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HIGHLIGHTS 

• A FE model calibration based on AVT and machine learning process is presented. 

• The dynamic parameters of the investigated tower are estimated via OMA techniques. 

• Different parameterization and modelling assumptions are employed for the updating. 

• The calibrated model accurately reproduces the real dynamic behaviour of the tower. 

 

ABSTRACT 

Cultural Heritage preservation requires the combination of in situ investigations and accurate Finite 

Elements models in order to correctly interpret the empirical evidence and successfully apply advanced 

structural analyses for health assessment purposes, allowing to infer about the future evolution of the 

structural response and timely detect deviations from the expected behaviour.  

In this paper the actual dynamic behaviour of the Civic Tower of Ostra, Italy, is thoroughly investigated 

by means of a detailed numerical model built and calibrated using the experimental modal features 

estimated through field dynamic testing. To this end, a fully automated Finite Element Model Updating 

procedure based on genetic algorithms and machine learning is conceived and employed, allowing the 

successful estimation of the unknown material properties of the tower, considering both isotropic and 

orthotropic behavioural models for masonry. The results enabled to establish baseline information on 

the current structural condition of the heritage and to set to performance standards that will serve to 

optimise the control of the structural integrity over time. 
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1. Introduction 

Masonry towers are one of the most widespread structural typologies among the various Italian Cultural 

Heritage (CH) buildings. One peculiar characteristic of this category of buildings is their evident 

slenderness. This aspect, together with the numerous uncertainties associated to masonry structures, 

such as irregularities and imperfections, complexity of the internal structure, local variability of 

material properties as well as the effects of past damages and repairs, makes masonry towers 

particularly vulnerable to seismic actions, as the tragical events of last years demonstrated [1–6].  

Besides their cultural and social importance, heritage structures and sites positively impact the 

economy of the cities and countries in which they are located by providing touristic attractions. Thus, 

it is crucial to guarantee appropriate maintenance plans and undertake regular preventive actions in 

order to prevent irreparable damages and avoid unexpected collapses with consequent unsustainable 

losses. Particularly, as far as masonry towers are concerned, their high vulnerability to seismic loading 

calls for an accurate characterization of their dynamic behaviour in order to better understand their 

actual response during earthquakes. The achievement of a thorough knowledge about the global 

behaviour of these unconventional structures, also considering their interaction with the surrounding 

environment [7–10], is indispensable for a reliable structural assessment and for the early identification 

of damage.  

Damage can be considered as an adverse condition that impairs the structural behaviour of a system 

and causes a deviation from its expected response, often resulting in excessive displacements, 

vibrations and/or undesirable stresses. Early-stage damage detection is therefore crucial to ensure both 

the integrity of the structures and the safety of their users. Several damage identification techniques 

based on the observation of dynamic properties variations in structural systems have been developed 

in the last decades [11–16], given the high sensitivity of modal parameters to damage-induced changes. 

Among these techniques, vibration-based Structural Health Monitoring (SHM) tools have shown a 

great potential for the structural assessment of historical constructions, both from a static and a dynamic 

point of view, standing as reliable full-scale investigation methods that allow to collect experimental 

data representative of the global structural behaviour without resorting to any invasive technique, thus 

preserving the historical value of the construction. The basic idea of vibration-based damage detection 

methods is that any change in the physical and mechanical properties of the structure, or in its boundary 

conditions, will cause changes in its dynamic properties. Thus, by deploying a grid of wired or wireless 

sensors at strategic locations, one can keep under control the behaviour of any system by following the 

evolution of its modal parameters estimated from the vibration signatures recorded across the 

instrumented structure. To this end, operational modal analysis (OMA) techniques are preferred over 

traditional experimental modal analysis (EMA) approaches since they allow to estimate the modal 

parameters of the structure under real operational and boundary conditions (e.g. without interrupting 

the operative function of the building), using freely available ambient excitations as input force, and 

measuring only the output vibration response of the structure [17]. 

Ambient Vibration tests (AVT) are commonly used in conjunction with another classical procedure in 

the field of damage identification which is Finite Element (FE) model updating, whose application for 

design and construction of structures has started since the 1980s [18] and, in recent years, has been 

successfully extended to existing masonry structures [8,19–23]. This updating process consists in 

calibrating the unknown properties of a structural system till the distance between numerical and 

experimental dynamic responses, particularly in terms of modal frequencies and mode shapes, is 

minimized. This fine-tuning operation, if performed manually by a trial-and-error approach, can result 

cumbersome and very time-consuming in case of large and complex structures, making impossible the 

accurate estimation of the global optimal solution. Various authors have therefore turned their attention 

towards automated iterative procedures; though, given the high computational time often required by 

the elevated number of iterations and the non-practicability of the approach when the number of free 

variables is considerable, in many cases they ended up resorting to approximate methods for the 

updating [18,24,25]. With the aim of reducing the unknown quantities that should be considered in the 

FE model updating, global sensitivity analysis methods can be adopted to measure the effective 

dependence of the structure’s frequencies on the different parameters and better address their selection 



[26–28]. Despite the inherent advantages, reducing the number of candidate parameters limits the 

updating problem to a particular condition state of the structure, thus the sensitivity analysis must be 

necessarily repeated every time new data are collected from the system in order to avoid an ill-

conditioned updating that might preclude not only the representativeness of the model but also the 

assessment and evolution of localized damage mechanisms. To overcome this aspect, alternative 

optimization methods able to deal with large and multi-dimensional problems can be exploited [29,30], 

like natured-inspired metaheuristics [31]. 

Within this framework, the present work aims to provide a contribution to the field of structural 

assessment and damage identification of historic masonry structures by proposing an iterative updating 

procedure based on Genetic Algorithms (GA) to build a reliable reference model of a heritage tower 

located in Central Italy for future comparative analyses and health monitoring [29,32].  

For the purpose of this work, the genetic algorithm provided by the open-source finite element solver 

Code_Aster© is employed to automatically find the optimal values for the unknown material properties 

of the investigated tower, starting from the model calibrated against 2018 experimental results and then 

updated to match the behaviour identified with 2019 measurements [33–38]. To better assess the 

efficiency, accuracy and reliability of the proposed approach, the dimensionality of the problem is 

upscaled by increasing the number of updating variables to be determined, thereby allowing to take 

into account also the uncertainties associated with the modelling of masonry as an isotropic or 

orthotropic material. Without artificial intelligence, such a detailed study would not be possible. 

In addition to this introductory section, the remaining of the paper is organized as follows. Section 2 

describes the tower history and the outcome of the geometric and material surveys; Section 3 focuses 

on the identification of the modal parameters of the structure through OMA techniques; Section 4 

presents and discusses in detail the model updating process using GAs. Finally, Section 5 summarizes 

the main conclusions that can be drawn from the work.  

2. Ostra Civic Tower: description of the case study 

2.1 Historical survey  

Located about 40 km away from Ancona, Ostra is one of the typical villages of the Marche region, in 

Central Italy. Lying on a hill, overlooking the river Misa Valley, it is said that Ostra was founded by 

the exiles of the Roman Empire and its original name, till 1881, was Montalboddo. Destroyed during 

Goths invasion, the village was rebuilt, and during the Middle Age, it was surrounded by a protective 

wall, 1200 meters long, interspersed with square section towers, nine of those still existing today. 

Nowadays, the centre of the city life is represented by the central Piazza dei Martiri, located in the 

upper part of the historic centre, where the most important buildings, such as Palazzo Comunale, San 

Francesco Church, La Vittoria Theatre, are found. Among them, the most emblematic building of the 

city – case study of this paper – stands: Ostra Civic Tower (Figure 1). Built in the XVI century, this 

tower is also known as “Clock Tower” because of the ancient clock gears still present today, even if no 

longer in operation. 

 



 
Figure 1 - Ostra Civic Tower localization. 

 According to historical sources [39,40], the belfry tower was originally connected to San Giovanni 

Church (Figure 2a). The two buildings had autonomous origins: the church was mentioned for the first 

time in archival documents in 1454, while the tower was built in 1552 at the behest of the magistracy. 

The bell, hosted today by the third order of floors, dates to 1631. 



 
Figure 2 - San Francesco Church and the Tower before bombardments (a) and a view of the central square to the present 

days (b). 

With its architecture and double staircase, the church closed the fourth side of the square, making it an 

elegant “living room”. The interior of the structure treasured various artworks, including many 

altarpieces such as that of Andrea Sacchi (1599/1661) depicting San Bonaventura da Bagnoregio and 

San Tommaso d'Aquino (today stored at the Superintendence of Urbino). Though, following the aerial 

bombardments occurred in 1944 during the II World War, only the church façade and the civic tower 

survived.  

Because of the precarious conditions of the structures, it was decided to intervene by demolishing the 

rests of the façade and strengthening the tower. Façade demolition led to the uncovering of the 

foundations of the tower walls and of the external staircase of the building, making them prone to 

degradation phenomena due to atmospheric agents and pollutants. Therefore, foundation works were 

promptly carried out along with the recovery of the base walls. Parts of the external walls and 

battlements damaged by the bursts of artillery bullets were also restored. 

After the works, a new architectural arrangement of the square became indispensable. Some projects 

envisaged creating a decent background, in harmony with the palaces that frame the town square, and 

erecting a building that could replace the beautiful (demolished) façade and which could form, together 

with the civic tower, a single majestic and harmonious architectural complex (Figure 2b). 

 

2.2 Geometrical and material survey 

With an overall height of 30 meters (before the interventions executed in 1950, when the foundations 

were partially uncovered and the top part was added, the original height was 25 meters), the Civic 

Tower of Ostra is a historical masonry structure featuring four main parts: the basement, the central 

body, the bell cell and the top roof (Figure 3). In what concerns the parts belonging to the original 

tower, the bell cell is unchanged, while the central body is partially reconstructed, as the changes of 

the masonry texture reveal. 

The basement consists of a truncated pyramid, whose lower base measures approximately 7.30 x 7.50 

m2, while the upper base is about 5.30 x 5.60 m2. This part develops up to a height of 9.55 meters, 

culminating in an embattled balcony. Hereon, the parallelepipedal central body starts, keeping the same 

shape for additional 9.50 meters. Then, the cross section of the tower slightly reduces at the level of 

the bell cell and remains unchanged till the embattled enlargement of the upper part.  

The tower results composed of five floors: the first three are connected through spiral staircases starting 

from the ground level, while the last two orders of floors are reachable using an iron ladder. The clock 

mechanism is located on the second floor, whereas the bell cell occupies the third level, whose 

perimetral walls are pierced by single-light arched windows, one per side. The entrance is located on 

the main façade (north-east oriented), which overlooks Piazza dei Martiri. 



 
Figure 3 - Geometrical survey of the investigated tower: front views (top) and CAD sections (bottom). 



The survey allowed to distinguish different construction features and materials across the tower (Figure 

4). Particularly, the bearing walls, whose thickness ranges from 1.1 meters in the lower part (first floor) 

to 0.6 meters in the upper part (last floor), resulted built with solid brick masonry and thin mortar joints. 

As for the basement walls, their remarkable thickness let infer the presence of an inner rubble core 

between brick outer layers, though no investigation could be performed to confirm the hypotheses 

about their internal morphology. The structural interventions undergone by the tower include the 

reinforced concrete slabs constituting the floors, whose thickness varies from 0.11 meters to 0.27 

meters, the concrete columns built to reinforce the corners at the third level, and the iron tie-rods 

installed after the 1997 seismic events of Umbria-Marche region aimed at restraining possible out-of-

plane mechanisms. No worrying cracks nor other structural damages were detected during the visual 

inspection. 

  

 
Figure 4 – Excerpts from the photographic survey of the tower:(1) trapdoor accessing the upper level and connecting 

iron ladder; (2) close-up of the 4th level brickwork; (3) concrete slab of the 3rd floor with ladder opening;(4) particular of 

the reinforcement intervention with tie rods; (5) close-up of the 2nd level internal brickwork; (6) external brickwork of the 

1st level; (7) basement brickwork; (8) spiral staircase at the entrance level. 

3. Ambient vibration testing  

Given its non-destructive nature, Ambient Vibration Testing (AVT) has become a common in situ 

investigation technique for the estimation of dynamic parameters associated with the global behavior 

of historical structures. This tool results extremely useful to collect reliable experimental data and 

increase the level of knowledge of the structure whenever its historical value may pose limitations to 

the application of other diagnostic techniques for the system’s characterization. By deploying a set of 

sensors at selected locations and capturing the vibration response of the structure to random ambient 

excitations (traffic, wind, human walking, micro-tremors), the dynamic features of the system, namely 

natural frequencies (f), damping ratios (ξ) and mode shapes (φ), can be extracted and used to better 



interpret the actual behaviour of age-old constructions, which are often highly complex and 

mechanically diverse.  

In the last years, numerous works showed the potentiality of vibration monitoring through 

accelerometric sensors in the study of the dynamic behavior of historical buildings, both for short-term  

[41,42] and long-term applications [43]. Indeed, besides the economic benefits associated with the 

possibility of using freely available environmental excitations, AVT allows to perform rapid screenings 

of the structural fitness under real operational and boundary conditions. Moreover, the processing of 

the acquired vibration data enables the construction of an Experimental Model (EM) of the structure, 

which provides the dynamic parameters that the Numerical Model (NM) has to match to realistically 

reproduce the structural response [44]. 

 

3.1 Field testing procedure 

In order to characterize the dynamic behaviour of the Civic Tower of Ostra, two field dynamic testing 

campaigns in operational conditions were conducted in June 2018 and in February 2019. The sensor 

network was composed of four triaxial piezoelectric accelerometers, with an integrated MEMS tilt-

meter system for correction of errors due to inclination, characterized by a maximum measurement 

range of 8 g, a sensitivity of 1000 mV/g and a bandwidth range from 0.8 to 100 Hz. The digitization 

process was automated through an A/D converter with 24 bits of resolution, 120 dB of dynamic range 

and provided with anti-aliasing filter. The synchronization between sensors was ensured by a 4-channel 

Sync Hub connecting the accelerometers to the PC for data storage. 

 

 
Figure 5 - Instrumentation used for the ambient vibration tests. 

In both campaigns, three setups were used to measure the response of the tower in 8 selected points 

evenly deployed on the opposite corners of four levels (Figure 6). Each setup consisted of four 

accelerometers: two were fixed on the top floor and kept as reference sensors, while the remaining two 

were moved downward in each acquisition so as to record the vibration processes of the tower along 

the three directions of the 8 identified points, allowing to catch all the meaningful modal displacements 

of the structure, including torsional components. It is noted that the sensor layouts for the signal 

acquisition were established in accordance with the results of a preliminary numerical modal analysis 

coupled with an Optimal Sensor Placement (OPT) procedure [45,46], with the intent of identifying the 



best position for the accelerometers to maximize the quality of the AVT information despite the limited 

number of available sensors.  

To comply with Rodriguez’s indications [47], the total duration of the acquisition was set longer than 

2000 times the estimated fundamental period of the structure: indeed, every registration lasted around 

40 minutes, thereby assuring the elimination of the possible influence of non-stochastic excitations. 

Moreover, to guarantee a high frequency resolution for the spectral density estimation, a sampling 

frequency of 1024 Hz was adopted, resulting in 2,457,600 datapoints per time series.  

 

 
Figure 6 - Sensor layouts and corresponding acceleration time series for 2018 and 2019 dynamic testing campaigns 

(blue, green and red colours indicate signals in x, y and z direction, respectively). 

 

 



3.2 Operational modal analysis  

3.3.1 Data processing 

The extraction of the dynamic features of the tower (i.e. natural frequencies f, damping ratios ξ and 

mode shapes φ) was performed through the application of Operational Modal Analysis (OMA) 

techniques, using the acceleration time series acquired in operating conditions through the afore-

mentioned contact sensor network. Many are the output-only dynamic identification approaches 

available in the literature that can be adopted for this purpose, both in the time and in the frequency 

domain [17,32,48,49]. Yet, regardless of the strategy, a pre-processing stage is needed before further 

data elaboration in order to remove residual noise and possible trends from the vibration signals, filter 

undesired frequency components, minimize leakage errors and eventually down-sample the time series 

to reduce the subsequent data processing time. 

As for the present work, the pre-processing operation was executed through a Matlab© script, applying 

a 10th order Butterworth low-pass filter to the raw signals. Then, the cleaned data were down-sampled, 

passing from a spectral resolution of 1024 Hz to 100 Hz. As observed in analogous structures, the 

frequency content of interest for the tower fell in the range 0-10 Hz, thus data were further decimated 

with a factor of 8, reducing the analyzed range to 0-12.5 Hz. Finally, the pre-processed signals were 

analyzed through the Stochastic Subspace Identification (SSI) method available in the commercial 

software ARTeMIS [50]. 

 

3.3.2 Theoretical background on SSI-based methods  

 

The SSI method can be considered as one of the principal approaches for the extraction of modal 

parameters from output-only vibration data. The large attention lately received by SSI methods is likely 

due to the fact that these techniques are apt to accurately identify closely spaced modes and especially 

suited to be automated [49]. For the sake of completeness, only a brief description of this modal 

identification procedure is provided hereafter; for further details the reader is referred to [51]. 

SSI can be implemented in two classic forms: covariance driven (SSI-cov) and data driven (SSI-data). 

Working in the time domain, the SSI method starts from the construction of a State Space model, where 

the second order equation of motion is converted into a system composed of two linear equations, 

called respectively “state equation” Eq. (1) and “observation equation” Eq. (2), which in the case of 

ambient vibration testing (unknown input) read: 

 

𝒙𝑘+1  =  𝑨𝒙𝑘  +  𝒘𝑘 (1) 

 

𝒚𝑘 =  𝑪𝒙𝑘  +  𝒗𝑘  (2) 

 

where: 

• k is the generic time instant; 

• 𝒙 ∈ ℛ𝑛𝑥1 is the discrete-time state vector; 

• 𝒚 ∈ ℛ𝑙𝑥1 is the vector containing the l output measurements; 

• 𝑨 ∈ ℛ𝑛𝑥𝑛 is the system matrix that describes all the dynamic information of the system; 

• 𝑪 ∈ ℛ𝑙𝑥𝑛  is the corresponding output matrix; 

• 𝒘 ∈ ℛ𝑛𝑥1 is a white noise vector process representing disturbances and modelling inaccura-

cies; 

• 𝒗 ∈ ℛ𝑙𝑥1 is another white noise vector process representing the measurement noise due to sen-

sor inaccuracy. 

These equations represent the discrete-time state space form of the dynamics of a linear-time-invariant 

system under unknown excitation. Particularly, Eq. (1) models the dynamic behavior of the physical 

system, whereas Eq. (2) controls which part of the dynamic system can be observed in the output of 

the model. The core of the process aims at identifying the system dynamic matrix A by fitting the state-



space model to the experimental data. In case of SSI-cov method, the modal estimates are obtained 

from the Singular Value Decomposition (SVD) of the block Toeplitz matrix, a matrix gathering the 

covariances of the measured output time series; while in case of SSI-data, the modal identification is 

performed starting from the SVD of the block Hankel matrix, a matrix containing past and future output 

measurements.  

Like all parametric system identification techniques, a user-defined integer is required to process the 

data, i.e. the maximum model order. In principle, the model order must be twice the number of the 

modes that are needed to describe the dynamic response of the system. Notwithstanding, to identify 

weakly excited modes, it is often necessary to consider larger model orders which can lead in turn to 

the appearance of many spurious modes associated to the noise content of the measurements. To 

overcome this issue, different SSI analyses with a range of candidate model orders can be carried out 

trying to identify the model order that better fits the experimental data and leads to the best stabilization 

diagram. The latter is an order-frequency plot in which the estimated physical (structural) and 

computational (spurious) modes are represented as poles and discriminated based on the fulfilment of 

user-specified requirements (e.g. maximum allowed deviation between successive models in terms of 

modal frequencies, damping ratios and MAC values). If the model order is high enough, a repeated 

trend of stable poles will appear in the SSI output diagram, allowing the estimation of the structural 

modes characterizing the system.  

 

3.3.3 Modal results  

 

In both dynamic testing campaigns, five vibration modes were identified in the frequency range 0-10 

Hz: two close-spaced translational modes (φ1) and (φ2) in x and y directions, respectively, featuring in-

phase modal components; one torsion mode (φ3); and two dominant double bending modes (φ4), (φ5) 

in the xz and yz planes, respectively. As expected, the first two vibration modes exhibit relatively high 

frequency values compared to those featured by typical historical masonry towers. This outcome is 

imputable to the low aspect ratio (λ = 4) characterizing the tower object of study as well as to the 

increased stiffness resulted from the past restoration works. 

The estimated natural frequencies and damping ratios, used for the following calibration process, are 

reported in Table 1 for both campaigns, together with the Mode Complexity Factor (MCF) associated 

to each mode. This value is a scalar that lies in the range 0%-100% and quantifies the degree of 

complexity of a mode shape, namely how much the modal vector differs from a real-valued one [52–

54]. Real-valued mode shapes feature complexities close to 0 (MCF = 0%), while mode shapes with 

predominant imaginary components exhibit complexity values close to 1 (MCF = 100%). The 

dispersion of the real and imaginary parts of each mode is further analysed by plotting their components 

in a two-dimensional polar coordinate system, namely through the complexity plots, as illustrated in 

Figure 7. It is observed that in the first dynamic testing campaign, the first three mode shapes, as well 

as the last one, are close to monophase vectors (components are aligned along the horizontal direction) 

and only the fourth mode has a higher complexity, whereas in the second dynamic testing campaign 

the modal components of both the third and fourth modal vectors present greater complexities. This 

slight difference between the MCF values of the two campaigns is probably associated to the different 

level of ambient excitations present during the AVTs which might have affected the signal-to-noise 

ratio introducing some inaccuracy in the modal estimates. However, it is worth mentioning that the 

actual mode shapes of a physical system are never exactly monophase vectors, thus some degree of 

complexity is always expected in the experimental modes. 

  



Table 1 – Global modal parameters identified for EM 2018 and EM 2019. 

 
 2018  2019 

Mode f [Hz] ξ [%] MCF [%] 
 

f [Hz] ξ [%] MCF [%] 

φ1 2.082 0.817 3.929  2.092 0.762 3.320 

φ2 2.156 0.893 0.178  2.165 0.787 0.370 

φ3 6.293 0.578 2.765  6.302 0.666 11.241 

φ4 6.442 2.423 12.471  6.449 3.397 19.642 

φ5 6.941 2.463 2.053  6.872 2.739 4.851 

 

 

 

 
Figure 7 - Complexity plots of the identified experimental modes for EM 2018 (a) and EM 2019 (b).  

 

To drive the accurate selection of the structural modes, a cross-validation was performed by comparing  

the modes identified with the SSI modal estimator against the ones extracted through another OMA 

technique operating in the frequency domain, namely the Enhanced Frequeny Domain Decomposition 

(EFDD) [55,56]. The close pairwise correspondence of the five vibration modes estimated in each 

campaign is visually highlighted in Figure 8, where the mode shapes from the two modal estimators 

are superimposed, and also confirmed by the values of the Modal Assurance Criterion (MAC) reported 

both in Figure 8 and in Table 2. As well-known in the literature, the MAC is a statistical indicator used 

to measure the degree of similarity between mode shape vectors [57]: the closer the values are to 1 

(MAC = 100%), the higher the correlation between modes and vice versa. 

 



 
Figure 8 - Mode shapes of 2018 and 2019 EMs identified with SSI method (in blue) and cross-comparison with the 

respective mode shapes identified with EFDD method (in red). 

 

Table 2 - MAC between mode shapes identified with SSI and EFDD methods: (a) EM 2018 and (b) EM 2019. 

a) b) 

Cross-

MAC 2018 

SSI  

2.082 

Hz 

2.156 

Hz 

6.293 

Hz 

6.442 

Hz 

6.941 

Hz 

E
F

D
D

 

2.082 

Hz 
1.000 0.000 0.000 0.032 0.002 

2.155 

Hz 
0.002 0.998 0.001 0.000 0.024 

6.305 

Hz 
0.003 0.002 0.867 0.028 0.001 

6.459 

Hz 
0.036 0.000 0.039 0.924 0.021 

6.950 

Hz 
0.001 0.026 0.002 0.010 0.980 

 

Cross-

MAC 2019 

SSI 

2.092 

Hz 

2.165 

Hz 

6.302 

Hz 

6.449 

Hz 

6.872 

Hz 

E
F

D
D

 

2.090 

Hz 
0.999 0.001 0.001 0.034 0.003 

2.165 

Hz 
0.003 0.997 0.002 0.000 0.027 

6.301 

Hz 
0.004 0.002 0.812 0.006 0.003 

6.443 

Hz 
0.034 0.001 0.061 0.891 0.020 

6.893 

Hz 
0.002 0.028 0.002 0.008 0.943 

 



 

Analysing in depth the global modal parameters estimated in 2018 and 2019, no significant change is 

found in terms of frequency values (f) as the percentage variations recorded between corresponding 

modes are less than or equal to 1.0% (Table 3), meaning that the global dynamic behaviour of the tower 

remained unchanged in the period elapsed between the two campaigns. As concerns modal damping 

(ξ), relatively high percentage variations are found when comparing the damping ratios of 

corresponding modes between 2018 and 2019, with a maximum difference greater than 20% for the 4th 

mode (Table 3). Unlike frequencies, damping values are much more prone to be affected by 

measurement uncertainties and random error sources. Still, all the estimated values are consistently 

under 5% in each campaign, allowing to infer that, in the present case, the observed scatter is not 

associated with incipient damage mechanisms, but it is related to the intrinsic complex nature of this 

modal parameter.  
 

Table 3 - Percentage variation between modal frequencies and damping ratios of EM2018 and EM2019. 

Mode 
fEM18 

[Hz] 
ξEM18 

[%] 

fEM19 

[Hz] 

ξEM19 

[%] 

Δf 

[%] 

Δξ 

[%] 

φ1 2.082 0.817 2.092 0.762 0.478 -7.218 

φ2 2.156 0.893 2.165 0.787 0.416 -13.469 

φ3 6.293 0.578 6.302 0.666 0.143 13.213 

φ4 6.442 2.423 6.449 3.397 0.109 28.672 

φ5 6.941 2.463 6.872 2.739 -1.004 10.077 

 

In what concerns the experimental mode shapes estimated from 2018 and 2019 AVT data (Figure 9), 

their configuration is consistent over time and clearly points out the typical behavior of a monolithic 

cantilever beam with rigid constraint at the base. The principal components of displacement result well-

defined for each mode and a nearly perfect correlation is found between corresponding mode pairs. 

The cross-validation process operated through the MAC matrix (Table 4) also proves the modes to be 

consistent, well-decoupled and accurately identified from both field campaigns. 
 

 
Figure 9 - Comparison between mode shapes of EM 2018 (in blue) and the corresponding ones of EM 2019 (in red). 

 

 

 



Table 4 - MAC between EMs mode shapes identified with SSI method. 

 

CrossMAC  

2018-2019 

EM19 

2.092 

Hz 

2.165 

Hz 

6.302 

Hz 

6.449 

Hz 

6.872 

Hz 

E
M

1
8

 

2.082 

Hz 
0.992 0.000 0.001 0.037 0.001 

2.156 

Hz 
0.003 0.995 0.004 0.001 0.026 

6.293 

Hz 
0.002 0.000 0.981 0.077 0.018 

6.442 

Hz 
0.030 0.000 0.110 0.990 0.010 

6.941 

Hz 
0.005 0.025 0.009 0.002 0.971 

 

 

4. Numerical modelling and updating via Genetic Algorithm 

The uniqueness and complexity of heritage structures make the understanding of their actual behaviour 

a true challenge. By updating FE models with OMA information, one can reproduce as closely as 

possible the measured response of the structure and carry out a reliable condition assessment. The 

process consists in updating the system matrices of the FE model (mass, stiffness and possibly damping 

matrices) till the difference between experimental and numerical modal data is minimized. If the FE 

model is not adequately representative of the reality, structural assessment cannot be performed. 

Despite the degree of maturity of existing modal-based updating techniques for the calibration of 

realistic numerical models, experience has shown that the updating process is not trivial especially 

when trying to upgrade these procedures for damage localization purposes [58,59]. First and foremost, 

the FE model for updating requires a level of detail sufficient enough to represent both geometric and 

structural forms. Moreover, the number of parameters to update should be selected in order to guarantee 

a well-conditioned problem, independent of the contingent state of the structure and easily replicable 

in nearly real-time to evaluate possible global and local changes with respect to the reference modal 

data. The determination of reasonable initial values for the updating parameters, together with the 

definition of their lower and upper bounds, also plays an important role to guarantee the convergence 

of the iterative process and the physical significance of the final updated parameters.  

Rooted in these considerations, a modal-based updating procedure relying on Genetic Algorithms (GA) 

is hereafter presented and employed to calibrate a realistic FE model of the masonry tower under 

investigation and establish baseline information for future comparative analyses at global and local 

level. 

 

4.1 Preliminary FE model 

An initial 3D FE model (NM0) of the tower was built using MidasFea© in order to preliminary assess 

the meaningful dynamic characteristics of the structure. The peculiar geometry of the tower, which is 

one of the parameters that mostly affects its global dynamic response, required a very high degree of 

detail in the modelling process of the different elements and construction features like openings, wall 

thickness, geometrical irregularities, etc. Particular attention was given to the reproduction of the 

rubble-filled masonry of the basement of the tower as well as to the concrete floors of the higher levels 

which were considered as rigid diaphragms in their plane. As concerns secondary elements, like stairs, 

deformable wooden floors, clock mechanism and bells, they were not explicitly modelled, but their 

influence was accounted for as added masses. 

Once the geometry of the tower was defined (Figure 10), all the solids composing the model were 

discretized as 4-node tetrahedral elements, whose mesh size was set equal to 0.3 m, resulting into a 



model with 21,726 nodes, 78,926 volume elements and 67806 DOFs. Considering the tower as a 

cantilever beam, rigid constraints were applied at the base. 

 

 
Figure 10 – FE modelling of the Civic Tower of Ostra: 

(a) Assonometric view, (b) Bottom view at foundation level 

 

At first, a three-group material discretization was applied, modelling each material as homogeneous 

and isotropic, with Young’s modulus (E), Poisson’s ratio (ν) and mass density (γ) chosen according to 

the Italian Technical Standards for Structures [60]. The initial values assumed for the afore-mentioned 

elastic parameters are reported in Table 5. It is noticed that in the definition of the elastic modulus of 

the concrete, a 30% reduction was considered, because of the uncertainties linked to aging effects, 

while for the rubble masonry properties the values suggested in the Italian code [60] for irregular 

masonry were assigned. 

 
Table 5 - Elastic properties of the initial FE model. 

Material 
E  

[MPa] 

ν  

[-] 

γ  

[kN/m3] 

Masonry 1800 0.20 18 

Concrete 18000 0.20 25 

Filling 1100 0.20 18 

 

A preliminary modal analysis, implemented through the Lanczos method [30,61–63], was carried out 

on the initial FE model to evaluate the dynamic properties of the tower and quantify the residuals 

between numerical and experimental modal parameters. The results from this first step are reported in 

Table 6, where the remarkable differences between actual experimental frequencies (EM) and 

calculated numerical frequencies (NM0) of the not yet calibrated model are highlighted. 

  



Table 6 – Preliminary numerical results (NM0) and differences with the experimental frequency values (EM). 

Mode 
fNM0 

 [Hz] 

TNM0 

 [s] 

Eff. Mass 

Direction 

X [%] 

Eff. Mass 

Direction 

Y [%] 

fEM18 

[Hz] 

fEM19 

[Hz] 

|ΔfEM18-NM0| 

[%] 

|ΔfEM19-NM0| 

[%] 

φ1 1.509 0.663 35.80 0.00 2.082 2.092 27.52 27.87 

φ2 1.536 0.651 0.00 35.72 2.156 2.165 28.76 29.05 

φ3 5.012 0.200 0.02 0.00 6.293 6.302 20.36 20.47 

φ4 5.821 0.172 21.21 0.00 6.442 6.449 9.64 9.74 

φ5 5.883 0.170 0.00 29.38 6.941 6.872 15.24 14.39 

 

With respect to the mode shapes (Figure 11), their main displacement components present a good visual 

correlation with their experimental counterpart, being the first two modes translational in the x and y 

direction, respectively, the third mode a torsional one, and the last two being dominant bending modes 

in the xz and yz planes.  
 

 
Figure 11 - Frequencies values and mode shapes resulting from modal analysis operated on the preliminary FE model. 

 

On the other hand, the comparison of the degree of consistency between numerical and experimental 

modal vectors in terms of MAC values (Table 7) shows a fair correlation only for the first two 

fundamental modes of the tower, while higher modes feature quite a poor (4th and 5th modes) or no (3rd 

mode) correlation either using 2018 or 2019 modal data as comparative metric. 

  



Table 7 - MAC between numerical and experimental mode shapes: (a) NM0-EM 2018 and (b)NM0-EM 2019.  

NM0 stands for preliminary numerical model. 

 

a) b) 

Cross-

MAC  

EM18 

2.082 

Hz 

2.156 

Hz 

6.293 

Hz 

6.442 

Hz 

6.941 

Hz 

N
M

0
 

1.509 

Hz 
0.776 0.023 0.016 0.038 0.003 

1.536 

Hz 
0.002 0.815 0.002 0.002 0.040 

5.012 

Hz 
0.004 0.006 0.221 0.000 0.003 

5.821 

Hz 
0.010 0.000 0.054 0.522 0.011 

5.883 

Hz 
0.042 0.007 0.091 0.019 0.650 

 

Cross-

MAC  

EM19 

2.092 

Hz 

2.165 

Hz 

6.302 

Hz 

6.449 

Hz 

6.872 

Hz 

N
M

0
 

1.509 

Hz 
0.825 0.025 0.000 0.066 0.005 

1.536 

Hz 
0.001 0.672 0.007 0.003 0.026 

5.012 

Hz 
0.050 0.038 0.026 0.029 0.029 

5.821 

Hz 
0.005 0.003 0.031 0.476 0.020 

5.883 

Hz 
0.005 0.025 0.124 0.000 0.447 

 

 

 

4.2 GA-based model updating  

As mentioned in the Introduction, iterative model updating procedures aim at calibrating an FE model 

through the solution of an inverse problem based on modal analysis, where corrections are applied to 

local physical and/or mechanical parameters of the FE model by setting an objective function and 

searching for the optimum solution till the difference between experimental and numerical modal data 

is minimized. To overcome the limitations inherently associated to manual or approximate updating 

processes, a genetic algorithm (GA) implemented in Code_Aster© software environment [64]was used 

in this work to calibrate the FE model of Ostra Civic Tower.  

The genetic algorithms are inspired by Darwin’s theory and are based on the process of natural selection. 

These algorithms are considered robust tools for solving optimization problems and explore diverse 

regions of interest by running the same problem on different conditions and allowing to locate with 

high probability the global optimum without getting trapped into local minima [29,30,65,66]. They are 

part of a stochastic method that “mimics” the evolution through combinations of random mutations 

and natural selection in order to find optimal numerical values of functions. A better understanding of 

the methodology can be achieved through the description of the updating process scheme as it was 

implemented.  

NM and EM were initially imported and read by Code_Aster©, where a condensed experimental model 

(CEM) containing the frequency and mode shape data belonging to the five estimated modes was 

created. Then, CEM data were projected onto the NM (Figure 12) in order to upscale the EM DOFs. 

This operation enabled the possibility to visualize and interact with the data onto a 3D model while 

also creating the dependencies for the displacement calculations between the existing nodes of the NM 

with respect to the data of the EM.  

 



 
Figure 12 - Workflow for the projection of the experimental data onto the NM for the genetic algorithm updating, with 

measured nodes highlighted. 

 

Once the projection was done, a preliminary modal analysis was performed, generating the initial 

population for the values of the unknown material properties to be considered in the calibration process. 

Upper and lower bounds of physical significance were also set for each updating parameter based on 

values retrieved from the literature and belonging to analogous structures. Any value within the bounds 

was a candidate solution. 

For each iteration, the fulfilment of convergence criteria established beforehand was progressively 

checked using a very strict two-term objective function that accounted for both frequencies and mode 

shapes residuals between EM and NM models, as reported below: 

 

𝜟𝒇 +  𝚫𝒄𝒓𝒐𝒔𝒔𝑴𝑨𝑪 =   √∑ (
𝒇𝒆𝒙𝒑

𝒊 − 𝒇𝒏𝒖𝒎
𝒊

𝒇𝒆𝒙𝒑
𝒊

)

𝟐𝒏

𝒊=𝟏

 + √∑(𝟏 − 𝑴𝑨𝑪𝒊)𝟐

𝒏

𝒊=𝟏

 ≤  𝟎. 𝟎𝟓 
(3) 

 

 

The model updating process was set to stop either when the residual tolerance of two consecutive steps 

reached 1e-4 or after 2000 evaluations (Figure 13), hence ensuring the stability of the iterative solution.  

 

 



 
Figure 13 - GA-based model updating flowchart. 

 

4.3 Calibration process 

4.3.1 Twelve-group discretization approach 

To account for the visible variability of the masonry properties across the tower and better tune the 

model dynamic response, the number of updating parameters was increased by further discretizing the 

preliminary FE model into twelve parts, or solid groups (Figure 14). The GA-based updating process 

was then repeated by employing as reference modal data the frequencies and MAC values of the five 

vibration modes estimated from both the 2018 and 2019 AVT measurements, and iteratively varying 

the elastic parameters assigned to each of the twelve parts till the residuals between numerical and 

experimental modal data were minimized. The final number of updating parameters thus greatly 

exceeded the initial number considered in the preliminary assessment.  

 



 
Figure 14 – Updating variables for the twelve-group discretization of the FE model. Each material group is named as 

“X” followed by a subscript composed by a number (from 00 to 12) which stands for the group and a letter (“M” is 

masonry, “C” is concrete and “F” is the filling material). 

 

The elastic properties of the twelve parts were attributed considering two different behavioural models 

for the materials: in the first stage all materials were modelled as homogeneous and isotropic, 

requesting the solution of a thirty-six parameters convergence problem (3 x 12 = 36), whereas in the 

second stage the masonry material was modelled as orthotropic due to its complex and non-

homogeneous internal structure, leading to the calibration of one hundred-thirteen updating parameters  

(masonry: 10 x 11 = 110; concrete: 3 x 1 = 3). It is remarked how the complexity and high 

dimensionality of the optimization problem could not be tackled via a manual updating procedure but 

required a sophisticated algorithm capable of dealing with large and multi-dimensional problems.  

Reasonable variation ranges for the material parameters were assigned to each part in accordance with 

the values provided by the Italian Technical Standards for Structures [60] as well as with the values 

retrieved from the literature for analogous materials and in light of the outcome of the condition survey. 

The established upper and lower bounds [67–69] are summarized in Table 8 and Table 9 for the 

isotropic and orthotropic cases, respectively. The initial population of updating variables used in the 

GA-based updating process was randomly selected within these bounds.   



Table 8 – Lower and upper bounds for isotropic elastic properties (E is the Elastic Young’s Modulus, ν is the Poisson’s 

ratio and γ is the mass density). 

 

Material 

E  

[MPa] 

Min - Max 

ν 

[-] 

Min - Max 

γ  

[kN/m3] 

Min - Max 

Masonry 600 - 3300 0.01 – 0.45 15 - 20 

Filling 600 - 2400 0.01 - 0.45 15 - 20 

Concrete 27000 - 32000 0.01 – 0.45 23 - 26 

 
Table 9 – Lower and upper bounds for orthotropic elastic properties (G is the shear Modulus, while the subscripts L, N 

and T indicate Longitudinal, Normal and Tangential components respectively). 

(*) Concrete stayed as isotropic material. 

 

Material 
EL 

[MPa]  

EN 

 [MPa] 

ET 

[MPa] 

GLN  

[MPa] 

GLT  

[MPa] 

GTN 

[MPa] 

νLN 

 [-] 

νLT 

 [-] 

νTN 

 [-] 

γ 

 [kN/m3] 

 Min-Max Min-Max Min-Max Min-Max Min-Max Min-Max Min-Max Min-Max Min-Max Min-Max 

Masonry 
600- 

3300 

600- 

3300 

600- 

3300 

230- 

1400 

230- 

1400 

230- 

1400 

0.01- 

0.45 

0.01- 

0.45 

0.01- 

0.45 
15-20 

Filling 
600- 

2400 

600- 

2400 

600- 

2400 

230- 

1400 

230- 

1400 

230- 

1400 

0.01- 

0.45 

0.01- 

0.45 

0.01- 

0.45 
15-20 

Concrete 27000-32000 (automatically calculated) 
0.01- 

0.45 
23-26 

 

The main scope of this GA-based model updating procedure, run first considering 36 variables 

(isotropic material) and then accounting for 113 unknowns (orthotropic material), was to produce a 

refined baseline model closely representative of the initial experimental target and that could be 

speedily updated with new data to serve as a future digital twin of the physical structure for predicting 

its performance against different scenarios. Hence the need of collecting data from two distinct AVT 

campaigns. In the second updating phase against 2019 experimental data, an in-depth sensitivity 

analysis [70,71], whose results are illustrated and widely discussed in APPENDIX A - Evaluation of 

the influence of material parameters in automatic calibration, was also conducted to evaluate the 

influence of every single material parameter on the outcome of the updating process. In light of the 

results, although reducing the number of unknowns is common practice in the literature [35], it was 

decided to continue calibrating the model through the proposed GA-based procedure and keep all the 

afore-mentioned parameters as updating variables, given the greater computational efficiency of the 

proposed method and considering this the only solution for a future extent of this study to the damage 

localization field. 

 

4.3.2 Model updating results 

The optimal mechanical parameters obtained downstream the GA-based updating process of the 

isotropic FE model of Ostra Civic Tower are reported in Table 10. It is interesting to notice that the 

final values of the material properties are consistent with the expected ranges and clearly reflect the 

visible masonry changes resulting from past interventions and restoration works. Particularly, the 

Young’s moduli of the masonry tend to decrease from the basement (reinforced during the 1950s 

restoration works) to the central body (which was only partially reconstructed) and increase again 

towards the upper part of the tower (added later), reading values consistent with those reported in the 

Italian code [60]. 

  



Table 10 – Optimal values for the material parameters of the isotropic FE models after calibration and successive 

updating. 

 
 2018 NM 2019 NM 

Updating 

parameter 

E  

[MPa] 

ν  

[-] 

γ  

[kN/m3] 

E  

[MPa] 

ν  

[-] 

γ  

[kN/m3] 

X01M 2036 0.18 15 2092 0.17 15 

X02M 2112 0.22 15 1960 0.24 15 

X03M 1278 0.21 15 1074 0.22 15 

X04M 1325 0.20 16 1220 0.20 16 

X05M 1267 0.23 15 1113 0.28 15 

X06M 2471 0.18 20 3133 0.17 20 

X07M 3289 0.19 20 3288 0.19 20 

X08F 2396 0.18 20 2399 0.18 20 

X09M 2667 0.19 20 2521 0.17 20 

X10M 3052 0.20 20 3282 0.21 20 

X11C 27615 0.26 24 27037 0.25 23 

X12F 1681 0.21 20 1470 0.21 20 

 

Analogous observations can be drawn for the updating parameters calibrated through the GA-based 

updating process of the orthotropic FE model of the tower, whose results are reported in Table 11 and 

Table 12. The optimal values obtained for the elastic moduli of the masonry material feature a similar 

trend of variation as compared to the isotropic FE model, being consistent with the range of values 

expected from the visual assessment of the masonry quality. Meaningful values are found as far as the 

material density is concerned, whereas consistent but slightly larger variations are obtained for the 

Poisson’s ratios.  

 
Table 11 - Optimal values for the material parameters of the orthotropic FE model after calibration against 2018 EM 

modal data. (*) Concrete stayed as isotropic material. 

 
Updating  

parameter 

EL 

[MPa] 

EN  

[MPa] 

ET  

[MPa] 

GLN 

[MPa] 

GLT 

[MPa] 

GTN 

[MPa] 

νLN 

[-] 

νLT 

[-] 

νTN 

[-] 

γ  

[kN/m3] 

X01M 2148 2007 1784 1005 894 970 0.20 0.19 0.19 15 

X02M 2188 2238 2125 679 911 981 0.18 0.20 0.20 15 

X03M 2449 1877 1726 552 784 663 0.20 0.28 0.19 15 

X04M 1800 1033 1941 625 939 999 0.21 0.19 0.18 15 

X05M 1822 1343 2103 627 825 415 0.18 0.18 0.17 15 

X06M 1607 2091 2439 1258 1168 1077 0.17 0.19 0.16 19 

X07M 2300 3248 2410 1357 988 1392 0.19 0.19 0.20 20 

X08F 1974 2387 2283 515 511 712 0.20 0.20 0.18 20 

X09M 2079 1898 2074 1034 1116 870 0.19 0.17 0.20 20 

X10M 1700 2978 2322 972 991 991 0.22 0.16 0.21 20 

*X11C 27345 (automatically calculated) 0.31 24 

X12F 2007 2212 2118 345 558 748 0.17 0.19 0.20 20 

 
  



Table 12 - Optimal values for the material parameters of the orthotropic FE model after updating with 2019 EM modal 

data. (*) Concrete stayed as isotropic material. 

 
Updating  

parameter 

EL 

[MPa] 

EN  

[MPa] 

ET 

 [MPa] 

GLN 

[MPa] 

GLT 

[MPa] 

GTN 

[MPa] 

νLN 

[-] 

νLT 

[-] 

νTN 

[-] 

γ  

[kN/m3] 

X01M 2145 2031 1908 946 916 1022 0.21 0.20 0.20 15 

X02M 2121 2397 1882 636 950 996 0.18 0.20 0.21 15 

X03M 2294 1909 1761 460 725 614 0.18 0.27 0.19 15 

X04M 1682 967 1946 564 924 1036 0.22 0.19 0.17 15 

X05M 1694 1301 2133 528 770 338 0.18 0.17 0.16 15 

X06M 1615 2092 2230 1374 1122 1221 0.17 0.18 0.16 20 

X07M 2327 3297 2508 1400 1092 1391 0.19 0.19 0.20 20 

X08F 1711 2397 2351 563 516 772 0.20 0.21 0.18 20 

X09M 2048 1956 2143 1038 1116 899 0.20 0.18 0.21 20 

X10M 1743 3016 2507 1126 1054 1054 0.19 0.16 0.20 20 

*X11C 27106 (automatically calculated) 0.33 25 

X12F 2035 2201 2060 330 542 795 0.17 0.20 0.20 20 

 

The frequency results obtained from the modal-based FE model updating of Ostra Civic Tower through 

GA are exposed in Table 13 and Table 14. For both material modelling approaches, the comparison 

between EM and NM frequency values is more than satisfactory, being the absolute value of their 

relative errors always under 4%, with the largest percentage error in correspondence of the 4th mode, 

error that consistently reduces if an orthotropic material is considered for masonry. In general, the 

orthotropic model allows to better tune the frequencies of the fundamental global modes of the tower 

and to closely reproduce the frequencies of higher modes, which are notably more sensitive to localized 

damage.     
 

Table 13 - Comparison between 2018 experimental (EM) and numerical (NM) frequencies for different material 

modelling approaches and different updating parameters.   

 

Mode  
fEM18 

[Hz] 

fNM18 [Hz] 

36 variables 
(Isotropic) 

fNM [Hz] 

113 variables 
(Orthotropic) 

Eff. Mass 

Direction X 

[%] 

Eff. Mass 

Direction Y 

[%] 

|ΔfEM18-NM18| 

[%] 
(Isotropic) 

|ΔfEM18-NM18| 

[%] 
(Orthotropic) 

φ1 2.082 2.070 2.084 34.14 0.01 0.58 0.10 

φ2 2.156 2.111 2.137 0.01 33.53 2.09 0.88 

φ3 6.293 6.245 6.284 0.26 0.00 0.76 0.14 

φ4 6.442 6.693 6.516 29.89 0.11 3.90 1.15 

φ5 6.941 6.839 6.907 0.12 29.25 1.47 0.49 

 
Table 14 - Comparison between 2019 experimental (EM) and numerical (NM) frequencies for different material 

modelling approaches and different updating parameters.   

 

Mode  
fEM19 

[Hz] 

fNM19 [Hz] 

36 variables 
(Isotropic) 

fNM19 [Hz] 

113 variables 
(Orthotropic) 

Eff. Mass 

Direction X 

[%] 

Eff. Mass 

Direction Y 

[%] 

|ΔfEM19-NM19| 

[%] 
(Isotropic) 

|ΔfEM19-NM19| 

[%] 
(Orthotropic) 

φ1 2.092 2.079 2.091 33.94 0.00 0.62 0.05 

φ2 2.165 2.123 2.143 0.00 33.41 1.94 1.02 

φ3 6.302 6.277 6.229 0.41 0.06 0.40 1.16 

φ4 6.449 6.645 6.510 29.22 0.03 3.04 0.95 

φ5 6.872 6.789 6.930 0.02 28.48 1.21 0.84 

 

The numerical mode shapes corresponding to the FE model calibrated with the optimal values of the 

material parameters are displayed in Figure 15 and Figure 16. Similar considerations can be drawn in 



this case. Indeed, a very good agreement is visually observed between experimental and numerical 

mode shape configurations: the 1st and 2nd mode are in-phase translational modes in x and y directions, 

respectively, the 3rd mode is torsional, while the 4th and 5th modes result dominant bending modes in 

the xz and yz planes.  

 

Figure 15 – Numerical mode shapes after calibration using isotropic material modelling. 



 
Figure 16 – Numerical mode shapes after calibration using orthotropic material modelling. 

 

 

The direct cross-validation between EM and NM mode shapes through the MAC further proves the 

good agreement between experimental and numerical counterparts, being all five modes very well 

correlated (MAC > 95%) and decoupled, as demonstrated by the low values of the out-of-diagonal 

elements of the Cross-MAC matrix (Table 15). It is worth highlighting the relevance of the achieved 

results: in fact, the majority of FE model updating techniques applied in the literature typically result 

into much higher relative errors between experimental and numerical frequencies and, in the rare 

instances in which a two-term objective function is adopted, into MAC values sensibly lower than 80% 

for higher order modes.  

 

 

 

 

 



 
Table 15 - CrossMAC between EMs and calibrated NMs considering isotropic and orthotropic materials: 

 (a)NM 2018 with isotropic material, (b) NM 2019 with isotropic material, (c) NM 2018 with orthotropic material, (d) 

NM 2019 with orthotropic material. 

 

a) b) 

Cross-

MAC  

EM18 

2.082 

Hz 

2.156 

Hz 

6.293 

Hz 

6.442 

Hz 

6.941 

Hz 

N
M

1
8

_
is

o
 

2.070 

Hz 
0.976 0.011 0.001 0.018 0.002 

2.111 

Hz 
0.021 0.969 0.000 0.000 0.026 

6.245 

Hz 
0.000 0.000 0.972 0.015 0.015 

6.693 

Hz 
0.035 0.002 0.011 0.965 0.001 

6.839 

Hz 
0.003 0.015 0.005 0.010 0.960 

 

Cross-

MAC  

EM19 

2.092 

Hz 

2.165 

Hz 

6.302 

Hz 

6.449 

Hz 

6.872 

Hz 

N
M

1
9

_
is

o
 

2.079 

Hz 
0.962 0.016 0.000 0.019 0.000 

2.123 

Hz 
0.040 0.963 0.002 0.002 0.027 

6.277 

Hz 
0.001 0.000 0.958 0.010 0.024 

6.645 

Hz 
0.033 0.001 0.011 0.966 0.002 

6.789 

Hz 
0.006 0.017 0.006 0.024 0.960 

 

c) d) 

Cross-

MAC  

EM18 

2.082 

Hz 

2.156 

Hz 

6.293 

Hz 

6.442 

Hz 

6.941 

Hz 

N
M

1
8

_
O

rt
h

o
 

2.084 

Hz 
0.981 0.005 0.001 0.018 0.002 

2.137 

Hz 
0.013 0.977 0.000 0.000 0.027 

6.284 

Hz 
0.000 0.000 0.959 0.014 0.006 

6.516 

Hz 
0.033 0.002 0.013 0.957 0.005 

6.907 

Hz 
0.002 0.010 0.001 0.002 0.965 

 

Cross-

MAC  

EM19 

2.092 

Hz 

2.165 

Hz 

6.302 

Hz 

6.449 

Hz 

6.872 

Hz 

N
M

1
9

_
O

rt
h

o
 

2.091 

Hz 
0.979 0.004 0.000 0.021 0.001 

2.143 

Hz 
0.019 0.981 0.003 0.001 0.028 

6.229 

Hz 
0.001 0.000 0.963 0.011 0.013 

6.510 

Hz 
0.031 0.001 0.009 0.971 0.020 

6.693 

Hz 
0.003 0.011 0.001 0.002 0.968 

 

 

5. Discussion 

The results obtained in Section 4 show that GA-based model updating approaches can be profitably 

coupled with AVT techniques to simulate the realistic behaviour of masonry structures despite the 

limited information available about the internal morphology of structural elements and the unknown 

mechanical properties of constituent materials. Although from a theoretical standpoint, due to the 

heuristic nature of the method, it is impossible to ensure that all the local minima – from which the 

global minimum is recovered – are found during the updating process, the method has been proved 

effective, robust, and less computationally demanding than conventional global sensitivity analyses. 

The adopted optimization process also corroborated the hypothesis of using an isotropic model to 

realistically describe the behaviour of large-scale masonry structures, which is quite a common 

simplification in the literature [17,26]. This was possible thanks to one of the main innovative aspects 

of this work, namely the exploitation of an automatic procedure capable of handling a very large 

number of unknowns, which enabled to consider as variables all the meaningful parameters describing 

the orthotropic behaviour of the masonry material and to compare the goodness of the simulated modal 

response against the one obtained from the isotropic model. Overall, although the orthotropic approach 

produced slightly better results in terms of final modal residuals, the improvement was not as marked 

as it could be expected. Due to the complexity of orthotropic modelling when dealing with 

unconventional historical structures in both linear and non-linear fields, resorting to the isotropic 

assumption can allow to greatly reduce the computational effort inherent to the calibration process and 

subsequent analyses, without compromising the accuracy and reliability of the results. Finally, it is 



worth stressing that, unlike most of current FE model updating techniques, the method herein proposed 

does not run into difficulties when tackling a great number of parameters and has been demonstrated 

feasible even when the number of subproblems to solve grows exponentially, confirming its suitability 

to be employed as preferred tool to optimize the control of the structural integrity at global and local 

level.  

6. Conclusions 

The paper discussed the combination of vibration-based identification methods and automated modal 

updating techniques relying on GAs for reproducing the dynamic behaviour of an iconic masonry tower 

located in Central Italy, i.e. the Ostra Civic Tower. 

After a preliminary geometrical and material survey aimed at identifying the main characteristics of 

the structure necessary for the creation of a reliable numerical model to be later exploited as reference 

configuration for more sophisticated linear and non-linear analyses, two field testing campaigns were 

carried out to acquire the vibration response of the tower to ambient noise under operational conditions. 

These data, after pre-processing operations, were analysed using two modal estimators in order to 

extrapolate the dynamic parameters related to the principal modes of the structure, allowing to build a 

target experimental model for the calibration of the numerical tower. Such a calibration process 

consisted in a perturbation of the mass and stiffness matrices of the system in order to find physically 

meaningful values for the unknown material properties that could minimize the deviation between the 

eigenvalues and eigenvectors provided by the OMA. The approach was done through an automatic 

model updating with genetic algorithm of the OMA eigen-data projected onto the equivalent numerical 

model. By profiting of a biologically inspired algorithm, the optimization problem was solved by 

adopting two modelling assumptions for masonry, namely an isotropic and an orthotropic constitutive 

behaviour, where the latter led to a threefold increase in the number of candidate solutions. The low 

percentage errors recorded in the eigenvalue comparison for both cases, despite the significant number 

of updating parameters, demonstrated the efficiency of metaheuristics as compared to time-consuming 

manual procedures or to other automatic approaches unable to solve global multi-dimensional 

optimization problems. 

Further studies and investigations are to be made to attain a thorough knowledge of this artefact, also 

considering the soil-structure interaction to evaluate the effects that the unconventional boundary 

conditions of the Ostra tower have in terms of global structural performance against dynamic actions. 

Once a full comprehension of the structural behaviour will be reached, surrogate models concerning 

the tower dynamic properties can be generated to provide a quick tool for examining in nearly real-

time the health state of the tower. 

 

 

 

 

 

 

 

 

 

  



APPENDIX A - Evaluation of the influence of material parameters in automatic calibration  

This appendix details in the first part the workflow of the Genetic Algorithm (GA) model updating 

procedure employed in the present work along with the construction and validation of the relevant 

metamodel, and reports in the second part all the results from the sensitivity analyses carried out to 

evaluate the influence of different unknown parameters on the structure’s natural frequencies, namely 

their impact on the outcome of the modal-based updating process. What emerged from the analyses, 

particularly when comparing the results with those obtained from a second automatic GA-based 

calibration using the NM18 as initial baseline model, is summarized below: 

• Considering all the unknown parameters in the updating procedure leads to final values of ma-

terial properties consistent with those obtained by performing the model updating only with a 

reduced number of parameters; 

• The frequencies and mode shapes residuals resulting from the model updated through GA are 

smaller in comparison to the residuals estimated by updating only the most sensitive parameters 

of the model, hence the FE model calibrated via GA is more representative of the real physical 

structure; 

• When considering an orthotropic material behaviour, the computational costs of the GA-based 

approach are reduced as compared to apparently more manageable sensitivity analyses, being 

unnecessary to create a new metamodel and to assess again the most influential parameters. 

A.1. Genetic algorithm workflow 

The steps followed by the genetic algorithm are described below: 

 

a) Initialization: 

Once the parameter ranges and initial values are defined, a population is randomly generated, and 

all individuals are initialized for the adjustment. The size of the population is given by the value of 

the parameter NB_PARENTS and is imposed by the user in the command file. This value is de-

pendent on several factors such as the uncertainty of the solution. The greater the uncertainty, the 

larger the population. The stabilized value for the study was set to 10. 

b) Functional Evaluation: 

In the first stage only one evaluation is made because the populations are identical, then in the re-

calibration loop, as many evaluations of the functional are made during this one iteration as the 

number of children defined by the parameter NB_FILLS, which is in turn defined by the user. The 

larger the parameter that defines the renewal of the population, the more CPU time is required for 

the step by the algorithm. For the present case, 6 parameters, corresponding to half the size of the 

population, were defined. 

c) Stopping Criteria: 

Once the population of n parents is defined along with the individuals, the value of the criteria set 

to stop the calibration process is automatically checked and the best individual of the renewed 

population is returned as the solution. The check is performed over two variables: 

• The best value of the functional calculation; 

• The number of iterations already performed by the algorithm. 

The former implies that the algorithm stops when the residual tolerance of two consecutive steps 

reaches the value defined by the user, which in the current case was set equal to 1e-4; the latter 

means that the algorithm stops when the maximum number of iterations specified by the user is 

attained. In the present application, an increasing number of iterations was set for the algorithm, 

starting with 100 and then moving to 200,    500 and finally 2000. 

d) Selection – Crossover – Mutation: 



The best individual parent is drawn from the population according to a Tournament selection 

method [73]. In order to combine the genetic information of two parents and generate new offspring, 

a uniform crossover operator [74–78] is employed, meaning that information is taken from either 

parent with equal probability. The mutation operator [73,79] also follows a uniform scheme, in 

which the values of selected genes are replaced by uniform random values falling within the user-

defined upper and lower bounds. All the operations are controlled by the value of the parameter 

ECART_TYPE (standard deviation) defined as: 

 

𝜎 =  √∑ (𝑥𝑖−𝜇)2𝑁
𝑖=1

𝛮
      (A1.1) 

 

where xi is the ith value from the population, 𝜇 is the population mean, and the denominator N stands 

for the population size. For the present study, the value of the parameter ECART_TYPE was 

defined as 0.5.  

e) Replacement: 

Once the m children are generated, the global population of the iteration stage results equal to n + 

m (i.e. NB_PARENTS + NB_FILLS). In the current implementation, this value was set as 15. The 

operator that controls the replacement realizes a hierarchy of the individuals according to the values 

associated by the calculus and replaces the population with the best parents found among the   global 

population. 

A.2. Metamodel  

In the model updating field, it is common practice to reduce the computational strain by building 

metamodels. Metamodels, also referred as “surrogate models”, are a sort of “low computational weight” 

models of physical systems, in which specifically set model inputs are related to determined model 

outputs [80–82]. If a model F is considered, whose behaviour can be described by a vector 𝑥 =
(𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛)  ∈ 𝑅 , then the relation of the vector x and the associated output of the response 

quantities is given by the function: 

 

𝑌 = 𝐹(𝑥) (A.2.1) 

 

where:  

• 𝐹: 𝑅𝑁  → 𝑅𝑀. 

 

In order to reduce the computational strain and effectively calculate the Sobol Indices, surrogate models 

were constructed.  The procedure took place considering as input vectors the material parameters of 

the isotropic and orthotropic models. The design of experiment utilized was based on a probabilistic 

approach where all the parameter ranges were defined by normal distributions and the data was then 

selected for the design of experiments by a Monte-Carlo algorithm. The whole process was carried out 

in the Openturns environment [83]. The output, that was thoroughly calculated considering not only 

the eigenvalues of the physical system, but also the MAC values between the experimental and 

numerical models, was used to create the metamodel with a Kriging approach. 

The Kriging metamodel [35,84–88] has its origins in Geostatistics [89] and it is a common technique 

for the interpolation of spatial data. The whole process aims at creating a predictor that can be denoted 

as 𝐺̌ and is assumed as a realization of the normal process  𝑌: Ω × 𝑅𝑑  ⟶ 𝑅, defined by: 

 

𝑌(𝜔, 𝑥) = 𝑓(𝑥) + 𝐹(𝜔, 𝑥) (A.2.2) 

 

where: 

• 𝑓(𝑥) defines the trend; 



• 𝐹(𝑥, 𝜔) is a zero-mean Gaussian process with a covariance function 𝐶: 𝑅𝑑  × 𝑅𝑑  ⟼ 𝑅 dependent 

on the vector of parameters 𝑥 ∈ 𝑅, for some given event 𝜔 ∈ 𝛺: 

 

𝐸[𝐹(𝑥), 𝐹(𝑦)] = 𝐶𝜃(𝑥, 𝑦). (A.2.3) 

 

The trend is taken equal to the generalized linear model: 

 

𝑓(𝑥) = 𝑓(𝑥)𝑡𝛽 (A.2.4) 

 

The method approximates the model F by the means of the Y given that: 

 

𝑌(𝜔, 𝑥(𝑖)) = 𝑦(𝑖), ∀𝑖 = 1, … , 𝑛 (A.2.5) 

 

It follows that the metamodel can be written as: 

 

𝐺̌ = 𝐸[𝑌(𝜔, 𝑥)|𝑌(𝜔, 𝑥(𝑖)) = 𝑦(𝑖), ∀𝑖 = 1, … , 𝑛] (A.2.6) 

 

and defined as: 

 

𝐺̌ = (𝑓(𝑥))𝑡𝛽̌ + (𝐶𝜃(𝑥))
𝑡
𝐶𝜃

−1(𝑦 − 𝐹𝛽̌) (A.2.7) 

 

with 𝛽̌ being the least squares estimator for 𝛽 : 

 

𝛽̌ = (𝐹𝑡𝐶𝜃
−1𝐹)

−1
𝐹𝑡𝐶𝜃

−1𝑦 (A.2.8) 

 

Having the functions defined, the Kriging predictor is constructed by selection of 𝛽 parameters and 𝜃  
correlation parameters. Given the high coefficient of determination (R2) obtained from different stages 

of validation (see sub-Section A.2.2), this model was ultimately employed as reference for the 

calculation of the Sobol Indices.  

 

A.2.1. Parameters definition 

Normal probability distribution was the base for defining Young’s moduli (E) [MPa], Poisson 

coefficient (ν) [-], and mass density (γ) [kN/m3] in the metamodel. At first, it was decided to consider 

the whole ranges of parameters allowed by the Italian technical regulations, having distribution values 

of the Young’s moduli from 800 MPa to 5000 MPa for masonry, and from 17000 MPa to 38000 MPa 

for concrete. 

 
Table A.1 - Initial parameters normal probabilistic distribution. 

 

 Mean Standard Deviation Min - Max 

Masonry E [MPa] 3000 600 800 - 5000 

Concrete E [MPa] 28000 2800 17000 - 30000 

Masonry ν [-] 0.25 0.05 0.05 - 0.45 

Concrete ν [-] 0.25 0.05 0.05 - 0.45 

Masonry γ [kN/m3] 18 1 13 - 22 

Concrete γ [kN/m3] 25 1 21 - 26 

 

A.2.2 Validation 

The validation of the metamodel, namely its capability to explain the observed outcome, was done by 

selecting a three-way approach and assuming as acceptable statistic an R2 index greater than or equal 



to 0.9 for each resulting prediction. For the first check, validation solutions were provided as follows: 

1) analytically; 2) dividing the dataset into an 80% – 20% scheme, using the 80% percentage as training 

(820 samples) and the 20% (204 samples) as validation of the trained model; 3) using a K-Fold 

procedure. 

The results of the analytical validation, for both material approaches, are shown below (Figure 

A.1÷A.4). 

 

Figure A.1- Analytical model validation for Isotropic model: curve fitting of frequencies test samples. 



 

 
Figure A.2- Analytical model validation for Isotropic model: curve fitting of mode shapes test samples. 

 

 

 
Figure A.3- Analytical model validation for Orthotropic model: curve fitting of frequencies test samples. 

 



 

 
Figure A.4 - Analytical model validation for Orthotropic model: curve fitting of mode shapes test samples.  

 

In Table A.2 and Table A.3 it is possible to observe the values of the coefficient of determination for 

both frequencies and MAC coefficients. It is noticed how R2 is practically near to 1 when predicting 

frequency values either with an isotropic or an orthotropic approach, while it sensibly decreases for the 

higher order modes when evaluating the mode shapes using an orthotropic model.    

 
Table A.2 - Analytical validation of frequencies. 

   Isotropic model Orthotropic model 

Mode 
Number of 

points 

Percentage 

training/va-

lidation 

Residual R2 Residual R2 

1 1024 80 - 20 0.000075 0.999 0.000289 0.990  

2 1024 80 - 20 0.000084 0.999 0.000301 0.989 

3 1024 80 - 20 0.000464 0.997 0.000298 0.995 

4 1024 80 - 20 0.000323 0.999 0.000967 0.978 

5 1024 80 - 20 0.000365 0.999 0.000897 0.982 

 

  



Table A.3 - Analytical validation of mode shapes. 
   Isotropic model Orthotropic model 

MAC 
Number of 

points 

Percentage 

training/vali-

dation 

Residual R2 Residual R2 

1_1 1024 80 - 20 0.000022 0.985 0.000140 0.752 

2_2 1024 80 - 20 0.000109 0.814 0.000119 0.723 

3_3 1024 80 - 20 0.000024 0.997 0.000024 0.987 

4_4 1024 80 - 20 0.000057 0.945 0.005210 0.251 

5_5 1024 80 - 20 0.000057 0.963 0.005294 0.246 

 

The second validation scheme was done on the model where the predictor was trained with 80% of the 

data and the residual 20% was used for the validation test, whose results are presented in the following 

Figures A.5-A.8. 

 

Figure A.5 - Train/Test split validation for Isotropic model: curve fitting of frequencies test samples. 



 

 
Figure A.6 - Train/Test split validation for Isotropic model: curve fitting of mode shapes test samples. 

 

 
Figure A 7 - Train/Test split validation for Orthotropic model: curve fitting of frequencies test samples. 

 



 
Figure A.8 - Train/Test split validation for Orthotropic model: curve fitting of mode shapes test samples. 

 

Looking at Table A.4 and Table A.5 one can notice that the trend of the analytical validation is 

maintained and confirmed also by the Train/Test approach. 

 
Table A.4- Train/Test split validation of frequencies. 

   Isotropic model Orthotropic model 

Mode 
Number of 

points  
Percentage Residual R2 Residual R2 

1 204 20 0.000266 0.999 0.000639 0.991 

2 204 20 0.000301 0.998 0.000668 0.991 

3 204 20 0.001779 0.993 0.000606 0.996 

4 204 20 0.000863 0.998 0.002086 0.980 

5 204 20 0.001026 0.998 0.001967 0.982 

 

Table A.5- Train/Test split validation of mode shapes. 
   Isotropic model Orthotropic model 

MAC 
Number of 

points 
Percentage Residual R2 Residual R2 

1_1 204 20 0.000042 0.988 0.000395 0.668 

2_2 204 20 0.000213 0.854 0.000337 0.625 

3_3 204 20 0.000063 0.996 0.000054 0.988 

4_4 204 20 0.000133 0.944 0.012807 0.234 

5_5 204 20 0.000182 0.929 0.013189 0.233 

 

Lastly, the K-Fold method was employed using 10 numbers of folds. The K-fold cross validation 

technique relies on the division of the dataset (called X) into K mutually exclusive sub-samples 

(𝑋𝑛 𝑤𝑖𝑡ℎ 𝑛 =  1,2. . . 𝑚). A sub-sample is set aside for the response surface to be built on the remaining 



sub-samples. The approximation error is then estimated utilizing the sub-sample that was left aside and 

is defined as: 

 

𝑅𝑖 =
1

|(𝑋𝑖)|
∑ |ℎ(𝑋) − ℎ𝑁(𝑋𝑖)|2

𝑋 ∈ 𝑁

 (A.2.9) 

 

in which the quantity |ℎ(𝑋) − ℎ𝑁(𝑋𝑖)|2 is the predicted residual, namely the difference between the 

evaluation and the prediction at point Xi of the sub-sample. The approximation errors are estimated 

using each sub-sample as validation, whereas the remaining sub-samples are used for training. At the 

end of the process, the K-fold cross validation error estimate is obtained as the average: 

 

𝑅𝐾−𝐹𝑜𝑙𝑑 =  
1

𝐾
∑ 𝑅𝑖

𝐾

𝑖 = 1

 (A.2.10) 

 

The results obtained through the K-Fold method confirm the results obtained from the previous 

validation approaches and are reported from Figure A.9 to Figure A.12 as well as in Table A.6 and 

Table A.7. 

 

Figure A.9 - K-Fold validation for Isotropic model: curve fitting of frequencies test samples. 



 
Figure A.10 - K-Fold validation for Isotropic model: curve fitting of mode shapes test samples. 

 

 

 
Figure A.11 - K-Fold validation for Orthotropic model: curve fitting of frequencies test samples. 

 



 
Figure A.12 - K-Fold validation for Orthotropic model: curve fitting of mode shapes test samples. 

 
Table A.6- K-Fold validation of frequencies. 

 
  Isotropic Approach Orthotropic Approach 

Mode 
Number of 

points 

Number of 

folds 
Residual R2 Residual R2 

1 1024 10 0.000226 0.999 0.000918 0.989 

2 1024 10 0.000255 0.999 0.000956 0.989 

3 1024 10 0.001338 0.997 0.000950 0.995 

4 1024 10 0.001030 0.999 0.003051 0.977 

5 1024 10 0.001142 0.998 0.002865 0.981 

 
Table A.7- K-Fold validation of mode shapes. 

   Isotropic Approach Orthotropic Approach 

MAC 
Number of 

points 

Number of 

folds 
Residual R2 Residual R2 

1_1 1024 10 0.000072 0.979 0.000438 0.747 

2_2 1024 10 0.000334 0.821 0.000372 0.720 

3_3 1024 10 0.000079 0.997 0.000077 0.987 

4_4 1024 10 0.000190 0.939 0.016444 0.231 

5_5 1024 10 0.000187 0.958 0.016704 0.225 

 

A.3. Sensitivity analyses for isotropic material approach 

Sensitivity analyses based on the Sobol Index (SI) calculation were conducted in order to evaluate the 

influence of isotropic material parameters in the outcome of the model updating process for NM19, 

starting from the model of 2018 (NM18) already calibrated through the GA procedure. 

SI was calculated as: 



𝑆𝐼𝑖𝑘 = |
𝑋𝑘

𝑌𝑖
∙

𝛥𝑌𝑖

∆𝑋𝑘
| ∙ 100 (A.3.1) 

 

where: 

• 𝑋𝑘 is the k-th uncertain parameter; 

• 𝑌𝑖 is the i-th predicted parameter; 

• Δ the variation produced in the relevant parameter. 

 

SIs were calculated both in relation to the output variation produced by changing every single 

parameter by 100% (indicated as “First Order Index”) and in relation to the output variation produced 

in correlation with other updating parameters changes (“Total Order Index”), as shown in Figure A.13 

and Figure A.14. Moreover, to better track the influence of the number of updating parameters in the 

calibration process outcome, simulations were run considering different SI thresholds (1%, 5% and 

10%). It is found that the highest changes in the modal frequencies produced by a first order index are 

mainly associated to the materials Young’s modulus of basement inner walls and central body as far as 

the first two vibration modes are concerned, whereas higher order bending modes result sensitive to 

both the variations of Poisson’s coefficient and mass density in the different parts. Moving to a total 

order index, the range of parameters influencing the natural frequencies of the different modes reduces 

to the Young’s modulus of the materials composing the basement and the central body of the tower. 

Yet, this reduction comes at a very high computational cost which strongly undermines the efficiency 

of the updating process and that could be easily bypassed resorting to the proposed GA-based approach.   

 



Figure A.13- Sobol sensitivity analysis over first order indices for Kriging method. Thresholds of Sobol Indices (SI) 

respectively highlighted in black (SI = ±1%), red (SI = ±5%) and green (SI = ±10%). 



 
Figure A.14- Sobol sensitivity analysis over total order indices for Kriging method. Thresholds of Sobol Indices (SI) 

respectively highlighted in black (SI = 1%), green (SI = 5%) and red (SI = 10%). 



In light of the results obtained considering Total Order Sobol sensitivity analysis the following 

parameters were considered for calibration of NM19 with orthotropic material approach (Table A.8).  

 
Table A.8 - Material parameters considered for calibration of NM19 after Sobol sensitivity analysis, using isotropic 

approach. 

 

 Isotropic material parameters Total 

S.I. ≥ 1% 
E03 - E04 - E05 - E06 - E07 - E08 - E10 - E12 

γ01 - γ02 - γ06 - γ07 - γ08 
13 

S.I. ≥ 5% E04 - E06 - E07 - E08 - E10 - E12 6 

S.I. ≥ 10% E06 - E07 - E08 - E10 - E12 5 

 

 

Afterwards, the results from the calibration process of NM19, updated from the baseline numerical 

model of 2018, were compared first against the ones obtained from the optimized NM18, and then 

against those achieved with NM19_0, i.e. a model built from scratch and calibrated directly via GA 

using the experimental results of 2019 and considering all the parameters as updating variables (Figure 

A.15). Except for a few cases, the variation of NM19 materials Young’s moduli with respect to NM18 

and NM19_0 counterparts shows a better agreement with the first model, proving that updating with 

new information a refined baseline model previously calibrated with reference data not only is faster 

and less demanding from a computational point of view, but also less prone to statistical variations 

from random error sources.   

 



 
Figure A.15 - Variation of NM19 material parameters in comparison to NM18 (in blue) and NM19_0 (in orange), 

considering all parameters in the calibration process. 



 
Figure A.16 - Variation of NM19 material parameters with respect to NM18 considering a reduced number of variables 

based on different thresholds of SI. 



Figure A.16 compares the percentage variation of the Young’s moduli, Poisson’s coefficients and mass 

density of NM19 materials with respect to those of NM18 considering a number of parameters reduced 

on the basis of the sensitivity analyses previously described and for different thresholds of SI. 

The comparison shows levels of variation similar or marginally better than those obtained by 

considering all the material parameters in the calibration. Nevertheless, the improvement is very little 

to justify the excessive computation time of a global sensitivity analysis. Furthermore, looking at the 

frequency relative errors, it is observed that the natural frequencies of the first five modes featured by 

the updated model of the tower (NM19) show very low variations (Δf < 0.8%) regardless of the number 

of parameters considered in the calibration process (Table A.9). 
 

 

Table A.9 - Variation of calibrated frequencies of NM19 in relation to the number of parameters subdued to updating 

process. 

 
 All Parameters S.I. = 1% S.I. = 5% S.I. = 10% 

Mode fNM18 fNM19_0 fNM19 |ΔfNM18|  |ΔfNM19_0|  fNM19 |ΔfNM18|  fNM19 |ΔfNM18|  fNM19 |ΔfNM18|  

  [Hz] [Hz] [Hz] [%] [%] [Hz] [%] [Hz] [%] [Hz] [%] 

φ1 2.070 2.078 2.079 0.43 0.05 2.076 0.29 2.062 0.39 2.064 0.29 

φ2 2.111 2.121 2.123 0.57 0.09 2.121 0.47 2.109 0.09 2.110 0.05 

φ3 6.245 6.279 6.277 0.51 0.03 6.283 0.60 6.342 1.53 6.338 1.47 

φ4 6.693 6.693 6.645 0.72 0.72 6.647 0.69 6.671 0.33 6.674 0.28 

φ5 6.839 6.843 6.789 0.74 0.80 6.793 0.68 6.824 0.22 6.826 0.19 

 

A.4. Sensitivity analyses for orthotropic material approach 

Sensitivity analyses for orthotropic material approach were carried out with the same methodology 

applied for the isotropic model. The first order influence of the different material parameters on the 

global behaviour of the orthotropic model NM19, built again using NM18 as starting model, is shown 

in Figure A.17. The results for the total order index are reported in Figure A.18. 

It is immediately observable how in the orthotropic model, even considering different thresholds of the 

SI, other parameters, such as mass density, give non negligible contributions to the model updating in 

comparison to the isotropic model, for which the most burdensome parameters resulted to be the 

Young’s moduli. Overall, it is found again that the highest changes in the modal frequencies produced 

by a first order index are essentially associated to the materials Young’s modulus of basement inner 

walls and central body as far as the first two vibration modes are concerned, whereas the torsion mode 

is particularly sensitive also to the variations of shear modulus, Poisson’s coefficient and mass density 

of the different parts. Considering a total order index, the range of parameters influencing the natural 

frequencies of the different modes sensibly reduces, but as previously referred, such a reduction comes 

at a very high computational cost which is not required by the proposed GA-based model updating 

procedure.   

 

 



 
Figure A.17 - Sobol sensitivity analysis over first order indices for Kriging method. Thresholds of Sobol Indices (SI) 

respectively highlighted in black (SI = ±1%), green (SI = ±5%) and red (SI = ±10%). 



 
Figure A.18 - Sobol sensitivity analysis over total order indices for Kriging method. Thresholds of Sobol Indices (SI) 

respectively highlighted in black (SI = 1%), green (SI = 5%) and red (SI = 10%). 



In light of the results obtained considering Total Order Sobol sensitivity analysis the following 

parameters were considered for calibration of NM19 with orthotropic material approach (Table A.10). 

 

 
Table A.10 Material parameters considered for calibration of NM19 after Sobol sensitivity analysis, using orthotropic 

approach. 

 

 Orthotropic material parameters Total 

S.I. ≥ 1% 

EN04 - EN05 - EN06 - EN07 - EN08 - EN10 - EN12 

GLN06 - GLN07 - GLN08 - GLN12 - GTN06 - GTN07 - GTN08 - GTN10 - GTN12 

γ01 - γ02 - γ03 - γ04 - γ05 - γ06 - γ07 - γ08 - γ10 - γ11 - γ12 

27 

S.I. ≥ 5% 

EN06 - EN07 - EN08 - EN10 - EN12 

GLN06 - GLN07 - GTN06 - GTN07  

γ01 - γ02 - γ06 - γ07 - γ08 

14 

S.I. ≥ 10% 

EN06 - EN07 - EN08 - EN10 - EN12 

GLN07 - GTN07 

γ01 - γ02 - γ07  

10 

 
 



 
Figure A.19 - Variation of NM19 material parameters in comparison to NM18 (in blue) and NM19_0 (in orange), 

considering all parameters in the calibration process. 



 
Figure A.20 - Variation of NM19 material parameters with respect to NM18 considering a reduced number of variables 

based on different thresholds of SI. 



Comparing the final values of the material parameters of the updated model of 2019 (NM19) with those 

obtained from models NM18 and NM19_0, both calibrated directly against experimental data, it is 

observed a better agreement between NM19 and NM18 (Figure A.19). This allows to draw the same 

conclusions emerged for the isotropic counterparts, namely that updating with new information a 

refined baseline model previously calibrated not only is faster and less demanding from a 

computational viewpoint as compared to the construction and full updating of another metamodel from 

scratch, but also less prone to statistical variations from random error sources. Still, if weighing up the 

total percentage variation of the parameters with respect to the relevant isotropic models, the 

differences become larger due to the greater number of parameters involved in the updating process of 

the orthotropic models.  

Lastly, the comparison between NM18 and NM19, both calibrated with a reduced number of 

parameters chosen on the basis of the sensitivity analyses previously described, shows a very marginal 

level of variation among the final materials variables, confirming the goodness of the sensitivity-based 

calibration process (Figure A.20). Nevertheless, the very high computational cost required by the global 

sensitivity analysis with respect to the optimization procedure herein proposed cannot be overlooked. 

Moreover, analogously to the isotropic case, the frequency relative errors of the first five modes of the 

tower are always very low regardless of the number of updating parameters considered in the 

optimization (Table A.11), thus no substantial improvement is found by reducing the unknown 

variables beforehand. 
 

Table A.11- Variation of calibrated frequencies of NM19 in relation to the number of parameters subdued to updating 

process. 
 All Parameters S.I. = 1% S.I. = 5% S.I. = 10% 

Mode fNM18 fNM19_0 fNM19 |ΔfNM18|  |ΔfNM19_0|  fNM19 |ΔfNM18|  fNM19 |ΔfNM18|  fNM19 |ΔfNM18|  

  [Hz] [Hz] [Hz] [%] [%] [Hz] [%] [Hz] [%] [Hz] [%] 

φ1 2.084 2.093 2.091 0.33 0.10 2.095 0.53 2.092 0.38 2.093 0.43 

φ2 2.137 2.134 2.143 0.28 0.42 2.143 0.28 2.141 0.19 2.139 0.09 

φ3 6.284 6.288 6.229 0.88 0.95 6.278 0.10 6.280 0.06 6.265 0.30 

φ4 6.516 6.532 6.510 0.09 0.34 6.488 0.43 6.495 0.32 6.508 0.12 

φ5 6.907 6.852 6.930 0.33 1.13 6.878 0.42 6.903 0.06 6.913 0.09 

 

A.5. Convergence criteria 

This section summarizes the comparison among the convergence rates of the different optimization 

processes, namely the GA-based updating versus the Sobol method. The latter was carried out using 

the parameters reported in Table A.8 and Table A.10. 

These rates are analysed for both isotropic and orthotropic material approaches, considering the 

convergences of the models calibrated from zero (NM18 and NM19_0) – i.e. directly targeting the 

corresponding EM results (see Figure A.21, Figure A.22, Figure A. 24, Figure A.25) – and the 

convergence of the optimization process performed to update model NM18 with 2019 experimental 

information (indicated as EM19), see Figure A.23 and Figure A.26.  

In order to ensure the stability of the global optimal solution, the processes have been repeated by 

increasing progressively the number of iterations. In the first run of the optimization procedure this 

number was set equal to 100, in the second run equal to 200, 500 for the third run and 2000 for the last 

calibration. Noticeable differences can be seen among the convergence rates of the various optimization 

procedures.  

It must be noted that, in the plots, the number of iterations visible along the horizontal axis corresponds 

to the product between the total number of iterations previously listed and the generated sub-iterations. 

This happens because, as it was indicated in Section A.1, the number of sub-iterations that are 

calculated during one iteration are as many as the NB_FILLS. Having this parameter defined as 6, the 



number of iterations multiplied by the number of sub-iterations gives the total number of operations 

reported in the figures of the convergence rates.  

 

 

 
Figure A.21- Influence of number of iterations on the convergence rate of NM2018 with isotropic material approach: 

calibration considering (a) all material parameters and (b) reduced number of parameters (based on thresholds fixed for 

SI). 

 



 
Figure A.22 - Influence of number of iterations on the convergence rate of NM2019_0 with isotropic material approach: 

calibration considering (a) all material parameters and (b) reduced number of parameters (based on thresholds fixed for 

SI). 

 

 



 
Figure A.23 - Comparison of convergence rate variations in the updating process of NM2019 isotropic model starting 

from NM2018 and using 2000 iterations: GA-based approach (green) versus Sobol method for different thresholds (blue, 

orange and yellow). 

 
Figure A. 24 - Influence of number of iterations on the convergence rate of NM2018 with orthotropic material approach: 

calibration considering (a) all material parameters and (b) reduced number of parameters (based on thresholds fixed for 

SI). 



 

 
Figure A.25 - Influence of number of iterations on the convergence rate of NM2019_0 with orthotropic material 

approach: calibration considering (a) all material parameters and (b) educed number of parameters (based on thresholds 

fixed for SI). 

 

 

 



 
Figure A.26 - Comparison of convergence rate variations in the updating process of NM2019 orthotropic model starting 

from NM2018 and using 2000 iterations: GA-based approach (green) versus Sobol method for different thresholds (blue, 

orange and yellow). 

 

Table A.12, Table A.13, Table A.14, Table A.15 summarize the frequency relative errors estimated for 

the five vibration modes of the tower as the number of iterations of the optimization process increases. 

As expected, the lowest errors are found with the highest number of iterations (2000), whose run is 

much more feasible, robust and remarkably less time-consuming using the proposed GA-based 

optimization approach. 

 
 

Table A.12 - Variation of frequencies of calibrated NM2018 with isotropic approach in relation to different number of 

iterations. 

Mode 

 100 Iterations 200 Iterations 500 Iterations 2000 Iterations 

fEM18 fNM18 |ΔfEM18-NM18|  fNM18  |ΔfEM18-NM18| fNM18  |ΔfEM18-NM18| fNM18 |ΔfEM18-NM18| 

[Hz] [Hz] [%] [Hz] [%] [Hz] [%] [Hz] [%] 

φ1 2.082 1.987 4.56 2.014 3.27 2.062 0.96 2.070 0.58 

φ2 2.156 2.021 6.26 2.049 4.96 2.098 2.69 2.111 2.09 

φ3 6.293 6.326 0.52 6.379 1.37 6.281 0.19 6.280 0.21 

φ4 6.442 6.818 5.84 6.842 6.21 6.751 4.80 6.700 4.00 

φ5 6.941 7.000 0.85 7.022 1.17 6.901 0.58 6.850 1.31 

 
Table A.13 - Variation of frequencies of calibrated NM2019_0 with isotropic approach in relation to different number of 

iterations. 

Mode 

 100 Iterations 200 Iterations 500 Iterations 2000 Iterations 

fEM19 fNM19_0 |ΔfEM19-NM19_0|  fNM19_0  |ΔfEM19-NM19_0| fNM19_0  |ΔfEM19-NM19_0| fNM19_0 |ΔfEM19-NM19_0| 

[Hz] [Hz] [%] [Hz] [%] [Hz] [%] [Hz] [%] 

φ1 2.092 1.989 4.92 2.011 3.87 2.057 1.67 2.078 0.67 

φ2 2.165 2.024 6.51 2.046 5.50 2.091 3.42 2.121 2.03 

φ3 6.302 6.352 0.79 6.345 0.68 6.287 0.24 6.279 0.36 

φ4 6.449 6.797 5.40 6.838 6.03 6.755 4.74 6.693 3.78 

φ5 6.872 6.976 1.51 7.021 2.17 6.908 0.52 6.843 0.42 

 



Table A.14 - Variation of frequencies of calibrated NM2018 with orthotropic approach in relation to different number of 

iterations. 

Mode 

 100 Iterations 200 Iterations 500 Iterations 2000 Iterations 

fEM18 fNM18 |ΔfEM18-NM18|  fNM18  |ΔfEM18-NM18| fNM18  |ΔfEM18-NM18| fNM18 |ΔfEM18-NM18| 

[Hz] [Hz] [%] [Hz] [%] [Hz] [%] [Hz] [%] 

φ1 2.082 2.079 0.14 2.070 0.58 2.074 0.38 2.084 0.10 

φ2 2.156 2.123 1.53 2.115 1.90 2.119 1.72 2.137 0.88 

φ3 6.293 6.277 0.25 6.283 0.16 6.276 0.27 6.284 0.14 

φ4 6.442 6.645 3.15 6.645 3.15 6.647 3.18 6.516 1.15 

φ5 6.941 6.789 2.19 6.790 2.18 6.794 2.12 6.907 0.49 

 
 

Table A.15 - Variation of frequencies of calibrated NM2019_0 with orthotropic approach in relation to different number 

of iterations. 

Mode 

 100 Iterations 200 Iterations 500 Iterations 2000 Iterations 

fEM19 fNM19_0 |ΔfEM19-NM19_0|  fNM19_0  |ΔfEM19-NM19_0| fNM19_0  |ΔfEM19-NM19_0| fNM19_0 |ΔfEM19-NM19_0| 

[Hz] [Hz] [%] [Hz] [%] [Hz] [%] [Hz] [%] 

φ1 2.092 2.079 0.62 2.070 1.05 2.074 0.86 2.093 0.05 

φ2 2.165 2.123 1.94 2.115 2.31 2.119 2.12 2.134 1.43 

φ3 6.302 6.277 0.40 6.283 0.30 6.276 0.41 6.288 0.22 

φ4 6.449 6.645 3.04 6.645 3.04 6.647 3.07 6.532 1.29 

φ5 6.872 6.789 1.21 6.790 1.19 6.794 1.14 6.852 0.29 
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