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Abstract 26 

Machine-learning approaches are satisfactorily implemented for classifying and assessing 27 

gait events from only surface electromyographic (sEMG) signals during walking. 28 

However, it is acknowledged that the choice of sEMG-processing type may affect the 29 

reliability of methodologies based on it. Analogously, the number of sEMG signals 30 

involved in machine-learning procedure could influence the classification process. Aim 31 

of this study is to quantify the impact of different EMG-signal-processing specifications 32 

and/or different complexity of the experimental sEMG-protocol (different number of 33 

sEMG-sensors) on the performance of a neural-network-based approach for binary 34 

classifying gait phases and predicting gait-event timing. To this purpose, sEMG signals 35 

are collected from eight leg-muscles in about 10.000 strides from 23 healthy adults during 36 

walking and then fed to a multi-layer perceptron model. Four different signal-processing 37 

approaches are tested and five experimental set-ups (from four to one sEMG sensors per 38 

leg) are compared. Results indicate that both the choice of sEMG processing and the 39 

reduction of sEMG-protocol complexity actually affect classification/prediction 40 

performances. Moreover, the study succeeds in the double goal of identifying the linear 41 

envelope as the sEMG-processing type which reaches the best neural-network 42 

performance (classification accuracy of 93.4±2.3%; mean absolute error 21.6±7.0 and 43 

38.1±15.2 ms for heel-strike/toe-off prediction, respectively) and providing a 44 

quantification of the progressive deterioration of classification/prediction performances 45 

with the reduction of the number of sensors used (from 93.4±2.3% to 79.9±6.1% for 46 

classification accuracy). These findings could be very useful for clinics to the aim of 47 

choosing the most suitable approach balancing technical performances, patient comfort, 48 

and clinical needs. 49 

 50 
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1. Introduction 51 

Each single gait cycle of human walking is composed of two main phases: the stance 52 

phase, from the beginning to around 60% of gait cycle; the swing phase, from 60% to the 53 

end of gait cycle [1]. The stance phase denotes the whole time interval when the reference 54 

foot is touching the ground. The swing phase quantifies the period when the foot is no 55 

longer on the ground and swings in the air for leg advancement. Crucial for quantification 56 

of gait phases duration are the transition events between the two phases: toe-off (TO, 57 

from stance to swing) and heel-strike (HS, from swing to stance). The assessment of these 58 

temporal parameters is one of the typical tasks of gait analysis [2,3]. 59 

In the recent years, artificial-intelligence techniques have been proposed for the 60 

classification of stance vs. swing and for the assessment of temporal gait events [4,5]. 61 

Particularly valuable are those methodologies where machine and deep learning are 62 

implemented with the aim of limiting the number of sensors involved in the experimental 63 

set-up, such as electromyography-based approaches [6-12]. These studies are designed 64 

to classify gait phases and predict gait events from only surface electromyographic signals 65 

(sEMG), avoiding the requirement of directly measuring temporal data by means of 66 

additional systems or sensors (foot-switch sensors, IMUs, pressure mats, stereo-67 

photogrammetry). This would allow to reduce burden for patient, simplify clinical 68 

protocols, and make test faster, specifically in the evaluation of neuromuscular diseases 69 

or for walking-aid devices where the acquisition of myoelectric signals is largely advised 70 

[13,14]. The advantage would be even greater if it could be possible not only limiting the 71 

number of sensors for temporal-data measurement, but also decreasing the number of 72 

sEMG probes themselves. Obviously, reducing the number of sEMG sensors means 73 

having fewer signals to be processed by the neural network. This is expected to lead to a 74 

deterioration of classification performances. To our knowledge, a reliable analysis of the 75 
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effect on classification/prediction performance of the reduction of sEMG signals involved 76 

in feeding the neural network is not yet available in literature. 77 

Furthermore, the problem of gait-phase classification with neural-network-based 78 

interpretation of only electromyographic signals has been typically faced extracting 79 

explicit features from sEMG signal and then using them as input to the machine learning 80 

stages [6-10]. The present group of researchers recently experimented a different strategy 81 

[11,12], consisting in the application of neural networks to learn hidden features from a 82 

processed sEMG signal. This strategy seems to improve the classification performances 83 

[11], but at the same time it introduces the need of identifying the most suitable sEMG-84 

processing type. Recent studies, indeed, indicate that the choice of processing type and 85 

processing-parameter value could be very subjective [15], could influence the reliability 86 

of methodologies implemented to assess muscle activity [16], and could also affect the 87 

estimation of gait events (HS and TO) [17]. Thus, the choice of the sEMG processing is 88 

still an open issue. 89 

The aim of the present study is to quantify the impact of different complexity of the 90 

experimental sEMG-protocol (i. e. different number of sEMG sensors) and/or different 91 

EMG-signal-processing specifications on the performance of a neural-network-based 92 

approach for the binary classification of gait phases and prediction of gait-event (HS and 93 

TO) timing. This aim is pursued, attempting to provide the following main contributions: 94 

1) identifying which one of the following widely-used approaches to process EMG 95 

signals allows to achieve the best classification/prediction performances: a) band-96 

pass filtered signal; b) full-wave rectified signal; c) linear envelope of the signal; 97 

and d) root mean square signal. Details of these sEMG-signal processing are 98 

reported in Section 3.3; 99 
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2) testing the sensitivity of the performances to different values of envelope cut-off-100 

frequency. Values of 5, 10, 15, and 20 Hz were adopted, considering that envelope 101 

cut-off frequency typically ranges from 3 Hz to 25 Hz [15]. 102 

3) quantifying the conceivable decrease of classification/prediction performance 103 

with the reduction of the number of sEMG signals involved in feeding the neural 104 

network. Five experimental set-ups are considered to this purpose, including: 1) 105 

sensors positioned on the proximal and distal leg (medial hamstrings, MH, vastus 106 

lateralis, VL,  tibialis anterior, TA, and gastrocnemius lateralis, GL, full set-up; 2) 107 

only sensors positioned on the proximal leg (MH and VL, proximal leg set-up); 108 

3) only sensors positioned on the distal leg (TA and GL, distal leg set-up); 4) only 109 

sensors positioned on tibialis-anterior muscle (TA set-up); and 5) only sensors 110 

positioned on gastrocnemius-lateralis muscle (GL set-up). 111 

The manuscript is organized as follows: Section 2 provides a brief review of the related 112 

works. Section 3 introduces the dataset, illustrates the acquisition and the pre-processing 113 

of the signals, describes the procedure of gait-phase classification and gait-event 114 

prediction by machine-learning approach, and presents the statistical tests. Section 4 115 

reports the experimental results that are then discussed in Section 5. Both results and 116 

discussion sections are split in two sub-sections about signal pre-processing and reduction 117 

of experimental set-up, respectively. Eventually, Section 6 ends the study and provides 118 

insights for further research developments. 119 

 120 

 121 

 122 

 123 

  124 
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2. Related Works 125 

A relatively small number of works in literature address gait-phase classification 126 

from EMG signals only. In [6] a set of time-domain features, namely mean absolute value 127 

(MAV), waveform length (WL), zero crossing (ZC), and slope sign changes (SSC) were 128 

extracted from EMG signal and hidden Markov models were used to classify stance and 129 

swing phases. Evaluation on treadmill walking of a single subject reported a maximum 130 

accuracy of 91.1%. Monitored muscles are Vastus Medialis, Semitendinosus, Adductors, 131 

and Tensor Fascia Latae. A novel bilateral EMG feature, called weighted signal 132 

difference (WSD), was introduced in [9] and used to train a support vector classifier 133 

(SVC). Intra-subject evaluation is performed on two subjects walking on a treadmill at 134 

different speed, reporting a best accuracy of 96%. Monitored muscles were Soleus, 135 

Tibialis Anterior, Gastrocnemius Lateralis, Vastus Lateralis, Rectus Femoris and Gluteus 136 

Maximus. In [7] a control system for a foot-knee exoskeleton based on the processing of 137 

eight EMG signals is proposed. Four time-domain features (MAV, WL, Variance and 138 

SGC) were extracted and Bayesian Information Criteria (BIC) was used to predict 8 139 

distinct gait events. Evaluation on one healthy subject revealed low repeatability of the 140 

method, with a 30% drop in accuracy testing on different gait cycles. Monitored muscles 141 

were Quadriceps, Hamstring, Gastrocnemius and Tibialis Anterior. In [8] and [10] a set 142 

of temporal features, namely root mean square (RMS), standard deviation (SD), MAV, 143 

WL, and integrated EMG (IEMG), were fed to a single layer neural networks to detect 144 

TO and HS on a population of 8 healthy adults. The study targets inter-subject prediction 145 

by testing the network on one unlearned subject (not used in training), however no cross 146 

validation is performed and the test is performed on a 5-second walk only. No indication 147 

is provided regarding accuracy of prediction and a mean average error of 35 ms and 49 148 
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ms is reported for HS and TO prediction respectively. Monitored muscles were Tibialis  149 

Anterior  (TA)  and  Medial  Gastrocnemius  (mGas). 150 

All the works mentioned above were based on explicit features extraction and used 151 

different sets of features as input to the machine learning stage. Recently, a different 152 

approach was introduced [11,12], where the original sEMG signal is first pre-processed, 153 

in order to obtain a smoothed and cleaner signal, and then neural networks were used to 154 

learn hidden features, classifying the two main gait phases and successively individuate 155 

the TO and HS events as the transitions between different phases. The sEMG signals 156 

acquired during level ground walking from eight lower-limb muscles, tibialis anterior 157 

(TA), gastrocnemius lateralis (GL), medial hamstrings (MH), and vastus lateralis (VL) of 158 

each leg, in more than 10.000 strides from 23 healthy adult subjects were involved [11]. 159 

As far as we know, this work is still reporting the best performances in HS and TO 160 

prediction (mean absolute error of 21.6 ± 7.0 ms and 38.1 ± 15.2 ms, respectively and F1-161 

score ≈ 99%) among the mentioned sEMG-based studies. These promising results were 162 

achieved by feeding the classifier with the envelope of EMG signal, computed as follows 163 

[11]: sEMG signal was band-pass filtered (linear-phase FIR filter, cut-off frequency: 20 164 

- 450 Hz), then full-wave rectified, and eventually the envelope was extracted (second-165 

order Butterworth low-pass filter, cut-off frequency: 5 Hz). Such a pre-processing 166 

pipeline was designed following the indications provided by previous acknowledged 167 

studies [18,19]. 168 

 169 

3. Materials and Methods 170 

3.1 Participants 171 

Twenty-three able-bodied adults were involved in the experimental procedure. 172 

Volunteer data, reported as mean value ±SD, are the following: height = 173 ±10 cm; 173 
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mass = 63.3 ± 12.4 kg; age = 23.8 ±1.9 years; and female/male ratio = 12/11. Subjects 174 

with articular pain, with disorder of the nervous system, in obese or overweight condition 175 

(body mass index > 25), and with history of orthopaedic surgery that may affect walking 176 

performances were exempted from the study. The research presented here was undertaken 177 

following the ethical principles of Helsinki Declaration and was approved by local ethical 178 

committee. 179 

 180 

3.2 Signal acquisition  181 

The multichannel recording system Step32 (Medical Technology, Italy, Version PCI-182 

32 ch2.0.1. DV) was employed for signal acquisition (resolution: 12 bits; sampling rate: 183 

2 kHz). Three foot-switches were placed under the heel, the first and the fifth metatarsal 184 

heads of both subject’s feet, for acquiring foot-floor-contact signal. Four sEMG sensors 185 

were applied over vastus lateralis (VL), medial hamstrings (MH), tibialis anterior (TA), 186 

and gastrocnemius lateralis (GL) of both legs, complying with recommendations 187 

suggested by SENIAM standards [19]. After that, subject walked barefoot approximately 188 

5 minutes on an eight-shaped path at her/his own pace. Experiments were performed in 189 

Motion Analysis Laboratory of the Università Politecnica delle Marche, Ancona, Italy. 190 

Characteristics of sEMG single-differential probes are: material = Ag/Ag-Cl disks; gain 191 

= 1000, filtering = high-pass filter with cut-off frequency of 10 Hz; input impedance > 192 

1.5GΩ; Common-Mode Rejection Ratio > 126 dB; input referred noise ≤ 1 µVrms; and 193 

manufacturer = Medical Technology, Italy.  sEMG probes with fixed geometry have size 194 

of 7 × 27 × 19 mm; electrode diameter of 4 mm; and inter-electrode distance of 8 mm). 195 

sEMG probes with variable geometry have a minimum inter-electrode distance of 12 mm. 196 

Characteristics of foot-switches are: size = 11 mm × 11 mm × 0.5 mm and activation 197 

force = 3 N. Additional information about signal acquisition could be obtained in [20].  198 
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3.3 Signal pre-processing 199 

Foot-switch signals were processed for recognizing gait cycles and stance/swing 200 

phases [21]. To test the effect of signal filtering on classification performance, sEMG 201 

signal were pre-processed with four different approaches. 202 

   203 

Band-pass filtered signal (BPFS): sEMG signals were band-pass filtered (linear-phase 204 

FIR filter, cut-off frequency: 20 - 450 Hz) for taking out high frequency noise and motion 205 

artefacts. 206 

 207 

Full-wave Rectified signal (FWRS): sEMG signals were band-pass filtered (linear-phase 208 

FIR filter, cut-off frequency: 20 - 450 Hz). Then, a full-wave rectification was achieved, 209 

taking the absolute value of the signal. 210 

 211 

Linear envelope of the signal (LE): sEMG signals were band-pass filtered (linear-phase 212 

FIR filter, cut-off frequency: 20 - 450 Hz) and full-wave rectified. Then, envelope of the 213 

signal was extracted (second-order Butterworth low-pass filter). Four different values of 214 

cut-off frequency were tested: 5, 10, 15, and 20 Hz. These four different processing of 215 

the envelope have been referred to as LE5, LE10, LE15, and LE20, respectively. 216 

 217 

Root mean square signal (RMSS): sEMG signals were band-pass filtered (linear-phase 218 

FIR filter, cut-off frequency: 20 - 450 Hz). Then, a sliding window of length N scans the 219 

signal sample by sample. RMSV computed in the first window is the first sample of the 220 

Root mean square signal. RMSV computed in the second window is the second sample of 221 

the Root mean square signal and so on. RMSV is computed as in the following formula: 222 

 223 

𝑅𝑀𝑆𝑉 =  √
1

𝑁
∑ |𝑥𝑘

2|𝑁
𝑘=1    (1) 224 

 225 
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where N is number of samples, xk is the k-sample. Two different values of sliding-window 226 

duration were tested: 100 samples (RMSS100) and 500 samples (RMSS500). After every 227 

kind of filtering, sEMG signals were min-max normalized within each subject and for 228 

each muscle, thus mapping the values in the [0–1] interval. All the pre-processing 229 

operations were implemented using Matlab relying on standard functions provided by the 230 

Signal Processing Toolbox1.  231 

 232 

3.4 Data preparation 233 

Each sEMG signal was separated into 20-sample windows, matching 10 milliseconds 234 

(ms). A chronological sequence of vectors made up of 20 × n samples was composed, 235 

where each vector included n synchronized 20-sample windows from sEMG signals of n 236 

muscles (n/2 for each leg). In details, the first sample of the first vector of the sequence 237 

was the first sample of the sEMG signal from the muscle 1 (TA, right leg), the second 238 

sample of the first vector was the first sample of the EMG signal from the muscle 2 (GL, 239 

right leg), and so on up to the muscle n. After that, each vector was given a specific label 240 

of 0 (or 1), when all basographic-signal samples assume a value of 0 (or 1). Vectors 241 

containing transitions between phases were not included in the training set. 242 

The classifier was then trained following the leave-one-out cross validation 243 

procedure: 22 out of 23 subjects were involved in training the classifier (Learned subjects, 244 

LS); the remaining subject was employed to test the classification output (Unlearned 245 

subject, US). LS were further separated into two subsets: training set containing the first 246 

90% of each subject signal (LS-train); testing set including the remaining 10% (LS-test). 247 

 

1 https://it.mathworks.com/products/signal.html 
 

https://it.mathworks.com/products/signal.html
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In details, the classifier was fed with the vectors extracted from LS-train. The vectors 248 

from US and LS-test were employed for testing the classifier performances in unseen 249 

subject and in unseen samples of learned subjects, respectively. In this stage, foot-switch 250 

signal was the ground truth. This process has been repeated twenty-three times, each time 251 

employing a different subject as US.  252 

 253 

3.5 The neural network 254 

A Multi Layer Perceptron (MLP) classifier was used in the present study. The MLP 255 

architecture is characterized by: 256 

• 3 hidden layers of 512, 256 and 128 neurons, respectively; 257 

• a one-dimensional binary output, provided by applying a 0.5 threshold to a 258 

sigmoid activation; 259 

• a rectified linear units (ReLU) between each couple of consecutive hidden 260 

layers to supply non-linearity; 261 

• a stochastic gradient descent optimization algorithm with binary cross 262 

entropy loss function. 263 

The specific architecture was chosen among others, with different numbers of layers, 264 

tested in [11], as it provided the best classification accuracy. In training the network, 10% 265 

of the training dataset was used as validation set. At each training epoch, accuracy on the 266 

validation set is measured and training was stopped when the validation accuracy did not 267 

increase in 10 consecutive epochs. Then, the trained network weights, corresponding to 268 

the best validation accuracy, were used to evaluate the model on the LS-test and US sets. 269 
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The neural network and the corresponding training and testing code were implemented in 270 

Python using the Pytorch deep learning framework2 and the Scikit-Learn python library3. 271 

 272 

3.6 Gait-event identification  273 

The binary output of the classifier has been chronologically arranged to provide the 274 

predicted foot-floor-contact signal, as a vector made up of sequences of 0 (stance phase) 275 

alternating with sequences of 1 (swing phase). While signal windows containing 276 

transitions were discarded in the training phase, all of them were fed as input to the 277 

classifier, in order to predict the foot-floor-contact signal. It is acknowledged that stance 278 

and swing are typically lasting around 60% and 40% of gait cycle, during able-bodied 279 

walking [1]. Accordingly, the sample sequences shorter than 500 samples (< 25% of gait 280 

cycle) were removed to clean out the predicted signal. Afterward, stance-to-swing (toe 281 

off, TO) and swing-to-stance (heel strike, HS) transitions have been assessed in the 282 

cleaned signal. TO was identified as the sample when the value switched from 0 to 1. 283 

Similarly, HS was identified as the sample when the value switched from 1 to 0. 284 

Prediction performances were quantified in terms of precision, recall, and F1-score. 285 

Precision is computed as: 286 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
               (2) 287 

 288 

where TP is true positive and FP is false positive. Recall is computed as: 289 

 290 

 

2 https://pytorch.org/ 

3 https://scikit-learn.org/stable/ 

https://scikit-learn.org/stable/
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𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                        (3) 291 

 292 

where FN is false negative. F1-score is computed as: 293 

 294 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ·
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
               (4) 295 

 296 

Predicted HS or TO at time tp were acknowledged as true positives (TP) if an event of the 297 

same type occurs in ground-truth signal at time tg such that |𝑡𝑔 − 𝑡𝑝| <  T. T is a time 298 

tolerance, set to 600 samples. Otherwise, the predicted event was acknowledged as a false 299 

positive (FP). For all TP, mean absolute error (MAE) has been computed, as the mean 300 

time distance between the predicted event and the corresponding event in ground-truth 301 

signal.  302 

 303 

3.7 Statistics 304 

Shapiro-Wilk test was used to evaluate the hypothesis that each data vector had a 305 

normal distribution. Comparison between two normally distributed samples was 306 

performed with two-tailed, non-paired Student’s t-test. Two-sample Kolmogorov-307 

Smirnov test was used to compare not normally distributed samples. Statistical 308 

significance was set at 5%. 309 

 310 

 311 

 312 

 313 
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4. Results 314 

4.1 Signal pre-processing 315 

Average classification accuracies as result of different pre-processing of the signal 316 

are reported in Table 1, for Learned-test set (LS-test) and Unlearned set (US). Linear 317 

envelope (LE) of the signal is evaluated considering four different values of cut-off 318 

frequency: 5, 10, 15, and 20 Hz. 319 

 320 

Table 1. Mean classification accuracy as result of 321 
different pre-processing of the signal. 322 

Mean classification accuracy (%) 

 LS-test US 

LE5 94.8 ± 0.2 93.4 ± 2.3 

LE10 93.8 ± 0.3 93.1 ± 2.4 

LE15 93.2 ± 0.3 91.4 ± 2.4 

LE20 92.4 ± 0.4 90.3 ±3.3 

RMSS100 92.3 ± 0.5 90.1 ± 2.9 

RMSS500 93.0 ± 0.4 91.0 ± 3.7 

FWRS 88.8 ± 0.2 88.0 ± 2.9 

BPFS 86.5 ± 0.6 84.0 ± 3.7 

   

 323 

 324 

Classification results highlight that accuracy is decreasing with increasing cut-off 325 

frequency in both LS-test (from 94.8% to 92.4%) and US (from 93.4% to 90.3%). In a 326 

similar way, SD is increasing with increasing cut-off frequency (from 0.2 to 0.4 in LS-327 

test; from 2.3 to 3.3 in US). Comparison between Root mean square signals (RMSS) 328 

computed with two different values of sliding-window duration shows slightly better 329 

accuracy for RMSS500 for both LS-test and US. All LE and RMSS approaches report a 330 

mean classification accuracy > 92% in LS-test and > 90% in US. Otherwise, FWRS and 331 
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BPFS approaches remain definitely < 90%, in particular for US. Overall, best mean 332 

accuracy (and SD) is provided by LE5 in both LS-test and US.  333 

 334 

Table 2. MAE (mean absolute error), precision, recall, and F1-score as result 335 
of different pre-processing of the signal for Heel Strike (HS) and Toe Off 336 
(TO) prediction in US. 337 

Mean prediction performances 

Heel Strike 

(HS) 

MAE 

(ms) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

LE5 21.6 ± 7.0 99.7 ± 0.6 98.5 ± 3.0 99.0 ± 1.7 

LE10 26.7 ± 9.8 99.6 ± 0.7 98.8 ± 1.6 99.2 ± 1.1 

LE15 27.4 ± 11.7 99.5 ± 0.6 98.7 ± 1.3 99.1 ± 0.9 

LE20 35.1 ± 26.5 98.9 ± 2.5 98.1 ± 3.3 98.5 ± 2.8 

RMSS100 28.1 ± 9.6 99.2 ± 1.2  98.0 ± 3.0 98.6 ± 1.9 

RMSS500 33.9 ± 14.3 98.7 ± 2.2 98.1 ± 2.6 98.4 ± 2.3 

FWRS 47.3 ± 24.9 99.2 ± 1.0 98.4 ± 1.8 98.9 ± 1.4 

BPFS 77.4 ± 40.4 95.6 ± 5.9 90.4 ± 13.0 92.6 ± 9.7 

Toe Off 

(TO) 

MAE 

(ms) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

LE5 38.1 ± 15.2 99.1 ± 1.5 97.9 ± 3.6 98.4 ± 2.4 

LE10 46.0 ± 22.6 98.7 ± 2.3 97.9 ± 2.9 98.3 ± 2.5 

LE15 47.9 ±19.3 98.4 ± 2.3 97.6 ± 2.7 98.0± 2.4 

LE20 58.2 ± 26.4 98.5 ± 2.1 97.6 ± 2.8 98.0 ± 2.4 

RMSS100 58.3 ± 22.3 98.6 ± 1.9 97.4 ± 3.6 97.9 ± 2.7 

RMSS500 54.1 ± 29.5 97.8 ± 3.2 97.1 ± 3.6 97.5 ± 3.4 

FWRS 58.8 ± 29.9 97.3 ± 5.0 96.5 ± 5.3 96.9 ± 5.1 

BPFS 67.7 ± 25.6 97.6 ± 3.1 92.2 ± 11.4 94.5 ± 7.8 

 338 

 339 

 340 
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Performances in assessing HS and TO events in US are reported in Table 2, in terms 341 

of MAE, precision, recall, and F1-score. LE5 provides the best MAE in HS and TO 342 

identification in US, in terms of both mean and SD (21.6 ± 7.0 ms and 38.1 ± 15.2 ms, 343 

respectively). Even LE10, LE15, and RMSS100 are able to keep HS-MAE value < 30 ms, 344 

but they fail in keeping TO-MAE value < 40 ms. All LE and RMSS approaches are able 345 

to maintain precision, recall and F1-score > 98% for HS and > 97% for TO. FWRS and 346 

BPFS approaches supply the worst performances. Average performances in every subject 347 

are reported in supplementary material 1-8. 348 

All experiments run on a machine equipped with a 2,6 GHz Intel Core i7 processor, 349 

16 GB RAM. The best performing signal pre-processing pipeline (LE5) required 350 

approximately 70 milliseconds in average to process a 1-second signal. It then took 351 

around 0.2 milliseconds for the neural network to process and predict gait events for a 352 

single pre-processed signal window (20 samples). In conclusion, the total processing time 353 

sums up to 90 milliseconds to predict TO and HS events for a 1 second walk. In the 354 

present experiments, the network training time over 22 training subjects (one single fold) 355 

ranges from approximatively 30 minutes, when the simpler experimental protocol is 356 

adopted (a single EMG signal per leg, two in total) to approximatively 60 minutes, when 357 

all the four EMG signals per leg (eight in total) are used. However, we also note that the 358 

network training has to be done only once, then the trained network can be applied as-is 359 

to predict TO and HS in unseen subjects. 360 

 361 

4.2 Reduction of experimental set-up 362 

Since it turned out to be the best-performing processing technique, LE5 has been used 363 

to perform the analysis of the reduction of experimental set-up. Average classification 364 

accuracies as a result of different experimental set-ups are reported in Table 3, for 365 
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Learned-test set (LS-test) and Unlearned set (US). The full protocol (reference) provides 366 

the best classification accuracy (94.8 ± 0.2% for LS-test and 93.4 ± 2.3% for US). In the 367 

distal-leg approach, a significant (p < 0.05) decrease of 2 percentage points of 368 

classification accuracy is detected for both LS-test and US, compared to the reference. 369 

However, accuracy is still widely > 90%. The gap from the reference further increases (p 370 

< 0.05), considering the single muscles (GL and TA) and the proximal-leg approach 371 

(Table 3). Performances in assessing HS and TO events in US are reported in Table 4, in 372 

terms of MAE, precision, recall, and F1-score. The full protocol supplies the best MAE 373 

in HS and TO identification in US, in terms of both mean and SD (21.6 ± 7.0 ms and 38.1 374 

± 15.2 ms, respectively) and the best F1-score (99.0 ± 1.7% and 98.4 ± 2.4%). A 375 

significant worsening in HS-MAE (≈ + 10 ms, p < 0.05) is detected in prediction of distal-376 

leg and GL approaches.  377 

 378 

 379 

Table 3. Mean classification accuracy as result of different 380 
experimental set-ups 381 

Mean classification accuracy (%) 

 LS-test US 

Full 94.8 ± 0.2 93.4 ± 2.3 

Proximal leg 84.6 ± 0.9 79.9 ± 6.1 

Distal leg 92.6 ± 0.3 91.4 ± 2.6 

GL 88.4 ± 0.5 89.1 ± 3.6 

TA 86.9 ± 0.4 84.6 ± 6.9 

   

 382 
 383 
 384 
 385 
 386 
 387 
 388 
 389 
 390 
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Table 4. MAE (mean absolute error), precision, recall, and F1-score as result 391 
of different experimental set-ups for Heel Strike (HS) and Toe Off (TO) 392 
prediction in US. 393 

Mean prediction performances 

Heel Strike 

(HS) 

MAE 

(ms) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Full 21.6 ± 7.0 99.7 ± 0.6 98.5 ± 3.0 99.0 ± 1.7 

Proximal leg 52.9 ± 23.8 96.3 ± 5.0 90.0 ± 9.3 92.8 ± 6.5 

Distal leg 33.2 ± 13.1 99.5 ± 0.7 97.3 ± 4.6 98.3 ± 2.7 

GL 33.0 ± 12.0 99.7 ± 0.4 96.5 ± 6.7 98.0 ± 4.1 

TA 53.6 ± 38.4 95.5 ± 6.1 83.8 ± 15.1 88.7 ± 10.9 

Toe Off 

(TO) 

MAE 

(ms) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Full 38.1 ± 15.2 99.1 ± 1.5 97.9 ± 3.6 98.4 ± 2.4 

Proximal leg 71.2 ± 24.4  92.3 ± 11.0 86.1 ± 11.9 88.9 ± 10.7 

Distal leg 45.1 ± 18.7 98.6 ± 2.0 96.4 ± 5.0 97.5 ± 3.3 

GL 64.6 ± 25.8 98.9 ± 1.5 95.7 ± 6.7 97.1 ± 4.1 

TA 49.0 ± 16.6 95.7 ± 5.7 83.9 ± 15.5 88.8 ± 11.1 

 394 

 395 

A further increase of MAE (≈ + 20 ms, p < 0.05) and decrease of F1-score (from 6% 396 

to 10%) were predicted by the other two approaches. TO-MAE worsens in prediction of 397 

distal-leg and TA approaches (≈ 7 and 11 ms, respectively), even if not significantly (p > 398 

0.05). A concomitant decrease of F1-score is detected (≈ -1%). Further remarkable 399 

worsening of both parameters was reported for the other two approaches. Figure 1 shows 400 

a direct comparison between the accuracy provided by distal-leg (yellow bars) vs. 401 

reference set-up (full, blue bars) in each fold. Average performances in every subject are 402 

reported in supplementary material 9-12. 403 

 404 

 405 
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 406 

 407 

Fig. 1. Direct comparison of MAE provided in each fold by full set-up 408 
(dark blue bars) vs. distal-leg set-up (yellow bars) for HS (upper 409 
panel) and TO (lower panel) predictions.  410 

 411 

 412 

 413 

5. Discussion 414 

 The present group of researchers recently proposed a neural-network-based 415 

approach for classifying stance vs. swing and assessing temporal gait events from 416 

electromyographic signals [11]. A twofold objective is pursued in the present study, i.e. 417 
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to test the influence on the performance of the above-mentioned approach of: 1) different 418 

pre-processing of sEMG signal; 2) reduction of the number of sEMG probes included in 419 

the experimental set-up. The approach described in [11] was chosen as reference model, 420 

because to our knowledge it is still outperforming all similar studies in terms of HS and 421 

TO prediction [6-10]. Foot-switch signal was adopted as the ground truth, since it 422 

represents the gold standard in gait segmentation [21-23]. 423 

 424 

5.1 Signal pre-processing 425 

The first step was to test if the change of low-pass cut-off frequency for extracting 426 

the envelope could affect classification and/or prediction performances. Average results 427 

show that classification accuracy (Table 1) and prediction MAE (Table 2) gradually 428 

worsen with concomitantly increasing cut-off-frequency value (starting from the 429 

reference value of 5 Hz), in terms of both mean value and SD. These results clearly show 430 

that the performances of the classifier are affected by the choice of the cut-off-frequency 431 

and 5 Hz is the best value for the goal we set. This suggests that when the envelope of 432 

sEMG signal is used, the cut-off-frequency value should be carefully evaluated in relation 433 

to the adopted methodology and pursued aim, in order to avoid estimation bias, as shown 434 

for co-contraction assessment in [16]. 435 

The second step was to compare the performances of the classifier after feeding the 436 

neural network with sEMG signal filtered in different ways. The simplest filter analyzed 437 

is BPFS, because it is necessary for removing low-frequency motion artefacts and high-438 

frequency noise from the signal. This approach returns the worst mean and single-subject 439 

(see supplementary material 8) classification accuracy among the approaches considered 440 

in the present study, especially for the unseen subjects (mean ± SD = 84.0 ± 3.7%, Table 441 

1). The worst performances are provided also in the assessment of gait events (Table 2). 442 
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BPFS is the only approach not performing the rectification of the signal. Thus, these 443 

findings indicate that the full-wave rectification is strongly recommended in processing 444 

the signal to feed the neural network. However, the full-wave rectification alone does not 445 

seem to be enough. FWRS approach truly improves BPFS one, but accuracy is still < 90%. 446 

Moreover, the performances are far from the ones provided by more refined processing 447 

approaches, such as LE and RMSS (Table 1 and 2). All LE and RMSS approaches, indeed, 448 

report a mean classification accuracy > 90% (Table 1) and keep mean precision, recall 449 

and F1-score > 98% for HS and > 97% for TO (Table 2). Furthermore, the best performing 450 

LE approach (LE5) outperforms also the RMSS approaches, above all in terms of average 451 

classification accuracy (≈ 95% in learned subjects and > 93% in unseen subjects), HS-452 

MAE (21.6 ± 7.0 ms vs. 28.1 ± 9.6 ms provided by the best performing RMSS approach), 453 

and TO-MAE (38.1 ± 15.2 ms vs. 54.1 ± 29.5 ms). About RMSS, the different durations 454 

of sliding-window do not seem to influence the classifier performance.  455 

In the end, present results confirm that the choice of the sEMG processing actually 456 

affects the classification/prediction performances, as expected [15-17]. Moreover, the 457 

present study succeeds in identifying the linear envelope (cut-off frequency 5 Hz) as the 458 

sEMG-processing type which provides the best performance of the neural network in 459 

terms of both classification accuracy and gait-event-prediction, among the four widely-460 

used approaches analyzed in the present study. This methodological finding, reported 461 

here for the first time, is very useful information for improving the precision of the clinical 462 

test by means of the most adequate processing of the signal. It seems especially valuable 463 

for those clinical conditions (such as neurological disorders) where elevated precision of 464 

predictions is fundamental to properly identify subject recovery during follow-up.  465 

 466 

 467 
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5.2 Reduction of experimental set-up 468 

Since LE5 is resulted being the best-performing approach for the sEMG-signal 469 

processing, it was used to run the analysis of the reduction of experimental set-up, i.e. the 470 

number of sEMG probes. Besides the full protocol [11], four reduced experimental set-471 

ups are considered in the present paper, in order to test the influence of protocol 472 

simplification on classification/prediction performances. The first step was to test if the 473 

reduction from four to two sEMG sensors per leg could provide classification/prediction 474 

results consistent with those provided by the full set-up. Two attempts were made, using 475 

signals from a couple of sensors applied to the same leg segment (proximal or distal), one 476 

in the front and one in the back. Table 3 shows as mean classification accuracy provided 477 

by the proximal-leg set-up clearly deteriorates compared to the full set-up, falling below 478 

85% in learned subjects and below 80% in unseen ones. This is also more evident by 479 

analysing each single subject, as reported in supplementary material 9. The proximal-leg-480 

based reduction of the number of sensors strongly affects also MAE, precision, recall, 481 

and F1-score, especially in TO prediction (MAE = 71.2 ± 24.4 ms and F1-score < 90%, 482 

Table 4). The matter is different for the distal-leg set-up. Although a decrease of mean 483 

classification accuracy is still detected, it amounts to only 2 percentage points in both 484 

learned (92.6 ± 0.3%) and unseen subjects (91.4 ± 2.6%). Moreover, precision, recall, and 485 

F1-score remain practically unaltered. The mean increase of MAE compared to the full 486 

set-up (+ 11.6 ms for HS; + 7.0 ms for TO, Table 4) is the price to pay for using only two 487 

probes per leg. For allowing a more detailed evaluation, MAEs provided by the two set-488 

ups in each single subject are compared in Fig. 1. These findings show as the distal-leg 489 

set-up clearly outperforms the proximal-leg one in terms of all performance parameters. 490 

To our knowledge, only Nazmi at al. [10] provided neural-network prediction of gait 491 

events using only two sEMG probes per leg on distal-leg muscles (tibialis anterior and 492 
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gastrocnemius medialis). They achieved, for unseen subjects, a mean classification 493 

accuracy of 77% and MAE of 35 ms and 49 ms in assessing HS and TO, respectively. 494 

Compared to those, the present distal-leg-set-up results appear promising, considering 495 

also that in present study F1-score is around 98%, while in [10] this information is not 496 

reported. It is worth mentioning that in [10] HS and TO predictions are computed in only 497 

5 seconds of a single subject, whereas in the present study an extensive evaluation is 498 

performed, predicting HS and TO in a 5-minute walking of 23 different subjects (with 499 

leave-one-out cross validation). 500 

The second step was to test the effect of a further reduction to a single muscle of 501 

experimental set-up. Considering the promising results achieved, two further attempts 502 

were made, using signals from one sensor applied to a single muscle, in the front (TA) or 503 

in the back (GL) of the distal leg. The results shown in Table 3 highlight that phase 504 

classification based on a single sEMG signal leads to a deterioration of mean accuracy, 505 

compared to both full and distal-leg set-ups. This is true for both TA (- 8% in learned and 506 

- 7% in unseen subjects, compared to the full protocol) and GL set-ups (- 6% in learned 507 

and - 4% in unseen subjects), although GL set-up achieves better accuracy, getting close 508 

to 90% in unseen subjects. However, classification accuracies are still better than the ones 509 

provided by the proximal-leg set-up and in [10]. TA and GL set-ups work differently in 510 

HS and TO prediction. Compared to full set-up, mean precision, recall, and F1-score 511 

remain practically unaltered for GL set-up. Prediction of TA set-up is instead affected by 512 

a strong decrease of mean recall value (-14% and -12% compared to full and GL set-ups, 513 

respectively). This means that a high number of false positive detection of HS and TO 514 

affects the prediction. Consequently, a concomitant deterioration of F1 score is observed 515 

(-10% and -9% compared to full and GL set-ups, respectively). HS prediction provided 516 

by GL set-up presents a mean increase of MAE compared to the full set-up, but achieves 517 
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the same value provided by distal-leg set-up (33.0 ± 12.0 ms vs. 33.2 ± 13.1 ms). 518 

Furthermore, mean HS-MAE is still comparable with the one reported in [10], using two 519 

distal-leg muscles. TA set-up reports a significant growth of mean HS-MAE compared 520 

to full (+33 ms), distal-leg (+20 ms), and GL (+20 ms) set-ups. These findings seem to 521 

indicate that between GL and TA signals, only GL-signal plays a fundamental role in 522 

prediction of heel strike. TO prediction is less accurate in GL-set-up (+26 ms and +19 523 

ms of mean MAE compared to full and distal-leg set-ups, respectively). Larger MAEs in 524 

TO prediction were foreseen, since it was explained that it is more challenging to assess 525 

TO than HS [10,24]. On average, TO-MAE is lower for TA set-up (49.0 ± 16.6%, 526 

comparable with distal-leg set up). However, as already mentioned, it is associate to low 527 

performances in terms of classification accuracy (84.6 ± 6.9%), recall (83.9 ± 15.5%), 528 

and F1-score (88.8 ± 11.1%). Thus, in our opinion TA-set-up-based prediction should be 529 

considered not reliable and the desirable simplification of experimental set-up (one single 530 

sensor) should involve only the GL set-up. In this case, this simplification would be paid 531 

with a deterioration of TO (not HS) prediction. This could be a good compromise for 532 

tasks such as stride recognition, stride-time computation, identification of toe walking, 533 

and so on, where only HS event is involved.  534 

In the end, present findings indicate that the reduction of the complexity of the 535 

experimental sEMG-protocol (i. e. decreased number of sEMG sensors) affects the 536 

performances especially in terms of gait-event-prediction parameters, as expected [10]. 537 

Moreover, the present study succeeds in the goal of providing for the first time a 538 

quantification of the progressive deterioration of classification/prediction performances 539 

with the reduction of the number of sensors used. This could be very useful in clinics to 540 

the aim of choosing the most suitable approach, balancing technical performances, patient 541 

comfort, and clinical needs. Since a simplification of experimental set-up is always 542 
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desirable, the present study proposes the distal set-up (consisting of two sensors over TA 543 

and GL per leg) as a suitable alternative to the full protocol in those circumstances where 544 

limiting time consumption and patient discomfort is a primary issue. The price to pay for 545 

this simplification is essentially a worsening of HS and TO prediction (about 10 ms, on 546 

average). A further reduction of experimental set-up to a single muscle seems to be 547 

feasible without a further deterioration of performances only if GL is chosen as the 548 

reference muscle and for computation where only heel-strike events are involved. 549 

 550 

 551 

6. Conclusions 552 

The present study shows that both the sEMG-processing type and the reduction of 553 

sEMG-protocol complexity actually affect the performances of neural-network-based 554 

classification of gait phases and assessment of temporal gait events. A further novel 555 

contribution is to provide also a reliable quantification of this performance deterioration. 556 

The quantitative knowledge of the consequences of the reduction of the number of sensors 557 

in terms of classification/prediction accuracy could be very useful in clinics to drive the 558 

choice of the most suitable experimental set-up for gait analysis, able to balance the need 559 

of handling patient comfort and limiting time consumption with the necessity of 560 

maintaining an elevate precision of test results. Higher precision in gait event prediction 561 

is increasingly requested in clinics, especially in those pathologies where one of the gait 562 

phases could be strongly reduced (neurological disorders). The present study provides 563 

also the information about the most suitable sEMG-processing type (linear envelope with 564 

a cut-off frequency = 5 Hz) to satisfy this necessity. 565 

Four acknowledged and widely-used approaches to process EMG signals were 566 

included in the present comparative analysis. Future development could be designed to 567 
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involve more advanced signal-processing techniques in frequency or time/frequency 568 

domain, such as Fourier transform or wavelet transform. Moreover, the potential 569 

influence of gait velocity could be also taken into account. This would be an intriguing 570 

further direction, as EMG envelopes show adaptations to different gait velocities.  571 

 572 

 573 

References 574 

1. Perry J. Gait Analysis - Normal and Pathological Function. USA: Slack Inc, 1992. 575 

2. Bovi G, Rabuffetti M, Mazzoleni P, Ferrarin M. A multiple-task gait analysis 576 

approach: Kinematic,kinetic and EMG reference data for healthy young and adult 577 

subjects. Gait Posture. 2011:33;6–13. 578 

3. Caldas R, Mundt M, Potthast W, Buarque de Lima Neto F, Markert B. A systematic 579 

review of gait analysis methods based on inertial sensors and adaptive algorithms. 580 

Gait Posture. 2017:57;204–210. 581 

4. Taborri J, Palermo E, Rossi S, Cappa P. Gait Partitioning Methods: A Systematic 582 

Review. Sensors (Basel) 2016;16(1):66. doi: 10.3390/s16010066 583 

5. Di Nardo F, Morbidoni C, Cucchiarelli A, Fioretti S. Recognition of Gait Phases with 584 

a Single Knee Electrogoniometer: A Deep Learning Approach . Electronics 585 

2020:9(2);355. https://doi.org/10.3390/electronics9020355 586 

6. Meng M, She Q, Gao Y, Luo Z. EMG signals based gait phases recognition using 587 

hidden Markov models. In Proceedings of the 2010 IEEE International Conference 588 

on Information and Automation, Harbin, China, 20–23 June 2010; pp. 852–856. 589 



27 

 

7. Joshi CD, Lahiri U, Thakor NV. Classification of gait phases from lower limb EMG: 590 

Application toexoskeleton orthosis. In Proceedings of the 2013 IEEE Point-of-Care 591 

Healthcare Technologies (PHT),Bangalore, India, 16–18 January 2013:228–231.  592 

8. Nazmi N, Abdul Rahman M, Ariff MHM, Ahmad S. Generalization of ANN Model 593 

in Classifying Stance and Swing Phases of Gait using EMG Signals. In Proceedings 594 

of the IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES 595 

2018), Sarawak – Kuching, Malaysia 3-6 December. 2018: 461-466. 596 

9. Ziegier J, Gattringer H, Mueller A. Classification of Gait Phases Based on Bilateral 597 

EMG Data Using Support Vector Machines. In Proceedings of the IEEE RAS and 598 

EMBS International Conference on Biomedical Robotics and Biomechatronics, 599 

Enschede, The Netherlands, 26–29 August. 2018:978–983. 600 

10. Nazmi N, Abdul Rahman M, Yamamoto SI, Ahmad S. Walking gait event detection 601 

based on electromyography signals using artificial neural network. Biomed Signal 602 

Process Control. 2019;47:334–343. 603 

11. Morbidoni C, Cucchiarelli A, Fioretti S, Di Nardo F. A Deep Learning Approach to 604 

EMG-Based Classification of Gait Phases during Level Ground Walking. Electronics 605 

2019:8(8);894. https://doi.org/10.3390/electronics8080894  606 

12. Morbidoni C, Principi L, Mascia G, Strazza A, Verdini F, Cucchiarelli A, Di Nardo 607 

F.Gait Phase Classification from Surface EMG Signals Using Neural Networks. In: 608 

Henriques J, Neves N, de Carvalho P (eds). XV Mediterranean Conference on 609 

Medical and Biological Engineering and Computing - MEDICON 2019. 610 

13. Kamruzzaman J, Begg RK. Support vector machines and other pattern recognition 611 

approaches to the diagnosis of cerebral palsy gait. IEEE Trans Biomed Eng. 612 

2006;53(12 Pt 1):2479-90. 613 



28 

 

14. Tang Z, Zhang K, Sun S, Gao Z, Zhang L, Yang Z. An upper-limb power-assist 614 

exoskeleton using proportional myoelectric control. Sensors (Basel). 615 

2014;10;14(4):6677-94.  616 

15. Rosa MC, Marques A, Demain S, Metcalf CD, Rodrigues J. Methodologies to assess 617 

muscle co-contraction during gait in people with neurological impairment – a 618 

systematic literature review. J Electromyogr Kinesiol. 2014; 24(2):179–191. 619 

16. Rinaldi M, D'Anna C, Schmid M, Conforto S. Assessing the influence of SNR and 620 

pre-processing filter bandwidth on the extraction of different muscle co-activation 621 

indexes from surface EMG data. J Electromyogr Kinesiol. 2018;43:184-192. doi: 622 

10.1016/j.jelekin.2018.10.007. 623 

17. Caramia C, De Marchis C,  Schmid M. Optimizing the Scale of a Wavelet-Based 624 

Method for the Detection of Gait Events from a Waist-Mounted Accelerometer under 625 

Different Walking Speeds. Sensors (Basel). 2019;19(8):1869. 626 

18. Winter DA, Yack HJ. EMG profiles during normal human walking: stride-to-stride 627 

and inter-subject variability. Electroencephalogr Clin Neurophysiol. 628 

1987;67(5):402-411. 629 

19. Hermens HJ, Freriks B, Merletti R, et al. European recommendations for surface 630 

electromyography, SENIAM. Enschede (NL): Roessingh Research and 631 

Development 1999, 8. 632 

20. Di Nardo F, Mengarelli A, Maranesi E, Burattini L, Fioretti, S. Gender differences 633 

in the myoelectric activity of lower limb muscles in young healthy subjects during 634 

walking. Biomed Signal Process Control. 2015;19:14–22. 635 

21. Agostini V, Balestra G, Knaflitz M. Segmentation and Classification of Gait Cycles, 636 

IEEE Trans. Neural Syst. Rehabil. Eng. 2014;22(5):946-52. 637 



29 

 

22. Taborri J, Palermo E, Rossi S, Cappa P. Gait partitioning methods: A systematic 638 

review. Sensors. 2016;16:66.  639 

23. Winiarski S, Rutkowska-Kucharska A. Estimated ground reaction force in normal 640 

and pathological gait. Acta Bioeng. Biomech. 2009;11:53–60. 641 

24. Khandelwal S, Wickstrasm N. Evaluation of the performance of accelerometer-based 642 

gait event detection algorithms in different real-world scenarios using the MAREA 643 

gait database. Gait Posture. 2017;51:84–90.  644 


