
04 March 2025

UNIVERSITÀ POLITECNICA DELLE MARCHE
Repository ISTITUZIONALE

A Low-Cost, Low-Power and Real-Time Image Detector for Grape Leaf Esca Disease Based on a
Compressed CNN / Falaschetti, Laura; Manoni, Lorenzo; Calero Fuentes Rivera, Romel; Pau, Danilo;
Romanazzi, Gianfranco; Silvestroni, Oriana; Tomaselli, Valeria; Turchetti, Claudio. - In: IEEE JOURNAL OF
EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS. - ISSN 2156-3357. - ELETTRONICO. -
11:3(2021), pp. 468-481. [10.1109/JETCAS.2021.3098454]

Original

A Low-Cost, Low-Power and Real-Time Image Detector for Grape Leaf Esca Disease Based on a Compressed
CNN

Publisher:

Published
DOI:10.1109/JETCAS.2021.3098454

Terms of use:

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of
copyrighted works requires the consent of the rights’ holder (author or publisher). Works made available under a Creative Commons
license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor’s
website for further information and terms and conditions.
This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the
published version.

Availability:
This version is available at: 11566/291463 since: 2024-05-14T12:02:19Z

This is the peer reviewd version of the followng article:

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X XXXX 1

A Low-Cost, Low-Power and Real-Time Image
Detector for Grape Leaf Esca Disease Based on a

Compressed CNN
Laura Falaschetti, Member, IEEE, Lorenzo Manoni, Romel Calero Fuentes Rivera, Danilo Pau, Fellow, IEEE,

Gianfranco Romanazzi, Oriana Silvestroni, Valeria Tomaselli, and Claudio Turchetti, Life Member, IEEE

Abstract—Esca is one of the most common grape leaf dis-
eases that seriously affect grape yield, causing a loss of global
production in the range of 20%-40%. Therefore, a timely and
effective identification of the disease could help to develop an
early treatment approach to control its spread while reducing
economic losses. For this purpose the use of computer vision and
machine learning techniques for recognizing plant diseases have
been extensively studied in recent years. The aim of this paper
is to propose an image detector based on a high-performance
convolutional neural network (CNN) implemented in a low
cost, low power platform, to monitor the Esca disease in real-
time. To meet the severe constraints typical of an embedded
system, a new low-rank CNN architecture (LR-Net) based on
CANDECOMP/PARAFAC (CP) tensor decomposition has been
developed. The compressed CNN network so obtained has been
trained on a specific dataset and implemented in a low-power,
low-cost Python programmable machine vision camera for real-
time classification. An extensive experimentation has been con-
ducted and the results achieved show the superiority of LR-Net
with respect to the state-of-the-art networks both in terms of
inference time and memory occupancy.

Index Terms—Image detector, Esca disease, convolutional neu-
ral network, tensor decomposition, embedded systems.

I. INTRODUCTION

THE vineyards have different degrees of internal vari-
ability [1], [2] due to the complex interactions that are

established among the morphology of the soil, its chemical and
biological fertility, the seasonal meteorological trends and the
management techniques applied. These interactions influence
the physiological performance of the grapevines, changing the
balance between the vegetative and productive components [3],
[4]. Thus, the conditions for the vegeto-productive imbalance
in plants may arise, negatively affecting the production of
good quality grapes and the resilience to biotic and abiotic
stresses. The monitoring of spatial and/or temporal variability

L. Falaschetti, L. Manoni, R. Calero Fuentes Rivera and C. Turchetti
are with the Dipartimento di Ingegneria dell’Informazione, Università
Politecnica delle Marche, Via Brecce Bianche 12, I-60131 Ancona,
Italy; e-mail: l.falaschetti@univpm.it, l.manoni@pm.univpm.it,
S1077689@studenti.univpm.it, c.turchetti@univpm.it.

D. Pau is with the System Research and Applications, STMicroelectronics,
Agrate Brianza, Italy; e-mail: danilo.pau@st.com.

G. Romanazzi and O. Silvestroni are with the Dipartimento di Scienze
Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via
Brecce Bianche 12, I-60131 Ancona, Italy; e-mail: g.romanazzi@univpm.it,
o.silvestroni@univpm.it.

V. Tomaselli is with the System Research and Applications, STMicroelec-
tronics, Catania, Italy; e-mail: valeria.tomaselli@st.com.

Manuscript received x xx, xxxx; revised x xx, xxxx.

within vineyards was used to calibrate water [5] or nitrogen
requirements [6], to define new protocols of sampling grapes
for maturation monitoring [7] and lately to detect foliar
symptoms of the Esca grapevine trunk disease [8]. Esca is one
of the main grapevine diseases, able to induce severe symp-
toms and lead to the death of symptomatic plants worldwide
[9], [10]. A list of fungal pathogens have been associated
with the disease, and the most common are Phaeomoniella
chlamydospora, Phaeoacremonium ultimum and Fomitiporia
mediterranea [11]. External disease symptoms, including leaf
stripes, interveinal chlorosis and necrosis, linear pitting on
berries, and dessiccation of a portion or of the whole plant
appears on the canopy, even in young vineyards few years
after planting, and become increasingly severe with the aging
of the plant [12]. Infected plants do not show foliar symptoms
every years, and investigations run in the Marche region (Italy)
on Verdicchio have indicated that around one third of plants
showed symptoms three years out of three, one third two
years out of three, and the last third just one year out of
three. Moreover, the symptoms displayed are highly variable
according to the cultivator and are affected by the rootstock
[13], [14]. Therefore, having tools that are useful for the
grower to monitor the progress of the disease in real-time every
year can help to explain the correlation with other factors and
apply mitigation strategies.

Besides, a common practice to manage trunk disease in
infected vineyards is the pruning in autumn (early pruning) or
in winter (late pruning), removing pruning from the vineyard
or burning, in order to prevent the spread of disease [15],
[16], [17]. This operation is particularly expensive if carried
out by hand, thus a mechanical solution is strongly required in
order to reduce the cost of this practice. To be effective such a
system must be able to automatically detect the disease and the
localization of the infected plants, thus solving two different
problems: disease detection and geolocalization of plants. This
paper focuses on the former problem alone, that is the grape
leaf Esca disease detection.

The availability of a vision system, simple to use and that
could be combined with autonomous agricultural vehicles,
would offer the agronomist a valuable assistance for the plant
disease detection and diagnosis, through optical observation
of infected leaves.

In this scheme both the image sensor and the geolocalization
system are mounted on a vehicle moving in the field, and they
act simultaneously giving the coordinate and the status of each

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X XXXX 2

plant. Thus one of the main requirements of the vision system
is that it must be able to process the images on the fly, i.e. by
processing the images of one plant before moving on to the
next one. Although this requirement may be considered as too
restrictive, another option to manage this problem is a batch
solution in which the images and the positions are collected
on-line, while the vehicle moves on the field, store them in
a mass memory and subsequently process them off-line, e.g.
using a PC. However this solution has some main drawbacks.
Firstly, such image storage of several hours at 50 frames/sec,
e.g. QVGA resolution, requires about 659 Mbytes of storage
per minute. This amount of information would fill a 32 GB SD
Card in 50 minutes, thus requiring multiple memory cards for
a 4 hours standard working turn. For higher picture resolutions,
storage increase linearly by a factor equal to the ratio between
them and QVGA, becoming more and more challenging to be
managed by the application. Secondly, and more importantly,
the geolocalization of plants is inevitably affected by large
error. Thus, while such an error suffices for an automated
system to coarsely localize the infected plants, a more accurate
localization, i.e. through a real-time image detector, is required
for both selective pruning and grape harvest on-line in order
to prevent damages on healthy plants.

In recent years, convolutional neural networks (CNNs) [18]
have shown an impressive performance and at present they
contribute to the state-of-the-art solution to most computer vi-
sion problems. The main reasons for this widespread adoption
is that they take advantage of large image datasets and are able
to discover the discriminative features directly from original
images, avoiding complicated image processing. Thanks to
those properties several plant disease classification models
based on CNNs have recently been suggested.

In [19] the pre-trained AlexNet CNN model to learn unsu-
pervised feature representations for 44 different plant species,
has been used. A very simple CNN architecture that comprises
two convolutional layers alone has been suggested in [20] for
classifying three different legume species. The applicability of
CNNs for plant disease detection has been studied in [21], by
adopting AlexNet and GoogleLeNet architectures to identify
14 crop species and 26 diseases. Sladojevic et al. [22] trained
a 5-layers CNN on a dataset with 30880 images, original and
augmented, to recognize 13 different types of plant diseases
out of healthy leaves. Scratch and fine-tuned versions of
GoogleLeNet and AlexNet architectures have been considered
in [23] to classify plants from AgrilPlant, LeafSnap, and Folio
datasets. Three families of detectors (Faster R-CNN, R-FCN,
SSD) combined with VGGNet and ResNet have been used
in [24] to recognize nine different types of plant diseases
and pests. Agarwal et al. [25] have suggested a CNN model
with six convolutional layers to identify the diseases in grape
plants in early stages by analysing the leaf images from Plant
Village dataset. In [26] a study for the automatic identification
of plant diseases has been conducted with several different
architectures, i.e. LeNet, AlexNet, CaffeNet, ResNet, VGG,
Inception, DenseNet and ResNeXt, on images achieved from
public datasets. A deep-learning-based and faster DR-IACNN
model with higher feature extraction capability that uses Incep-
tion modules and SE blocks is presented in [27] for grape leaf

disease detection. Recently, Z. Tang et al. [28] have proposed
a lightweight convolutional neural network model, using an
improved ShuffleNet architecture that embeds a squeeze-and-
excitation(SE) block into a ShuffleNet, for grape disease image
classification.

All these networks are able to guarantee a good accuracy
for plant diseases recognition, however they require significant
memory and computational resources, which prohibit their
usage in embedded devices. This is a serious limitation for the
development of low-power, low-cost image sensors that can be
mounted on agricultural vehicles, in order to meet restrictions
such as form factor, power consumption and cost.

The aim of this paper is to propose an image detector based
on a high-performance CNN implemented in a low cost, low
power platform, to monitor Esca disease in real-time. The main
contributions of the paper are summarized as follows:
• Several CNN compression techniques based on tensor de-

composition are preliminarily analysed and a comparative
study has been carried out to determine the method with
the best performance.

• A new CNN architecture based on CANDE-
COMP/PARAFAC (CP) tensor decomposition has
been developed, that decomposes each convolution
layer as two 1 × 1 convolution at the input and output
ends, and a depthwise convolution in the middle. The
same technique has been used to decompose the fully
connected layers to reduce the storage cost.

• The compressed CNN network previously defined has
been implemented in the OpenMV Cam STM32H7 Plus
platform, a low-power low-cost Python programmable
machine vision camera, embodying a powerful micro-
controller (MCU) for real-time classification.

The rest of the paper is organized as follows. Section II deals
with problem statement and specifications. In Section III we
summarize the related work and we state the motivations for
our work. In Section IV several CNN compression techniques
are studied and compared in order to determine the method
with the best compression factor. Section V describes the
dataset adopted in the experiments. In Section VI some details
on the development of the compressed CNN architecture in
the TensorFlow/Keras environment are given. Section VII
reports the main features, hardware and software, of the CNN-
based image sensor implemented in the low-power, low-cost
OpenMV Cam STM32H7 Plus platform. Finally experimental
results are presented in Section VIII.

II. PROBLEM STATEMENT AND SPECIFICATIONS

The Fig. 1 depicts an automated vision system for the
detection of Esca grapevine disease. In this scheme the image
sensor we propose in this paper is mounted on an agricultural
vehicle moving through the cultivation field at constant speed
v (km/h). The image sensor samples images of the plant at
the rate f (frame/sec). As each plant is located between two
poles which are distanced L (meters) one from the other, then
the camera is able to capture Nf images

Nf = f × L

v
(1)

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X XXXX 3

of each plant.

L

Fig. 1: The system for optical observation of the Esca disease
on plant leaves.

Here we assume v = 8 km/h (2.2 m/sec), f = 50 frame/sec,
L = 3 m, thus from (1) we have Nf

∼= 67. Assuming each
image is recognized by the sensor, then an inference time

tinf <
1

f
= 20 msec (2)

would be required. However this specification constitutes a
constraint too severe for the neural network to classify the
images. A more realistic value for the number of images
used for classification is Ninf = kNf with k < 1, which
corresponds to an inference time

tinf =
1

kf
(3)

thus giving the following design constraint

tinf =
Nf

Ninf × f
=

L

Ninf × v
. (4)

Choosing Ninf = 20 we obtain tinf = 68 msec, which is
one of the main constraints used in this paper in designing the
sensor.

It is worth noticing that in this context the metric to measure
the performance of plant disease recognition is the number of
images recognized as true positive (TP) (meaning plant with
disease) in the path between two consecutive poles. From the
definition of accuracy we have

accuracy = (TP + TN)/Ninf (5)

where TN is the number of images recognized as true negative,
i.e. with no disease. Setting TN=0 since for a plant attached
by a disease no images classified as healthy occur, yields the
following relationship

TP = accuracy ×Ninf (6)

for the TP metric. This result clearly shows that in order to
obtain the maximum value for TP, a compromise between
accuracy and Ninf can be adopted.

III. RELATED WORK

Convolutional neural networks (CNNs) are widely used for
plant disease detection, however not all the architectures are
suitable to be implemented in a low cost embedded MCU.
In fact even though networks such as VGG and AlexNet are
able to achieve a great learning accuracy, they require an
exceeding inference cost both in terms of speed and memory
footprint. For this reason in this paper we focus only on tiny
architectures, i.e. nets that are able to learn a given dataset,
can fit into scarce computing and memory resources made
available by an MCU.

A. MobileNet

MobileNets are a class of efficient convolutional neural net-
works (CNNs) for mobile and embedded vision applications,
that primarily focus on optimization for latency and small
size networks. MobileNets V1 [29] is based on an architec-
ture that uses depthwise separable convolution (DSC), which
factorizes a standard convolution into two separate layers:
depthwise convolution and 1×1 convolution. This factorization
drastically reduces computation complexity and model size.
MobileNet V2 [30] has been developed by observing that each
layer in a CNN forms a manifold that could be embedded
in a low-dimensional subspace. Thus in order to capture this
property a novel layer module, the inverted residual with
linear bottleneck, is inserted into the convolutional blocks.
MobileNet V3 [31] uses a combination of two layers, called
squeeze and excitation layers, into the bottleneck structure of
the MobileNet V2 in order to optimize both accuracy and
inference latency.

B. LeNet

The LeNet architecture [32] is one of the earliest CNN
networks which was applied to MNIST digit dataset. It has a
very basic structure formed, in the variant called LeNet-5, by
5 layers in total. Specifically, it consists of two convolutional
layers each followed by a max-pooling operation and a single
convolutional layer followed by a set of two fully connected
layers towards the end of the model to act as a classifier on
the extracted features.

C. SqueezeNet

SqueezeNet [33] achieves AlexNet-level accuracy on Ima-
geNet with 50× fewer parameters. Additionally, using model
compression techniques, SqueezeNet can be compressed to
less than 0.5 MB (510× smaller than AlexNet). To obtain
these performances three strategies are adopted for designing
the CNN architecture.

• Strategy 1. Replace 3× 3 filters with 1× 1 filters.
• Strategy 2. Decrease the number of input channels to 3×3

filters.
• Strategy 3. Downsample late in the network so that

convolution layers have large activation maps.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X XXXX 4

D. ShuffleNet

ShuffleNet V1 [34] was designed specially for mobile de-
vices with very limited computing power. On the basis of two
operations, point wise group convolution and channel shuffle,
the new architecture is able to greatly reduce computation cost
while maintaining accuracy. The concept of group convolution
was first introduced in AlexNet [35]. In this architecture the
output of each stacked layer are distributed into several groups
and each output channel only relates to the input channels of
subsequent layers within the group. Channel shuffle operation
is an efficient and elegant variant of group convolution to
obtain input data from different groups, so that the input and
output channels of two layers are fully related. ShuffleNet
V2 [36] has been proposed to overcome some limitations
of previously discussed techniques. In particular point wise
group convolutions and bottleneck structure are two techniques
adopted to increase the number of channels without signifi-
cantly increasing complexity. A “channel shuffle” operation is
then introduced to enable information communication between
different groups of channels and to improve accuracy. How-
ever, both point wise group convolutions and bottleneck struc-
ture increase computational cost. ShuffleNet V2 introduces a
simple operator called “channel shift” which splits the input
feature channels into two branches. After convolution, the two
branches are concatenated, so that the number of channels
stay the same. ShuffleNet V2 is both efficient and accurate.
Firstly because each building block enables using more feature
channels and larger network capacity, secondly because half of
feature channels directly join the next block. Several improved
ShuffleNets architectures have recently been presented [28] to
improve the performance of existing state-of-the-art models.
Essentially these new architectures are based on the “squeeze-
and-excitation” (SE) block [37], that adaptively recalibrates
channel-wise feature response by explicitally modeling in-
terdependencies between channels. Due to the flexibility of
the SE block, it can be directly applied to existing network
architectures, obtaining the new networks ShuffleNet V1 and
ShuffleNet V2.

E. ResNet

ResNet architecture [38] is addressed to solve the degra-
dation problem of deeper networks: with the network depth
increasing, accuracy is saturated and then degrades rapidly.
ResNet model solves this problem by introducing a ’deep
residual learning’ framework. More specifically this architec-
ture is formed by a large number of stacked layers each of
which asymptotically approximates a residual function instead
of a generic mapping. In this way residual nets with a depth
of up to 152 layers, 8× deeper than that of VGG nets but
still having lower complexity, have been evaluated [38] on
ImageNet dataset.

F. PeleeNet

PeleeNet [39] is a variant of DenseNet [40], and it is de-
signed to meet strict constraints on memory and computational
budget. The key features of PeleeNet are: i) two-way dense

layer to get different scales of receptive fields. One way uses
a 3 × 3 kernel size, while the other uses two stacked 3 × 3
convolution to learn visual patterns for large objects. ii) Stem
block before the first dense layer. This block improves the
feature expression ability without increasing computational
cost. iii) Dynamic number of channels in bottleneck layer,
so that the number of channels in the bottleneck layer varies
according to the input shape. PeleeNet achieved on ImageNet
dataset an accuracy of 77%, higher than that of MobileNet by
2.1%, and it is only 66% of the model size of MobileNet.

G. Our Work

Even though all the networks previously discussed are
based on lightweight architectures, that is with a reduced
parameter set to learn, the performance achieved both in terms
of storage cost and in particular in computational complexity
do not suffice for embedded MCUs. With reference to the
Esca grapevine disease recognition problem, the main goal
of our work is to prove that an optimized CNN architecture
can be implemented in an embedded platform to meet the
requirements of low-power, low-cost and real-time detection.
To our knowledge none of the previous works have addressed
this problem, as they tested the CNN architectures on high
performance processor units. Thus this paper presents for the
first time a real-time image detector for Esca disease detection.
To reach this goal we proceeded as follows.
• In order to reduce computational complexity the most

common techniques for tensor decomposition have been
analysed.

• A comparative study has been conducted to determine the
method with the best compression factor.

• The method so derived, i.e. CP decomposition, has been
applied to a generic convolutional layer of a CNN. As
a result the layer is decomposed as 1× 1 convolution at
the input, D × D convolution in the middle and 1 × 1
convolution at the output.

• The same tensor decomposition is applied to the fully
connected layer to reduce the storage cost.

• A new architecture based on CP decomposition is derived
and trained using the ESCA-dataset [41], that contains
photographs of healthy and infected leaves, as well as
images obtained by data augmentation techniques.

• The optimized architecture is implemented in the Python
programmable OpenMV Cam STM32H7 Plus platform,
to meet the requirements of a low-power, low-cost, real-
time image sensor for the detection of Esca grapevine
disease.

IV. CNN COMPRESSION BY TENSOR DECOMPOSITION: A
COMPARATIVE STUDY

The great accuracy of CNNs is achieved by paying the cost
of large memory consumption and high computational com-
plexity, thus in many emerging scenarios such as mobile and
embedded applications, CNN compression [42] has become
essential. The most common techniques for CNN compression
are: pruning, quantization, low-rank tensor decomposition.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X XXXX 5

Pruning or network pruning has been widely used to com-
press CNN models in early work [43], [44], [45], [46], [47],
and it has proven to be a valid way to reduce the network
complexity. This technique starts by learning the weights via
normal training, then proceeds by removing the small-weight
connections, i.e. connections with weights below a threshold.
Finally the network is retrained to learn the final weights of
the remaining sparse connections.

Quantization reduces the number of bits used to represent
data, and this technique can be applied to several data objects
in a neural network, involving weight, activation, gradient
and weight update [42]. In [48] a method to train Binarized-
Neural-Networks (BNNs), i.e. neural networks with binary
weight and activations, has been proposed.

Tensor decomposition is a higher order extension of the
singular value decomposition (SVD) for matrices, that reduces
a tensor to a low-rank tensor that requires a reduced number of
data and operations to be represented by preserving accuracy
[49], [50], [51]. In a CNN the convolutional layers are the most
time-consuming parts and involve convolutional operations on
banks of filters represented by tensors. The size of these
tensors can be very large, depending on the dataset to be
learned, thus tensor decomposition is a useful technique to
speed-up convolutional layers, and it will be applied in the
following to derive a high performance CNN architecture.
In this context a large variety of algorithms exist, thus to
take advantage of this technique comparing the performance
achieved with different algorithms is a preliminary task in
order to derive the best solution. To this end four of the
most beneficial methods known in literature, namely CP-
decomposition, Tucker-decomposition (TD) [50], tSVD strat-
egy 1 (tSVD1) and tSVD strategy 2 (tSVD2) [52], will be
briefly summarized and a comparative study will be carried
out to determine the method with the best performance.

A. CP Decomposition

The CANDECOMP/PARAFAC (CP) decomposition [50]
approximates an nth-order tensor X ∈ Rn1×n2×...×nn as a
linear combination of R rank-1 tensors in the form

X̂ CP =

R∑
r=1

λra
(1)
r ◦ a(2)r ◦ . . . ◦ a(n)r (7)

where the symbol “◦” represents the outer product and
a
(1)
r , a

(2)
r , . . . are the columns of the matrices A1 =

[a
(1)
1 , . . . , a

(1)
R], A2 = [a

(2)
1 , . . . , a

(2)
R], . . . respectively.

The matrices A1, A2, . . . are determined by solving for a
given value of R the following optimization problem

min
X̂ CP

‖X − X̂ CP ‖F (8)

where ‖·‖F is the Frobenius norm. It can be shown that the
error in (8) can be rewritten as

‖X−X̂ CP ‖F = ‖X (1)−X̂ CP (1)‖F = ‖X (2)−X̂ CP (2)‖F = . . .
(9)

in which the matrices X (1), X̂ CP (1),X (2), X̂ CP (2), . . . denote
the modal unfolding of tensors X and X̂ CP respectively.

Using (9) the minimization problem (8) reduces to a mul-
tilinear least-square problem, which can be solved with the
alternating least-square (ALS) technique, i.e. by minimizing
iteratively any one of the errors between matrices in (9) until
the convergence is reached. The reduction of storage cost
achieved with this decomposition for a 3rd order tensor is
given by

CCP =
(n1 + n2 + n3)R

n1n2n3
. (10)

B. Tucker Decomposition

Tucker decomposition [50] approximate an nth-order tensor
X as a multilinear transformation in the form

X̂ Tuck =

R1∑
r1=1

· · ·
Rn∑

rn=1

gr1,...,rnU
(1)(:, r1) ◦

◦ U (2)(:, r2) ◦ . . . U (n)(:, rn) (11)

where U (1)(:, r1), U (2)(:, r2), . . . are columns vectors of the
orthogonal matrices U (1) ∈ RR1×n1 , U (2) ∈ RR2×n2 , . . .
respectively, and gr1,...,rn is the generic term of the tensor
G .

Equivalently (11) can be rewritten in a more compact form
as

X̂ Tuck = G ×1 U
(1) ×2 U

(2) . . .×n U
(n) (12)

where the symbol ×n denotes the the n-mode product of a ten-
sor with a matrix. The matrices U (1), U (2), . . . are determined
by solving the following minimization problem

min
X̂ Tuck

‖X − X̂ Tuck‖F (13)

while the tensor G can be derived from

G = X ×1 (U (1))T ×2 (U (2))T ×3 . . . (14)

using the orthogonality property of matrices U (1), U (2),
The reduction of storage cost for a 3rd order tensor in this
case is

CTuck =
(n1R1 + n2R2 + n3R3) +R1R2R3

n1n2n3
. (15)

C. tSVD

tSVD is a generalization of the matrix SVD recently sug-
gested in [53] for third-order tensors. The method is based
on the notion of the t-product, a generalization of matrix
multiplication for tensors of order three.

Given the tensors A ∈ Rn1×n2×n3 , B ∈ Rn1×l×n3 and
denoting by Ai = A(:, :, i), Bi = B(:, :, i) their frontal slices,
then the t-product

C = A ∗ B (16)

gives the n1 × l × n3 tensor C defined by

 C1

. . .
Cn3

 =

A1 An3

. . . A2

A2 A1 . . . A3

...
...

...
...

An3−1 An3−2 . . . An3

An3
An3−1 . . . A1

 =

 B1

. . .
Bn3

(17)

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X XXXX 6

where Ci = C(:, :, i) are the slices of the tensor C and the
matrix derived from slices Ai in (13), is a block-circulant
matrix of A denoted as bcirc(A)

By taking advantage of block-circulant matrix properties, it
can be shown that, denoting with Ā, B̄, C̄ the tensors obtained
as the result of the DFT on A,B, C along the 3-rd dimension,
we can write

C̄i = Āi B̄i, i = 1, . . . , n3 . (18)

On the basis of the t-product definition and (18) a 3rd-order
tensor A ∈ Rn1×n2×n3 can be factorized as

A = U ∗ S ∗ VT (19)

where U ∈ Rn1×n2×n3 , V ∈ Rn1×n2×n3 are orthogonal, i.e.
are such that U ∗ U T = I , VT ∗ V = I (I is the identity
tensor) and S ∈ Rn1×n2×n3 is an f -diagonal tensor, i.e. a
tensor in which each front-back is diagonal (see Fig. 2).

Fig. 2: An illustration of the t-SVD of an n1×n2×n3 tensor.

On the basis of the theoretical results previously summarizes
several techniques can be developed for tensor compression,
among which tSVD strategy 1 (tSVD1) and tSVD strategy 2
(tSVD2) are the most beneficial.

1) tSVD1: This technique [52] is based on the selection of
the k eigenvalues of S̄ , the tensor of singular values in the
FFT domain, that assume the highest values.

Since S is f -diagonal it is easy to show that

X =

min(n1,n2)∑
i=1

U (:, i, :) ∗ S (i, i, :) ∗ V (:, i, :)T . (20)

In order to compress the tensor X an index k < min(n1, n2)
is chosen so that X is approximately by

X tSVD1 =

k∑
i=1

U (:, i, :) ∗ S (i, i, :) ∗ V (:, i, :)T . (21)

The reduction of storage cost is given by

CtSVD1 =
k (n1 + n2 + 1)

n3n1n2
. (22)

2) tSVD2: This method [52] is based on the following
result: given the tSVD decomposition X = U ∗ S ∗ VT , and
defining the sums

X =

n3∑
k=1

Xk , U =

n3∑
k=1

Uk

S =

n3∑
k=1

Sk , V =

n3∑
k=1

Vk , (23)

where Xk, Uk, Sk, and Vk are the k-th frontal faces of
X ,U ,S , and V respectively, thus U, S, V represent the SVD
decomposition of X

X = USV T . (24)

Choosing k1 � n1, k2 � n2 and defining

Ũ = U(:, 1 : k1), Ṽ = V (:, 1 : k2), S̃ = S(1 : k1, 1 : k2)

T (:, :, k) = ŨTX (:, :, k)Ṽ , k = 1, . . . , n3 (25)

the compressed tensor is computed as

X tSVD2 =

k1∑
i=1

k2∑
j=1

Ũ(:, i) ◦ Ṽ (:, j) ◦ T (i, j, :) . (26)

The reduction of storage cost is given by

CtSVD2 =
k1k2n3 + n1k1 + n2k2

n3n1n2
(27)

D. A Comparative Study

In order to select the technique that is able to ensure the
best performance both in terms of accuracy and storage gain,
a comparative study using the methods previously discussed
has been carried out. The datasets used for this purpose are
the following:
• USPS. A set of 16×16 images in gray scale representing

hand written digits. A tensor X of dimension 16× 16×
1000 has been formed from the dataset.

• MNIST. Dataset of hand written digit in gray scale. A
tensor of dimension 28 × 28 × 1000 has been extracted
from the dataset.

• AT&T. The set contains face images in gray scale col-
lected from distinct subjects. A tensor of dimension
56× 46× 100 has been formed from the dataset.

• COIL-20. The dataset contains images of objects in gray
scale. The size of the tensor extracted from this dataset
is 32× 32× 170.

• CIFAR-10. Dataset of RGB images containing 10 differ-
ent objects. A tensor of size 32× 32× 1000 is obtained
from this dataset converting the images in gray scale.

The results achieved using the four tensor decomposition
techniques - CP, Tucker, tSVD1, tSVD2 - on the five datasets
just mentioned, are reported in Figs. 3, 4 and 5. The recon-
struction error adopted in these experiments is the following
measure

MMSE =
‖X − X̂ ‖2F
‖X ‖2F

. (28)

The comparison reported in the Figures clearly shows
that CP method for tensor decomposition outperforms the
other techniques both in terms of accuracy and compression
factor. As additional considerations, tSVD1 and tSVD2 have
performance strictly depending on the dataset and on the
depth of tensor, i.e. the n3 dimension. For tensors of reduced
dimension, in particular for USPS and COIL-20 datasets,
tSVD1 shows the best performance.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X XXXX 7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

compression factor

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

USPS

CP

Tucker

tSVD
1

tSVD
2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

compression factor

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

AT&T

CP

Tucker

tSVD
1

tSVD
2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

compression factor

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

COIL-20

CP

Tucker

tSVD
1

tSVD
2

Fig. 3: Experimentation on USPS, AT&T and COIL-20
datasets.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

compression factor

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

MNIST N=1000

CP

Tucker

tSVD
1

tSVD
2

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

compression factor

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

MNIST N=500

CP

Tucker

tSVD
1

tSVD
2

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

compression factor

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

MNIST N=200

CP

Tucker

tSVD
1

tSVD
2

(c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

compression factor

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

MNIST N=100

CP

Tucker

tSVD
1

tSVD
2

(d)

Fig. 4: Experimentation on MNIST dataset by selecting a
different number of images, (a) N = 1000, (b) N = 500,
(c) N = 200, (d) N = 100.

E. CNN Compression

To address the CNN compression problem it is worth to
notice that in such a network the convolutional layers are the
most time-consuming part, while the fully-connected layers
involve most storage cost, thus these two layers will be treated
separately.

1) Convolutional Layer: Having proven on the basis of the
comparative study previously discussed that CP decomposition
ensures the best performance, in the following we want to
reformulate the convolution operation by decomposition the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

compression factor

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

CIFAR-10 N=1000

CP

Tucker

tSVD
1

tSVD
2

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

compression factor

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

CIFAR-10 N=500

CP

Tucker

tSVD
1

tSVD
2

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

compression factor

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

CIFAR-10 N=200

CP

Tucker

tSVD
1

tSVD
2

(c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

compression factor

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

CIFAR-10 N=100

CP

Tucker

tSVD
1

tSVD
2

(d)

Fig. 5: Experimentation on CIFAR-10 dataset by selecting a
different number of images, (a) N = 1000, (b) N = 500, (c)
N = 200, (d) N = 100.

kernel with this technique.
To this end let us refer to a generic convolution layer of a

CNN

Yh′ ,w′ ,t =

S∑
s=1

∑
i,j

X hi,wj ,sKi,j,s,t (29)

where X ∈ RIx×Iy×S is the input tensor and Ki,j,s,t is the
kernel dimension D×D×S×T . Using the CP decomposition
the kernel can be approximated by

k̂ =

R∑
i=1

ar ◦ br ◦ cr ◦ dr . (30)

Combining (29) and (30) yields

Yh′ ,w′ ,t =

R∑
r=1

S∑
s=1

∑
i,j

X hi,wj ,s (ai,rbj,rcs,rdt,r) =

=

R∑
r=1

S∑
s=1

∑
i,j

X hi,wj ,sQi,j,r cs,r dt,r (31)

where Qi,j,r = ai,rbj,r and Q ∈ RD×D×R.
Rearranging the terms (31) can be interpreted as a sequence

of two convolutions

Yh′ ,w′ ,t =

R∑
r=1

∑
i,j

Whi,wj ,rQi,j,rdt,r =

R∑
r=1

Zh′ ,w′ ,rdt,r

(32)

where the tensors W and Z are given by

Whi,wj ,r =

S∑
s=1

X hi,wj ,scs,r

Zh′ ,w′ ,r =
∑
i,j

Whi,wj ,rQi,j,r . (33)

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X XXXX 8

As a result the convolution layer is decomposed as two 1×1
convolutions at the input and output ends, and a depthwise
convolution in the middle. Fig. 6 shows the effect of CP
decomposition on the convolution layer.

X Conv2D Layer
K ∈ RD×D×S×T

Y

Depthwise Conv2D Layer
Q ∈ RD×D×R

Conv2D Layer
C ∈ R1×1×S×R

Conv2D Layer
DT ∈ R1×1×R×T

Fig. 6: The effect of CP decomposition on Conv2D Layer.

The architecture of convolutional layer as decomposed by
CP technique is depicted in Fig. 7.

Fig. 7: The architecture of a convolutional layer decomposed
by CP technique.

It can be proven that using this decomposition the compres-
sion factor

Cconv
CP =

R
(
D2 + S + T

)
D2ST

(34)

is obtained.
2) Fully Connected Layer: As previously stated the fully-

connected layers involve most storage cost. This layer is
represented by a linear transformation

y = Wx+ b, x ∈ Rn,W ∈ Rm×n b ∈ Rm . (35)

Applying CP decomposition to (35) is equivalent to low-rank
factorization of matrix W

Ŵ = BAT , B ∈ Rm×R, A ∈ Rn×R (36)

thus in this way (35) becomes

ŷ = Bz + b

z = ATx (37)

Fig. 8 shows the effect of CP decomposition on fully-
connected layer.

The compression factor so obtained is

Cdense
CP =

R (m+ n)

mn
(38)

X Dense Layer
W ∈ Rm×n

y

Prev-Dense
AT ∈ Rm×R

Post-Dense
B ∈ Rn×R

Fig. 8: The effect of CP decomposition on Dense Layer.

V. DATASET

The ESCA-dataset [41] containing 1770 photographs of the
leaves of healthy and infected plants was used for the training,
validation and testing of the CNN architecture. The sizes of
the acquired images are 1920 × 1080 and 1280 × 720 pixels
with random portrait and landscape orientation. To enhance
the size and quality of training dataset a data augmentation
technique has been adopted, by using geometric transforma-
tions (horizontal and vertical flip, rotation, width and height
shift), color transformations (brightness, contrast, saturation,
hue, gamma), plus other image manipulations like zoom and
blur.

Table I reports the description of the dataset for each of the
two classes and the size of the dataset used in this work before
and after augmentation.

TABLE I: Esca dataset consistency.

Class
name

Class
ID

Number of
original images

Number of images after
all data augmentation

transformations

Number of images after
considered data augmentation

transformations

esca 1 888 12432 8880

healty 2 882 12348 8820

Total 1770 24780 17700

Fig. 9 shows two examples of leaf images for the class
“esca” and “healthy” respectively.

a) b)

Fig. 9: Example of grapevine leaves belonging to different
classes: a) Esca disease, b) healthy.

Fig. 10 and Fig. 11 depict several examples of images
extracted from the dataset, showing the considered data aug-
mentation transformations.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X XXXX 9

a) Original b) Horizontal flip

c) Vertical flip d) Rotation

e) Width shift f) Height shift

g) Shear range h) Zoom

i) Blur l) Brightness

Fig. 10: Examples of augmentation for the class “esca” where
a) is the original image and b), c), d), e), f), g), h), i), l) are
the augmented images.

VI. DESIGN OF TENSORFLOW CNN ARCHITECTURE

A new CNN architecture based on CP tensor decomposition
was developed in TensorFlow/Keras v. 2.4.0 environment. The
design-flow, depicted in Fig. 12, can be divided in three main
steps.

• First a lightweight architecture was designed to meet
the accuracy requirement. In this network all the tensors
representing both feature layers and kernel filters are full-
rank tensors, i.e. not decomposed by tensor decomposi-
tion technique, so this network will be called full-rank
Net (FR-Net).

• Second, in order to reduce storage cost and computational
complexity, CP decomposition technique was applied to
FR-Net as explained in Section IV obtaining a new
architecture which will be called low-rank Net (LR-Net).

• Finally in order to compensate for the loss of accuracy
caused by weights’ approximation, LR-Net was itera-
tively fine-tuned on the same training dataset used for
FR-Net.

The trained model and the source code to test the LR-Net are
available at https://codeocean.com/capsule/8031070/tree/v1.

a) Original b) Horizontal flip

c) Vertical flip d) Rotation

e) Width shift f) Height shift

g) Shear range h) Zoom

i) Blur l) Brightness

Fig. 11: Examples of augmentation for the class “healthy”
where a) is the original image and b), c), d), e), f), g), h), i),
l) are the augmented images.

A. FR-Net

The FR-Net architecture is shown in Fig. 12 and comprises
5 weight layers in total. Specifically, it consists of 3 convolu-
tional layers each followed by a ReLU activation function and
a max-pooling operation, and 2 fully-connected layers with a
final softmax classifier. A detailed architecture description is
provided in Table II.

The network was trained for 30 epochs on the ESCA-dataset
described in Section V, by using an Adadelta optimizer with
categorical cross entropy, a learning rate of 0.5 and a batch
size of 64, obtaining the performance reported in Table VI.

B. LR-Net

CP decomposition was applied to all but the first convolu-
tional layer and the final dense layer used for classification.
These layers have a relatively low number of parameters and
do not add a significant overload to storage and computational
cost. Moreover, compression of these layers would result in
a significant accuracy loss difficult to be recovered. For the
same reason the compression factors achieved on the other
two convolutional layers is much higher than that of dense
layer.

https://codeocean.com/capsule/8031070/tree/v1

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X XXXX 10

CP decomposition
on trained model

FR-Net

LR-Net

Fine tuning

Final model

Train

Fig. 12: Design TensorFlow of CNN architecture.

TABLE II: FR-Net architecture.

Type Filter shape Input size Number of
parameters

conv 1 3× 3× 3× 16 64× 64× 3 448

relu 1 – 62× 62× 16 0

maxpool 1 (3× 3) – 62× 62× 16 0

conv 2 3× 3× 16× 32 20× 20× 16 4640

relu 2 – 18× 18× 32 0

maxpool 2 (3× 3) – 18× 18× 32 0

conv 3 3× 3× 32× 64 6× 6× 32 18496

relu 3 – 4× 4× 64 0

maxpool 3 (2× 2) – 4× 4× 64 0

flatten – 2× 2× 64 0

dense 1 256× 64 1× 256 16448

relu 4 – 1× 64 0

dropout (0.5) – 1× 64 0

dense 2 64× 2 1× 64 130

softmax – 1× 2 0

The architecture graph and the description of the low-rank
Network (LR-Net) obtained with the decomposition can be
found in Fig 12 and Table III respectively.

Details about the performance of CP decomposition are
provided in Table IV. CNN decomposition was implemented

TABLE III: LR-Net architecture.

Type Filter shape Input size Number of
parameters

conv 1 3× 3× 3× 16 64× 64× 3 448

relu 1 – 62× 62× 16 0

maxpool 1 (3× 3) – 62× 62× 16 0

conv 2 prev 1× 1× 16× 11 20× 20× 16 176

dw conv 2 3× 3× 11 20× 20× 11 99

conv 2 post 1× 1× 11× 32 18× 18× 11 384

relu 2 – 18× 18× 32 0

maxpool 2 (3× 3) – 18× 18× 32 0

conv 3 prev 1× 1× 32× 23 6× 6× 32 736

dw conv 3 3× 3× 23 6× 6× 23 207

conv 3 post 1× 1× 23× 64 4× 4× 23 1536

relu 3 – 4× 4× 64 0

maxpool 3 (2× 2) – 4× 4× 64 0

flatten – 2× 2× 64 0

dense 1 prev 256× 26 1× 256 6656

batch norm – 1× 26 104

dense 1 post 26× 64 1× 26 1728

relu 4 – 1× 64 0

dropout (0.5) – 1× 64 0

dense 2 64× 2 1× 64 130

softmax – 1× 2 0

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X XXXX 11

by using Tensorly [54], a specific library for tensor description
in Python.

TABLE IV: Performance of FR-Net CP decomposition.

Layer Compression
factor

Decomposition
rank

Weights approximation
error

conv 2 8 11 0.729

conv 3 8 23 0.751

dense 1 2 26 0.550

C. Fine-tuning

Fine-tuning is a technique needed to overcome the accuracy
loss due to decomposition and it was performed with an
iterative procedure.

Instead of decomposing all layers and retraining the whole
network, a single fine-tuning was applied after each layer
decomposition with decreasing learning rates as shown in
Table V. This procedure limits the possibility of finding local
minima which could compromise network performance.

TABLE V: LR-Net finetuning.

Layer Optimizer Learning rate Epochs

conv 2 Adadelta 0.01 20

conv 3 Adadelta 0.002 15

dense 1 Adadelta 0.01 30

Table VI reports a comparison between the FR-Net and the
LR-Net performance.

TABLE VI: Comparison between the baseline proposed archi-
tecture (FR-Net) and the same architecture with CP decompo-
sition (LR-Net).

Model Memory cost
[KB]

Compression
factor

Parameters
number

Test
accuracy

Test
loss

FR-Net 48.047 4 40 162 0.990 0.025

LR-Net 25.094 13 12 204 0.984 0.041

VII. CNN-BASED IMAGE SENSOR

A. Hardware

The image detector has been implemented in the OpenMV
Cam STM32H7 Plus platform, a low-power Python pro-
grammable machine vision camera that supports an exten-
sive set of image processing functions and neural networks.
The OpenMV Cam STM32H7 Plus camera is based on the
STM32H743II ARM Cortex-M7 MCU running at 480 MHz
featuring 32 MBs off-chip SDRAM, 1 MB SRAM, 32 MB
off-chip FLASH and 2 MB on-chip FLASH. The OV5640

image sensor can capture images up to size 2592 × 1944
but most algorithms run between 10-15-25-50 FPS on QVGA
(320× 240) resolutions and below.

B. Software

The OpenMV Cam is particularly suitable for the imple-
mentation of machine learning applications. It can be directly
programmed in high level Python scripts, thanks to the Mi-
croPython Operating System.

The main features are:
• STM32Cube.AI to automatically generate low-level C

code from the pre trained neural networks. This allows
users to develop applications in TensorFlow, Keras, Caffe
rather than using C/C++ language. The process for using
STM32Cube.AI with OpenMV is described in Fig. 13.

• OpenMV firmware source code available. With this fea-
ture the programmer can eventually modify the firmware.

.tflite.h5

CNN converted
to C codeCNN model OpenMV

firmware
&

STM32Cube.AI
wrapper

Build and flash
firmware

OpenMV Cam
STM32H7 Plus

with
STM32H743II

ARM Cortex-M7USB

Script
Micro-Python

OpenMV IDE

Fig. 13: Process of integrating the CNN into the OpenMV
environment with STM32Cube.AI.

Once the model has been trained to a satisfactory accuracy,
it must be converted to an executable code that runs on
the embedded device. This can be a complex process, but
TensorFlow offers the TensorFlow Lite converter Python API
for this purpose, that converts the model into a FlatBuffer,
reducing the model size, and modifies it to use TensorFlow
Lite operations.

To obtain the smallest possible model size, quantization
is a recommended approach. Quantization is a tricky and
involved process, and it is still an active area of research,
so taking the float graph of trained net and converting it
down to 8 bit takes quite a bit of code. Quantization can be
applied during the training stage (quantization aware training)
or directly on the model file (post training quantization). We
rely on the TFLiteConverter class to handle the quantization
and conversion into the TensorFlow Lite FlatBuffer file (tflite)
that we need for the inference engine. The last step consists of
converting the tflite model into a C source file with the help
of the STM32Cube.AI tool converter. This executable file can
be directly stored in OpenMV Cam Flash using the OpenMV
IDE. Fig. 14 resumes the described procedure.

Alternatively, the generated tflite model can be directly
loaded and run by the OpenMV STM32H7 Plus Cam, with
the constraint that the model and the model’s required scratch

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X XXXX 12

Design TensorFlow CNN architecture

Train TensorFlow model

Apply TensorFlow Lite converter
with Post-training quantization

Compile into the executable
with STM32Cube.AI

Store in Flash

.ipynb file

.h5 file
(32-bit float)

.tflite file
(8-bit int)

.cc file

.elf file

Fig. 14: OpenMV Cam code flow.

RAM must fit within the available 31 MB frame buffer stack
RAM.

VIII. EXPERIMENTAL RESULTS

In order to validate the image detector for real-time
grapevine plant disease detection previously discussed, two
different experiments, A) the experiment on desktop and B)
the experiment on the OpenMV Cam STM32H7 Plus, were
conducted. The first aims to compare the performance of LR-
Net with those achieved with the state-of-the-art networks. The
second aims to determine the final performance, obtained by
the network implemented in the embedded processor.

The experiments were conducted using the TensorFlow
Keras v. 2.4.0 to train the models on Google Colaboratory
(GPU runtime) with the ESCA-dataset partitioned as reported
in Table VII, the STM32Cube.AI v. 5.2.0 to analyse the gen-
erated models, and the OpenMV firmware v. 3.9.3 on board.

TABLE VII: Consistency of the Esca dataset partition consid-
ered for training, validation and testing.

Category
Training
Samples

60%

Validation
Samples

15%

Testing
Samples

25%

Total
samples

esca 5328 1332 2220 8880

healthy 5292 1323 2205 8820

Total 10620 2655 4425 17700

A. Experiment on Desktop

In this experiment a wide variety of CNN architectures
have been trained on ESCA-dataset in order to compare their
performance with those achieved with LR-Net. In particular
the following networks have been used: MobileNet V1 [29],

MobileNet V2 [30] , MobileNet V3 [31], ResNet [38], LeNet
[32], SqueezeNet [33], ShuffleNet V1 [34], ShuffleNet V1
0.25x [34], Improved ShuffleNet V1 [28], ShuffleNet V2
[36], ShuffleNet V2 0.25x [36], Improved ShuffleNet V2 [28],
PeleeNet [39].

Table VIII reports the results achieved for storage cost,
compression, complexity and accuracy. As can be seen the
LR-Net network proposed in this paper outperforms all the
other networks both in terms of memory cost and parameter
numbers (complexity). The gains achieved with LR-Net for
these performance are relevant, i.e. in some cases of several
order of magnitude. All the networks but LR-Net are com-
pressed by a factor of 4 due to the post training quantization
that is performed by the TensorFlow Lite converter Python
API. An extra compression factor is guaranteed using CP
decomposition technique in LR-Net, thus obtaining a total
compression factor of 13. As far as the accuracy is concerned,
the value achieved with LR-Net is just a few percentage below
the best performance obtained with other networks.

As we will discuss later this does not constitute a real issue
for the final plant disease detection, since this lack of accuracy
is compensated by the greater number of frame per second the
LR-Net is able to perform.

B. Experiment on the OpenMV Cam STM32H7 Plus

In this case a subset of the networks used in the first exper-
iment is considered, since some of them are not supported by
the OpenMV Cam STM32H7 Plus platform.

Table IX reports the results achieved for accuracy, inference
time, number of recognized frame per second (FPS), the
number of images (Ninf) processed by the sensor during the
time interval L/v = 1.36 sec, i.e. the time required by the
tractor to cover the distance L, and the TP metric.

These results clearly show the superiority of LR-Net with
respect to all other networks both in terms of accuracy,
inference time, FPS, Ninf , TP metric and memory occupancy.
In particular LR-Net is the only network that is able to meet
the severe constraint of tinf = 68 msec derived as design
specification in Section II.

IX. CONCLUSION

To design and develop a low-cost, low-power and real-time
image detector based on a CNN architecture for grape leaf
Esca disease, some several constraints have to be met. In
particular accuracy, inference time as well as memory occu-
pancy are of primary concern. However, even though a wide
variety of CNN architectures have recently been proposed
for plant disease detection, the performance achieved with
those networks, in terms of storage cost and computational
complexity, do not suffice for such an embedded application.
This paper shows that adopting a CNN compression technique
based on tensor-decomposition, a low-rank architecture (LR-
Net) with a very low complexity can be derived by preserving
the accuracy.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X XXXX 13

TABLE VIII: CNNs comparison on Esca dataset - Performance on desktop.

Model Memory cost
[KB]

Compression
factor

Parameters
number

Inference time
[msec]

Test
accuracy

Test
loss

LR-Net 25.094 13 12 204 12.044 0.984 0.041

MobileNet V1 [29] 3525.992 4 3 237 058 132.881 0.968 0.328

MobileNet V2 [30] 2793.797 4 2 268 226 75.932 0.964 0.385

MobileNet V3 [31] 1905.031 4 1 538 162 25.988 0.920 0.603

ResNet [38] 23 948.109 4 23 581 186 924.519 0.955 0.572

LeNet [32] 335.773 4 337 806 15.795 0.943 0.368

SqueezeNet [33] 843.656 4 736 450 152.698 0.984 0.052

ShuffleNet V1 [34] 1811.867 4 1 359 914 72.221 0.992 0.024

ShuffleNet V1 0.25x [34] 328.297 4 105 404 14.841 0.980 0.067

Improved ShuffleNet V1 [28] 2354.695 4 5 720 606 70.311 0.995 0.016

ShuffleNet V2 [36] 1810.172 4 1 329 722 58.591 0.984 0.060

ShuffleNet V2 0.25x [36] 328.562 4 105 404 14.553 0.962 0.228

Improved ShuffleNet V2 [28] 6369.516 4 5 720 606 147.065 0.992 0.033

PeleeNet [39] 2325.406 4 2 113 250 130.662 0.884 0.253

TABLE IX: CNNs comparison on Esca dataset - Performance on the OpenMV Cam STM32H7 Plus.

Model Test
accuracy

Inference time
[msec/img] FPS Ninf

[FPS×(L/v)]
TP

[accuracy×Ninf]
ROM
bytes

LR-Net 0.980 64.213 15.574 21.180 20.756 13 015

MobileNet V1 [29] 0.974 577.618 1.731 2.354 2.292 3 237 064

MobileNet V2 [30] 0.954 526.646 1.899 2.582 2.463 2 268 232

ResNet [38] 0.944 3687.71 0.271 0.368 0.347 23 528 194

LeNet [32] 0.942 85.726 11.665 15.864 14.944 338 493

SqueezeNet [33] 0.976 448.866 2.228 3.030 2.957 745 384

PeleeNet [39] 0.938 411.456 2.240 3.046 2.857 2 108 392

REFERENCES

[1] R. Bramley and R. Hamilton, “Understanding variability in winegrape
production systems 1. within vineyard variation in yield over several
vintages,” Australian Journal of Grape and Wine Research, vol. 10,
no. 1, pp. 32–45, 2004.

[2] C. Acevedo-Opazo, B. Tisseyre, S. Guillaume, and H. Ojeda, “The
potential of high spatial resolution information to define within vineyard
zones related to vine water status,” Precision Agriculture, vol. 9, no. 5,
pp. 285–302, 2008.

[3] L. G. Santesteban, S. Guillaume, J. B. Royo, and B. Tisseyre, “Are
precision agriculture tools and methods relevant at the whole-vineyard
scale?” Precision Agriculture, vol. 14, no. 1, pp. 2–17, 2013.

[4] S. F. Di Gennaro, R. Dainelli, A. Palliotti, P. Toscano, and A. Matese,
“Sentinel-2 validation for spatial variability assessment in overhead
trellis system viticulture versus UAV and agronomic data,” Remote
Sensing, vol. 11, no. 21, 2019.

[5] L. J. Klein, H. F. Hamann, N. Hinds, S. Guha, L. Sanchez, B. Sams,
and N. Dokoozlian, “Closed loop controlled precision irrigation sensor
network,” IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4580–4588,
2018.

[6] M. Gatti, C. Squeri, A. Garavani, T. Frioni, P. Dosso, I. Diti, and S. Poni,
“Effects of variable rate nitrogen application on cv. Barbera perfor-
mance: Yield and grape composition,” American Journal of Enology
and Viticulture, vol. 70, no. 2, pp. 188–200, 2019.

[7] J. M. Meyers, N. Dokoozlian, C. Ryan, C. Bioni, and J. E. Van-
den Heuvel, “A new, satellite NDVI-based sampling protocol for grape
maturation monitoring,” Remote Sensing, vol. 12, no. 7, 2020.

[8] N. Bendel, A. Kicherer, A. Backhaus, H.-C. Klück, U. Seiffert, M. Fis-
cher, R. T. Voegele, and R. Töpfer, “Evaluating the suitability of hyper-
and multispectral imaging to detect foliar symptoms of the grapevine
trunk disease Esca in vineyards,” Plant methods, vol. 16, no. 1, pp.
1–18, 2020.

[9] L. Mugnai, A. Graniti, and G. Surico, “Esca (black measles) and brown
wood-streaking: Two old and elusive diseases of grapevines,” Plant
Disease, vol. 83, no. 5, pp. 404–418, 1999.

[10] V. Mondello, A. Songy, E. Battiston, C. Pinto, C. Coppin, P. Trotel-Aziz,
C. Clément, L. Mugnai, and F. Fontaine, “Grapevine trunk diseases: A
review of fifteen years of trials for their control with chemicals and
biocontrol agents,” Plant Disease, vol. 102, no. 7, pp. 1189–1217, 2018.

[11] D. Gramaje, L. Mostert, J. Z. Groenewald, and P. W. Crous, “Phaeoacre-
monium: From esca disease to phaeohyphomycosis,” Fungal Biology,
vol. 119, no. 9, pp. 759–783, 2015.

[12] G. Romanazzi, S. Murolo, L. Pizzichini, and S. Nardi, “Esca in young
and mature vineyards, and molecular diagnosis of the associated fungi,”
European Journal of Plant Pathology, vol. 125, no. 2, pp. 277–290,
2009.

[13] S. Murolo and G. Romanazzi, “Effects of grapevine cultivar, rootstock
and clone on esca disease,” Australasian Plant Pathology, vol. 43, no. 2,
pp. 215–221, 2014.

[14] M. Borgo, G. Pegoraro, and E. Sartori, “Susceptibility of grape varieties

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X XXXX 14

to esca disease,” BIO Web of Conferences, 39th World Congress of Vine
and Wine, vol. 7, p. 01041, 01 2016.

[15] F. Fontaine, D. Gramaje, J. Armengol, R. Smart, Z. A. Nagy, M. Borgo,
C. Rego, and M.-F. Corio-Costet, Grapevine trunk diseases. A review.
OIV publications, 05 2016, OIV - International Organisation of Vine
and Wine.

[16] K. Baumgartner. Guide to managing vineyard trunk dis-
ease in lodi. [Online]. Available: https://www.lodigrowers.com/
guide-to-managing-vineyard-trunk-disease-in-lodi/

[17] M. L. Cooper, L. J. Bettiga, R. J. Smith, R. Travadon, and K. Baumgart-
ner. Guide to vineyard trunk diseases in california. [Online]. Available:
http://ipm.ucanr.edu/PDF/PMG/grape trunk disease view.pdf

[18] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, vol.
105, no. 12, pp. 2295–2329, 2017.

[19] S. H. Lee, C. S. Chan, P. Wilkin, and P. Remagnino, “Deep-plant:
Plant identification with convolutional neural networks,” in 2015 IEEE
International Conference on Image Processing (ICIP), 2015, pp. 452–
456.

[20] G. L. Grinblat, L. C. Uzal, M. G. Larese, and P. M. Granitto, “Deep
learning for plant identification using vein morphological patterns,”
Computers and Electronics in Agriculture, vol. 127, pp. 418–424, 2016.

[21] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for
image-based plant disease detection,” Frontiers in Plant Science, vol. 7,
p. 1419, 2016.

[22] S. Sladojevic, M. Arsenovic, A. Anderla, D. Culibrk, and D. Stefanovic,
“Deep neural networks based recognition of plant diseases by leaf image
classification,” Computational intelligence and neuroscience, vol. 2016,
2016.

[23] P. Pawara, E. Okafor, O. Surinta, L. Schomaker, and M. Wiering, “Com-
paring local descriptors and bags of visual words to deep convolutional
neural networks for plant recognition,” in International Conference on
Pattern Recognition Applications and Methods, vol. 2. SCITEPRESS,
2017, pp. 479–486.

[24] A. Fuentes, S. Yoon, S. C. Kim, and D. S. Park, “A robust deep-learning-
based detector for real-time tomato plant diseases and pests recognition,”
Sensors, vol. 17, no. 9, 2017.

[25] M. Agarwal, S. K. Gupta, and K. K. Biswas, “Grape disease identi-
fication using convolution neural network,” in 2019 23rd International
Computer Science and Engineering Conference (ICSEC), 2019, pp. 224–
229.

[26] J. Boulent, S. Foucher, J. Théau, and P.-L. St-Charles, “Convolutional
neural networks for the automatic identification of plant diseases,”
Frontiers in Plant Science, vol. 10, p. 941, 2019.

[27] X. Xie, Y. Ma, B. Liu, J. He, S. Li, and H. Wang, “A deep-learning-based
real-time detector for grape leaf diseases using improved convolutional
neural networks,” Frontiers in Plant Science, vol. 11, p. 751, 2020.

[28] Z. Tang, J. Yang, Z. Li, and F. Qi, “Grape disease image classification
based on lightweight convolution neural networks and channelwise at-
tention,” Computers and Electronics in Agriculture, vol. 178, p. 105735,
2020.

[29] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/1704.04861,
2017.

[30] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
“Inverted residuals and linear bottlenecks: Mobile networks for classifi-
cation, detection and segmentation,” CoRR, vol. abs/1801.04381, 2018.

[31] A. Howard, M. Sandler, G. Chu, L. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and H. Adam, “Searching for
MobileNetV3,” CoRR, vol. abs/1905.02244, 2019.

[32] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[33] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K. Keutzer, “Squeezenet: AlexNet-level accuracy with 50x fewer
parameters and <1MB model size,” CoRR, vol. abs/1602.07360, 2016.

[34] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2018, pp. 6848–6856.

[35] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with
deep convolutional neural networks,” Neural Information Processing
Systems, vol. 25, 01 2012.

[36] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet V2: Practical
guidelines for efficient CNN architecture design,” in Computer Vision

– ECCV 2018. Cham: Springer International Publishing, 2018, pp.
122–138.

[37] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2018, pp. 7132–7141.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015.

[39] R. J. Wang, X. Li, S. Ao, and C. X. Ling, “Pelee: A real-time object
detection system on mobile devices,” CoRR, vol. abs/1804.06882, 2018.

[40] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017, pp. 2261–2269.

[41] M. Alessandrini, R. Rivera, L. Falaschetti, D. Pau, V. Tomaselli, and
C. Turchetti, “A grapevine leaves dataset for early detection and classi-
fication of Esca disease in vineyards through machine learning,” Data
in Brief, p. 106809, 2021.

[42] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive survey,”
Proceedings of the IEEE, vol. 108, no. 4, pp. 485–532, 2020.

[43] Y. L. Cun, J. S. Denker, and S. A. Solla, Optimal Brain Damage. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990, pp. 598–
605.

[44] S. J. Hanson and L. Y. Pratt, “Comparing biases for minimal network
construction with back-propagation,” in Proceedings of the 1st Inter-
national Conference on Neural Information Processing Systems, ser.
NIPS’88. Cambridge, MA, USA: MIT Press, 1988, p. 177–185.

[45] N. Ström, “Phoneme probability estimation with dynamic sparsely
connected artificial neural networks,” The Free Speech Journal, vol. 5,
no. 1-41, p. 2, 1997.

[46] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: Efficient inference engine on compressed deep neural
network,” in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), 2016, pp. 243–254.

[47] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” 2016.

[48] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or -1,” 2016.

[49] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51, no. 3, pp. 455–500, September 2009.

[50] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa,
and H. A. Phan, “Tensor decompositions for signal processing applica-
tions: From two-way to multiway component analysis,” IEEE Signal
Processing Magazine, vol. 32, no. 2, p. 145–163, Mar 2015.

[51] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalex-
akis, and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Transactions on Signal Processing, vol. 65,
no. 13, pp. 3551–3582, 2017.

[52] M. E. Kilmer, C. D. Martin, and L. Perrone, “A third-order generalization
of the matrix SVD as a product of third-order tensors,” Tufts University,
Department of Computer Science, Tech. Rep. TR-2008-4, 2008.

[53] M. E. Kilmer and C. D. Martin, “Factorization strategies for third-order
tensors,” Linear Algebra and its Applications, vol. 435, no. 3, pp. 641–
658, 2011, special Issue: Dedication to Pete Stewart on the occasion of
his 70th birthday.

[54] J. Kossaifi, Y. Panagakis, A. Anandkumar, and M. Pantic, “Tensorly:
Tensor learning in python,” Journal of Machine Learning Research,
vol. 20, no. 26, pp. 1–6, 2019.

https://www.lodigrowers.com/guide-to-managing-vineyard-trunk-disease-in-lodi/
https://www.lodigrowers.com/guide-to-managing-vineyard-trunk-disease-in-lodi/
http://ipm.ucanr.edu/PDF/PMG/grape_trunk_disease_view.pdf

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X XXXX 15

Laura Falaschetti (S’15–M’16) received the B.Sc.,
the M.Sc. and the Ph.D. degree in electronics
engineering from the Università Politecnica delle
Marche, Ancona, Italy, in 2008, 2012 and 2016 re-
spectively. She collaborated as research fellow with
the Department of Information Engineering (DII) at
the Università Politecnica delle Marche, from 2012
to 2013. She is currently a post-doctoral research
fellow at the DII and she is a contract professor
for the course Electronic Systems, at Electronic and
Biomedical Engineering, Università Politecnica delle

Marche. Her current research interests include: embedded systems, machine
learning, neural networks, manifold learning, pattern recognition, signal pro-
cessing, image processing, speech recognition, speaker identification, speech
synthesis, bio-signal analysis.

Lorenzo Manoni received the B.Sc. And M.Sc. de-
grees in electronics engineering from the Università
Politecnica delle Marche, Ancona, Italy, in 2015 and
2018, respectively, where he is currently pursuing
the Ph.D. degree with Department of Information
Engineering (DII). His current research interests in-
clude signal processing, embedded systems, machine
learning, algorithms analysis and design, bio-signal
analysis.

Romel Calero Fuentes Rivera received his B.Sc
and M.Sc. degrees in electronics engineering from
the Università Politecnica delle Marche, Ancona,
Italy, in 2016 and 2021, respectively, working on
the development of convolutional neural networks
for image classification. He is currently working as
a firmware developer, dealing with signal processing
and programming of embedded systems.

Danilo Pau One year before graduating from the
Politecnico di Milano in 1992, Danilo PAU joined
STMicroelectronics, where he worked on HDMAC
and MPEG2 video memory reduction, video coding,
embedded graphics, and computer vision. Today,
his work focuses on developing solutions for deep
learning tools and applications. Since 2019 Danilo
is an IEEE Fellow. Currently serves as member of
IEEE Region 8 Action for Industry and Member
of the Machine Learning, Deep Learning and AI
in the CE (MDA) Technical Stream Committee

IEEE Consumer Electronics Society (CESoc). With over 80 patents, 104
publications, 113 MPEG authored documents and 39 invited talks/seminars
at various worldwide Universities and Conferences, Danilo’s favorite activity
remains mentoring undergraduate students, MSc engineers and PhD students
from various universities.

Gianfranco Romanazzi got Degree ‘cum laude’ in
Agricultural Sciences in 1995 and PhD in Crop Pro-
tection in 1999 at the University of Bari. He joined
Marche Polytechnic University in Ancona in 2001,
where he is professor of Plant pathology and chairs
the BSc in Agricultural Science and Technology and
MSc in Land and Agricultural Technology programs.
He coordinates several projects, including PRIMA
StopMedWaste and Euphresco BasicS, and research
activity focuses on alternatives to synthetic fungi-
cides for pre and postharvest disease management.

He investigated the distribution of esca disease in vineyards of the area,
according to the cultivar and rootstock, identifying associated agents with
classical and molecular tools. Since June 2020, he is President of the Italian
Association for Plant Protection (AIPP).

Oriana Silvestroni graduated ‘cum laude’ in Agri-
cultural Sciences in 1979 at the University of
Bologna. She collaborated with the Arboriculture
Institute of the University of Bologna from 1979 to
1992, first as a fellow, then as a university researcher.
She joined the Università Politecnica delle Marche
in 1992 as an associated professor and became full
professor since 2000 at the same university, where
she was the Head of the Department of Envinron-
mental and Crop Science for 6 years. She has been
teaching viticulture and ampelography since 1992

and coordinated the PhD course in Plant Production and Environment for 7
years. Her current research interests include: grapevine physiology in relation
to environmental stress and to vineyard management; innovation in vineyard
management for mitigation and adaptation to climate change; berry ripening
and grape quality; study and management of viticultural biodiversity. Member
of the National Academy of Agriculture (ANA) and of the Italian Academy
of Vine and Wine (AIVV), she has been on the Board of Directors of the
latter since 2013. She is part of the Italian Horticultural Society, where she
founded the Working Group ”Viticulture” in 2005, which she coordinated for
16 years.

Valeria Tomaselli is senior engineer and Project
Leader at STMicroelectronics of Catania. She holds
a Master’s Degree in Computer Engineering from
the University of Catania. Since 2003 she has been
working at STMicroelectronics, in the System Re-
search and Applications group, where she conducted
research activities and developed application solu-
tions in the fields of image processing and com-
puter vision. Her current projects focus on machine
learning, deep learning and artificial intelligence
applications and tools. She is the author of patents

and papers on image processing, computer vision and artificial intelligence.
She has also participated in numerous national and international research
projects.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X XXXX 16

Claudio Turchetti (M’86) received the Laurea de-
gree in electronics engineering from the Univer-
sity of Ancona, Ancona, Italy, in 1979. He joined
the Università Politecnica delle Marche, Ancona,
in 1980, where was the Head of the Department
of Electronics, Artificial Intelligence and Telecom-
munications for five years and is currently a Full
Professor of micro-nanoelectronics and design of
embedded systems. His current research interests
include: statistical device modeling, RF integrated
circuits, device modeling at nanoscale, computa-

tional intelligence, signal processing, pattern recognition, system identifica-
tion, machine learning and neural networks. He has published more than 160
journal and conference papers, and two books. The most relevant papers were
published in IEEE J. of Solid-State Circuits, IEEE Trans. on Electron Devices,
IEEE Trans. on CAD of IC’s and Systems, IEEE Trans. on Neural Networks
and Learning Systems, IEEE Trans. on Signal Processing, IEEE Trans. on
Cybernetics, IEEE J. of Biomedical and Health Informatics, IEEE Trans.
on Consumer Electronics, Information Sciences. He has held a variety of
positions as Project Leader in several applied research programs developed
in cooperation with small, large, and multinational companies in the field of
microelectronics. Prof. Turchetti has served as a Program Committee Member
for several conferences and as a reviewer of several scientific journals. He is
a Member of the IEEE, Computational Intelligence and Signal processing
Society. He has been an Expert Consultant of the Ministero dell’Università e
Ricerca.

	Pagina vuota

