefficients from the parameters. After obtaining
the coefficients, filtering is done using frequency convolution. Therefore the
transfer function is transformed into frequency response.

3.2 State-of-the-art of FIR and IIR filters design
Digital filter design needs optimization algorithms [58]. A scheme of the main
optimization techniques is shown in Figure 3.3.
Convex optimization methods have been used on the FIR filter design [59],
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IIR Coefficients Boost (V0s,κ ≥ 1)

bs,κ,0
1+V0,s,κ

Qs,κ
·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2

1+1/Qs,κ·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2

bs,κ,1
2·tan(π·fcs,κ/fs)2−1

1+1/Qs,κ·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2

bs,κ,2
1−V0,s,κ

Qs,κ
·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2

1+1/Qs,κ·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2

as,κ,0 1
as,κ,1

2·tan(π·fcs,κ/fs)2−1
1+1/Qs,κ·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2

as,κ,2
1− 1

Qs,κ
·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2

1+1/Qs,κ·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2

Table 3.1: Coefficients calculated according to the Boost filter [57].

IIR Coefficients Cut (0 < V0s,κ < 1)

bs,κ,0
1+ 1

Qs,κ
·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2

1+V0,s,κ/Qs,κ·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2

bs,κ,1
2·tan(π·fcs,κ/fs)2−1

1+V0,s,κ/Qs,κ·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2

bs,κ,2
2·tan(π·fcs,κ/fs)2−1

1+V0,s,κ/Qs,κ·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2

as,κ,0 1
as,κ,1

2·tan(π·fcs,κ/fs)2−1
1+V0,s,κ/Qs,κ·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2

as,κ,2
1−V0,s,κ

Qs,κ
·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2

1+V0,s,κ/Qs,κ·tan(π·fcs,κ/fs)+tan(π·fcs,κ/fs)2

Table 3.2: Coefficients calculated according to the Cut filter [57].

but, generally, the non-convex techniques are used due to the multiple local non-
linear points. Parks-McClellan is one of the first convex optimization methods
used for the FIR filter coefficients optimization [60]. Linear programming is
used to achieve linear-phase FIR filters of minimum length using linear ob-
jectives related to linear constraints [61]. The peak-constrained least-squares
(PCLS) approach [62] aims to minimize the error with a least-square approxi-
mation. Convex optimization methods are also used for IIR filter design. Linear
Programming and Quadratic Programming [54] are used to design a recursive
filter with a linear phase. Semidefinite Programming (SDP) is used to design
a stable IIR filter [63].
With the convex techniques, the cost function could fall in a local mini-

mum.. For this reason, some novel non-convex techniques have been studied,
particularly in recent years. In [64], a p-norm minimization is used to design
FIR filter coefficients. Joint Sparsity and Order Optimization is performed in
[65] using as cost function the norm operation and the Alternating Direction
Method of Multipliers (ADMM) algorithm [66]. The Piecewise Linear Con-
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Figure 3.3: Diagram of the main optimization techniques for the design of dig-
ital filters

cave Optimization (PLCO) is used in the optimization problem to design the
sparse FIR filters [67], solving non-linear and non-convex problems. IIR fil-
ter design is analyzed in [68], in which a Sequential Constrained Least-Square
(SCLS) method with Steiglitz-McBride (SM) algorithm is used to achieve good
performance concerning the only SM methods. Constraint Transcription and
Filled Function methods are used in [69] to achieve a global minimum in the
IIR filter design. An iterative second-order Cone Programming is used in [70]
to design IIR filters, relaxing the non-convex problem. Finally, the Partial
Fraction Decomposition Method is used for the optimal design of IIR filters
[71], decomposing the transfer function into a sum of low order fractions to
optimize poles and zeros, achieving better performance comparing it with the
minmax-based methods.
Evolutionary algorithms are used for FIR and IIR filter design to overcome

the limitations of linear and gradient based techniques. Indeed, evolutionary
algorithms can be used to obtain non sub-optimal solutions from non-linear and
multi-objective problems [51]. The common evolutionary algorithms used for
IIR filter design are Genetic Algorithm [72], Particle Swarm Optimization [73]
and Gravitational Search Algorithm [38]. Other evolutionary methods for IIR
filter design are presented in [51]. The PSO is used for FIR filter design in [74],
while in [75], the Flower Pollination Algorithm (FPA) is used to design FIR
filter coefficients. The achieved filters approximate the desired specifications
and give better performance than windowing and Parks-McClellan techniques,
using several fitness functions. Opposition-based Harmony Search Algorithm
is studied in [76] for the optimal design of FIR filter coefficient, achieving bet-
ter performance than the Parks-McClellan method, PSO, Real-coded Genetic
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Algorithm and Differential Evolution.
A Deep Learning approach is presented in [77], where a neural network is

implemented to update IIR filter coefficients to achieve the desired frequency
response and a stable filter. Another solution is presented in [78], where the
optimization is performed assuming the IIR filter coefficients as the weights of
the neural network. In [79], an adaptive FIR and IIR filter design are described
using a MLP. A neural network approach for FIR filter design is presented in
[80], in which the Deep Learning method is used with the Frequency Response
Masking and gives the magnitude response at each frequency bin. In [81], a
Radial Basis Function (RBF) is used to design FIR filter coefficients. In [82],
the RBF is compared with the Back Propagation Neural Network (BPNN) and
General Regression Neural Network (GRNN), optimizing low pass FIR filter
coefficients and feeding the network with the cut-off frequency and a scale value,
while in [83] the authors compared the neural approach with the windowing
method, outperforming the performance according to the target low pass FIR
filter frequency response.
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Chapter 4

Multipoint Audio Equalization

Multipoint Audio Equalization improves the sound quality within a listening
environment [84], constraining the system to obtain specific characteristics de-
fined by the user, e.g. the frequency response, in which usually a flat band
frequency response is desired within a frequency range [6]. In practice, differ-
ent shapes are also used, such as amplifying low frequencies by some dB.
In Figure 4.1, the aspects and goals of an audio equalizer [85] are shown.

The equalizer can be divided into a non-parametric and parametric equalizer,
while the temporal decay control is an equalizer that does not invert a given
frequency response but regularize the long decays in a listening room [86].
Parametric equalizers can be divided into AR or ARMA models [87, 88]. Au-
dio equalizers can be divided into minimum-phase and mixed-phase: the first
affect the minimum phase part of phase response, while the mixed-phase can
also affect the excess phase [89]. Finally, some constraints are considered to
design an equalizer, like the listener position, variation of room response, and
psychoacoustic factors [85]. The operating frequency range is another feature
to consider when designing an equalizer.

Two scenarios are considered to perform equalization [90]: the fixed case,
where the equalization is performed without considering variations within the
listening environment; the adaptive case, where variations are taken into ac-
count, i.e., the listener’s movement, the number of people (or passengers inside
the car cabin), or variations in temperature and humidity that can affect the
frequency response [91]. Finally, an audio equalizer is designed according to a
single position or multiple positions to be enhanced; in the latter case, several
methods improve the sound quality on different points [92].

Many Multipoint Audio Equalization techniques have been described in lit-
erature [6, 84, 85]. In this Section, a brief description of the current Multipoint
Audio Equalization techniques is described, focused in Section 4.2.1 the Steep-
est Descent method, Section 4.2.2 the Frequency Deconvolution (FD) method,
and Section 4.3.1 the Direct Search Method (DSM), used for the Parametric
IIR equalizer design [93].

The digital equalization problem started with [94], where a minimum phase
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Figure 4.1: Diagram of Multipoint Audio Equalization aspects.

inverse filter is designed to remove the effect of the Room Impulse Response in
a speech signal. A review of the main room response equalization algorithms
are described in [84]. The authors classify the techniques in five classes: Ho-
momorphic filtering, where the Room Impulse Response equalizer is achieved
by the direct inversion of the minimum phase part [95], resulting in FIR filters
with very long taps and a model that is very sensitive to impulse response;
Linear Predictive Coding analysis [96], where the room response is modeled as
a minimum-phase all-pole filter (estimating the common acoustical poles be-
tween the transfer functions) and the equalizer is a FIR filter. The limitation of
this technique is that it can be only used for the minimum phase equalization;
Frequency Domain Deconvolution [97, 98] is a method where the equalizer can
be directly designed in the Discrete Fourier Transform domain by considering
the reciprocal of the Room Response. This technique could introduce arte-
facts; thus, pre-processing techniques or a regularization parameter could be
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used; Least Square Optimization methods are used for adaptive equalization
[99, 100], but these techniques encounter some challenges such as the high sen-
sitivity to the peaks and the notches in the room response and the non-uniform
distribution of the error in the spectrum [84]; Multiple-Input/Multiple-Output
Inverse Theorem (MINT) methods construct the inverse Room Impulse Re-
sponse from multiple FIR filters, using multiple loudspeakers or microphones.
When the number of speakers is increased, the MINT methods enhance the
inversion of the room response [101].
Other equalization techniques, not properly just for the audio equalization,

are described in [6]. The parametric equalizer is the most powerful and flexible
[6] because it allows the correction of peaks or notches in a given frequency
band using only three parameters: center frequency fc, gain G0 and quality
factor Q (or bandwidth B0). A parametric equalizer can be created from first
or second order shelving filters [102, 103] and second order peak or notch filters
[104]. Most popular parametric equalizers are designed to achieve IIR filters,
although some literature solutions implement parametric equalizers with FIR
filters [105].
The graphic equalizer is a more closed-form equalizer than the parametric

one [6]. It is commonly used in music production because it modifies sound
effects, while parametric equalizer is used for the task of Multipoint Audio
Equalization because the parameters to be modified are very practical. This
technique allows controlling the gain of each filter set with a central frequency
and a bandwidth a priori. Cascade [106] and parallel bank filter [107] structures
have been studied, with both FIR and IIR filters implementations [108].

Pre-processing techniques are used to overcome the limitations of Multipoint
Audio Equalization, such as the use of very long impulse responses of the
equalizer (e.g. very long FIR filters) or the variation of the impulse response,
which can cause a shift of several dB in the frequency response [84]. A solution
could be to design short filters using a coarse model of the impulse response
[109]. Other pre-processing techniques are based on the characteristics of the
impulse responses and the human ear. Thus, the frequency response is more
regular and insensitive to the position at low frequencies [84], like in [110],
where the authors used the fractional octave-band smoothing to the transfer
functions. Another technique is the frequency warping [111], that replaces
the unit delay z−1 with an all-pass filter [112]. Other similar solutions are the
Kautz filters [113] and the discrete Kautz functions [114]. Multirate approaches
[115] divide the spectrum into sub-bands. Each sub-band is down-sampled
and later separately processed with filters of different lengths. Finally, the
Room Impulse Response Reshaping [116] could be used to shorten the Impulse
Response, achieving the desired time window and minimizing the undesired
tails of the Impulse Response [117].

31



Chapter 4 Multipoint Audio Equalization

Machine Learning techniques have been investigated for the Single Input -
Single Output (SISO) Audio Equalization task. The Nearest Neighbor pat-
tern recognition is used to assist the user to automatically adjust the timbre
according to the user preferences [118]. An End-to-End Convolutional Neural
Network is investigated in [119] for music production, amplifying or attenuat-
ing audio content in a certain frequency region, while in [120], a Time Delay
Neural Network is used as Inverse Room Response cascaded with the room
acoustic scene. Although these techniques are very interesting, they cannot be
used as audio equalizers as they have a very high computational cost.
A first attempt to exploit Machine Learning techniques for IIR filter design

for Multipoint Audio Equalization in an automotive scenario is presented in
[121]; in particular, GSA is used to optimize the coefficients of IIR filters ar-
ranged as a cascade of SOS’s. Optimal IIR filter coefficients are based on a
fitness function and on two alternative methods to avoid unstable filters. The
evolutionary method is compared with the DSM, achieving superior results.
Despite the good performance, some experiments have led to considerations
about the design of fitness functions. In fact, in some experiments, one speaker
had much higher energy than the other speakers, or denominator coefficients
resulted in poles very close to the unit circle. These tests were discarded from
the final evaluation and comparison.

4.1 Metrics
Multipoint Audio Equalization is analyzed using several metrics. For the FIR
filter design, the results were provided in terms of Mean Square Error (MSE)
and standard deviation σ [122, 123]. The MSE of the magnitude response
is calculated bin-by-bin for each microphone between the desired frequency
response; after, the results are averaged between all microphones:

MSE = 1
M

M∑
m=1

(∑ωh
ω=ωl

(
|H̃m(ω)| − |Hdes(ω)|

)2

ωh − ωl

)
(4.1)

The average standard deviation σ is calculated as:

σ = 1
M

M∑
m=1

σm (4.2)

where σm is the standard deviation of m-th microphone:

σm =

√√√√ 1
ωh − ωl + 1

ωh∑
ω=ωl

(10 · log10|H̃m(ω)| −D)2 (4.3)
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D = 1
ωh − ωl + 1

ωh∑
ω=ωl

(10 · log10|H̃m(ω)|) (4.4)

Replacing H with the unfiltered frequency response gives the results without
equalization [3].

In the case of Parametric IIR filter design, metrics are evaluated in the one-
third octave band.

4.2 Multipoint Audio Equalization using FIR filter
design

4.2.1 Steepest Descent

The Steepest Descent (SD) is an adaptive method for Multipoint Audio Equal-
ization [124, 125] and it aims to equalize the impulse response in order to match
a target impulse response:

hdes = [0 . . . 0 1 0 · · · 0︸ ︷︷ ︸
L+T −1

]T (4.5)

where T is the number of taps of the FIR filters and L is the length of the
impulse response.

The FIR filters are adapted to match the target impulse response:

h̃m = hm,1 ∗ g1 + hm,2 ∗ g2 + · · ·+ hm,S ∗ gs =
S∑
s=1

hm,s ∗ gs ≈ hdes (4.6)

The optimization aim is to minimize the cost function:

J = ||hM − h̃||2 (4.7)

where h̃ is the vector containing the output impulse response h̃ = [h̃1, h̃2, · · · , h̃M ]
and hM is the vector containing M times the target impulse response. The
inverse system g can be calculated by:

g = H+hM (4.8)
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where H+ is the pseudo inverse of the system matrix H:

H =


H1,1 H1,2 · · · H1,S
...

...
...

...
HM,1 HM,2 · · · HM,S

 (4.9)

which its elements Hm,s are (L + T − 1) × T circular matrices composed by
the impulse responses hm,s [124]:

Hm,s =



hm,s(0) 0 · · · 0
hm,s(1) hm,s(0) · · · 0

... . . . . . . ...

hm,s(L− 1) · · ·
...

...

0 hm,s(L− 1) . . . ...
0 · · · 0 hm,s(L− 1)


(4.10)

To adaptively calculate the FIR filters, the gradient of the cost function ∇J is
determined:

∇J = −2HThM + 2HTHg (4.11)

thus the inverse system can be obtained by:

g(n+ 1) = g(n)− µ∇J (4.12)

where µ is the step-size.

4.2.2 Frequency Deconvolution

The Frequency Deconvolution method [97] is widely used for designing FIR
filters for Multipoint Audio Equalization. This technique is based on decon-
volution in the frequency domain and on the Fast Fourier Transform (FFT),
achieving a matrix of causal FIR filters.
The FD is optimal in the Least Squares sense [97]. Thus the problem is

expressed as a convex optimization problem where the cost function J is given
by:

J = eHe+ βvHv (4.13)

where eHe is the performance error term and measure the error between the
desired and the reproduced signal at the microphones, while βvHv is the effort
penalty term and β is a regularization term.
The matrix of optimal filters in the frequency domain G(k) is computed
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according the following equation:

G(k) = [HH(k)H(k) + βI]−1HH(k)A(k) (4.14)

where H(k) is the matrix of the transfer functions of the impulse responses and
A(k) is the transfer function of the desired signal. When G(k) is computed, FIR
filters are achieved by calculating the Inverse Fast Fourier Transform (IFFT)
and performing a circular shift of k/2 samples, where K is the FFT size.

4.2.3 Proposed Method
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Figure 4.2: Scheme of PSO and GSA used for Multipoint Audio Equalization.

Several Machine Learning techniques were proposed for the Multipoint Au-
dio Equalization task. The first ones implemented have been Evolutionary
Algorithms, as they are widely used to design SISO case Audio Equalization
[126] and IIR and FIR filters [51, 127]. Particularly, PSO and GSA have been
compared for FIR filter design for Multipoint Audio Equalization [122]. The
two evolutive algorithms explained in Sections 2.1.1 and 2.1.2, respectively,
optimize FIR filter coefficients according to a cost function (see Figure 4.2),
that is the Mean Square Error between the desired frequency response and the
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achieved one by the simulation:

ĒMSE = 1
M

M∑
m=1

(∑
ω

(
|H̃m(ω)| − |Hdes(ω)|

)2
)

(4.15)

Then, the pbest for the PSO and the best(k) for the GSA with their respective
update procedure are chosen by the minimum MSE.
The main diagram of the Deep Optimization technique for Multipoint Audio

Equalization is described in Figure 4.3: the neural network gives as output the
optimized parameters needed for the simulation; the values resulting from the
simulation, such as the frequency responses, will be used to calculate the loss
function. The error is used to optimize network parameters through backprop-
agation. Section 4.3.2 describes the partial derivative from the loss functions
to the output network parameters for the IIR Parametric filter design for Mul-
tipoint Audio Equalization.

Figure 4.3: General scheme of Deep Optimization for FIR filter design for Mul-
tipoint Audio Equalization.

The first studies on Deep Optimization were carried out for the design of
FIR filters for Multipoint Audio Equalization [123, 128]. The only available
information is the measured impulse responses, which were used as input to
the neural network. The first studied neural architecture is the GAN [128] (see
Figure 4.4): the generator network is composed of convolutional layers and a
stack of fully connected layers, giving the optimal FIR filter coefficients (thus
a tensor of length S × T ). The discriminator compares the desired frequency
response concerning the achieved one from the simulation. The input of the
generator (and for the CNN and AE) consists of a 3D matrix that stacks all
the measured impulse responses. It is a tensor of size S ×M× L.
The discriminator network is designed to minimize a least squared loss, LD,

following [47], which is defined as:

LD = 1
2 · E|Hdes(ω)|[(D(|Hdes(ω)|)− 1)2] + 1

2 · Eh̃[(D(G(h̃)))2] (4.16)

where E|Hdes(ω)|[(D(|Hdes(ω)|)−1)2] is the expectation that discriminator clas-
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sifies |Hdes(ω)| as desired frequency response, while Eh̃[(D(G(h̃)))] is the ex-
pectation that discriminator classifies the frequency responses achieved from
the generator as not desired frequency responses.
The generator minimizes a different loss function, LG, calculated as the sum

of least squares error and the Euclidean distance [129] between the calculated
frequency response |H̃m(ω)| and the desired frequency response |Hdes(ω)|:

LG = 1
2 ·
(
Eh̃[(D(G(h̃))−1)2]

)
+λG ·

(
M∑
m=1

∥∥|H̃m(ω)| − |Hdes(ω)|
∥∥

2

)
(4.17)

where λG is a weight value that regulates the activity of the generator.

L

S

M

Measured Impulse Responses
Generator

Filter
Coefficients
Coefficients

|H̃M(ω)|

|Hdes(ω)|

D/U

Discriminator

Figure 4.4: Generative Adversarial Network architecture used for FIR filters
design for Multipoint Audio Equalization.

The Convolutional Neural Network is composed of a series of convolutional
layers and a stack of fully connected layers (see Figure 4.5). The convolutional
layers reduce the dimensionality of the input and extract features for the fully
connected layers. The loss function is calculated as:

LC =
M∑
m=1

∥∥|H̃m(ω)| − |Hdes(ω)|
∥∥

2 . (4.18)

The Multi-Layer Perceptron is a network composed of several fully connected
layers. The input is a vector composed of concatenated impulse responses (see
Figure 4.6), achieving a tensor of size S×M×L. The loss function is the same
as described in Equation 4.18.
The Autoencoder is a generative model [44] based on an encoder, a decoder

and an internal representation that interconnects the two, called latent space.
The encoder is composed of convolutional and fully connected layers (see Figure
4.7), similar to the CNN; the decoder performs the inverse mapping, thus is
composed of fully connected and de-convolutional layers. Filter coefficients are
optimized for the internal representation. Thus the latent space is composed
of a vector of size S × T .
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Figure 4.5: Convolutional Neural Network architecture used for FIR filters de-
sign for Multipoint Audio Equalization.
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Figure 4.6: Multi-Layer Perceptron architecture used for FIR filters design for
Multipoint Audio Equalization.

The loss function for the Autoencoder is given by the sum of the Euclidean
distance (Equation (4.18)) and the reconstruction loss. The latter is expressed
as the Euclidean distance between the input impulse response and the recon-
structed one. The final loss for the Autoencoder is given by:

LAE = α ·
M∑
m=1

∥∥|H̃m(ω)| − |Hdes(ω)|
∥∥

2 +(1−α) ·
M∑
m=1

S∑
s=1

∥∥h̃m,s(n)− hm,s(n)
∥∥

2

(4.19)
The term α allows to weight the two losses, set to 0.5.

4.2.4 Experimental Setup

Several experiments were performed for FIR filter design for Multipoint Audio
Equalization. Two automotive scenarios were used; they are shown in Figure
4.8. The first is the Alfa Romeo Giulia, composed of 7 loudspeakers: four door
woofers, one subwoofer in the trunk, one speaker in the center of the dashboard
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Figure 4.7: Auto-Encoder architecture used for FIR filters design for Multipoint
Audio Equalization.

and one speaker in the driver’s headrest. The second is the Jeep Renegade,
used both for the analysis of binaural audio equalization, both for multipoint
equalization. This scenario comprises 7 loudspeakers: a subwoofer in the trunk,
two woofers in the front doors, two woofer-tweeters in the back doors and two
tweeters

S1
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S3

S6

S2 S4
S5

D

(a)

S1

S7

S3

S6

S2

S4

S5

M1

M2 M4

M3D

1 2

3

(b)

Figure 4.8: Top view of the Alfa Romeo Giulia (a) and the Jeep Renegade (b)
showing the placement of the S loudspeakers and the M micro-
phones. D indicates the dummy head.

The binaural impulse responses in the Alfa Romeo Giulia were measured us-
ing the sine sweep method [130] implemented by the Aurora plugins. Sampling
was 28.8 kHz with Roland Octa-Capture audio interface. Then the impulse
responses were resampled to 48 kHz. A Kemar 45BA mannequin was placed
on the driver’s seat; the distance between its ears is 18 cm.

Regarding the impulse responses measurement inside the Jeep Renegade,
several microphones were used: 4 omnidirectional microphones, one per seat
(labelled M1, M2, M3 and M4 in Figure 4.8.b) needed for the optimization in
the car cabin; 3 microphones in the proximity of the microphone M2 (labelled
as PM1, PM2 and PM3 in Figure 4.8.b) used for the analysis of the head
movements on the equalization performance, and finally a binaural mannequin
mounted on the driver seat. The proximity microphones were placed at a
distance of 6.5 cm forward, 6.5 cm backward and 22.5 cm lateral, respectively.
The sine sweep method has been used, with a sampling rate of 48 kHz using
an Audio Precision APX-586 analyzer and a Crown D-75A power amplifier to
drive the loudspeakers.
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The baseline methods have been implemented in Matlab, whereas the pro-
posed methods have been implemented in Python using Keras with Tensorflow
as backend. The experiments were performed using a machine with an Intel
Core i7-4930K 3.40GHz clock processor, 32GB of RAM and Nvidia GTX-Titan
GPU with 12GB of dedicated RAM.
Preliminary experiments were conducted to determine the values for the

training hyperparameters: a sufficiently high number of iterations allows the
networks to converge to very low errors. The learning rate was set to 1 · 10−3,
λG was set to 100.0. Adam optimizer is used with a decay equal to 3·10−8. The
SD has a number of iterations equal to 250,000, while the number of iterations
for the neural proposed methods was 200,000.
Four convolutional layers configurations were generated randomly; they are

applied to GAN, CNN and AE architecture. The first convolutional layer
has kernels of size M× 1, the second, if present, has kernels of size 1 × S.
The fully connected layers following the convolutional layers; varied from 1 to
2. Four MLP architectures were derived from the hidden layers used in the
convolutional architectures, adding the other three configurations. In Table
4.1 is reported all the neural network configurations used for the experiments.

CNN
Configuration Number of Kernels Number of Units Trainable Parameters

Conv #1 [48, 24] [10] 7,481,943
Conv #2 [10, 5] [100, 10] 3,826,153
Conv #3 [100, 25] [100, 100] 12,483,433
Conv #4 [10] [1000] 3,825,863

MLP
Configuration Number of Units Trainable Parameters

MLP #1 [10] 6,798,935
MLP #2 [100, 10] 67,280,035
MLP #3 [100, 100] 67,934,875
MLP #4 [1000] 679,183,175
MLP #5 [100] 67,924,775
MLP #6 [100,100,100] 67,944,975
MLP #7 [5] 36,003,713
MLP #8 [10,1000,1000] 14,914,185

Table 4.1: The CNN and MLP configurations used in the experiments. The
number of parameters are referred to filters of 1024-th order.

The PSO algorithm have been analyzed with different hyperparameters. A
search of hyperparameters Wmax, Wmin, c1 and c2 has been performed in the
following ranges: 0.01 < Wmax < 10.0, 0.0001 < Wmin < 0.1, 2 · 10−6 <

40



4.2 Multipoint Audio Equalization using FIR filter design

c1, c2 < 2. The inertia weight W is calculated after every iteration as:

W = Wmax − (Wmax −Wmin) · n/N (4.20)

where N is the total number of iterations, and k is the current iteration. The
algorithm stops when more than 500 iterations expire without an improvement
of gbest, with a maximum number of iterations equals 2,000.
The hyperparameters for the GSA algorithm are: G0max , G0min , A and kbest.

A0 = A because the number of agents is low. The gravitational constant G(n)
decreases linearly starting from G0max up to G0min :

G(n) = G0max − (G0max − G0min) · n/N (4.21)

The two evolutionary algorithms were implemented in Tensorflow. In [122]
PSO and GSA were compared in time- and frequency-domain with FIR filter
length of 1024 samples, then the degradation is evaluated when they optimize
reduced FIR length (512, 640, 768, 896 and 1024). This dissertation presents
the best results achieved in the time domain and compares them with neural
approaches and baseline methods.

4.2.5 Results

The first experiments were performed using the Alfa Romeo Giulia scenario:
the algorithms optimize FIR filters coefficients from 512-th order to 1024-th or-
der. In Table 4.2, the results are shown: the proposed neural network methods
excepts of MLP outperform evolutionary algorithms and baseline techniques.
The MLP does not reach the same performance as the FD and SD. The CNN
achieves slightly better results than the convolutional AE and the GAN archi-
tecture, despite being simpler in implementation and computational cost.
The best overall results have been achieved using the CNN with FIR filters

of 1024-th order. Despite shorter filters designed by the convolutional methods
present slight performance degradation, the MSE remains very low.

Regarding the evolutionary algorithms, the GSA achieved better perfor-
mance than PSO, designing FIR filters of 768-th order (PSO gets the best
performance with 640-th order). The MSE is equal to 0.13 and σ is 2.07.

Analyzing the results with the baseline methods, GSA achieved better per-
formance than FD and SD, but it does not come close to the results achieved
with convolutional networks (see Table 4.2).

Magnitude frequency responses at the dummy head left and right microphone
are shown in Figure 4.9: the green line represents the non-equalized frequency
response, whereas the blue line corresponds to the equalized one. The CNN FIR
filters correct the frequency responses achieving a flat magnitude (see Figures
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Filter Order

512 640 768 896 1024

Method MSE σ MSE σ MSE σ MSE σ MSE σ

MLP 0.32 2.88 0.36 2.73 0.46 2.80 0.45 2.80 0.32 2.75

GAN 9.89·10−4 0.14 3.88·10−4 0.09 2.21·10−4 0.06 1.06·10−4 0.04 6.95·10−4 0.04

AE 9.72·10−4 0.14 3.80·10−4 0.08 1.66·10−4 0.06 1.07·10−4 0.04 6.85·10−5 0.03

CNN 7.90·10−4 0.12 3.74·10−4 0.08 1.79·10−4 0.06 1.02·10−4 0.04 6.31·10−5 0.04

PSO 0.21 2.70 0.21 2.67 0.22 2.74 0.22 2.65 0.22 2.67

GSA 0.14 2.23 0.14 2.24 0.13 2.07 0.14 2.14 0.13 2.18

FD 0.18 2.52 0.15 2.34 0.14 2.23 0.12 2.07 0.10 1.93

SD 0.98 7.26 0.98 7.13 0.99 7.09 0.99 7.091 1.03 6.39

Table 4.2: Multipoint Audio Equalization results for the Alfa Romeo Giulia
with binaural microphones. Please note that the MSE in absence
of equalization is 2.19, with σ 3.52.

4.9.a and 4.9.b). No relevant peaks or notches are present in the equalized
frequency responses. GSA FIR filters achieved magnitude responses close to the
desired frequency responses but with some notches. The FD method achieves
a rather flat spectrum, but peaks and notches are still visible. The SD presents
the higherMSE, while the σ is lower than the FD, this is because the frequency
responses present fewer peaks, but the magnitude response is biased and sits
below 0 dB. The same conclusions happen for the other FIR filter orders.
The performance of FD is dependent on the β parameter since it avoids

excessive gain in the inverse filter or avoids equalization at all. Some β values
have been tested using FIR filters of order 1024. In Table 4.3 theMSE and the
σ are reported with the respective β value and two frequency-dependent βused
for the FD method. With a lower value of β, the inversion should get closer to
the ideal, thus reaching a lowMSE. With a larger value of β, the performance
decreases as expected. Some frequency-dependent configurations of β achieved
good results. The V-shaped can reduce the MSE by a tiny amount, but no
significant improvement can be found by using a frequency-dependent β; thus,
the choice of β does not improve the performance.

Jeep Renegade

The Jeep Renegade scenario was used to compare the CNN and the FD results
since they are the best of the proposed methods and the two baseline tech-
niques, respectively. To increase the complexity of the problem, the number
of microphones to be optimized was increased. Binaural experiments and the
four-seat equalization experiment were performed. In Table 4.4 the results of
the FIR filter of 1024-th order are shown. The CNN achieved the best results
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Figure 4.9: Magnitude frequency responses at the left and right microphones
of the dummy head in the Alfa Romeo Giulia after applying filters
obtained from the CNN (a, b), Frequency Deconvolution (c, d),
Steepest Descent (e, f), PSO (e, f) and GSA (g,h) methods. The
original magnitude frequency response is shown in green while the
equalized frequency response is shown in blue. The target magni-
tude response is shown in black.
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β MSE σ

10−4 0.123 1.83
10−3 0.118 1.82
10−2 0.108 1.81
10−1 0.108 1.93

1 0.281 2.71
10 0.686 4.2
100 0.937 5.09

V-shaped 0.101 1.829
U-shaped 0.124 1.86

Table 4.3: Performance when parameter β varies. The V-shaped configuration
refers to a frequency-dependent β with a minimum of 10−4 at 1 kHz
and a maximum of 10−1 at DC and Nyquist, varying linearly on a
dB scale. The U-shaped configuration takes a value of 10−4 in the
range 100Hz-10 kHz and 1 elsewhere.

for both the experiments, reaching a MSE equal to 6.19·10−5 and 5.7·10−4 for
binaural and multipoint equalization, respectively. In the multipoint experi-
ment, as expected, the results decrease, but they are still low. Regarding the
FD method, a slight degradation of the performance is found for the 4-seats
equalization. In conclusion, despite the performance degradation, results are
still superior to the state-of-the-art method, even in the multipoint scenario.

Setup
CNN FD

β = 0.1

Conf MSE σ MSE σ

Binaural #1 6.19 · 10−5 0.035 0.05 1.21
4 seats #1 5.7 · 10−4 0.106 0.15 1.95

Table 4.4: Multipoint Audio Equalization results for the Jeep Renegade with
binaural microphones and four microphones (one per seat). The FIR
order is 1024.

To assess the validity of the proposed approach in response the small and
large head movements, the frequency responses of three additional points were
analyzed. The listening points are labelled as PM1 and PM2 (small head
movement) and PM3 (large head movement). Comparing the results with the
microphone M2, for reference, the error tends to rise for high frequencies, for
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which the wavelength is short or the same order of magnitude as the distance
between microphone M2; however, at low frequencies, the response is almost
flat, as shown in Figure 4.10.

Mic.
CNN FD

MSE σ MSE σ

M2 5.07 · 10−4 0.10 0.14 1.82
PM1 0.61 2.88 1.2 2.9
PM2 0.50 3.31 0.57 3.07
PM3 0.80 3.09 0.84 3.12

Table 4.5: Multipoint Audio Equalization results for microphone M2 and mi-
crophones PM1, PM2 and PM3. The evaluation is achieved by the
experiments performed using the Jeep Renegade with four micro-
phones (see Table 4.4).
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Figure 4.10: Frequency response at microphone M2 (a); microphones PM1 and
PM2 (b,c), corresponding to small forward and backward head
movements; microphones PM3 (d), corresponding to a large lateral
head movement.

Sensitivity to the Input

Since Deep Learning techniques as optimizing algorithms are uncommon in
the signal processing literature, some experiments were performed using differ-
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ent inputs to improve the understanding of the input to the neural networks,
specifically, to assess the role of the input in driving the optimization process.
The input matrix is filled with: (a) random values changing at each iteration;

(b) random values constant for all the training; (c) all ones; (d) all zeros. The
same matrix size of the previous experiments is used for the experiments, leav-
ing the input layers and the number of trainable parameters unchanged. The
CNNs optimized FIR filters of order 1024 in the Alfa Romeo Giulia scenario.
Results are shown in Table 4.6. In case (a), the performance is similar to the
FD method but worse than the proposed method. Case (b) and (c) achieved
results closer to the neural approaches, but they have not achieved the best
results for the test. Finally, with null matrix, the coefficients are zero, making
this method unsuitable to the optimization process.
It seems that the overall method can gain some advantage from the use of

the measured impulse responses as input features; however, the network is able
to design FIR filters even with non-informative input content, gaining informa-
tion about the problem setup from the loss, where the impulse responses are
employed to calculate the distance. These conclusions were helpful to imple-
ment a new kind of neural architecture, defined in Section 4.3.2 and used for
the design of parametric IIR filters.

Input MSE σ Conf.
Impulse Responses 6.31 · 10−5 0.034 Conv #1
Random Iteration 0.14 2.152 Conv #1
Random Fixed 1.35 · 10−4 0.052 Conv #1

All 1s 1.17 · 10−4 0.049 Conv #1
All 0s ill-conditioned

Table 4.6: Effect of the input type on the results of the CNN (filter order 1024).
The Table reports the best results.

Over-Determined Case

Further experiments were performed with the number of filters equal to or
smaller than the number of microphones (over-determined case M < S), se-
lecting a subset of the available impulse responses, thus simulating the presence
of a lower number of speakers.
The results are reported in Table 4.7. The CNN achieved better perfor-

mance than the FD method, meaning that non-convex optimization techniques
can improve the optimal solution in the least-squares sense. The performance
degradation from the 1× 1 to the 2× 1 case is extremely low, suggesting that
the two impulse responses are quite similar.
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Car Setup
CNN FD

MSE σ MSE σ

Giulia 1× 1 0.52 8.57 0.62 9.84
2× 1 0.57 7.81 0.64 9.19

Renegade 1× 1 0.03 1.34 0.12 2.01
4× 1 0.22 2.76 0.44 3.62

Table 4.7: Results in the single-channel and over-determined audio equalization
cases. Setup isM×S.

FIR Filter Remarks

The proposed filter design technique requires a complete training of the network
for the design procedure. However, despite a large number of iterations, the
loss exponentially decays. In the Alfa Romeo Giulia, 1024-th order FIR filters
CNN experiments, the MSE decays below 1 · 10−4 after 4200 iterations. Thus,
it is possible to set the desired error threshold and stop the training as soon as
it is reached.
The FD method provides symmetrical filters, thus linear phase frequency

responses, while the SD does not. The proposed method does not constraint
the phase, however, the phase response of FIR filters is almost linear. In
Figure 4.11 is presented the comparison between a linear phase response and
the averaged overall filters generated in the 1024-th order CNN case from Table
4.2.
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Figure 4.11: Phase response of one of the filters achieved with the CNN method
(FIR order 1024) and a linear fitting. Frequency is normalized
according to Nyquist.

A downside of the proposed method is as follows: energy along the FIR
coefficients is spreading, as shown in Figure 4.12, where a FIR filter with the
GAN is shown. The lack of damping of the filters impulse response can produce
smearing of input transients.
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Figure 4.12: Sample of FIR filter obtained with the best GAN configuration.

4.3 Multipoint Audio Equalization using IIR filter
design

4.3.1 Direct Search Method for IIR Parametric Equalizer

The Direct Search Method is a free-derivative, commonly used method for op-
timization problems [131]. The main features of this algorithm are its ease
of implementation, which makes it widely used, and it can work with no con-
straints [132]. The DSM is used in [93] to optimize an IIR Parametric equalizer.
The algorithm is described as follows [133]: a generic parameter vector c is

varied by a small quantity:

ĉi = ci · (1 + Γ) (4.22)

where Γ is a random variation in the range −γ ≤ Γ ≤ γ. If the new parameters
achieve a better cost function, they are kept, otherwise, they are rejected and
another random variation Γ is performed. The process continues until the
demands have been met.

4.3.2 Proposed method

Continuing the studies on Deep Optimization networks, the problem of Multi-
point Audio Equalization with parametric IIR filters was also tackled, arriving
at the solution proposed in Figure 4.13: the BiasNet gives the parameters of
the IIR Parametric filters, which will be used to calculate the coefficients of the
filters and thus for the frequency convolution. Finally, the loss function calcu-
lation is performed, and the update of parameters using an optimizer (like the
Adam) through the backpropagation is executed.
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Figure 4.13: BiasNet architecture for Parametric IIR filter design for Multi-
point Audio Equalization.

The BiasNet output parameters are normalized between the range [−1, 1].
The denormalization is performed to achieve the real parameter value; for ex-
ample, the central frequency response is calculated as:

fc = fc,max − fc,min
2 · pfc,κ + fc,max + fc,min

2 (4.23)

where fc,max and fc,min are the maximum and minimum allowed values for
the center frequency. These values can be devised, e.g., according to one-third
octave bands or any other subdivision of the audio range. This subdivision
constraints the number of SOS’s to the number of frequency bands, avoiding
the overlap of the filters operative bandwidth, which, in turn, may result in
excessive gains for some bands. Furthermore, mapping the range [−1, 1] to a
narrow portion of the spectrum reduces the prediction error of the fc. The
other parameters are denormalized mapping [−1, 1] to their full range, which
can be defined according to the application. Gains are designed by the network
on a dB scale and are then converted into linear values when computing the
IIR biquad equations of Table 3.1 and 3.2. From the rest of the dissertation,
gains in dB scale will be denoted as V0,dB , Vs,dB to avoid confusion with their
linear counterparts V0, Vs.

The loss used in this work is a combination of a spectral loss L1, and a
multichannel energy regularization term L2:

L = γ1 ·L1 + γ2 ·L2 (4.24)

with γ1 = 1 and γ2 = log2(S) + log2(M) being weights.

The loss function L1 is given by the Euclidean distance between the simu-
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lated magnitude response and the desired magnitude response |Hdes(k)|:

L1 =
M∑
m=1

√∑
k

(|H̃m(k)| − |Hdes(k)|)2 (4.25)

where: H̃m(k) is the Discrete Fourier Transform of the equalized impulse re-
sponse at the m-th microphone h̃m(n).
The regularization term L2 is required when S > 1 to keep the original

energy balance between a reference speaker and each other speaker, avoiding
unwanted change in spatial perception. The term is defined as:

L2 =
M∑
m=1

√√√√ S∑
s=1

(r̂s,m − rs,m)2 (4.26)

where rs,m and r̃s,m are the ratios between the energy of a reference speaker
and the s-th speaker before and after equalization, respectively.

Backpropagation of Multipoint Audio Equalization problem

In this Section, the mathematical expressions of the derivability of the loss
function when the BiasNet is used for the Parametric IIR filter design for
Multipoint Audio Equalization are described.
Backpropagation is performed calculating the partial derivative of the loss

function with respect to the control parameters ∂L /∂fc, ∂L /∂Q, ∂L /∂V0,dB
and ∂L /∂Vs,dB . The partial derivatives are calculated as the product of cas-
caded local ones.
The first operations consist in calculating the partial derivatives with respect

to a generic equalized impulse response:

∂L

∂h̃s,m
= ∂L

∂L1
· ∂L

∂h̃s,m
+ ∂LL

∂L2
· ∂L2

∂h̃s,m
(4.27)

where ∂L
∂L1

= γ1 and ∂L
∂L1

= γ2.
The partial derivative ∂L /∂h̃s,m is given by the product of:

∂L

∂h̃s,m
= ∂L

∂h̃m
· ∂h̃m
∂h̃s,m

(4.28)

At the listening point h̃s,m =
∑S
s=1 h̃s,m(n), thus the local derivative ∂h̃m

∂h̃s,m
=

1 and ∂L
∂h̃s,m

= ∂L
∂h̃m

. The filtered room response is computed in frequency
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IIR Partial

Derivative
Boost case

∂bs,κ,0
∂fcs,κ

π·( 1
Qs,κ

− 10Gs,κ/20
Qs,κ

)(tan2(π
fcs,κ
fs

)−1)· 1

cos2(π
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fs

)

fs·( 1
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tan(π
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fs

)+tan2(π
fcs,κ
fs

)+1)2
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∂fcs,κ

π· 1

cos2(π
fcs,κ
fs

)
·
(

2· 1
Qs,κ

·tan2(π
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fs

)+ 1
Qs,κ

+6·tan(π
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fs

)
)

fs·( 1
Qs,κ

tan(π
fcs,κ
fs

)+tan2(π
fcs,κ
fs

)+1)2

∂bs,κ,2
∂fcs,κ

π·( 1
Qs,κ

+ 10Gs,κ/20
Qs,κ

)· 1

cos2(π
fcs,κ
fs

)
·
(
tan2(π

fcs,κ
fs

)−1
)

fs·( 1
Qs,κ

tan(π
fcs,κ
fs

)+tan2(π
fcs,κ
fs

)+1)2

∂as,κ,0
∂fcs,κ

0

∂as,κ,1
∂fcs,κ

π· 1

cos2(π
fcs,κ
fs

)
·
(

2· 1
Qs,κ

·tan2(π
fcs,κ
fs

)+ 1
Qs,κ

+6·tan(π
fcs,κ
fs

)
)

fs·( 1
Qs,κ

tan(π
fcs,κ
fs

)+tan2(π
fcs,κ
fs

)+1)2

∂as,κ,2
∂fcs,κ

2·π 1
Qs,κ

· 1

cos2(π
fcs,κ
fs

)
·
(
tan2(π

fcs,κ
fs

)−1
)

fs·( 1
Qs,κ

tan(π
fcs,κ
fs

)+tan2(π
fcs,κ
fs

)+1)2

Cut Case

∂bs,κ,0
∂fcs,κ

Qs,κ·π·(10Gs,κ/20−1)(tan(π
fcs,κ
fs

)−1)·(tan(π
fcs,κ
fs

)+1)· 1

cos2(π
fcs,κ
fs

)

fs·(Qs,κtan2(π
fcs,κ
fs

)+Qs,κ+10Gs,κ/20·tan(π
fcs,κ
fs

))2

∂bs,κ,1
∂fcs,κ

2·Qs,κ·π·(6·Qs,κ·sin(2·π·
fcs,κ
fs

)−10Gs,κ/20·(cos(2·π·
fcs,κ
fs

)−3)

fs·(2·Qs,κ+10Gs,κ ·sin(2·π·
fcs,κ
fs

))2

∂bs,κ,2
∂fcs,κ

− 4Qs,κπ(10Gs,κ+1)·cos(2π
fcs,κ
fs

)

fs·(2Qs,κ+10Gs,κcos(2π
fcs,κ
fs

))2

∂as,κ,0
∂fcs,κ

0

∂as,κ,1
∂fcs,κ

2·Qs,κ·π·(6·Qs,κ·sin(2·π·
fcs,κ
fs

)−10Gs,κ/20·(cos(2·π·
fcs,κ
fs

)−3)

fs·(2·Qs,κ+10Gs,κ ·sin(2·π·
fcs,κ
fs

))2

∂as,κ,2
∂fcs,κ

2·π· 10Gs,κ/20
Qs,κ

(tan2(π
fcs,κ
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)
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Table 4.8: Local derivative of coefficients with respect to the central frequency,
for a generic SOS.
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IIR Partial

Derivative
Boost case
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Table 4.9: Local derivative of coefficients with respect to the gain, for a generic
SOS.
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IIR Partial

Derivative
Boost case
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Table 4.10: Local derivative of coefficients with respect to the quality factor,
for a generic SOS.
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domain, thus, the partial derivative is given by:

∂L1
∂h̃m(n) =

∑N−1
k=0

[
∂L1

∂|H̃m(k)| ·
∂|H̃m(k)|
∂Re[H̃m(k)] ·

∂Re[H̃m(k)]
∂h̃m(n) + ∂L1

∂|H̃m(k)| ·
∂|H̃m(k)|

∂Im[H̃m(k)] ·
∂Im[H̃m(k)]
∂h̃m(n)

]
(4.29)

then, using the Wirtinger calculus, the partial derivative is:

∂L1

∂h̃m(n)
=
N−1∑
k=0

[
|H̃m(k)| − |Hdes,m(k)|√∑
k(|H̃m(k)| − |H̃des,m(k)|)2

· Re[H̃m(k)]
|H̃m(k)|

· cos(2π
N
kn)
]

−
N−1∑
k=0

[
|H̃m(k)| − |H̃des,m(k)|√∑
k(|H̃m(k)| − |H̃des,m(k)|)2

· Im[H̃m(k)]
|H̃m(k)|

· sin(2π
N
kn)
]

(4.30)

To calculate the local derivative of h̃s,m with respect to a generic control
parameter p, the Wirtinger calculus are used to determine the local derivative:

∂h̃s,m

∂H̃s,m

=
N−1∑
n=0

cos(2πkn
N

) + sin(2πkn
N

) (4.31)

The partial derivative of the magnitude response with respect to the channel
gain ∂H̃s,m

∂Vs,dB
is:

∂H̃s,m

∂Vs,dB
= Hs,m(k) · log(10) · 10Vs,dB/20

20

K∏
j=1

Bs,j(k)
As,j(k) (4.32)

Regarding the other parameters, the partial derivative of ∂H̃s,m(k)
∂Bs,κ(k) and ∂H̃s,m(k)

∂As,κ(k)
are calculated:

∂H̃s,m(k)
∂Bs,κ(k) = Hs,m(k) · Vs ·

1
As,κ(k)

K∏
j=1,j 6=κ

Bs,j(k)
As,j(k) (4.33)

∂H̃s,m(k)
∂As,κ(k) = −Hs,m(k) · Vs ·

Bs,κ(k)
A2
s,κ(k)

K∏
j=1,j 6=κ

Bs,j(k)
As,j(k) (4.34)

The partial derivative of h̃s,m with respect to a generic parameter ps,k is
calculated exploiting the conversion from time to frequency and from frequency
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to time using the Wirtinger calculus:

∂h̃s,m
∂ps,κ

=
(
N−1∑
n=0

cos(2πkn
N

) +
N−1∑
n=0

sin(2πkn
N

)
)
·

[
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N−1∑
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k

N
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N−1∑
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Im(Bs,m(k))sin(2π k

N
)
)

+
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∂ps,κ

(N−1∑
k=0

∂H̃s,m(k)
Re(Bs,m(k))cos(2π

2k
N
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N−1∑
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∂H̃s,m(k)
Im(Bs,m(k))sin(2π 2k

N
)
)

+
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∂ps,κ

(N−1∑
k=0

∂H̃s,m(k)
Re(As,m(k))cos(2π

k

N
)−

N−1∑
k=0

∂H̃s,m(k)
Im(As,m(k))sin(2π k

N
)
)

+
∂a2s,κ
∂ps,κ

(N−1∑
k=0

∂H̃s,m(k)
Re(As,m(k))cos(2π

2k
N

)−
N−1∑
k=0

∂H̃s,m(k)
Im(As,m(k))sin(2π 2k

N
)
)]

(4.35)
where, through the Wirtinger calculus, the partial derivatives of frequency
responses of numerator and denominator of the SOS’s with respect to the their
coefficients are ∂B(k)

∂b0,κ
= ∂A(k)

∂a0,κ
= 1 and ∂B(k)

∂b1,κ
= ∂B(k)

∂b2,κ
= ∂A(k)

∂a1,κ
= ∂A(k)

∂a2,κ
=

cos(2π k
N )− sin(2π k

N ).
The local derivative of the IIR filter coefficients with respect to the parame-

ters fc, V0,dB , Q can be calculated through the partial derivatives of the equa-
tions presented in Tables 3.1 and 3.2, according to the Boost or Cut case. The
local derivatives of the IIR coefficients with respect th the central frequency
are presented in Table 4.8, whereas in Tables 4.9 and 4.10, the local derivatives
of IIR filter coefficients with respect to the gain and quality factor are shown,
respectively.
Finally, the local derivative of the denormalization step is executed:

∂q

∂p
= qmax − qmin

2 (4.36)

where p is the normalized parameter, q is any of the denormalized equalizer
parameters, and the terms qmax and qmin denote its range.
The local derivative with respect to the regularization term is given by the

cascade of three local derivatives:

∂L2

∂h̃s,n(n)
= ∂L2
∂r̂s,m

· ∂r̂s,m
∂ε̂s,m

· ∂ε̂s,m

∂h̃s,m(n)
(4.37)

where the local derivatives are given by:

∂L2
∂r̂s,m

= r̂s,m − rs,m√∑S
s=1(r̂s,m − rs,m)2

(4.38)
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∂r̂s,m
∂ε̂s,m

= − ε̂1,m
ε̂2s,m

(4.39)

∂ε̂s,m

∂h̃s,m(n)
= 2 · h̃s,m(n) (4.40)

Wirtinger’s calculus

Wirtinger’s calculus are a means of computing gradients of real valued cost
functions defined on complex domains [134]. A differentiable function f : R→
C, its real derivative at a ∈ R is defined as ∂f

∂x (x) [135].
For a differentiable f : RM → C, its real gradient at a ∈ R is denoted as:

∂f

∂x
(a) =

( ∂f
∂x1

(a), ∂f
∂x2

(a), · · · , ∂f

∂xM
(a)
)

(4.41)

The spectrum of a generic vector c ∈ CM , denoted as C ∈ CN , is defined as:

Cn = F (c)n =
∑

m∈[0,M−1]

cme
−j 2πmn

N (4.42)

The Inverse Discrete Fourier Transform (IDFT) is given by:

cm = F−1(C)m = 1
N

∑
n∈[0,N−1]

Cne
j 2pimn

N (4.43)

The components of the vector c ∈ C can be decomposed as a + jb with
(a, b) ∈ R2 its real and imaginary parts. Similarly, any function f ∈ C → C
can be considered as a function of R2 → C with f(c) = f(a, b). The derivative
of f at c with respect to the real part of its input is denoted by ∂f

∂x (c) and with
respect to the imaginary part is denoted as ∂f

∂y (c).
The Wirtinger calculus can be used when f is differentiable with respect to

both the real and imaginary part [135].
If f : C → C is differentiable in the real sense, its Wirtinger derivative at

c ∈ C is defined as:

∂f

∂z
(c) = 1

2

(∂f
∂x

(c)− j ∂f
∂y

(c)
)

(4.44)

while its conjugate Wirtinger derivative is defined as:

∂f

∂z∗
(c) = 1

2

(∂f
∂x

(c) + j
∂f

∂y
(c)
)

(4.45)

Thus, calculating the two derivatives is equivalent to manipulating the two real
partial derivatives.
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Wirtinger’s calculus satisfy some properties, such as the linearity property.
Defining two functions f and g and (α, β) ∈ C2, linearity can be expressed as:

∂(α · f + β · g)
∂z

= α
∂f

∂z
+ β

∂g

∂z
(4.46)

∂(α · f + β · g)
∂z∗

= α
∂f

∂z∗
+ β

∂g

∂z∗
(4.47)

Another property is the function composition: defining two function f and
g differentiable in the real sense, the Wirtinger chain rule gives:

∂f ∗ g
∂z

=
(∂f
∂z
∗ g
)
· ∂g
∂z

+
( ∂f
∂z∗
∗ g
)
· ∂g

∗

∂z
(4.48)

∂f ∗ g
∂z

=
( ∂f
∂z∗
∗ g
)
· ∂g
∂z

+
( ∂f
∂z∗
∗ g
)
· ∂g

∗

∂z∗
(4.49)

The last property is the complex conjugate. Indeed, if f denotes a function
differentiable in the real sense, the following property holds:(∂f

∂z

)∗
= ∂f∗

∂z∗
(4.50)

instead, if f is real-valued: (∂f
∂z

)∗
= ∂f

∂z∗
(4.51)

Finally, if f is C-differentiable, both its complex and Wirtinger gradients are
equal:

f is C-differentiable⇔
{
f is differentiable in the real sense
∂f
∂z∗ = 0

(4.52)

These properties are useful to convert the Wirtinger gradients of real-valued
function between time and frequency domains. Defining a function E :

E : CM → R

z → E(z)
(4.53)

The gradient of the Discrete Fourier Transform (DFT) of c, C ∈ CN , is
defined as:

Ẽ : CM → R

z → E(F−1(z))
(4.54)
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According to the chain rule of Wirtinger calculus, for n ∈ [0, N−1], the local
derivative of Ẽ with respect to zn is given by:

∂Ẽ
∂zn

(C) =
∑

m∈[1,M ]

(
∂E
∂zm

(F−1(C))
)
· ∂F−1

m

∂zn
(C) +

(
∂E
∂z∗m

(F−1(C))
)
· ∂(F−1

m )∗
∂zn

(C)

(4.55)
F−1 is C-differentiable, thus the Wirtinger∗ gradient is null. Then, according
to Equation 4.50, the Wirtinger∗ gradient of (F−1)∗ is also null. The equation
is:

∂Ẽ
∂zn

(C) =
∑

m∈[1,M ]

∂E
∂zm

(c) · ∂F−1
m

∂zn
(C) (4.56)

and it can be derived as:

∂F−1
m

∂zn
(C) = 1

N
· ∂

∂zn

(∑
k

zke
j 2πmk

N

)∣∣∣
z=C

= 1
N
ej

2πmk
N (4.57)

thus, the equation is:

∂Ẽ
∂zn

(C) = 1
N

∑
m∈[1,M ]

∂E
∂zm

(c)ej 2πmn
N = 1

N

[ ∑
m∈[1,M ]

( ∂E
∂zm

(c)
)∗
ej

2πmn
N

]∗
(4.58)

The exèression recognizes the DFT, thus, the Wirtinger gradient of Ẽ is:

∂Ẽ
∂z

(C) = 1
N

F
([∂E
∂z

(c)
]∗)∗

(4.59)

Since E and Ẽ are real-valued functions, the previous expression can be for-
mulated as:

∂Ẽ
∂z∗

(C) = 1
N

F
( ∂E
∂z∗

(c)
)

(4.60)

The expression can be reversed to give the Wirtinger gradient from frequency
to time domain:

∂E
∂z∗

(c) = NF
( ∂Ẽ
∂z∗

(C)
)

(4.61)

4.3.3 Experimental Setup
Two scenarios were used for the Parametric IIR filters experiments: A room
composed of eight speakers and two microphones, and the Alfa Romeo Giulia,
presented in Section 4.2.4.
The room has a dimension of 4.0× 5.5× 3.0m. The speakers are circularly

placed around two seats, as shown in Figure 4.14. The left seat is fitted with two
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omnidirectional microphones, simulating the listener’s ears. The loudspeakers
are mid-woofers with a frequency range between 100Hz and 15 kHz. The im-
pulse responses were measured using the exponential sweep method with a
sampling frequency of 48 kHz, using a RME Madiface Audio Interface and a
Dante-equipped amplification system.

Figure 4.14: Top view of the room showing the placement of the speakers and
microphones.

With respect to the car cabin scenario, the room exhibits different charac-
teristics. The room employs one type of loudspeaker arranged in a rectangular
pattern. These cover slightly more than two decades of the audio range, and
the maximum excursion between minimum and maximum in the unequalized
frequency responses never exceed 15 dB. As explained in Section 4.2.4, the car
cabin is fitted with loudspeakers of different sizes and bandwidths, arranged
irregularly. Furthermore, the car material absorption coefficient varies largely,
resulting in a large excursion of the frequency response (greater than 20 dB)
and a wider range to equalize, covering almost three decades. For this reason,
the car cabin is a more challenging scenario.

The first experiments were conducted in the room scenario to gather more
insights on the described equalization techniques, compare the proposed meth-
ods, and find suitable hyperparameters. The random search was performed
in the Multiple Input - Multiple Output (MIMO) case, and then the best ar-
chitecture was used for the other experiments, the SISO and Multiple Input -
Single Output (MISO) cases for the room scenario and the MIMO case in the
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Alfa Romeo Giulia case.
For the room scenario, the desired frequency response is a 0 dB flat band

between 100Hz and 14 kHz, whereas, in the car cabin scenario, the range is
20Hz and 14 kHz.
Both optimization and evaluation were conducted using a one-third octave

band averaging for the frequency responses. This choice is motivated by the
human ear resolution, which is not very sensitive to narrow dips and notches.
The number of SOS’s is equal to the number of one-third octave bands within

the speaker’s operating frequency range. Thus, in the room scenario, the num-
ber of SOS’s for each speaker was 22, whereas for the car cabin case goes from
21 to 29. Therefore, the number of parameters to optimize is 536 and 539,
respectively.
The ranges of the other parameters are: Qmin=0.05, Qmax=5.0, V0,min,dB=-

10 dB, V0,max,dB=10dB, Vs,min,dB=-20 dB, Vs,max,dB=20dB. Regarding the
FD, the βFD is set to 1 · 10−4, whereas for the DSM, γ is set to 0.01.
The performance is evaluated using the MSE and σ in the one-third octave

band and within the desired frequency range.
Before performing the optimization, pre-processing is performed, calculating

the delay of each speaker and then the offset gain to be added in the optimiza-
tion in order to normalize the output frequency responses to 0 dB.
The BiasNet was compared with two other convolutional architectures: the

CNN used for the FIR filter design for Multipoint Audio Equalization (see
Section 4.2.3). The other neural architecture is called Convolutional Feedback
Network (CFN) because this model is a CNN with variable input. The idea
stems that the network adapts its input in addition to its weight, like the ob-
servations drawn in describing the BiasNet. At the first iteration, the Room
Impulse Responses (RIRs) feed the network, however, at each successive it-
eration, the network is fed with the equalized RIRs. Therefore, this network
establishes input-output feedback since the equalized response generated at the
current iteration is fed as input at the next iteration.
As activation function, the sine activation is used [136] since it avoids local

minima during network optimization. Moreover, it behaves well for backprop-
agation as its derivatives do not vanish.
30 BiasNet configurations were tested, varying the number of layers from 1

to 10 and the number of neurons from 16 to 4096. For the CNN and CFN, 1
or 2 convolutional layers were tested: the number of kernels equals 25 on the
one convolutional layer case, 48 and 24 or 100 and 10 on the case of 2 layers.
The kernel has size equals M× 1 and 1 × S for the two convolutional layers.
The number of hidden layers varied from 1 to 4, with the number of neurons
ranging from 32 to 1024. The Adam optimizer was used, with a learning rate
equal to 1 · 10−4. The number of iterations was set to 10,000.
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FD and DSM were implemented in Matlab, while the neural architectures
were implemented in Python, using Tensorflow 2.0.0. The experiments were
performed using a machine with an Intel i7 processor, 32GB of RAM and an
Nvidia Titan GPU with 12GB of dedicated RAM.

4.3.4 Results

Room Scenario

Architecture MSE Layers No. Learnable
Parameters

BiasNet #26 1.18 · 10−5 (1024, 512, 256, 128) 758,784
BiasNet #5 1.19 · 10−5 (256) 137,728
BiasNet #9 1.29 · 10−5 (128) 68,864

CFN 1.38 · 10−5 best CFN† 4,673,390
BiasNet #7 1.46 · 10−5 (256, 256, 256) 268,800

CNN 1.66 · 10−5 same as [123] 2,369,390

BiasNet #25 1.68 · 10−4 (16,32,64,128,256,512,
256,128,64,32,16) 357,792

BiasNet #8 4.24 · 10−4 (64) 34,432
BiasNet #10 6.36 · 10−4 (32) 17,216
BiasNet #4 9.56 · 10−1 out only (with bias) 536

No EQ 0.377 - -

Table 4.11: Preliminary test comparing several neural networks in the MIMO
configuration for the room scenario. The number of neurons for
each hidden layer is shown in round brackets in the Layers column.
†: the CFN was the best among all the tested CFN and is composed
of 2 convolutional layers of 100 and 10 kernels, respectively, and 3
dense layers of 64 neurons each.

The first experiments were performed analyzing the three neural architec-
tures, the BiasNet, the CNN and the CFN, for the Multipoint Audio Equal-
ization task in the room scenario in the MIMO case. The best network hyper-
parameters will be tested for SISO and MISO cases. The results are presented
in Table 4.11: many architectures proved similar performance (MSE = 10−5),
however, the difference in the number of trainable parameters is extremely
large. Comparing the CNN and the CFN, the best CFN achieves slightly bet-
ter performance at the cost of an order of magnitude more parameters. The
best BiasNet achieved the best performance than the other algorithms with
a significantly lower number of parameters (17,764 trainable parameters) but
achieved similar performance as configuration #26 that is 40 times larger to
train. However, the performance decreases in other configurations: in config-
uration #9, the results are similar to #26, but the number of neurons is half
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to its only layer. However, the performance falls when decreasing the num-
ber of neurons of the only layer, as in configuration #8 and #10. The worst
performance with the BiasNet configuration is achieved with the configuration
#4, which has only the output layer, with a learnable bias, resulting in an
unacceptable equalization performance.

Method MSE σ

BiasNet 1.32 · 10−5 1.58 · 10−2

FD1024 9.74 · 10−3 4.36 · 10−1

FD8192 2.08 · 10−4 5.54 · 10−2

DSM 3.43 · 10−2 9.92 · 10−1

No EQ 3.80 · 10−1 1.69

Table 4.12: Results for SISO equalization, room scenario.

Another factor to analyze is the computational performance, in particular,
the time achieved by the network to converge. The optimization time depends
on two factors: the number of iterations to reach a target goal and the time
required by each iteration.
For the SISO experiments in the room scenario, the best BiasNet and the

baseline techniques are compared. The results are presented in Table 4.12: the
neural approach achieves better results than the baseline techniques by one or
more orders of magnitude. The DSM is unable to improve the performance
respect the non-equalized case. The FD approach achieved excellent perfor-
mance, however, the BiasNet is superior.

Method Right Mic L+R Mic
MSE σ MSE σ

BiasNet 8.95 · 10−6 1.26 · 10−2 5.53 · 10−2 8.04 · 10−1

DSM 1.87 · 10−2 6.98 · 10−1 8.76 · 10−2 1.42
FD1024 5.26 · 10−2 3.55 · 10−1 1.63 · 10−1 9.05 · 10−1

FD8192 4.88 · 10−6 9.58 · 10−3 1.30 · 10−1 9.52 · 10−1

No EQ 3.92 · 10−1 1.91 3.77 · 10−1 1.99

Table 4.13: Results for MISO equalization, room scenario evaluated at the lis-
tening point used during optimization (Right Mic) and both mi-
crophones (L+R Mic).

MISO experiments results are presented in Table 4.13, reporting the results
on the right microphone and the average of the MSE calculated at both lis-
tening points. The performance is increased than the SISO case, improving
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the equalization performance when the number of loudspeakers is increased.
However, considering only one listening position for optimization provides a
solution that does not work well for the other listening position. Indeed, the
performance of the best methods decreases by at least four orders of magnitude
when evaluating the performance at both microphones.
The FD1024 method is inferior to the IIR filters provided by the DSM,

whereas the FD8192 slightly improves over the proposed method, but it suf-
fers analyzing both the microphones.
Finally, the best BiasNet architecture is compared with the baseline tech-

niques in the MIMO scenario, achieving better performance than the DSM and
the FD method (see Table 4.14).

Method MSE σ

BiasNet 1.18 · 10−5 1.40 · 10−2

DSM 2.54 · 10−2 7.18 · 10−1

FD1024 4.57 · 10−2 4.36 · 10−1

FD8192 1.38 · 10−5 1.57 · 10−2

No EQ 3.77 · 10−1 1.99

Table 4.14: Results for MIMO equalization, room scenario.

Figure 4.15 presents the one-third octave band magnitude frequency re-
sponses. The unequalized response is shown in red line, whereas the equalized
magnitude response is shown in blue. The difference between the two spectrum
is evident: the unequalized frequency response exhibits an excursion of more
than 10 dB, the equalized response is flat in the frequency range covered by the
loudspeakers (vertical dashed lines).

As shown in Figure 4.16, the energy is preserved before and after the equal-
ization process.

Car Cabin Scenario

Regarding the car cabin scenario, the results are reported in Table 4.15. Since
the car provides a more challenging scenario, theMSE is higher than the results
presented for the room scene. The DSM fails to provide a good equalization
performance. The FD method does not match the performance achieved by
the proposed method.
In Figure 4.17 one-third octave band frequency responses are presented: at

high frequencies, the amplitude responses are flat, both for the overlapping
of the loudspeakers frequency responses and because the network optimizes in
this frequency range, only two speakers out of the seven installed in the car. At
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Figure 4.15: One-third octave band magnitude response of (a) left and (b) right
microphone in the room scenario. Red line is the unequalized
frequency response, the blue line is the equalized one and the black
dotted lines refer to the minimum and maximum frequency to be
equalized.
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Figure 4.16: Bar graph of energy ratio after (r̂) and before r the optimization
for the room scenario (a) and the car scenario (b). Speakers 5 and
6 in (b) are woofer and subwoofer, therefore have larger energy.

low frequencies, the network has not been able to optimize as well as at high
frequencies. Indeed it presents a maximum deviation of 5 dB around 40Hz.
Despite the more challenging scenario (speakers not arranged in a regular

pattern, the different frequency ranges, irregular internal cabin volume), the
equalization is superior to the FD method, which is usually considered the
optimal method for room equalization, and the energy of the loudspeakers
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Method MSE σ

BiasNet 5.74 · 10−3 1.83 · 10−1

DSM 3.62 2.76
FD1024 4.22 · 10−2 8.15 · 10−1

FD8192 1.84 · 10−2 5.02 · 10−1

No Eq 13.47 3.16

Table 4.15: Results for MIMO equalization, car cabin scenario.

signals is preserved (see Figure 4.16.b).
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Figure 4.17: One-third-octave band magnitude response of the measured signal
at the reference microphones: (a) left and (b) right microphone in
the car cabin scenario. The vertical black dotted lines denotes the
frequency range to be equalized.

Parametric IIR Filters Remarks

From the results in Table 4.14 and 4.15 is evident that the proposed method
is comparable or slightly better than the FD8192 in terms of performance. The
computational cost between the FIR and IIR methods differs: regarding the
FD method, each equalizer has 16,833 floating-point operations per sample,
whereas the IIR equalizers are composed of 22 SOS’s in the room scenario and
29 SOS’s in the car cabin scenario, with 198 and 261 operations per sample,
respectively, which means a reduction of the computational cost of almost two
orders of magnitude. The cost rises when the number of loudspeakers increases.
In the MIMO room scenario, the proposed method requires 1,594 operations
against 131,064 operations for the FD8192.
With the FD1024, the performance is lower but acceptable, yielding an im-

provement of approximately one order of magnitude with respect to the non
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equalized case. However, the number of operations per filter is still significantly
larger than the proposed method, with a number of operations per sample equal
to 2047.
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Figure 4.18: Magnitude response of an IIR filter optimized in MIMO scenario

The resulting IIR filters exhibit a smooth amplitude response, it does not
have very subtle peaks because the optimized Q parameter of the SOS’s is not
high. In Figure 4.18, the magnitude response of an IIR filter of a speaker is
shown when the BiasNet optimized the Parametric IIR filters in the MIMO
room scenario.
The IIR filters designed for the room experiments on the MIMO case are

taken to the real room and applied for equalization. The IIR filters were
loaded on a Simulink patch to preprocess the signal and fed the loudspeak-
ers. The hardware setup is the same described in Section 4.3.3. The frequency
responses were measured by reproducing white noise and comparing them with
the simulated magnitude responses achieved in Section 4.3.4.
In Figure 4.19 is presented the magnitude responses: the red line is the mea-

sured one and the green line is the ideal one (obtaining by filtering a discrete-
time impulse sequence). The observed deviation is at most 2 dB, but is inherent
to the use of white noise as the input signal. Indeed, by computing the mag-
nitude response of the room using white noise in the simulated environment,
random deviations from the flat band (blue line) are achieved.

4.4 Final Remarks
In this chapter, FIR and IIR filter design for Multipoint Audio Equalization us-
ing Machine Learning techniques is presented. Binaural and Multipoint Audio
Equalization experiments are shown. Deep Optimization networks are pro-
posed to optimize FIR filter coefficients and Parametric IIR filter parameters.
Regarding the state-of-the-art techniques, the proposed methods have the ad-
vantage of being non-convex; therefore, they do not stop at a local minimum
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(a) Left microphone (b) Right microphone

Figure 4.19: One-third octave band magnitude response of the measured signal
at the reference microphones: (a) left and (b) right microphone
in the room scenario. The green line is the equalized magnitude
response depicted in Figure 4.15. The blue line is simulated using
white noise as input, while the red line is measured in the real
scenario using white noise. Please note: the magnitude range is
only 2 dB to emphasize the small differences.

and, thus, achieve better performance. The disadvantage of this technique is
that it cannot be implemented for a real-time application as it has a very high
computational cost, but, as shown by the experiments, the network converges
very fast, thus a threshold could be set under the algorithm stops.
Several experiments were performed for the FIR filter design for Multipoint

Audio Equalization. Baseline techniques were compared with evolutionary al-
gorithms and Deep Neural Networks. The last ones achieved better results for
both SISO, MISO and MIMO setup.

Several architectures and input sizes were analyzed: the CNN achieved better
performance than the other deep neural architectures.

Regarding the IIR filter design, better performance is achieved than the
baseline technique and FIR filter baseline method, analyzing the performance
in terms of frequency response and computational cost. A novel architecture
is described, the BiasNet, designed explicitly for Deep Optimization. This
architecture, compared with other neural network models, achieved better per-
formance with a lower computational cost.

The designed IIR filters were tested in a real scenario, showing almost no
difference from the simulated frequency responses.
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Chapter 5

Personal Sound Zones

Personal Sound Zones is the reproduction of sounds in certain regions, con-
tained within an environment and where multiple listeners are present [137].
In recent years, this topic has been increasingly studied as it is fascinating from
both an academic and an industrial perspective, particularly in the automotive
industry [138]. Other scenarios where PSZ has been implemented are: user-
computer experience [139, 140], parasol [141], in an aircraft [142], in a mobile
device [143, 144] or in the car cabin [145].
The problem is solved by defining two zones: the bright zone, which is the

zone of interest where the acoustic energy must be the highest; the dark zone,
where the energy must be as low as possible [109].

Most of the methods used for PSZ are based on improving Acoustic Contrast
AC, which is the ratio between the average sound power in the bright zone and
the average sound power in the dark zone for each frequency bin: considering
MB control points to define the bright zone andMD control point for the dark
zone, the AC is defined by [145]:

AC = MD

MB

H̃H
B H̃B

H̃H
D H̃D

= MD

MB

GHHH
BHBG

GHHH
DHDG

(5.1)

where G is the vector containing the frequency response of filters, HB is the
matrix containing the frequency responses of the impulse responses in the bright
zone, whereas HD is the matrix regarding the dark zone. H̃B and H̃D are
the complex pressures in the bright and dark zone, respectively and H is the
Hermitian.
Another constraint used to balance the filter energies is the Array Effort (E),

which is given by [146]:

E = GHG

GHrefGref
(5.2)

where GHG is the Array Effort required by the optimized source array and
GHrefGref is the Array Effort required when the array sources are driven in-
phase to produce the same average sound pressure level in the bright zone as
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the personal audio optimized array.
The main Acoustic Contrast-based methods are the Acoustic Contrast Con-

trol (ACC), explained in detail in Section 5.2, and the Pressure Matching (PM),
discussed in Section 5.3. The Acoustic Energy Difference Maximization over-
comes the limitations of the ACC [147], using as cost function the energy differ-
ences between the two zones. The Brightness Control [148] used constructive
interference to produce sound zones, maximizing the sound pressure level in
the bright zone. The Planarity Control Optimization is a plane-wave based
method [149].
The techniques that increase contrast can reduce listening quality. The

ACC does not control phase [150], so usually high acoustic contrast is always
achieved, sacrificing sound quality, while the PM gives good sound quality but
not high acoustic contrast [145].
Subjective tests were carried out to evaluate PSZ techniques and to get

minimum acceptable acoustic contrast levels to reduce the disturbance in the
dark zone [150, 151, 152]. In [151] an acoustic contrast of 11 dB was required to
achieve an acceptable PSZ. In [150, 152] are showing that there is a significant
difference between experienced and unexperienced listeners and between speech
and music signals.

5.1 Metrics

The Personal Sound Zones is evaluated in terms of Acoustic Contrast and audio
equalization in the bright zone. The dark zone is evaluated qualitatively and
quantitatively. Qualitatively, the Acoustic Contrast is calculated as in Equation
5.1 but in one-third octave bands domain:

AC = 10 · log10

(
MD

MB

H̃H
B,1/3H̃B,1/3

H̃H
D,1/3H̃D,1/3

)
(5.3)

whereas quantitatively, three analyses are performed. From Equation 5.3, the
first metric is the maximum Acoustic Contrast (ACmax), the second one is
the average Acoustic Contrast in the band of interest set by the user (ACib)
and the third is the average Acoustic Contrast on the overall frequency range
(ACfb). In Figure 5.1, an example of Acoustic Contrast is shown. From the
graph, the ACmax is determined, then the ACib and ACfb are calculated in
the one-third octave bands of interest and over the entire range, respectively.
For the cases analyzed in the experiments, the two frequency ranges cor-

respond to 100-2000Hz (9-th and 22-nd one-third octave band, with central
frequency 99.2Hz and 2.0 kHz, respectively) and 50-11000Hz (7-th and 30-th
one-third octave band, with central frequency 62.5Hz and 12.7 kHz, respec-
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Figure 5.1: Example of Acoustic Contrast graph.

tively). The ACib is calculated between the 9-th and 22-nd one-third octave
band because in this frequency range the characteristics of the frequency re-
sponses of the microphones are similar and because both the fundamental fre-
quency and the most important harmonic components of the voice are present
[153].
In the bright zone, the frequency and perceptual metrics [154, 155, 156] are

evaluated. The frequency metrics are defined as in Section 4.3.2, while the
perceptual metrics are explained below.

The first metric is the average Mean Square Error between reference audio
and the filtered and recorded one from the microphones placed within the bright
zone (MSEt):

MSEt = 1
MBNa

MB∑
m=1

Na∑
n=1

(x(n)− ym(n))2 (5.4)

Where Na is the length of the recorded file.
Because the MSEt fails to give a good conclusion from a perceptual stand-

point, other metrics are used.
Perceptual Evaluation of Speech Quality (PESQ) is a standard methodology

for automated assessment of the speech quality [154]. It is used for objective
voice quality testing for telecommunication companies and compressed speech
files.

In Figure 5.2 is presented the scheme of PESQ method [154]. The level
aligning of both signals starts the model to a standard listening level, then
the signals are filtered using the FFT with an input filter to model a stan-
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Figure 5.2: Structure of PESQ method [154].

dard telephone handset. The signals are aligned in time and then processed
through an auditory transform, achieving two distortion parameters extracted
from the difference between the transform of the signals. Then the parameters
are aggregated in frequency and time and mapped to predict subjective Mean
Opinion Score (MOS).
The Short-Time Objective Intelligibility measure (STOI) calculates the in-

telligibility [155] in a noisy environment. The scheme is presented in Figure
5.3. The reference and the degraded speech are time-frequency decomposed to
obtain a simplified internal representation resembling the transform properties
of the auditory system. The signals are segmented into 50% overlapping, win-
dowed and zero-padded. The silent region, which does not contribute to speech
intelligibility, is removed, finding the frame with maximum energy of the clean
speech signal. The signals are then reconstructed, excluding all frames where
the clean speech energy is lower than 40 dB with respect to their maximum
clean speech energy frame. Then a one-third octave band analysis is performed,
with a total of 15 one-third octave bands (the lowest center frequency is set to
150Hz and the highest is 4.3 kHz).
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Intermediate
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Figure 5.3: Structure of STOI method [155].

Last but not least, normalization and clipping are performed, and the in-
termediate intelligibility measure is calculated. Finally, the average of the
intermediate intelligibility measure overall bands and frames is calculated.
The last perceptual metric used for the evaluation is the Virtual Speech
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Quality Objective Listener (ViSQOL). It aims to be an objective, full-reference
metric [156].
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Figure 5.4: Structure of ViSQOL method [156].

The method starts with the alignment of referenced and noisy signals [157],
then the gammatones are calculated (in the first version, Short-Time Fourier
Transform STFT is used) using a gammatone filter. Silence gammatones are
removed with a silence threshold. The resulting frames will need a simple Voice
Activity Detection algorithm to detect speech. Two alignment steps have been
performed, and the Neurogram Similarity Index measure (NSIM) is calculated.
Support Vector Regression is trained to calculate the MOS score.

In Table 5.1 the perceptual metrics with their features and values are re-
sumed.

Metric Feature Value

MSEt
signals in

time domain

Average of the
Errors for

each Sample
PESQ Auditory Transform MOS
STOI STFT Intelligibility

ViSQOL Gammatone MOS

Table 5.1: Brief description of perceptual metrics used for the evaluations.
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5.2 Acoustic Contrast Control

Acoustic Contrast Control maximizes the AC [158]. minimizing GHHH
DHDG

and helding constant GHHH
BHBG. The method aims to minimize sound pres-

sure in the dark zone and maximize it in the bright zone.
The maximization problem can be formulated as:

argmax
G

AC s.t. GHHH
BHBG = |HB,des| (5.5)

where |HB,des| is the sound pressure level on the bright zone.
In [158] are explained the direct and indirect formulation, using the Lagrange

multipliers.
Regarding the Direct Formulation [159], the Lagrangian is given by:

L = H̃H
B H̃B − λ1(H̃H

D H̃D − |HD,des|) (5.6)

where λ1 is the unknown Lagrange multipliers, which is real and positive and
must satisfy the constraints. The complex differential of the real scalar ∂L/∂G
is defined as:

∂L
∂G

= ∂L
∂GR

+ j
∂L
∂Gi

= 2(HH
BHBG− λ1H

H
DHDG) (5.7)

The Lagrangian is maximized with respect to the real and imaginary com-
ponents of G; if the vector of complex differentials is null, we have that:

λ1G = [HH
DHD]−1[HH

BHB ]G (5.8)

Thus, G is the eigenvector of the matrix [HH
DHD]−1[HH

BHB ], and it must be
associated to the largest eigenvalue λ1. Some problems are encountered in this
formulation [158]: the matrix [HH

DHD]−1[HH
BHB ] depends on the geometry of

the physical arrangement; if the number of microphones in the dark zone is
less than the number of speakers, the matrix [HH

DHD] is singular. To overcome
these problems, a regularization parameter to each diagonal element of [HH

DHD]
is added.
In the Indirect formulation, we want to minimize H̃H

D H̃D, helding the con-
straints that H̃H

B H̃B is equal to |HB,des|. The Lagrangian in this case is:

L = H̃H
D H̃D + λ1(H̃H

B H̃B − |HB,des|) (5.9)

The complex differentials is:

∂L
∂G

= 2(HH
DHDG+ λ1H

H
BHBG) (5.10)
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The vector of complex differentials is equal to zero if:

λ1G = −[HH
BHB ]−1[HH

DHD]G (5.11)

The solution is proportional to the eigenvector of the matrix [HH
BHB ]−1[HH

DHD],
associated with the smallest eigenvalue of this matrix.

5.3 Pressure Matching

The Least Square Method [145], called also Pressure Matching [160], minimizes
the error between the target pressure HB,des and the sound pressure produced
by the speakers in the bright zone and minimizes the squared pressures in the
dark zone.

min
G
||HBG−HB,des||2 s.t. ||HDG||2 ≤ |HD,des| (5.12)

The problem can be written as a Lagrangian cost function:

L = ||HBG||2 + λ1(||HDG||2 − |HD,des|) (5.13)

where λ1 is real and positive.

The solution is given setting to zero the derivative ∂L/∂G:

[HH
BHB + λ1H

H
DHD]G = HH

BHB,des (5.14)

Some optimization algorithms could be used [161] to choose an appropriate
value of λ1. Another formulation is to set λ1 = 1, which leads to a solution
identical to ACC:

G = [HH
BHB +HH

DHD]−1HH
BHB,des (5.15)

this because the target pressures in the bright zone is an ACC solutionHB,des =
HBG and because the same constraints are met.

The advantage of PM approach is [160]: it gives an explicit solution and
does not require solving an eigenvector problem, it is suitable when several
constraints are imposed on each sound zone, using one of the convex optimiza-
tion algorithms as in [161] and finally, this algorithm can impose a constrain
in the phase of the target pressure. The condition to achieve a solution is that
the number of control points is greater than the number of sources [145].
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Figure 5.5: Scheme of FIR filter design for PSZ.

5.4 Proposed Method

In literature, to the best of our knowledge, for this task, no work has been
found where Machine Learning techniques are used for filter design to get the
bright and dark zones.
PSZ is an optimization problem similar to the Multipoint Audio Equalization

task. Thus the Deep Optimization network is similar as described in Section
4.2.3 and 4.3.2: the first work is presented in [162], which a CNN is implemented
to optimize FIR filter coefficients, achieving a double task, the desired spectrum
in the bright zone and low energy in the dark zone. The input comprises a 3D
matrix of the measured impulse responses, followed by the convolutional and
fully connected layers. Finally, the output layer is composed of a fully connected
layer of length S × T , giving the optimized FIR filter coefficients.
Further studies have been performed, implementing the BiasNet to optimize

FIR filter coefficients and parameters for Parametric IIR filters. Compared
to the Multipoint Audio Equalization task, the only differences are the loss
functions.

5.4.1 FIR Filter Design for Personal Sound Zones

For the FIR filter design using Deep Learning techniques, improvements have
been made over the previous task. The neural network optimizes the coefficients
to design the dark zone, equalize the bright zone, and achieve filters that present
compact impulse responses. In Figure 5.5 is shown a scheme of the proposed
method for FIR filter design for PSZ.
To achieve filters with compactness in the impulse responses, the network

outputs are multiplied with a window function, which is a gaussian function
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wg(τ) calculated as:

wg(τ) =
√
e

(τ−τd)2
σf (5.16)

where τd is the delay, τ is the tap and σf is the variance: the higher the variance,
the larger the bell will be. In Figure 5.6 is presented an example of gaussian
function when σf is increased and when the maximum value is achieved at τd
in the x-axis.

τ

wg(τ)

1.0

0.0 τd

σf2
σf1

Figure 5.6: Gaussian function when the σf is increased: the red line is the
function when the standard deviation σf1 is used, blue line when
σf2 is used.

The motivation behind this choice is that the neural network gives output
values leading to non-compact impulse response; the other motivation is that
the filters are constrained to be set to a delay provided by the user or the
algorithm.

Once the network outputs are multiplied by the gaussian function, the sim-
ulation is started, and the loss functions are performed.

The first loss function is similar to Equation 4.25, with the difference that
in this task, the cost function considers the microphone placed on the bright
zone.

The second loss function regards the dark zone: to achieve a desired acous-
tic contrast ACdes, the Euclidean distance between the calculated Acoustic
Contrast ÃC and the desired one is calculated. A weight function ensures
to calculate the Acoustic Contrast on the desired one-third octave bands to
optimize at high frequencies, as it is a punctual technique.

If the contrast in a one-third octave band exceeds the desired Acoustic Con-
trast weighted with the weighting function, then the error in that band will be
zero:

Ci =
{
ACdes,i · wAC,i − ÃCi if ÃCi < ACdes,i · wAC,i
0 if ÃCi ≥ ACdes,i · wAC,i

(5.17)
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Finally, the Euclidean distance is calculated:

L2 =

√√√√ ωh,1/3∑
i=ωl,1/3

C2
i (5.18)

The third loss function is calculated as the Equation 4.26 to solve the spa-
tiality through the speakers, with the difference that in this task, the Euclidean
distance of energy ratios is calculated using the microphones within the bright
zone.
A penalty term is added to the total loss function: speakers present an

operating frequency range, over which if the signal is amplified, the speaker
could be damaged. With Parametric IIR filters, this problem is not present
because the SOS’s are placed within the frequency range.
A frequency mask is used to overcome this limitation: in Figure 5.7 is pre-

sented as an example. The magnitude frequency of the FIR filter at the bound
frequency range is multiplied by the masking function Hw, defined as two linear
functions with a decrease of a γ set by the user.

f

Hw(f)

1.0

0.0 f1 f2

Figure 5.7: Example of masking curve used for a generic speaker. f1 and f2
are the operative frequency range.

The error occurs when the magnitude response exceeds the mask function:

Cω =
{
|G(ω)| −Hw(ω) if |G(ω)| ≥ Hw(ω)
0 if |G(ω)| < Hw(ω)

(5.19)

The loss function is the Euclidean distance of the errors occurred:

L4 =
S∑
s=1

√√√√ω=ω1∑
ω=0

C2
ω +

ω=ωs/2∑
ω=ω2

C2
ω (5.20)

A regularization term is added to the loss function to achieve a FIR filter
with a compact impulse response. First, a weight function is multiplied by
the square values of the filter. The weight function, shown in Figure 5.8, is
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calculated as:

wL5(τ) = 1− wg(τ) (5.21)

τ

wL5
(τ)

1.0

0.0 τc

Figure 5.8: Example of weight function used to calculate the compactness of
the impulse response of the FIR filter.

The sub-loss function will be given by the product of weight function and the
square of the time impulse response of the filter, normalized with its energy:

L5 =
S∑
s=1

√√√√ T∑
τ=1

(ws,L5(τ) · g2
s(τ)/εs)2 (5.22)

values far from the peak value will be emphasized, whereas those near the peak
value will have less importance in calculating the loss function.
Finally, the last sub-loss function regards the compactness of the output

impulse response. In order to reduce the compactness of the output impulse
response, the loss function is calculated as in Equation 5.22, with the difference
that we use the output impulse response and mask it on all samples:

L6 =
MB∑
m=1

√√√√ N∑
n=1

(wm,L6(n) · h̃2
m(n)/εm)2 (5.23)

The total loss function is given by the weighted sum of the six sub-loss
functions:

L = γ1L1 + γ2L2 + γ3L3 + γ4L4 + γ5L5 + γ6L6 (5.24)

5.4.2 IIR Filter Design for Personal Sound Zones

In this thesis, the Deep Optimization method has been used to design Para-
metric IIR filters for the Personal Sound Zones. In literature, to the best of our
knowledge, no works present PSZ with Parametric IIR filter design A depth
study is conducted, analyzing the PSZ with 1 SOS for each one-third octave
band, then passing to 5 SOS’s per each band.
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The network design is similar to the BiasNet used for the Multipoint Audio
Equalization task with Parametric IIR filters. The differences consist only of
the cost function. Similar to the previous Section, the loss function is the
weighted combination of four sub-loss functions. The first is the Euclidean
distance of the desired frequency response and the measured one, summed
between the microphones used within the bright zone. The second is the sub-
loss function used to define the dark zone, calculated as the previous Section.
Last but not least, the ratio energy as defined in Equation 4.26. Finally, the
last sub-loss function defines the output impulse response, as in the previous
Section.
The total loss function is the weighted sum of four loss functions, defined as:

L = γ1L1 + γ2L2 + γ3L3 + γ6L6 (5.25)

Compared to the previous work, where IIR filters were used to equalize within
the acoustic scene, in this task, the filters must both equalize in the bright zone
and attenuate as much as possible in the dark zone.
For this reason, the number of SOS’s for each band has been increased to im-

prove the Acoustic Contrast. The performance, as will be described in Section
5.6, will also be compared in computational and perceptual terms. The SOS’s
have been added only in the frequency range of interest, then up to 2 kHz, to
not have a large number of SOS’s per speaker and because it is challenging to
equalize and attenuate at high frequencies.

5.5 Experimental Setup

The experiments were performed using the Jeep Renegade scenario. Concerning
the Multipoint Audio Equalization task, loudspeakers have been added to the
car-manufacturer speakers to increase the Acoustic Contrast (see Figure 5.9):
2 speaker arrays were placed above the car dashboard, one in front of the
driver seat, the other in front of the passenger position. In total, 16 full-range
loudspeakers were added. The operative frequency range is 250-11000Hz.
The impulse responses were measured using the exponential sine sweep method

[130] with a sampling frequency rate of 48 kHz, using as audio interface an RME
Madiface and a Dante-equipped amplification system. Two mannequins have
been used, one for each seat. Optimization and evaluation have been performed
with two several sets of binaural impulse responses. Indeed, the second set has
been measured by varying the position of the mannequins on the seats.
The BiasNet optimizes FIR filters of 8192-th order, while for the Parametric

IIR filter design, the number of SOS’s to optimize goes to 1 for each one-
third octave band to 5 SOS’s. The ranges of the parameters are: Qmin=
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Figure 5.9: Jeep Renegade schematic with loudspeakers and microphones po-
sitions: A1 and A2 corresponds to the full-range speaker arrays.
D and P stands for the binaural microphones on the driver and
passenger seat, respectively.

0.05, Qmax= 10.0, V0,min,dB= -20 dB, V0,max.dB= 20dB, Vs,min,dB= -40 dB,
Vs,max.dB= 40dB. Finally, to compare the performance between the Paramet-
ric IIR filters and FIR filters using the same number of coefficients, the FIR
filter design of 512-th order is performed. In Table 5.2, the number of pa-
rameters to optimize is presented. Regarding the Parametric IIR filters, the
BiasNet optimizes from 1,139 parameters to 4,115, whereas when the FIR filter
coefficients are optimized, a total number of 188,416 parameters are designed.

SOS’s
nr. maximum
parameters

for each speaker

nr. maximum
coefficients

for each speaker

nr.
parameters
to optimize

W T WT S F W T WT S F
1 31 37 76 19 52 60 36 150 36 102 1139
2 61 52 130 37 85 120 102 258 72 168 1883
3 91 67 184 55 118 180 132 366 108 234 2627
4 121 82 238 73 141 240 162 474 144 300 3371
5 151 97 292 91 174 300 192 582 180 366 4115

FIR8192 8192 8192 188416
FIR512 512 512 11776

Table 5.2: Number of maximum parameters and coefficients for each speaker,
when IIR and FIR filters are used. The last column is the number
of parameters (neural network outputs) to optimize. FIR8192 stands
for FIR filters of 8192-th order, whereas FIR512 is the 512-th order.

The optimization with the neural approach was performed with Python and
Tensorflow, while the ACC and PM have been run with Matlab.
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Evaluation of proposed and baseline methods were performed in Matlab.
Perceptual metrics, explained in Section 5.1, have been calculated in Python
and C++.
The ACdes was set to -50 dB, whereas the |HB,des| was equal to 0 dB. After

a series of preliminary analyses, the weights of the loss functions, regarding the
FIR filter design, were set to γ1 = 1265, γ2 = 2, γ3 = 1 · 10−5, γ4 = 5000,
γ5 = 92, γ6 = 2. Instead, regarding the Parametric IIR filter design, the
weights are γ1 = 142, γ2 = 4. γ3 = 1 · 10−5 and γ6 = 1897. The learning rate
was set to 1 · 10−4, the number of iterations is equal to 10,000, σf is set to
48,000 and, finally, Adam algorithm is used as optimizer.
The weighting function is defined as 1 in linear scale on the one-third octave

band of interest, while, in the out of range, it decreases by 6 dB per band.
To record the speech signals, 50 audio files from the LibriSpeech dataset [163]

were selected. Perceptual metrics were analyzed for each microphone within
the bright zone and audio file and then averaged.

5.6 Results
Experiments were performed when the bright zone was defined on the driver
seat and the dark zone on the passenger seat, then when the bright zone was
defined on the passenger and the dark zone on the driver spot. In Table 5.3
are presented the results when FIR and IIR filters are used. The ACC was
used as a reference and not as a comparison because, as shown below with the
perceptual analyses and as explained in Section 5, it achieved excellent acoustic
contrast performance but poor perceptual results. In Table 5.3 the ACC results
are reported in italic.
The ACC achieved the best results when the bright zone was defined on

the driver seat (see Table 5.3.a), obtaining an ACib in the band of interest
of 14.51 dB and an ACmax of 21.17 dB. In contrast, the BiasNet obtained an
ACib of 13.57 dB and ACmax 23.22 dB. In Figure 5.10 is presented the one-
third Acoustic Contrast. Finally, the PM was the worst performing technique
in terms of AC, with an ACib of 12.07 dB and ACmax of 17.89 dB.
When the bright zone is defined on the passenger seat, the BiasNet achieved

results lower of almost 1 dB with respect to the ACC. Indeed, as shown in Table
5.3.b, the ACib is equal to 16.60 dB, while the BiasNet presents an ACib that
is equal to 15.90 dB. The ACmax of the ACC is 24.45 dB, while the BiasNet
presents 22.26 dB of ACmax. The PM achieves the worst performance, with
the ACib and ACmax equal to 14.40 dB and 21.49 dB, respectively.
The IIR filters are compared with the FIR filters designed by the BiasNet:

when the bright zone was defined on the driver seat, the IIR filters achieved
the best performance, both for audio equalization and PSZ. Regarding the AC,
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Method Bright zone Dark zone
MSEB ACfb [ dB] ACib [ dB] ACmax [ dB]

IIR
SOS

per 1/3
octave
band

1 1.91 · 10−1 8.53 12.68 19.71
2 9.65 · 10−2 8.37 13.06 23.86
3 5.40 · 10−2 8.97 12.93 23.78
4 5.48 · 10−2 9.68 13.85 23.18
5 5.80 · 10−2 9.39 13.62 25.11

FIR

PM 1.04 · 10−1 9.45 12.07 17.89
BiasNet8192 2.25 · 10−1 9.15 13.56 23.22
BiasNet512 2.65 · 10−1 8.82 12.00 15.40

ACC 2 .89 · 10−1 11 .16 14 .51 21 .17
(a)

Method Bright zone Dark zone
MSEB ACfb [ dB] ACib [ dB] ACmax [ dB]

IIR
SOS

per 1/3
octave
band

1 1.63 · 10−1 10.89 15.45 22.85
2 1.73 · 10−1 11.07 15.38 21.68
3 2.19 · 10−1 11.60 16.59 21.84
4 1.66 · 10−1 11.19 15.84 21.97
5 1.72 · 10−1 11.16 15.47 21.01

FIR

PM 1.97 · 10−1 11.33 14.40 21.49
BiasNet8192 3.13 · 10−1 11.72 15.90 22.26
BiasNet512 2.31 · 10−1 10.39 14.54 20.41

ACC 2 .56 · 10−1 12 .67 16 .60 24 .45
(b)

Table 5.3: Results for IIR filter design for PSZ and comparison with FIR filters
of 8192-th order and 512-th order: (a) when the bright zone is defined
on the driver seat and the dark zone on the passenger seat; (b) when
the bright zone is defined on the passenger seat and the dark zone
on the driver seat. Please note that the ACC results are used as
reference and they were highlighted in italic. The best results with
the other techniques have been highlighted in bold.

the best result was obtained by optimizing 4 SOS’s per band of interest. The
ACib is equal to 14.39 dB and the ACmax equals 21.88 dB. Despite the best
ACib, the best ACmax is achieved with 5 SOS’s, equals 25.11 dB. Regarding
the audio equalization in the bright zone, the best result is achieved when the
BiasNet optimized 3 SOS’s, with a MSEB equal to 5.40 · 10−2, even with the
design of 4 SOS per band, the same results are obtained because the MSEB
is equal to 5.40 · 10−2. Regarding the 5 SOS’s per band, the MSEB is equal
to 5.80 · 10−2.

Comparing 4 SOS’s and FIR filters of 8192-th order using the BiasNet, the
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Figure 5.10: One-third octave band AC of BiasNet for FIR filter design

first achieved the best performance: the ACib is equal to 13.85 dB, while the
FIR filters achieved 13.57 dB. Even with audio equalization in the bright zone,
the same trend occurs. In fact, the MSEB is 1 order of magnitude lower.
Regarding the experiments with the bright zone defined on the passenger

seat, the same performance is achieved. In this case, 3 SOS’s per band achieved
the best ACib, which is equal to 16.59 dB, instead, 4 SOS’s per band achieved
an ACib equal to 15.84 dB.
In Figures 5.11, 5.12, 5.13 and 5.14 are presented the results of the percep-

tual metrics. The PM achieved the best performance on overall perceptual

(a) (b)

Figure 5.11: MSEt performance comparison when no filtering is applied (No
Filter), using the ACC, PM, the best IIR filter design wuth the
BiasNet (4 SOS’s per band) and FIR filter design with the BiasNet.
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STOI

(a)

STOI

(b)

Figure 5.12: STOI performance comparison when no filtering is applied (No
Filter), using the ACC, PM, the best IIR filter design wuth the
BiasNet (4 SOS’s per band) and FIR filter design with the BiasNet.

tests, whereas the ACC obtained the worst. The BiasNet got an intermediate
performance, but the results are better than no filter is used. Indeed, the PM
achieved a STOI score equals 0.99 and 0.98; the MOS of the ViSQOL test is
4.17 when the bright zone is defined on the driver seat and 3.80 on the passenger
seat. Finally, the PESQ MOS is 4.18 and 3.66 for driver and passenger posi-
tions, respectively. FIR filters optimized using the BiasNet achieved a STOI
score of 0.96 for both positions, while ViSQOL and PESQ scores are 3.72 and
3.48 for the first metric and 3.56 for both the position for the second one.
Comparing the results between the FIR and IIR filter design, the second one

achieved slightly better performance. Only the STOI score is better with the
FIR filters.

Finally, some remarks about PSZ are made. Compared to the Multipoint
Audio Equalization task, there have been improvements in the FIR filter de-
sign. Figure 5.15 shows an example of a compact FIR filter achieved by the
optimization. Indeed, it presents a peak and few pre-ringing, thus at listening,

PESQ

(a)

PESQ

(b)

Figure 5.13: PESQ performance comparison when no filtering is applied (No
Filter), using the ACC, PM, the best IIR filter design with the
BiasNet (4 SOS’s per band) and FIR filter design with the BiasNet.
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there are not many artefacts found in sound reproduction. Another important
feature is the concentration of energy towards the peak. In this way, filters can
be cut, resulting in filters with many fewer taps.
Other remarks are related to optimizing Parametric IIR filters. Despite being

the first work, good results have been obtained, even outperforming the neural
approach for designing FIR filters. In addition, comparing the computational
cost, there is a significant cost reduction in the data processing. In Table 5.2
the number of coefficients used for each speaker are presented. The Woofer-
Tweeter presents the high number of coefficients, with a total of 582 coefficients
in the 5 SOS’s per band experiments, but resulting in a lower computational
cost with respect to the FIR filter design, in which the BiasNet optimized FIR
filters of 8192 taps, and achieving the same Acoustic Contrast performance.

(a) (b)

Figure 5.14: ViSQOL performance comparison when no filtering is applied (No
Filter), using the ACC, PM, the best IIR filter design wuth the
BiasNet (4 SOS’s per band) and FIR filter design with the BiasNet.

Comparing the results of Parametric IIR filters and FIR filters of 512-th
order in Table5.3, the IIR filters achieved the best performance with a lower
number of coefficients concerning the FIR filter. Indeed, as shown in Table 5.2,
using Parametric IIR filter with 1 SOS per band, the total number of operations
is 225. The ACib is 12.68 dB and 15.45 dB for the bright zone defined on the
driver and passenger seat, respectively. Using FIR filters of 512 coefficients,
which the number of instructions is 513, the ACib is 12.00 dB and 14.54 dB,
respectively, as shown in Table 5.3. Therefore, the results are lower by more
than 1 dB with respect to the IIR filters.
Very high Q values are obtained in some SOS’s, resulting in a frequency

response with very thin peaks or notches and, thus, obtaining impulse responses
that could present oscillations. In Figure 5.16 is shown the magnitude response
of an IIR filter and its impulse response: the filter presents many notches, with
an amplitude response that attenuates down to -50 dB (see 5.16.a), while the
impulse response of the filter has several oscillations that continue for hundreds
of samples (see 5.16.b). From 50 cascaded SOS’s that compose this filter, 5 of
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Figure 5.15: Time impulse response of the FIR filter of a full-range speaker

them have a Q greater than 9.

5.7 Final Remarks
In this chapter, Deep Optimization techniques are proposed to design IIR and
FIR filters for PSZ. The DNNs are used to optimize digital filters using loss
functions and regularization and penalty terms. The proposed approach is com-
pared with two baseline techniques, the ACC and the PM. The first method
usually achieves high AC performance but obtains filters that introduce arti-
facts. Indeed, the evaluated perceptual metrics using the filters optimized with
this technique achieved low results. For this reason, the ACC results have been
used as a reference.
Experiments were performed in a vehicle scenario, adding two speaker ar-

rays to the car-manufacturer loudspeakers. The evaluation was performed us-
ing binaural impulse responses located differently from the ones used for the
optimization in order to obtain an Acoustic Contrast optimized in the whole
area.

The results are promising, even if the Acoustic Contrast is a less than ACC
of almost 1 dB, but the baseline technique achieved poor audio equalization and
perception results. Comparing the results with the PM, the neural approach
achieved the best performance. Instead, the MSE and the perceptual metrics
are slightly worse.
Significant results concern the optimization of Parametric IIR filters, not

present in the literature for this task. Despite being the first work, promising
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Figure 5.16: Magnitude response of an IIR filter (a) and its impulse response
in time domain (b).

results are obtained, even outperforming the neural approach for designing FIR
filters. The audio equalization performance of the proposed method is better
than the PM technique, and the perceptual results are similar to the FIR filter
neural approach. In addition, comparing the computational cost, there is a
significant cost reduction in the data processing.
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Chapter 6

Other Contributions

6.1 Road Type Classification Using Deep Learning
Models

Nowadays, cars are the main topic of interest in many aspects. The next
generation of cars will become increasingly automated, therefore in addition
to improving comfort in the cabin, there is an increasing interest in safety
research, i.e. in new, cheaper and more reliable sensors [164].

Road conditions play an important role in intelligent cars safety systems and
autonomous vehicles [165], keeping an autonomous safe distance based on the
road conditions. Furthermore, this topic could allow novel scenarios in the
car cabin, as intelligent speech enhancement, audio equalization, active noise
control [166].

As reported in [167], the weather is the primary factor of car accident num-
bers, which doubles when the asphalt is wet [168]. Regarding cabin comfort,
tyre-road noise is a factor of vehicle noise emissions that could affect driver’s
concentration and could cause annoyance on passengers [169].

Acoustic sensors have been explored for road wetness and roughness clas-
sification [166, 170], suggesting that combining them with Machine Learning
techniques is possible to replace expensive optical sensors, radar and lidar sys-
tems with inexpensive ones, integrating them with the infotainment system for
automatic equalization and speech enhancement [171].

Microphones have been used in combination with the Support Vector Ma-
chine (SVM) for road roughness [172] classification, extracting acoustic features
as the MFCC. In [173] road wetness classification is employed using SVM and
one-third octave band filters, while in [170] a Bi-Directional Long Short Term
Memory (BLSTM) neural network [174] is used in combination with the Audi-
tory Spectral Features (ASF), achieving better performance than the SVM.
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6.1.1 Contribution

Motivated by the works explained below, the main objective of this research
is to study the Deep Learning techniques for road roughness and wetness de-
tection. The first work was to use a CNN network for the road roughness
classification [166], extracting ASF to feed the network. The database was
built driving the car in some areas of Ancona and on the highway, recording
the sound with a multi-channel microphone arrangement. Better results were
achieved with Dual-Channel CNN and Siamese Neural Network (SNN), using
cross-validation and the cross-set between summer and winter tyres [171]. For
road wetness detection, CNN was used, comparing it with the BLSTM [164],
achieving results slightly inferior to those of the recurrent network but with
much faster processing (training and testing) times.
The microphone positioned near the driving plate was exposed to the weather

and damaged, while the microphone placed inside the trunk obtained the best
results because it was able to isolate well the external noises and those inside
the car cabin. Finally, the last work compares two CNN architectures on
roughness and wetness detection, implementing them on a DSP system [175]
and analyzing the results between GPU and DSP and the processing times of
the latter. In Figure 6.1, the flux diagram is presented: Features are extracted
from the signal recorded by a microphone, then features are normalized, and
finally, the network is processed to predict what type of asphalt the car is
driving on.

Figure 6.1: General scheme of roughness and wetness detection.

6.1.2 Auditory Spectral Features

ASF are achieved by calculating the STFT to the audio samples, using a frame
size of 30ms and a frame step of 10ms. Each STFT contains the power spec-
trogram, which must calculate the Mel frequency scale using a filter-bank with
26 triangular filters. To match the human perception of loudness, Mel spectro-
grams M30(n,m) are transformed to a logarithmic scale:

M30
log(n,m) = log(M30

30 (n,m) + 1.0) (6.1)

ASF contain the first order differences of each LogMel spectrogram:

D30(n,m) = M30
log(n,m)−M30

log(n− 1,m) (6.2)
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Figure 6.2: Auditory Spectral Feature extraction process and representation.
In Figure 6.2a is presented the block diagram; in Figure 6.2b the
representation of ASF of a chunk is shown.

Finally, the frame energy and its derivative are added to the feature vector. In
total, the feature vector is composed of 54 coefficients: 26 LogMel coefficients,
26 first order differences LogMel coefficients, the energy and its derivative. An
audio chunk of 1 s is used. Thus 98 feature vectors are calculated, resulting in
a 2D audio image of dimension 54× 98.

In Figure 6.2 the block diagram extraction and the representation of the
ASF are presented. Feature extraction (see Figure 6.2a) was processed using
the toolkit openSMILE v2.3.0 [176], except in a part of [175], where the DSP
system was used for the ASF extraction and network process.

6.1.3 Preliminary Analysis
In this project, a multichannel microphone arrangement is used to exploit mi-
crophone diversity and improve the classification or to conduct the evaluation
at once. Many positions have been analyzed to place the microphones both
inside and outside the car [164, 166].

A Mercedes A Class from 2014 was used to build the dataset and to place
the microphones. A multichannel front end, HEAD Acoustics Squadriga II,
has been used as an acquisition device to record 8 channels at different sample
rates and store GPS and CAN bus signals. The audio signals were sampled at
44100 Hz at 24-bits.

External microphones are PCB Piezotronics model 103A24, which are IP55
microphones. These transducers have been protected with a melamine resin
foam for sound absorption to reduce the effect of wind. The internal micro-
phones are PCB Piezotronics model 378C20.
The first analysis was performed by placing two microphones close to the rear
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wheels, one in front of the front left wheel, one inside the engine compartment
and two inside the cockpit, close to the driver’s head and close to the right
passenger head. In Figure 6.3 microphone positions are shown. The front-right
microphone has been excluded from recordings after preliminary evaluations
because it records a large amount of engine noise with respect to the other
microphones. The rear-right microphone had the lowest noise coming from the
engine. Finally, the engine compartment microphone has been used to record
the engine conditions for future works.

E

FL RL

RR

IB

ID

(a)

(b)

Figure 6.3: Position of microphones for road roughness detection [166]. Top
view (a) and bottom view (b). The microphones are placed in the
engine compartment (E), close to the front-left, rear-left and rear-
right (FL, RL and RR, respectively), inside the car: close to the
driver (ID) and in the back seat (IB). The arrows in (b) show how
the capsule was positioned to minimize the wind effect. The rear
microphones are protected in the wheelhouse.

The magnitude response of 1 s of two audios recorded on smooth and rough
asphalt are shown in Figure 6.4. The major differences between the two audios
are found at 400Hz.
For road wetness detection, other microphone positions have been studied

[164]. External microphones had attenuation problems caused by the wet foam:
in Figure 6.5, the difference between the frequency response when recording on
the wet road using a dry and a wet foam is shown.
For this reason, in [164] the microphones are not close to the tires. In Figure

6.6 microphone placements are shown: as above, two microphones inside the
car cabin are placed, one close to the driver position and the other to the rear
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Figure 6.5: Spectral difference between smooth and rough pavement frequency
response.

passenger position. One microphone is positioned in the bottom of the trunk,
below the spare wheel. Externally, one microphone was positioned below the
trunk hatch, near to the driving plate.

The microphone placed inside the trunk isolates noise from the exterior and
the cabin remarkably well. In Figure 6.7, the measured noise attenuation is
shown: a white noise source has been placed in cabin front row, recording the
signals at the ID and T microphone, achieving a mean octave band attenuation
in the range 40Hz - 10 kHz of 21 dB with respect to ID microphone.

Since the microphone placed inside the trunk is protected from weather and
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RR
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ID
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T

Figure 6.6: Position of microphones for road wetness detection [164]. The mi-
crophones are placed inside the car: close to the driver (ID) and
back seat (IB) and below the trunk (T). Outside the car, one mi-
crophone is located below the trunk hatch, near the driving plate
(DP).

wind and also manages to isolate the noise coming from the cabin, it could be
the most promising for road wetness and, from a commercial point of view, it
could manage to attenuate the sound inside the passenger compartment, e.g.
music and speech.
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Figure 6.7: Measured noise attenuation between the driver and the trunk mi-
crophone in the frequency range (50Hz and 8 kHz) achieved by the
difference of the two log magnitude spectra.

As shown in Section 6.1.5, DP microphone achieved low performance be-
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cause of the windshield wiper noise that interferes with the classification in wet
conditions. The wet recordings were extremely different from the recordings of
the dry sessions in terms of levels and spectral profile due to the foam soaking.
The position of DP microphone is shielded from wind, but it is not completely
repaired from the rain, thus the microphone foam protection is soaked.
In Figure 6.8 the 2D Principal Component Analysis (PCA) is shown. Red

and blue dots correspond to summer and winter tyres. PCA in two different
groups clusters the driving plate recordings from the wet sessions (see Figure
6.8b), instead of from the dry recordings sessions shows a strong overlap (see
Figure 6.8a). The back seat position signals from the same recording sessions
are totally overlapped (see Figure 6.8c and Figure 6.8d)). The same overlapping
is presented on the other internal microphones, suggesting an issue with the
DP microphone cross-domain, related to the recording conditions, probably the
microphone from soaking.

(a) (b)

(c) (d)

Figure 6.8: 2D PCA discriminating the summer and winter tires, described by
red and color dots, using ASF. (a) and (b) represent the dry and
wet roads, respectively, using the back seat microphone. (c) and
(d) represent the dry and wet roads, respectively, using the driver
plate microphone. The PCA axis ranges have no physical meaning,
thus they are not reported.
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6.1.4 Road Roughness Classification
The first work that has been conducted concerns the study of Deep Learning
techniques for road surface classification [166]. Convolutional Neural Network
has been used because of its low computational cost and low memory usage
with respect to the recurrent neural network, useful when implementing in a
DSP system. The dataset is not balanced and it is composed of 41% of rough
road samples and 59% of smooth road samples, with a total of 50 minutes of
recording signals.
A 5-fold cross-validation procedure has been performed, combining it with

a random search of the CNN hyperparameters. The metrics have been deter-
mined by averaging them across all cross-set. Several optimizers were used,
but the best was the Adam optimizer [166].
In Table 6.1 are reported the best configurations tested, while in Table 6.2 the

best five results are presented. Best performance is achieved with configuration
10, with an F-score equal to 86% and an Accuracy of 87.1%.

Conf. Filters Kernel Size Strides Max Pooling FCL Size
1 [20, 20] [3× 5], [1× 2] [3× 3], [1× 2] y, y [200, 100]
2 [15, 20] [3× 5], [1× 2] [3× 3], [1× 2] y, y [200, 100]
3 [30, 20] [3× 5], [1× 2] [3× 3], [1× 2] y, y [200, 100]
4 [15, 20, 30] [3× 5], [2× 2], [1× 4] [3× 5], [2× 2], [1× 4] n, y, n [300, 100]
5 [20, 20, 30] [1× 7], [9× 1], [3× 7] [1× 7], [1× 9], [2× 2] n, n, n [300, 100]
6 [20, 20, 30] [1× 7], [9× 1], [3× 7] [1× 7], [1× 9], [2× 2] n, n, n [600, 200]
7 [20, 20, 30] [1× 7], [9× 1], [3× 7] [1× 7], [1× 9], [2× 2] n, n, n [600, 100]
8 [54, 54, 30] [1× 7], [9× 1], [3× 7] [1× 7], [1× 9], [2× 2] n, n, n [200, 100]
9 [15, 20, 30] [3× 3], [2× 2], [1× 4] [3× 1], [2× 2], [1× 4] n, y, n [200, 100]
10 [20, 20, 30] [3× 3], [2× 2], [1× 4] [3× 1], [2× 2], [1× 4] n, y, n [200, 100]
11 [20, 20, 30] [3× 3], [2× 2], [1× 4] [3× 1], [2× 2], [1× 4] n, y, n [300, 100]
12 [30, 20, 30] [3× 3], [2× 2], [1× 4] [3× 1], [2× 2], [1× 4] n, y, n [200, 100]

Table 6.1: Best tested configurations for CNNs. The kernel size and the stride
are expressed as [features× time]. FCL stands for Fully Connected
Layers. In Max Pooling column, the term "y" and "n" represent the
presence or not of Max Pooling Layers.

Configuration Accuracy (%) F-measure (%) Recall (%) Precision (%)
10 87.10 86.00 93.08 79.92
5 86.11 85.19 93.83 78.00
2 86.18 85.19 93.38 78.31
1 85.88 84.87 93.41 77.76
7 85.28 83.85 89.04 79.24

Table 6.2: Top 5 configurations sorted by performance obtained in cross-
validation analysis with unbalanced training classes. The config-
uration numbers are the same reported in Table 6.1.

Further studies have been conducted on convolutional architectures to learn
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a more robust representation when different tyre types are mounts. A Siamese
approach and a Dual-Channel Convolutional Neural Network are compared
with the Single-Channel CNN.
The use of SNN is due to the increase in the robustness of spectral changes,

which are independent of the road surface conditions. Thus, if the method
is robust to variations in the tyre model, the neural network does not need a
large training corpus to be employed in a real-world case. The SNN calculates
the degree of similarity between two inputs: it is provided of two inputs and
is expected to evaluate a distance d in the range [0, 1]. The reference input
must belong to a known class and a threshold must be applied to the output.
The SNN discriminates against whether the inputs belong to the same class or
not. The SNN is composed of two identical networks, taking one input each,
as shown in Figure 6.9.
The training needs to minimize the distance for the positive or same class

examples and maximize the negative examples. The contrastive loss is used,
calculated as:

L = (1− Y ) · 1
2d

2 + Y
1
2 ·max(0,m− d)2 (6.3)

where m is called margin and it is positive and allows only negative examples
to loss calculation when the distance is less the radius defined by m.

Convolutional Layers Fully

Connected

Distance

Layer

Distance

Figure 6.9: Siamese Neural Network scheme.

The temporal correlation between successive input frames is exploited using
a sequence of L chunks and calculating the distance between the current chunk
and each of the previous L chunks. The distances are then averaged according
it to the following expression di = 1/l ·

∑L
l=1 di,l, where i is the current chunk.

Finally, the mean distance is processed to get a binary classification, using a
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low-pass filter to the mean distance to a more stable and consistent value across
frames and then applying a threshold. The diagram is shown in Figure 6.10.

Figure 6.10: Diagram od the proposed algorithm. For each frame, the SNN run
L times, one for each input pair (xi,xi−l) with 1 < l < L.

A new dataset was recorded for the experiments, resulting in 95 minutes of
recording, with 53% of smooth asphalt and 47% of rough roads, using winter
and summer tyres.
The experiments were performed by training and testing the networks with

the same tyre types or training on a tyre type and testing on the other kind. A
5-fold cross-validation procedure has been performed using 64% of the dataset
for training, 16% to validation and 20% to test, thus 3640, 864 and 1080 ASF
spectrograms for training, validation and test set.
The metrics have been calculated for each training/testing set combination

and then averaged to achieve the un-weighted average metrics. The F1-score
has been used for comparison, averaged between each test fold. Early Stopping
is used to reduce machine run-time, with a maximum of 1000 epochs and 100
patience epochs.
The best results of Single-Channel CNN is reported in Table 6.3. The perfor-

mance decrease when the testing set is recorded with a tyre type unseen during
the training. Using some tyres during training reduces the performance.
In Table 6.3, the results with Dual-Channel CNN are presented. Best results

than Single-Channel CNN are achieved, except in the Summer-Winter case,
where the performance is low, with F1-score equal to 72.35% respect to 76.17%
of Single-Channel CNN.
The best results presented in Table 6.3 are achieved with the SNN in all

training/test cases. In particular, the mixed training/testing cases achieved
the same performance with Summer-Summer and Winter-Winter ones.
SNN seems to be the most robust neural architecture to unseen tyres in

road roughness classification, achieving the best results in the overall train-
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ing/testing set. In Table 6.3, a brief resume is shown: the SNN achieved an
averaged F1-score of 95.58%, while the Single-Channel and Dual-Channel CNN
achieved an F1-score equal to 81.6% and 85.24%, respectively. The Dual-
Channel CNN achieved better results than Single-Channel CNN, due to the
vulnerability of the Single-Channel CNN to temporary noise sources and tem-
porary changes of the acoustic paths: the first could interfere with the clas-
sification task (car horns, construction sites etc.), and the second is present
on walls, sidewalks, and other reflective surfaces that may affect the spectral
characteristics of the road noise.

Train/Test CNN (%) Dual CNN (%) Siamese CNN (%)
W/W 85,65 89,57 98,14
S/S 80,65 94,58 94,69
W/S 83,93 84,46 95,08
S/W 76,17 72,35 94,40

Average 81.6 85.24 95.58

Table 6.3: Comparison of best F1 Scores (%) and their average obtained with
single channel CNN, dual channel CNN and Siamese CNN with dif-
ferent Train/Test tyre combinations (S = summer, W = winter).

Summarizing, if the double of the computational cost is feasible, the SNN
outperforms the Dual-Channel CNN.

6.1.5 Road Wetness Classification

The road wetness detection was studied towards the end of the work on road
roughness detection. In addition to the new microphone placement study, a
new dataset was created for this task, recording on different tyre types (summer
and winter) and in different weather conditions, in which the asphalt could be
wet or dry.

The recordings amount to 146 minutes of audio, which 37% on wet roads.
A 5-fold cross-validation procedure has been performed, disposing 64% of the
dataset to train, 16% to validation and 20% to test. The metrics were calculated
for each combination of training/testing and then averaged to achieve the un-
weighted average metrics.

The training was performed using an early stopping method, with a patience
of 10 epochs and a number of epochs equal to 1000. The Adam optimizer and
binary cross-entropy loss function are used.

Convolutional Neural Network is compared with the BLSTM. CNN was de-
ployed in a random search, while the used BLSTM architectures are described

99



Chapter 6 Other Contributions

in [170].
In Table 6.4, the best results are presented: the CNN model can perform

very well when training and testing sets are recorded with the same type of
tyres, reaching up to 99% F1-score. Results are slightly lower with the Sum-
mer/Winter and Winter/Summer datasets due to different datasets. The best
performing microphone is in the trunk, confirming the hypothesis that the dis-
tance from the engine and the protection from wind and rain may help. Its
performance is shortly followed by that of the back seat microphone. Driver mi-
crophone achieved low performance, probably because of the windshield wiper
noise that interferes with the classification in wet conditions. As described
above, the DP microphone achieved the worst performance due to the differ-
ences in wet recordings; thus, the CNN is unable to classify frames from the
domain unseen during training correctly. In the Summer/Summer and Win-
ter/Winter case, the issue is alleviated because the F1-scores are 98.84% and
92%, respectively, going from no foam soaking issue to frequent soaking foam.

CNN

Train/Test Mic F1-score CNN
Layer Sz Kernel Shape Strides Shape Dense

Layer Sz
W/W DP 98.94% 20,20 [[10,6], [10,2]] [[3,3], [4,2]] 1000,900
W/W IP 99.15% 20,20 [[3,6], [8,3]] [[4,2], [3,5]] 100, 600
W/W ID 67.25% 30, 20 [[5,10], [1,4]] [[4,4], [6,2]] 900, 800
W/W T 96.00% 30, 20 [[4,8], [4,5]] [[5,1], [1,5]] 400, 300
W/S DP 1.00% 30,20 [[7, 10], [4, 5]] [[4,1], [4,3]] 700, 900
W/S IP 94.67% 20,20 [[3,8], [6,1]] [[2,5], [7,3]] 300, 800
W/S ID 74.00% 30,20 [[5,10], [1,4]] [[4,4], [6,2]] 900, 800
W/S T 95.00% 30, 25 [[1,1], [9,2]] [[1,8], [8, 1]] 800, 600
S/W DP 9.00% 20,20 [[9, 7], [7, 10]] [[1,2], [6,1]] 100, 800
S/W IP 96.76% 20, 25 [[10, 8], [7, 3]] [[3,3], [7,5]] 900,300
S/W ID 62.00% 25, 30 [[9, 2], [6,6]] [[3,3], [4, 3]] 100, 100
S/W T 97.33% 20, 25 [[10, 8], [7, 3]] [[3,3], [7,5]] 900,300
S/S DP 92.00% 20, 25 [[6, 7], [5, 1]] [[1,4], [7,2]] 800, 400
S/S IP 98.40% 30,30 [[4,9], [2,3]] [[4,1], [2,6]] 1000,600
S/S ID 96.24% 20, 25 [[4,5], [3,5]] [[4,1], [3,5]] 900, 700
S/S T 99.38% 20, 20 [[3,1], [1,7]] [[2,3], [3,3]] 800, 400

Table 6.4: Best performing CNN models from the tests. Training and testing
have been conducted on summer (S) and winter (W) tires, with
driver plate (DP), back seat passenger (IP), driver (ID) and trunk
(T) microphones.

The BLSTM architecture achieved higher results in all training/testing com-
binations, excepts in Winter/Summer case. The best performing microphones
are the T microphone and the one in the passenger back seat position. The
driver plate microphone in the cross-domain combinations achieved the same
issue highlighted above for the CNN case. Indeed, the F1-sore is zero due to
the zero true positive occurrences, whereas the accuracy is slightly larger than
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50%.

BLSTM
Train/Test Mic F1-score (%) LSTM shape
W/W DP 95.71% 156, 256, 156
W/W IP 97.96% 216, 316, 216
W/W ID 70.8% 54, 54, 54
W/W T 99.80% 216, 316, 216
W/S DP 0.0% (∗) 216, 216, 216
W/S IP 93.37% 216, 316, 216
W/S ID 74.4% 54, 54, 54
W/S T 93.30% 216, 216, 216
S/W DP 0.0% (∗) 54, 54, 54
S/W IP 85.58% 216, 316, 216
S/W ID 57% 54, 54, 54
S/W T 99.70% 54, 54, 54
S/S DP 89.88% 54, 30, 54
S/S IP 97.6% 216, 216, 216
S/S ID 96.34% 54, 54, 54
S/S T 99.75% 156, 256, 156

Table 6.5: Best performing BLSTM models from the tests. Training and test-
ing have been conducted on summer (S) and winter (W) tires, with
driver plate (DP), back seat passenger (IP), driver (ID) and trunk
(T) microphones. (∗) Please note that the F1-score is due to zero
true positive occurrences. In those cases the Accuracy is 56.1%
(W/S) and 62% (S/W), respectively.

From Table 6.4 and 6.5 seems that different combinations succeed in different
training/testing conditions.

Taking the T microphone as the best performing microphone and averaging
the results of the four training/testing combinations for each tested network,
the best performance is achieved with the BLSTM network (see Table 6.6),
with an improvement of the classification results of 2% with respect to the best
CNN network.

CNN BLSTM
CNN
layer size kernel shape strides shape Dense

layer size F1-score [%] LSTM shape F1-score [%]

30, 25 [[8, 1], [4, 10]] [[4, 2], [1, 1]] 800, 500 95.89 156, 256, 156 97.96
30, 20 [[7, 10], [4, 5]] [[4, 1], [4, 3] 700, 900 95.33 4, 30, 54 97.40
30, 25 [[7, 3], [6, 4]] [[9, 2], [1, 7]] 500 300 94.79 54, 54, 54 96.71

20, 20 [[10, 6], [10, 2]] [[3, 3], [4, 2]] 1000,
900 93.93 216, 216, 216 96.52

20, 25 [[7, 1], [5, 6]] [[3, 2], [9, 9]] 900, 100 93.90 216, 316, 216 95.47

Table 6.6: Best performing CNN and BLSTM combinations for the trunk mi-
crophone. The F1-score is averaged over the 4 summer-winter train-
test combinations.
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The computational cost is considered for real-time implementation. The
computational workload of the CNN and BLSTM networks are extremely dif-
ferent on the machine used for the training and testing case. The CNN worked
on an Nvidia GeForce GTX 970 GPU. It requires on average 3 seconds per
epoch, while the same task requires 490 seconds per epoch for the BLSTM
model. Similarly, the time to evaluate one ASF frame during testing is 11ms
for the CNN and 100ms for the BLSTM. Since the ASF has a context of 1 s,
both networks can achieve a Real-Time Factor (RTF) lower than 1.

6.1.6 Road Type Classification with a Real-Time
Implementation

As described in Sections 6.1.4 and 6.1.5, the CNN architecture could be adopted
for scalability in an embedded processor for practical implementation of the
system. In this work, CNN was tested in a joint classification task to reduce
the computational cost (memory required to store network weights and data
and computational burden). Experiments were performed according to Figure
6.11.
The dataset is the same used for wetness detection. However, no cross-

validation was performed to analyze the feasibility of the approach in a real
scenario. The dataset is split into 64% for the train set, 16% for the validation
and 20% for the test set. In total, 5675 s are used for training, 1418 s for
validating and 1773 s for testing. The number of dry and wet samples were
balanced for the training, leaving the rough/smooth samples unbalanced.
The first step was to compare two CNN architectures, the joint-CNN and

the TL-CNN. The joint-CNN, described in Figure 6.12, is a CNN trained for
joint classification of wetness and roughness, combining two binary outputs
for joint classification. The TL-CNN is an architecture created following a
Transfer Learning approach from two specialized CNNs trained separately: the
best networks from individual evaluations (one for wetness classification, the
other for roughness classification) are merged, adding one dense layer that is
trained to optimize performance with the joint classification problem, while the
CNNs are not re-trained (see Figure 6.13).
In the second step, shown in Figure 6.11.b, feature extraction is implemented

in C++ on the embedded processor to assess the performance variation im-
plied by a different implementation of the extraction process. The features
are transferred from the processor to a computer and used to run a second
batch of experiments using the best architecture of the first step and assess the
performance variation.
Finally, the best configuration is used to compare the results when the test

is performed on GPU and the embedded system (see Figure 6.11.c).
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Figure 6.11: Experiments overview: (a) feature extraction using OpenSmile
[177], train and test of networks using GPU; (b) feature extrac-
tion using STM32 board, train and test of networks using GPU;
(c) importing of network trained by GPU on board and test of
networks using STMicroelectronics (STM) board.

ASF Convolutional layers

Dense layers
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Figure 6.12: Joint-CNN for roughness and wetness classification.

The experiments using the GPU were performed using a random search.
All configurations have a max pooling layer of dimension 2 × 2 and strides
1 × 1. In Table 6.7 the best results using the joint-CNN for wetness and
roughness classification are presented, while in Table 6.8 and 6.9 the results
are presented separately for the two tasks, whereas in Table 6.10 F1-score with
merged networks are presented.
Best results are achieved with the joint-CNN; however, the TL-CNN shortly

follows. Both approaches improve the results due to the wetness task, which
achieves high performance but fails to provide remarkable performance on the
road roughness task.
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Figure 6.13: Left figure represents the networks that separately perform wet-
ness and roughness detection, right figure represents the Transfer
Learning approach adding one dense layer.

Mic CNN Layer Size Kernel Shape Strides Shape Dense Layer Size F1macro (%)
T 20, 25 [[1, 2], [1, 7]] [[2, 2], [3, 6]] 900, 300 94.10
IB 25, 20 [[6, 7], [2, 8]] [[2, 2], [6, 3]] 900, 400 91.56

Table 6.7: Best performing joint-CNN for T and IB microphone for wetness
and roughness classification. The F1-score is the average-macro.

The joint-CNN was used in the second step. The experiments were performed
extracting features on STM32H743ZI board that has a 32-bit ARM® processor
with a frequency up to 480MHz, 2MB of Flash Memory and 1MB of RAM.

CNN Layer Size Kernel Shape Strides Shape Dense Layer Size D/W R/S
F1macro (%)F1-Score (%) F1-Score (%)

25, 30 [[5, 3], [5, 2]] [[4, 5],[5, 2]] 200, 800 98.31 82.70 88.10
20, 20 [[8, 3], [6, 6]] [[3, 1], [7, 10]] 900, 900 97.73 81.28 87.67
30, 20 [[9, 6], [2, 2]] [[6, 2], [2, 9]] 200, 1000 90.59 85.59 87.62
20, 25 [[1, 2], [2, 3]] [[4, 3], [2, 5]] 200, 500 97.29 77.05 85.42
30, 25 [[2, 8], [5, 3]] [[4, 2], [2, 8]] 700, 400 97.42 80.24 84.87
30, 30 [[7, 5], [1, 2]] [[6, 1], [4, 8]] 600, 700 97.45 75.42 81.74
20, 30 [[4, 4], [4, 5]] [[4, 2], [6, ]] 500, 200 95.62 77.77 81.68
25, 30 [[8, 3], [5, 3]] [[3, 2], [9, 5]] 200, 200 90.66 64.82 80.49
30, 20 [[3, 2], [8, 2]] [[2, 1], [3, 10]] 300, 1000 82.08 80.55 80.32
25, 20 [[4, 7], [6, 1]] [[4, 3], [5, 4]] 500, 800 89.77 67.12 79.95

Table 6.8: Results obtained with the separated networks using T microphone.

To compare the experiments using the neural network on the STM32 board
and GPU, audio data have been transferred using UART communication to the
board for the feature extraction. The extracted features are transferred to the
PC to training neural networks on GPUs. First experiments were performed
testing networks on GPU using the features extracted on the board. Comparing
the results in Table 6.11 and 6.7, F1macro is 3.89% and 6.35% lower for T and
IB respectively. This is caused by the differences in the feature extraction
algorithms. This problem can be alleviated by performing a random search
with the features extracted by the board.

104



6.1 Road Type Classification Using Deep Learning Models

CNN Layer Sz Kernel Shape Strides Shape Dense Layer Sz D/W R/S
F1macro (%)

F1 (%) F1 (%)
20, 20 [[2, 6], [2, 6]] [[3, 1], [10, 6]] 500, 200 94.56 74.22 81.16
25, 20 [[4, 7], [6, 1]] [[4, 3], [5, 4]] 500, 800 81.40 67.23 81.11
30, 20 [[7, 3], [6, 4]] [[9, 2], [1, 7]] 500, 300 89.64 77.98 80.81
20, 25 [[2, 8], [1, 8]] [[5, 2], [8, 3]] 800, 600 92.21 75.92 79.49
30, 20 [[9, 6], [2, 2]] [[6, 2], [2, 9]] 200, 1000 89.03 72.11 78.96
30, 20 [[5, 8], [4, 10]] [[4, 2], [7, 3]] 600, 700 95.37 61.08 78.42
20, 25 [[8, 2], [1, 6]] [[3, 3], [3, 2]] 100, 100 95.17 61.08 78.39
20, 30 [[5, 10], [7, 8]] [[3, 2], [8, 3]] 500, 1000 92.90 48.84 77.63
30, 20 [[7, 7], [2, 2]] [[5, 4], [5, 1]] 500, 800 93.41 60.07 77.47
20, 30 [[10, 10], [9, 6]] [[3, 2], [7, 4]] 600, 300 96.02 59.65 77.30

Table 6.9: Results obtained with the separated networks using IB microphone.

The trained network was also deployed on the STM32 board using the
STM32CubeMX tool. A factor of ×4 compression was employed. The results
achieved on GPUs and the board are presented in Table 6.11. Considering the
performance degradation of the feature extraction on the board, the embedded
processor and the GPU can achieve similar results, with a F1macro bearing as
little as 0.27% degradation on the IB microphone.

T microphone IB microphone
Dense Layer

Sz F1macro (%) Dense Layer
Sz F1macro (%)

20 93.40 20 90.15
40 94.01 40 90.03
60 92.71 60 90.18
80 93.69 80 90.30
100 93.67 100 90.38
120 93.65 120 90.29
140 93.70 140 90.34
160 93.75 160 90.36
180 93.73 180 90.23
200 93.72 200 90.20

Table 6.10: Results obtained with the merged networks training the new layers.
The best performance is obtained using CNN composed by 2 layers
of 20 and 30 kernels respectively, dimensions of kernel are [[4, 4], [4,
5]], strides equal to [[4, 2], [6, 1]] and two dense layers of 500 and
200 units respectively for microphone T and 2 layers of 20 kernels
each, with dimensions [[2, 6], [2, 6]] and strides [[3, 1], [10, 6]] and
two dense layers of 500 and 200 units respectively for microphone
IB.

The performance has been evaluated using Multiply-and-Accumulate Com-
plexity (MACC), RTF, and RAM size regarding the computational complexity.
The MACC index indicates the complexity of a model, including multiply-and-
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accumulate instructions and an estimate of the activation functions computa-
tional cost. Feature extraction comes in 1ms for Mel spectrograms in loga-
rithmic scale and Energy processing for each frame and 1ms for the first order
derivative. The network processes input data in 178ms (best network for T
microphone) and 235ms (best network for IB microphone). In both cases, the
RTF is lower than 1, 27.7% and 33.4%, respectively.

Mic GPU STM32

F1macro (%) Memory
Size (MB) F1macro (%) RTF (%) Compression

Factor
Memory
Size (MB) RAM (kB) Complexity

(MACC)
T 90.21 19.09 90.22 27.7 x4 1.57 200.86 2099885
IB 85.21 16.21 84.94 33.4 x4 1.35 251.08 3510810

Table 6.11: Results obtained with the same architecture used in Table 6.7 but
trained with features extracted from ST board.

6.1.7 Final Remarks

In this work, wetness and roughness classification is presented, with a study on
real-time implementation. Deep Learning approaches were studied, analyzing
performance both in terms of classification results and computational cost.
Different CNN architectures have been discussed for roughness classification,
achieving the best results with the Siamese Neural Network. However, the
weights stored in memory and the computational cost are almost twice as high
as for a single-channel CNN. The same consideration were discussed for the
road wetness classification, where the CNN is compared with the BLSTM. The
recurrent network achieved better results, but the training and testing time
was considerably longer than CNN.

CNN was the best choice to use the neural approach within an embedded
processor. After analyzing two joint CNN architectures, the best model was
used to evaluate the performance degradation implied by the deployment to a
DSP system. The CNN with joint classification achieved better results than
the two specialized CNN and transfer learning approaches. Regarding the
deployment, the performance was evaluated, showing comparable results with
GPUs.

The extraction of the features and the processing are computationally feasi-
ble, not exceeding 33.4% of the available time.

In conclusion, the road conditions classification by Deep Learning on an
embedded processor is feasible with lightweight architectures such as CNN.
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6.2 Joint VAD and SLOC with Acoustic Data
Augmentation

In the research community, the task of detecting human speech and the speaker
position, referred to as Voice Activity Detection (VAD) and Speaker LOCal-
ization (SLOC), respectively, deserve much attention, finding applications in
audio surveillance, human hearing modeling, speech enhancement, human and
robot interaction and so forth [178, 179].
In literature, speaker detection and its localization are usually treated as two

separate problems. Classical VADs are analyzed on specific signal character-
istics [180] or rely on statistical models of the speech and noise signals [181].
SLOCs have been evaluated by classical techniques such as Cross Spectrum
Phase (CSP) [182] and Steered-Response Power Phase Transform (SRP-PHAT)
[183].

Recently, Deep Learning techniques are investigated for VAD and SLOC
tasks. Regarding the VAD, numerous DNN architectures have been investi-
gated, like Recurrent Neural networks (RNN) [184], DBN, MLP, BLSTM [185],
and CNN [186].

A MLP is used in [186] for speaker localization in a binaural context. Another
MLP is used in [187] using the Time Difference of Arrival (TDOA) as a feature
and measured with eight microphones. A CNN is used in [188]. Multiple
speaker localization was analyzed in [189], whereas, in [190], a CNN is exploited
for predicting the speaker localization in Cartesian coordinates in a multi-room
environment.

Few works present a solution for both problems at the same time. In [191],
VAD and SLOC algorithms were used in a cooperative but distinct way, while
in [192], DNNs were used jointly for VAD and SLOCs. An ensemble of several
VAD and SLOC algorithms in a multi-room environment were studied in [193],
with the integration of DNN and Gaussian Mixture Model (GMM), leading to
a higher overall accuracy.

Generally, SLOC algorithms are evaluated within the condition of a per-
fectly detected speaker activity, called Oracle VAD. However, for a real-world
scenario, the application is not appropriate because VADs commit errors, af-
fecting the accuracy of the localization algorithms. For this reason, VAD and
SLOC could be considered as unique problems.

This work is a progression of the work presented in [192], where the neural
architecture is composed of a Neural SLOC cascaded to the Neural VAD. In
this work, some architectures were analyzed: several neural VAD models were
investigated, then a novel Neural SLOC is presented, maximizing the accuracy
and the reliability of a VAD, in this way, the minimum amount of wrongly
detected speech by the VAD is passed to the SLOC.
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The evaluation of the proposed method is performed using a multi-room
environment because it could replicate a real scenario. Crosstalk between mul-
tiple speakers in the same rooms and in different rooms could be present. Thus,
a speaker detection and localization model must be robust against utterances
pronounced in a room different from the one under observation. Background
noise from other rooms could affect VAD and SLOC evaluations. Room rever-
berations annoy the signals in several manners. Finally, noise and speech are
present inside and outside the understudy room.
The proposed method is compared with the ensemble techniques described

in [193], where the authors used the same multi-room scenario used to analyze
the Neural VAD and SLOC framework.

6.2.1 Proposed Method

The proposed method is presented in Figure 6.14. The speaker’s detection
and localization are performed using two different algorithms disposed of in a
cascade configuration. The VAD algorithm predicts speech activity by elabo-
rating audio features extracted from audio signals captured in the room under
observation. The localization is performed by the SLOC algorithm over speech
frames correctly detected by the VAD algorithm.
Feature extraction is performed to obtain LogMel and GCC-PHAT Pattern

features which feed the proposed neural networks, depending on the model con-
figuration. A post-processing technique is employed only for localization pre-
dictions. Four data-driven models for VAD are investigated, while for SLOC,
two neural networks with Oracle VAD have been studied. Localization is per-
formed in terms of speaker coordinates. The height of the speaker from the
ground is not taken into account. Hence, considering the 2-D top view of a
room, the speaker Cartesian coordinates will be referred to as χ and ψ, being
normalized to the range [0, 1] by dividing for the wall length.

Microphone
Recordings

VAD
Algorithm

Feature Extraction
LogMel/GCC-PHAT

χ

ψ

SLOC
Algorithm

Speech /
No Speech

Figure 6.14: Conceptual scheme of the proposed method. Audio features are
extracted from the recorded signals, which are used by VAD and
SLOC algorithm depending on their specific configuration. After
that, the SLOC algorithm performs localization over speech frames
detected by the VAD algorithm.

108



6.2 Joint VAD and SLOC with Acoustic Data Augmentation

Features Extraction

For the proposed method, two different features are used: LogMel and GCC-
PHAT. LogMel have been explained in Section 6.1.2 for the Auditory Spectral
Feature extraction for the Road Roughness and Wetness classification.
GCC-PHAT are used to estimate the delay between two audio signals recorded

by a microphone pair in the presence of the same sound event [182]. The mo-
tivation is due to the sound propagation, in which the sound wave reaches the
two microphones in different time instants, allowing to estimate the Direction
of Arrival (DOA) of the audio event. GCC-PHAT Patterns computation relies
on the frequency domain cross-correlation between the two microphones audio
signals, from which the Fourier inverse transform is then applied.

Since microphones pairs distance 50 cm, only the 51 values of the inverse
transform are selected. Frame size and hop size of 60ms and 50ṁs respectively
are used in the feature extraction stage. Finally, features are normalized in the
range [0, 1].

Voice Activity Detection

Four neural models for the VAD task are discussed and compared.
The first one is the Joint-V VAD model, proposed in [192], also referred to

as Joint VAD-SLOC, with the term Joint that stands for the employment of
both detection and localization features, -V stands for the use of its detection
output.
In [192] was concluded that this architecture improves performance in terms

of VAD accuracy. The model is presented in Figure 6.15, it is composed of a
CNN fed by LogMel and GCC-PHAT, and it is trained using three outputs
dedicated to both speech detection and speaker localization. Two branches
of convolutional layers process the two feature sets, then a concatenation of
the branch-dependent feature map is performed. The branches share the same
number of hyperparameters. Finally, a set of hidden layers is applied. The
model ends with the three outputs: the first one estimates the speech presence,
the other two correspond to the speaker coordinates inside the room in a 2-D
plane. Due to the [−1, 1] range, hard tanh is employed as activation function
of the localization outputs, while sigmoid activation function is used for the
speech detection output.
A temporal context extends the amount of data processed by the network

frame-by-frame, processing previous and future frames together with the actual
frame, for a total of C frame, where C is the context. The stride is set equal
to 1. A 2-D matrix is obtained for each microphone for the current frame: the
rows are the features, and the columns are the frames with the context. Then,
the different microphone features are stacked, leading to a 3-D tensor. The
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model training is performed on speech and non-speech data. Speech detection
is performed only by the speech detection output.

Mics Pairs

GCC-PHAT
Patterns

Context

Mics

LogMel

Context

Convolutional Layers Dense Layers

VAD
Output

χ
ψ

Figure 6.15: Architecture of the Joint-V VAD model.

The VAD output gives a value in the range [0, 1], whereas the localization
task is treated as a regression problem. Hence the two localization outputs are
mapped in the continuous [-1, 1] range: when speech is present, the speaker
coordinate is given in the range [0, 1], while in speaker inactivity, the labels
are set to -1.
The second architecture is called Joint-S VAD. This neural network shares

the same neural architecture with the Joint-V VAD, using detection and lo-
calization features, and three outputs characterize it. However, the speaker
activity is determined employing the localization outputs instead of the detec-
tion one., Speech detection is then performed through a particular threshold,
an oblique line in the 2-D plane of the room. The purpose of this implemen-
tation is to compare the Joint-V VAD and to show that SLOC outputs can
be accurately trained, even if their training is more sensible to employed data
compared to its VAD output.
The third architecture is the Alt Joint VAD, which shares many aspects with

the Joint-V VAD, but the output is composed of only the speaker detection,
as shown in Figure 6.16.
Finally, the last studied architecture is the Neural VAD. The neural network

process only LogMel and no SLOC outputs are present at the end of the network
(see Figure 6.17). This model shows the importance of localization features for
the detection task.

Speaker Localization

Regarding the speaker localization task, two CNN architectures were analyzed.
Both networks are trained on speech data by means of the oracle VAD, and
their outputs are the room coordinates in the range [0, 1]. ReLU is used as an
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Figure 6.16: The Alt Joint VAD model. Its architecture shares many aspects
with the Joint-V VAD shown in Figure 6.15, however the χ and ψ
outputs are absent.
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Figure 6.17: The Neural VAD model [192].

activation function.
The first model, defined as Single-Channel SLOC (SLOCSC), where the

GCC-Patterns features are organized in a 3-D tensor (see Figure 6.18). In Fig-
ure 6.19, the second neural architecture, called Multi-Channel SLOC (SLOCMC)
is presented: the input features organization and elaboration differ from the
previous architecture. A standalone input is created for each pair of micro-
phones, realizing a set of 2-D matrices, where rows and columns of each matrix
are the temporal context and the features. The CNN is then characterized by
several inputs equal to the considered microphone pairs.

Mics Pairs

GCC-PHAT
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Context

Convolutional Layers Dense Layers

χ
ψ

Figure 6.18: Single-Channel SLOC architecture.
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Finally, the SLOC output is further processed by using a smoothing tech-
nique. A moving average filter of window size equal to 5 is applied to each
predicted coordinate.

GCC-PHAT
Patterns

Convolutional Layers Dense Layers

χ
ψ

Figure 6.19: Multi-Channel SLOC architecture.

6.2.2 Baseline method
The baseline method is proposed in [193]: it consists of an ensemble of mul-
tiple VAD and SLOC algorithms, as shown in Figure 6.20. Two algorithms
are considered for VAD, the Sohn’s method and the Switching Kalman Fil-
ter (SKF). Four SLOC algorithms are taken into account, where three are de-
rived from the Cross Spectrum Phase method, 2D-CSP, multi-channel CSP and
Template CSP, and the last SLOC algorithm is the Steered Response Power
(SRP-PHAT). Finally, three integration algorithms are analyzed for jointly
processing VAD and SLOC predictions: Minimum Cost Criterion, SVM and a
neural network-based classifier. The ensemble optimization is based on a three
stages selection procedure.
The baseline model is more complex than the proposed method for many

aspects. A manual tuning is required for each method of the VAD, SLOC
and integration algorithms. The single-room prediction requires the analysis
of all the other rooms. The proposed method does not require an extensive
hand-tuning of each algorithm and processes each room independently from
the others. Moreover, the proposed method avoids a third integration stage.

6.2.3 Experimental Setup
For the VAD and SLOC tasks, DIRHA project was used for the speaker detec-
tion and localization experiments [194]. The project regards speech detection,
localization and recognition in a domestic environment. 40 omnidirectional mi-
crophones are installed in the walls and the ceilings of the apartment, as shown
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Figure 6.20: Conceptual scheme of the baseline method.

in Figure 6.21, in a 5 rooms apartment. Adjacent microphones are spaced by
50 cm, while walls installations are about 200 cm from the ground. The ceiling
installations are present only in the kitchen and living room.

The DIRHA dataset is split into Real and Simulated subsets: the first one is
composed of real recordings, with moving speakers, while the Simulated subset
is achieved by convolving measured RIRs with speech data, overlapping speech
events (this characteristic is not present in the Real subset).

Simulated subset is used for the experiments in this work since it comprises a
great amount of speech data. The proposed methods are tested in the kitchen
and livingroom since a ceiling installation is present, and most speech events
are expected to occur in these two rooms in a real scenario. In total, 17
speaker positions are available for the kitchen and livingroom, with a number
of microphones equal to 13 and 15, respectively.

Two distinct versions of the Simulated DIRHA dataset are used in this work.
The EVALITA dataset, used in [192], and the HSCMA dataset. The first
contains 70 scenes of Italian spoken utterances. The HSCMA dataset, used in
[193] is composed of 80 samples of one minute length, equally divided in Italian,
Greek, German and Portuguese languages. The Simulated HSCMA dataset is
divided into the HSCMA-Dev and HSCMA-Test subsets, each composed of 40
scenes. The first is employed for training, and the second is for testing the
performance. The training and validation sets were divided into 90% and 10%
of the HSCMA-Dev subset, respectively. The HSCMA-test has been used to
evaluate the proposed models with and without data augmentation better to
evaluate the regularizing effect of the data augmentation strategy. When data
augmentation is not considered, the models are trained using the HSCMA-Dev
subset. When data augmentation is applied, the whole EVALITA data (ex-
cluding the duplicate files) and the DIRHA-DLS (DIRHA-LibriSpeech) subset
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have been added to the HSCMA-Dev.

(a)  Floorplan (b)  Kitchen (c)  Livingroom

K2L

K3C

K1R L1C

L4R

LA4
L2R

L3L

KA5

Figure 6.21: The map of the apartment used for the DIRHA project (a). Fig-
ures (b) and (c) show the considered rooms, where the thick black
dots are the installed microphones.

The DIRHA-DLS dataset was created replicating the acoustic scenes of the
kitchen and living room. The original RIRs were recorded within the DIRHA
project, thus are not publicly available. For this reason, a new set of RIRs must
be generated. A Room Impulse Response generator [195] is employed, which
relies on the Image Source Model theory [196]. For each room, 17 positions,
with 4 different orientations were used, as shown in Figure 6.22a and 6.22b,
and 13 and 15 microphones, respectively, were used to record impulse response,
with a total of 884 and 1020 RIRs.
Speech data employed for DLS is randomly selected for the LibriSpeech

dataset [163], with a total of 500 utterances. The desired Signal to Noise
Ratio (SNR) is achieved by adding artificial noise created with the Maximum
Length Sequence (MLS) technique [197]: first, the full-length utterance power
σS is estimated. After that, the noise power σN is calculated as:

σN = σS/SNRd (6.4)

where SNRd is the desired signal to noise ratio, the RIRs are generated repli-
cating the rooms dimensions and the reverberation time. They are generated
at 48 kHz, and then the noise is added to get a SNRd equal to 40 dB, finally,
the audio files are downsampled at 16k̇Hz. In Figure 6.23, the block diagram
is shown .
Three metrics were used to evaluate the VAD performance, the False Alarm

rate (FA), the deletion rate (Del) and the overall Speech Activity Detection
(SAD), defined as:

Del = Ndel
Nsp

, FA = Nfa
Nnsp

, SAD = Nfa + βNdel
Nnsp + βNsp

, (6.5)
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(a)
(b)

Figure 6.22: The living room (a) and kitchen (b) design through the data aug-
mentation process.

where Ndel, Nfa, Nsp and Nnsp are the total number of deletions (false nega-
tive), false alarms (false positive), speech and non-speech frames, respectively.
The term β = Nnsp/Nsp balances the different amount of data between speech
and non-speech in the test set.

LibriSpeech
Dataset

∗ +

RIR

Position;
Orientation

MLS
Noise

Power
Estimate

DLS
Dataset

Figure 6.23: Block diagram of the algorithm used for the realization of the DLS
dataset.

Root Mean Square Error (RMSE) and Pcor measure the localization accu-
racy. RMSE is defined as:

RMSE =
∑NTOT
i=0

√
(χi − χref,i)2 + (ψi − ψref,i)2

NTOT
, (6.6)

where χi and ψi are the i-th network outputs, χref,i and ψref,i are the i-th
reference speaker coordinates, and NTOT is the total number of frames. The
latter is defined as Pcor = NFINE/NTOT , where NFINE is the number of
frames localized with RMS inferior than 500mm.
Two machines were used to exploit simulations: the first one is an HP note-
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Joint-V VAD
Joint-S VAD
Alt Joint VAD
Neural VAD

SLOCSC
SLOCMC

Convolutional
Layers

Number of
Layers 1, 2 1, 2

Number of
Kernels 64, 128 64, 128, 256

Kernel
Size 3, 4, 5 3, 4, 5

Kernel
Strides 1, 2, 3, 4, 5 1, 2, 3, 4, 5

Hidden
Layers

Number 1, 2, 3, 4 1, 2, 3, 4, 5, 6, 7
Neurons 256, 512, 1024, 2048 512, 1024, 2048

Table 6.12: Hyper-parameters of the DNN models, investigated through ran-
dom search in the first optimization stage.

book model 15-p257nl equipped with a 4-core Intel i7 2.4GHz, 16GB of RAM
and an Nvidia GeForce 840M graphic card; the second one is equipped with a
6-core Intel i7, 32GB of RAM and a GeForce GTX970 graphic card. A total
of 19 and 20 microphone pairs is selected for the kitchen and living room, re-
spectively, for the GCC-PHAT Patterns, and 13 and 15 microphones for the
LogMel feature extraction.
The DNN optimization strategy relies on two stages: first, the neural network

is investigated through a random search technique, then the most performing
model has trained again by using an augmented dataset. Adam optimizer
is used, the number of epochs equals 500 and the batch size is 200. Neural
networks weights are initialized with a gaussian distribution with µ = 0 and
σ = 0.1. Convolutional kernel were regularized with L1 and L2 regularizer,
set both to 1 · 10−4. Early Stopping is applied after 5 epochs. The context
is set to 15 frames. Dropout equal to 0.5 to hidden layers. The investigated
hyperparameters are reported in Table 6.12.
The best results of the VAD task are presented in Table 6.13: the best

performing architecture is the Joint-V VAD, which achieves the lowest SAD of
8.3% over the HSCMA-Test subset. When data augmentation is used (symbol
† in Table 6.13), all four models improve performance, with the Joint-V VAD
that achieved a SAD equal to 3.7%, better than Alt Joint VAD and Joint-S
VAD, confirming the strategy to use two distinct VAD and SLOC algorithms.
Regarding the SLOC performance, neural networks were analyzed with the

Oracle VAD and with the Joint-V VAD†. In Table 6.15 is presented the perfor-
mance of SLOC algorithms with the Oracle VAD. The best results are achieved
with the SLOCMC, with a RMS equals 747mm, while the SLOCSC achieved
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Kitchen Living Room Average
SAD (%) 7.6 9.0 8.3
Del (%) 9.3 16.3 12.8Joint-V VAD
FA (%) 5.9 1.7 3.8
SAD (%) 4.7 2.7 3.7
Del (%) 7.4 3.5 5.4Joint-V VAD†
FA (%) 2.0 1.9 1.9
SAD (%) 9.9 11.3 10.6
Del (%) 16.9 21.5 19.2Joint-S VAD
FA (%) 3.0 10.5 6.7
SAD (%) 7.2 8.6 7.9
Del (%) 13.7 16.9 15.3Joint-S VAD†
FA (%) 0.7 0.3 0.5
SAD (%) 8.2 8.9 8.6
Del (%) 13.9 15.9 15.0Alt Joint VAD
FA (%) 2.5 1.9 2.2
SAD (%) 6.1 3.7 4.9
Del (%) 11.4 6.7 9.0Alt Joint VAD†
FA (%) 0.7 0.7 0.7
SAD (%) 8.4 11.3 9.9
Del (%) 8.8 16.5 12.6Neural VAD
FA (%) 8.1 6.2 7.1
SAD (%) 4.6 3.9 4.3
Del (%) 5.9 5.4 5.7Neural VAD†
FA (%) 3.2 2.7 2.9

Table 6.13: Achieved results for the three proposed data-driven algorithms on
the HSCMA-Test set. For each model the first main line corre-
sponds to the first optimization stage, where neural networks hyper-
parameters are investigated. The second line shows the result when
data augmentation is applied, denoted with †.

almost the same result (751mm). Using the augmented set, the performance
is improved by achieving better localization accuracy: SLOCMC

† achieved the
best performance, with a RMS of 431mm , while the SLOCSC

† achieved 472mm
of RMS.
In the presence of the Joint-V VAD†, the SLOCMC

† and the SLOCSC
† achieve

respectively 372mm and 425mm of RMS, as shown in Table 6.15. The Pcor of
SLOCMC

† is 94.1%, concluding that this architecture is capable of better ex-
ploiting data recorded from multiple microphones, providing a better capability
of generalizing compared to the SLOCSC.

In Table 6.16 the best overall performance in terms of VAD and SLOC
achieved in [193] are reported. The four baseline SLOCs are tested in the pres-
ence of an Oracle VAD. The two more accurate techniques are then separately
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Oracle VAD Kitchen Living Room Average

SLOCSC
RMS (mm) 757 745 751
Pcor (%) 62.8 63.2 63.0

SLOCSC
† RMS (mm) 508 436 472

Pcor (%) 85.8 90.8 88.3

SLOCMC
RMS (mm) 788 707 747
Pcor (%) 57.5 66.7 62.1

SLOCMC
† RMS (mm) 447 415 431

Pcor (%) 90.4 94.0 92.2

Table 6.14: Results for the two proposed SLOC when tested in the presence
of an Oracle VAD detecting speech over the HSCMA-Test subset.
The † denotes the application of data augmentation.

Joint-V VAD† Kitchen Living Room Average

SLOCSC
RMS (mm) 724 600 662
Pcor (%) 66.5 69.3 67.9

SLOCSC
† RMS (mm) 451 399 425

Pcor (%) 87.8 91.3 90.0

SLOCMC
RMS (mm) 745 563 654
Pcor (%) 61.1 74.6 67.8

SLOCMC
† RMS (mm) 367 377 372

Pcor (%) 93.0 95.3 94.1

Table 6.15: Performance of the two VADs when tested over true positive frames
detected by the Joint-V VAD†.

coupled with the Sohn’s and SKF algorithms. Then, the less performance of
the previously selected SLOCs is rejected. Finally, three proposed integration
algorithms are applied to the remaining SLOC coupled with the two VADs.
As a result, the best combination is Sohn’s VAD and the Template method
as SLOC when the SVM performs the integration. Sohn’s method with the
SVM integration is referred to as VADB (where B stands for Baseline), while
the Template method is referred to as SLOCB. In Table 6.16 the average re-
sults are presented because the kitchen and livingroom results are not available
separately in [193].
In Table 6.17, the most performing configuration in terms of SLOC accuracy

for the baseline method is reported. The configuration shares the same SLOC
method (SLOCB), while the integration is the MLP with the SKF as VAD
algorithm (VADB_SKF).
Finally in Table 6.18 is reported the performance of SLOCB when the Oracle

VAD is used.
The overall performances of the proposed approach with the baseline model
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Average

VADB

SAD (%) 6.7
DeL (%) 6.1
FA (%) 6.1

SLOCB
RMS (mm) 961
Pcor (%) 59.2

Table 6.16: The best overall performance in terms of VAD and SLOC for the
baseline method.

Average

VADB_SKF

SAD (%) 17.4
DeL (%) 25.8
FA (%) 4.1

SLOCB
RMS (mm) 768
Pcor (%) 66.7

Table 6.17: Results of the baseline method when VAD and SLOC algorithms
are selected in order to achieve the most accurate SLOC predic-
tions.

Oracle VAD Average

SLOCB
RMS (mm) 1094
Pcor (%) 56.4

Table 6.18: Best performance of the baseline SLOC in the presence of an Oracle
VAD.

are discussed. As the best configuration of the baseline method is taken, the
VADB and SLOCB. In Table 6.19 a comparison between the two approaches
for speaker localization is presented. ∆ presents the subtraction of the result
achieved by the baseline model from the result related to the most performing
proposed algorithm. SLOCMC

† and SLOCB are analyzed over speech detected
using the Oracle VAD. The data-driven model is more robust against the multi-
room environment, outperforming the classical localization algorithm of more
than 35%.

Oracle VAD Average

∆ RMS (mm) -663
Pcor (%) +35.8

Table 6.19: Difference of the most performing SLOC proposed by the authors
(SLOCMC

†) with the SLOCB in the presence of an Oracle VAD.

Analyzing the results with the VAD algorithms, the overall performance ∆
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is better using data-driven models. In Table 6.20 a reduction of SAD of 3.0%
is calculated, and a decreasing of 4.2% and 0.7% of FA and Del, respectively, is
observed when the Joint-V VAD† is employed. Using the SLOCMC

†, a higher
accuracy on Pcor of 34.9% and a reduction of RMS of 589mm with respect to
SLOCB.

Average

∆

SAD (%) -3.0
DeL (%) -0.7
FA (%) -4.2

RMS (mm) -589
Pcor (%) +34.9

Table 6.20: Differences between the proposed data-driven approach and the
baseline model of [193].

6.2.4 Final Remarks
A novel data-driven framework for detecting and localizing a speaker in a multi-
room environment is studied. In literature, these two tasks have been studied as
two separated problems; however, their mutual dependency must be addressed
in a real-world scenario.
In this work, the architecture consists of a SLOC cascaded to VAD. The

framework is compared with the only other framework present in literature for
the detection and localization of a speaker in a multi-room environment.
Four CNN-based VAD algorithms are compared, where the most performing

one is able to process audio features usually employed for VAD and SLOC,
respectively. Two different SLOC architectures are then proposed to exploit
data recorded by multiple microphone installations properly. Moreover, data
augmentation is exploited, adding two subsets to the original DIRHA dataset:
the first one is another version of the dataset; the second one is the result of
the technique used for the RIR generation and convolution with speech data.
The Joint-V VAD model has been trained with data augmentation technique,

a SAD reduction of 3.0% is observed compared to the baseline work. The same
discussion for the SLOC architecture, achieving a Pcor of 34.9% higher and
an RMS of 589mm lower than baseline techniques. The effectiveness of data
augmentation is clearly observed for VAD and SLOC.
Future works will target the employment of new features for VAD and

SLOC, principally aiming at a joint model performing detection and local-
ization. Other neural network architectures could be studied, like recurrent
neural networks, thus transferring learning techniques to adapt models devel-
oped for certain rooms to other rooms, even related to different residential
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environments.

6.3 Sound Event Detection and Separation for the
DCASE Challenge

Sound Event Detection (SED) is the task of recognizing the set of active sound
events in a given audio recording. This technique could be used in a variety of
applications: acoustic monitoring, human-computer interaction, meeting room
transcription [198].
In literature, most of the baseline techniques for SED use supervised tech-

niques with DNNs [199]: a neural classifier is trained using a strongly-labelled
dataset of possibly co-occurring audio events. Since acquiring and creating
strongly labelled data is a costly procedure, weakly labelled and unlabelled
data are used to decrease the reliance on strongly annotated data via Semi-
Supervised Learning.

CNN [199] and CRNN [200] are the widest architectures used for this kind of
issue, in combination with the Multiple Instance Learning pooling method [201]
that works with weak labels and a consistency loss for exploiting unlabelled
data [202].

Source Separation (SS) is the task to extract from an acoustic mixture its
underlying acoustic components [198]. DNNs based methods have significantly
improved the separation of arbitrary sounds [203]. Source separation has a va-
riety of applications such as hearing aid devices, Automatic Speech Recognition
[204], diarization and video editing.

SED and SS have been used for the Detection and Classification of Acoustic
Scenes and Events (DCASE) 2020 Task 4 challenge. In particular, several
methods were employed for improving SED systems, while the SS is used to
improve performance for the baseline SED technique proposed for the DCASE
challenge.

6.3.1 The DCASE 2020 Task 4 Challenge Dataset
The DCASE 2020 Task 4 challenge allows to tackle Sound Event Detection
(SED) in domestic environments facing real-world issues such as weakly anno-
tated data, unlabelled data and only a very small corpus of strongly annotated,
synthetic data. The goal of the challenge is to develop a SED system being
able to tag onset and offset different sound event classes: Speech, Dog, Cat,
Alarm Bell/Ringing, Dishes, Frying, Blender, Running water, Vacuum cleaner,
Electric shaver/toothbrush.

The dataset is unbalanced and diverse. The DESED dataset [205] is com-
posed of weakly labelled and unlabelled real soundscapes and isolated synthetic
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events with strong labels. The SINS [206] and TUT Acoustic scenes 2017 [207]
datasets offer background noise. The FUSS source separation dataset [208],
aimed for the SS task, offers isolated events but not annotations.

6.3.2 Sound Event Detection

This Section discusses the proposed SED for the DCASE 2020 Task 4 Sound
Event Detection and Source Separation. The CRNN based architecture is
kept, as well as the mean teacher training scheme with the same network and
optimization hyperparameters as the baseline.
The main contributions are in the training procedure, feature preprocess-

ing and prediction post-processing and smoothing. The training dataset is
composed of real and synthetic data. Only a portion of the real recording is
provided with weak annotations. Test and Development sets include only data
from real-world recordings.
Domain Adversarial Training (DAT) [209] enforces the model to learn fea-

tures that are invariant to the change of domains in order to better generalize
by learning from the synthetic data of domain examples. The domain adap-
tation process is embedded into the training procedure, adding a branch with
a gradient reversal layer to the original architecture. This branch is only used
at training time and then dropped at test time, so there is no computational
overhead at run time.
Both the network and the domain classifier are jointly optimized during the

training step. The gradient reversal layer serves the original architecture to
work adversarially to the added domain classifier by extracting features that
are domain-invariant, maximizing the loss of the domain classification task. In
this way, the DAT enforces learning of features invariant between the synthetic
examples domain and real-world recordings domain, reducing the chance of
overfitting the strong-labelled synthetic examples.
Conv-TasNet separator network is used as the adversarial branch. The sepa-

rator network outputs a probability in the whole input example by using mean
pooling. Indeed, the network must classify whether the input example belongs
to synthetic examples or weak/unlabelled examples. The fully convolutional
architecture of the Conv-Tasnet helped the gradient propagation from the dis-
criminator to the main network. Finally, the adversarial branch was placed in
parallel to the RNN block after the CNN layers in the CRNN architecture, as
shown in Figure 6.24.
The CRNN and the adversarial branches are then updated in two several

steps adversarially: the loss for the CNN training Lmain is comprised of only
strong labelled loss, weak labelled loss and consistency loss between teacher
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and student. Thus for the CRNN, the update rule for its parameters θC is:

θc ←− θc − α
(
λ
∂Lmain

∂θc
− (1− λ)∂Ladv

∂θc

)
, (6.7)

where Ladv is the binary cross-entropy loss for the adversarial network, λ is a
hyper-parameter that controls the relative magnitude of the two losses, and α
is the learning rate. Differently, for the adversarial network with parameters
θa, the update rule is:

θa ←− θa − α(1− λ)∂Ladv

∂θa
. (6.8)

In this work, the gradient reversal layer is used as a two step optimizing
procedure like the one used in GANs because this approach gives better results
than the gradient reversal layer approach, leading to more stable gradients
during training.

Figure 6.24: Domain adversarial training scheme.

Online augmentation strategy is employed because of the limited amount of
acoustic diversity of DESED synthetic examples. Each synthetic training ex-
ample is composed of randomly sampling from one to five random foregrounds
and one background file from SINS. Reverberation is applied using FUSS RIRs,
then a random time-domain augmentation chain is applied with different ef-
fects to each source, with a maximum of two random cascaded effects: additive
noise bursts, additive sine bursts, time-varying comb filters, compression, pitch
shifting, low-pass and high-pass filtering.

The foreground and background are mixed, with the foreground sampled
between -35 dB and 0 dB, while the backgrounds constrained to be at max 5 dB
over the foreground. Gaussian noise with SNR between -10 dB and 10 dB is
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added, employing SpecAugment [210], ensuring a virtually amount of different
strongly labelled data.
For weak and unlabelled data, an additional background from SINS is added

to the original mixture with 50% probability and employ the feature domain
augmentations.
As a trainable dynamic compression strategy, Per-Channel Energy Normal-

ization (PCEN) [211] is used. This technique enhances transient audio events
while transforming many soundscape noise patterns into additive white Gaus-
sian noise, improving the robustness of audio classification algorithms in the
presence of background noise with minimal computational overhead. PCEN is
defined as:

PCEN(t, f) =
(

E(t, f)
(ε+M(t, f))α + δ

)r
− δr, (6.9)

where t and f denote time and Mel frequency band index, α, ε, r and δ are
positive constants and E(t, f) denotes filter bank energy used as feature rep-
resentation. M(t, f) is a smoothed version of E(t, f), which is computed using
a first-order IIR filter as M(t, f) = (1− s) ·M(t− 1, f) + sE(t, f), with s the
smoothing coefficient.
The PCEN operation can have a negative impact on the stationary sounds,

as vacuum cleaner or blender events. Therefore, several PCEN transformations
in parallel (Parallel PCEN, PPCEN) are proposed in order to specialize each
layer to a certain group of sounds. The output of each layer is given as feature
channels to the CRNN model and jointly optimize the parameters of such
PPCEN front-end layers using backpropagation, optimizing parameter α, δ,
r, predetermining the two smoothing coefficients s1=0.014 and s2=0.25 and
learning a combination of the smoother outputs.
In Figure 6.25 the output of the proposed 2-layers PPCEN front-end is shown

when it is fed with speech and vacuum cleaner example. The first PCEN layer
also captures more slow-varying events. The background noise and the vacuum
cleaner harmonics can be distinguished and are enhanced with respect to the
original log-Mel features. The second PCEN layer focuses only on events with
faster onset, such as speech.
Finally, Hidden Markov Model (HMM) is used for the final prediction with

two states for each class. The silence self-loop transition probability was tied
to be the same for all HMM. It is tuned for every class and silenced on the
development set using 50% split by using Random Forest and with the objective
of maximizing the event based F1 macro-average score of the trained SED
model. Once the optimal parameters for the HMMs transition probabilities are
found, the inference is performed by running Viterbi decoding on the CRNN,
achieving the probabilities for each class. The HMMs emission probabilities
were fixed in the pre-trained SED classifier, tuning the transition probabilities.
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Figure 6.25: Output of the PPCEN layer: (a) original mixture LogMels, (b)
first PCEN layer, (c) second PCEN layer. The two parallel layers
capture different spectro-temporal dynamics.

Results

In Table 6.21 the results are reported on the development and evaluation sets.
Four SED systems were compared: two single systems and two ensemble sys-
tems.
Regarding the single systems, the PPCEN with HMM (PPCEN+HMM) and

the DAT with HMM (DAT+HMM) were employed, both improving perfor-
mance over the baseline systems. DAT+HMM achieved the highest score for
the development but not for the test. The PPCEN+HMM system generalizes
slightly better the evaluation set.

The ensemble systems derive from a combination of PPCEN and DAT sys-
tems. Only the HMM transition probabilities differ. The second ensemble
system (DAT+PPCEN+HMM 2) achieves a higher score on development but
has work performance on the test, showing that HMM transition probabilities
tuning can have a substantial impact on the final system performance and can
be prone to overfitting.

6.3.3 Source Separation System

The combined separation and SED used as the proposed method are composed
of the released pre-trained SED baseline system together with the proposed
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Method Event macro F1 score PSDS
dev eval dev

Baseline 34.8 34.9 0.61
PPCEN+HMM 43.69 42.6 0.63

DAT+HMM 45.20 42.0 0.68
Ensemble DAT+PPCEN+HMM 46.17 44.4 0.69

Ensemble DAT+PPCEN+HMM 2 47.44 43.2 0.69

Table 6.21: Performance on development and evaluation sets.

separation system.
The baseline SED system derives from [212] and is trained on a synthetic

dataset comprised of FUSS and synthetic examples from DESED. The base-
line model is optimized with an End-to-End (E2E) waveform that denoises
the background noise from the mixtures. The network architecture is based
on TDCNN++ [203] and it performs the analysis, masking and synthesis: a
DNN is used to estimate a mask in the STFT magnitude spectra domain in a
transformed domain for each source.
The denoising process can introduce a mismatch because the baseline SED

model is trained on noisy mixtures. For this reason, the proposed method is the
Task-Aware separation training, which solves the domain mismatch problem
that is present when the denoising is performed on a system trained on noisy
mixtures. This method allows to train a separation system using a pre-trained
SED back-end with the SED objective, thus avoiding the domain mismatch
problem. A significant advantage over the joint training is that potentially a
robust back-end, pre-trained and a significant amount of data, for which oracle
targets for separation are not available, can be directly used.
A DNN mask-based separation is used on Mel-spectrograms. The separated

features are then fed to the pre-trained SED system after applying logarithm
and scaling. The predictions of the SED and its internal activations are used
to train the mask-estimation DNN network. The back-end SED model is not
updated, but the gradients are back-propagated through it in order to update
the mask-estimation network.
Permutation Invariant Training (PIT) [213] and Mean Teacher are used to

train the mask-estimation DNN. PIT is used to avoid overfitting of the weakly
and synthetic examples very quickly.
The PIT loss function can be calculated as:

LPIT = min
σ∈FJ

L (f̂σ, f) (6.10)

where f = [fj(t)]t=1··· ,N
j=1,··· ,J and f̂ = [f̂j(t)]t=1,··· ,N

j=1,··· ,J are the matrices of true and
estimated targets, where J and N are respectively the maximum number of
sources and the length of the estimated and true targets; f̂σ is a permutation
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of f by σ ∈ FJ , with FJ defined as the set of permutation of [1, · · · , J ]. The
procedure consists in computing the loss L for all possible permutations of the
targets and finding the permutation σ for which the loss is minimized. Sev-
eral different losses depending on what the labels are available for the current
example are used to train the mask-estimation DNN.
For the strongly labelled examples, thus the DESED synthetic data, where

the foreground features f are available, the loss is the PIT Mean-Squared Error
loss LMSE , finding the optimal permutation σopt for the estimated separated
features f̂ :

LMSE = min
σ∈FJ

MSE(f̂σ, f) (6.11)

The estimated foregrounds features are then re-ordered according to σopt
and fed to the SED model for computing the Deep Feature Loss (DFL) LDFL,
computed between each SED internal activations obtained with re-ordered es-
timated foregrounds SED(f̂σopt) and those obtained with oracle foregrounds
SED(f):

LDFL =
M∑
m=1
||SED(f̂σopt)m − SED(f)m|| (6.12)

where the sum is calculated over all M layers of the SED back-end and SED(f)m
denotes the activation of the m-th layer when the SED model is fed the feature
matrix f . The total loss for strongly labelled examples are the sum of the two
terms:

Lstrong = LDFL + LMSE (6.13)

For weakly labelled examples, no oracle foregrounds are available, thus the
separation model is trained in order to minimize the PIT binary cross entropy
(BCE) between weak predictions of the SED model when it is fed the estimated
foregrounds features ŵσ = SED(f̂σ)weak and the weak labels:

Lweak = min
σ∈WJ

BCE(ŵσ, wweak) (6.14)

The Mean-Teacher consistency is used for the unlabelled data. The Mean
Teacher Semi-Supervised loss is used for the mask-estimation network and en-
force SED weak and strong predictions consistency between the valued obtained
with a student separation model S(f ; θt) using permutation invariant MSE loss
Lteach between the separated features of the two models:

Lteach = min
σ∈FJ

MSE(SED(S(fσ)), SED(T (f))) (6.15)
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The total loss Ltot used to train the mask-estimation DNN is the sum of
strong, weak and mean-teacher losses.

Results

In Table 6.22 the performance of the proposed separation system trained with
the Task-Aware separation objective (Proposed) is presented, comparing the re-
sults with the SED challenge baseline back-end system without pre-processing
(SED-only Baseline), the combined separation and the sound event detection
baseline with (SEP+SED Baseline) and without averaging of predictions be-
tween noisy and denoised mixtures (SEP+SED Baseline no avg.).
The combined separation and SED Baseline system fail to improve the SED

back-end performance when no ensembling is performed, whereas ensembling
produces a moderate performance improvement. The proposed method offers
more than 2% improvement over the plain SED-only baseline with no ensem-
bling and a significantly smaller separation model.

Method Event macro 1-score Parameters
SED-only Baseline 34.8 1M
SEP+SED Baseline 35.6 10M

SEP+SED Baseline no avg 33.4 10M
Proposed 37.0 4M

Table 6.22: Performance of combined separation and SED systems on DCASE
2020 Task 4 development set.

6.3.4 Final Remarks

Sound Event Detection and Source Separation system have been investigated
in this work, tackling DCASE Challenge Task 4.
Regarding the SED, the baseline SED system is investigated, adding a PP-

CEN front-end feature pre-processing, Domain Adversarial Training and online
data augmentation and mixing, achieving an improvement of performance with
a minimal computational overhead at inference time. The HMM smoothing is
also investigated, improving the results of the system by refining network pre-
dictions.
A novel training scheme combined Source Separation and Sound Event De-

tection is presented for the Source Separation purpose. The Source separation
system is trained in an End-to-End fashion with a pre-trained SED system
that is not updated. A combination of permutation-invariant training objec-
tives is used, booth signal-based and SED-based, called Task-Aware separation,
as the separation system is optimized directly with the back-end task objective.
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Comparing the proposed approach with the combined Source Separation and
Sound Event Detection DCASE 2020 Task 4 baseline methods, the proposed
one achieves better performance with fewer parameters.

In future works, the End-to-End approach will be further investigated also
for Automatic Speech Recognition. Further studies will also be investigated for
the SED task.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions
In this dissertation, Machine Learning and Deep Optimization techniques for
digital filters design for Multipoint Audio Equalization and Personal Sound
Zones have been analyzed.
Multipoint Audio Equalization aims to improve sound quality in a listening

environment composed of different sound sources and listening points. The
Personal Sound Zones methods aim to separate the sound sources within two
areas that are located within a listening environment.

Many experiments have been performed using various automotive scenarios.
The car cabin is composed of an irregular and small volume, several materials
on all surfaces, and large obstacles inside the car cabin, adding non-linearities
to the acoustic scene. Machine Learning methods and Deep Neural Networks
have been widely investigated to solve the two optimization problems, achieving
better results than the state-of-the-art methods.

In Chapter 1, there is a brief introduction on the automotive listening en-
vironment, Multipoint Audio Equalization and Personal Sound Zones. From
there, the problem statement and motivations have been described.

In Chapter 2, the Machine Learning techniques and multi-objective opti-
mization problems have been explained. Then, the evolutionary algorithms
and neural networks used for experiments have been illustrated.

In Chapter 3, FIR, IIR, Parametric IIR filters and a review of the up-to-
date digital filter design techniques have been described, including evolutionary
algorithms and deep neural networks.

Multipoint Audio Equalization and Personal Sound Zones have been intro-
duced in the two successive chapters.

In Chapter 4, the Multipoint Audio Equalization techniques presented in lit-
erature have been discussed. Several DNNs have been compared, describing the
experiments and results obtained between the baseline techniques and the pro-
posed method. The first studies on DNNs have been addressed in the design
of FIR filters for Multipoint Audio Equalization, analyzing over-determined
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systems and different automotive scenarios. Neural techniques performed bet-
ter than baseline and evolutionary algorithms. Moreover, among the neural
architectures used for optimization, the CNN obtained the best results. De-
spite the good performance in the frequency domain, the achieved filters are
not compact, leading to many artefacts during the sound reproduction. These
problems have been addressed in the Personal Sound Zones task.
With the analysis on the design of Parametric IIR filters for Multipoint

Audio Equalization, there was a significant advancement in the study of neural
networks for parameters optimization. A novel architecture, the BiasNet, has
been compared with a baseline technique for parametric IIR filters design and
another one used for the FIR filters design, resulting in better performance.
Comparing the results with the CNN, the BiasNet achieved better results with
a lower computational cost.
The Personal Sound Zones task has been presented in Chapter 5. The most

important techniques shown in literature have been discussed. Next, the ex-
periments in a car scenario have been introduced, using FIR and Parametric
IIR filters. Regarding the design of the FIR filters for PSZ, the problems en-
countered in the Multipoint Audio Equalization have been solved, adding reg-
ularization terms to obtain compact filters. The results are promising with the
proposed approach, achieving comparable results with respect to the baseline
methods.
FIR filters have been compared with Parametric IIR filters, increasing the

number of SOS’s per one-third octave band in the latter. Using 4 SOS’s per
one-third octave band achieved the best performance, obtaining comparable
results with respect to FIR filters, meaning that Parametric IIR filters could
be preferable because of the computational cost reduction with respect to the
FIR filters.

7.2 Future Works
Future works will be directed on studying new Deep Optimization techniques
for the design of digital filters for Multipoint Audio Equalization and PSZ. A
study of new neural architectures and a further analysis of the BiasNet will be
conducted to obtain optimized parameters with fewer iterations and resources.
The tests carried out have been used for a pre-tuning stage in a static sce-

nario. The filters obtained can be inserted into DSP systems. In the future,
the goal will be to exploit Deep Optimization techniques for adaptive filtering
to optimize parameters in real-time. Nowadays, it is challenging to achieve this
solution because DSP systems have limited computational resources.
The two tasks have been considered as multi-objective optimization prob-

lems. Thus, future works must be conducted to study new cost functions that
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allow optimized parameters with fewer loss functions.
Further studies will be conducted on evaluation metrics. Other frequency

domain and perceptual metrics will be investigated. In addition, subjective
tests within the acoustic scene will be analyzed.
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