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Abstract 

 

High levels of process reliability are required to comply with the increased competitiveness 

characterizing the current industrial scenario. This aspect is particularly relevant for 

complex plants since many components are potentially more subject to failure occurrence. 

In this context, this thesis aims to propose a general framework to support the maintenance 

management process. Four different applications are presented following the proposed 

framework and based on an Italian medium-sized oil refinery case study. In the first 

application, the proposed framework is adopted to derive the Association Rules describing 

components breakdowns after a stoppage of the oil refinery plant. The components that are 

most likely to break within a given time interval after a plant stoppage are identified to 

propose the best maintenance strategy. The second application regards a predictive 

optimization-based maintenance policy, based on the definition of Association Rules 

describing relationships among components’ breakages. An integer linear programming 

model is formulated to select the optimal set of components to repair to improve the plant's 

reliability. In the third application, a bi-objective Component Repairing Problem is 

developed in order to reduce the impact on both the time to recover from a stoppage and the 

overall maintenance costs. The bi-objective Component Repairing Problem is solved 

through the AUGMEnted ε-CONstraint approach and through a bi-objective Large 

Neighbourhood Search meta-heuristic. In the fourth application, the Association Rule 

Mining and Social Network Analysis are contextually adopted to identify the hidden 

interactions between components that lead to a domino effect between failures. The 

conjunction of these two methodologies is useful because the Association Rule Mining 

helps identify the interaction among events and the Social Network Analysis support 

comprehension of such interactions.  

Following the proposed general framework, Association Rule Mining and Social Network 

Analysis are also applied to pursue a second objective, that is extending the analysis of the 

production processes in terms of failures and related effects, through the results of the 

Failure Modes Effects and Criticalities Analysis which are used as the input of data-driven 

analysis. Two case studies are shown in this context: the first one regards an offshore and 

onshore plant for oil and gas extraction and storing; the second one regards a hydro-

electrical power plant. 
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Chapter 1. 

 

Introduction 

 

1.1. Project background 
Competition on a global scale, fast-changing customer needs, and shorter product life 

cycles require a high efficiency level in all industrial environments [1]. Indeed, production 

efficiency depends also on the reliability of the company’s plants, for which the 

implementation of an effective maintenance policy becomes crucial. In fact, any 

interruption of the production flow may negatively affect the whole system and, therefore, 

profits [2]. Furthermore, the more complex the system, the higher the number of 

components potentially subject to breakage is.  

In industrial sectors characterized by high operational risk, the occurrence of component 

failures is particularly critical since it may affect not only the plant’s operations but also the 

integrity of the environment and people's safety [3]. Several actors are interested in 

ensuring that the integrity of production plants is maintained due to potential adverse 

consequences related to public health, safety, and heavy financial liabilities. In fact, in case 

of system failure, it represents a critical issue not only for the managers of the plant itself 

but also for governmental entities, consumers and stakeholders in general [4]. Process 

industries should also be particularly considered since researches show that, for example, in 

refineries, the maintenance and operations departments comprise about 30% of the total 

personnel and maintenance costs are the most impacting voice on the operational budget 

[5]. Being able of predicting future failures can provide valid support in this sense since the 

analysis of data related to the actual production processes ensures the possibility of having 

an accurate prevision [6] and, thus, this information can be used to deploy appropriate 

maintenance strategies.  
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As reported by the European Committee for Standardization [7], three main branches of 

approaches should be taken into account in defining the most appropriate maintenance 

policy for an industrial environment: 

• corrective maintenance: an intervention is carried out after a breakage occurrence 

in order to restore the normal system functioning; 

• preventive maintenance: maintenance is carried out at predefined intervals or 

conditions;  

• predictive maintenance: maintenance is carried out according to significant 

characteristics like the breakage forecast, suggested by estimations of the 

degradation state, or the component breakage probability. 

Several different strategies are still applied, but a growing focus is put on predictive 

maintenance. Predictive maintenance can be considered as the attitude to “use the actual 

operating conditions of plant equipment and systems to optimize total plant operations” [8]. 

In fact, predictive maintenance policies offer the opportunity of anticipating component 

breakages through the analysis of historical data and the implementation of proper 

algorithms. Specifically, the increasing data availability enabled by Industry 4.0 

infrastructures facilitates the development of data-driven algorithms for asset availability 

and reliability maximization that allow continuous process control [9]. The main benefits 

harbored by the implementation of the predictive maintenance strategy involve both the 

increasing of reliability levels, reducing failures and breakdowns up to 70%, and the 

lowering of the total maintenance costs up to 40% [10]. 

Starting from these key points, the present thesis aims at developing a comprehensive 

strategy to support the implementation of data-driven maintenance policies based on the 

implementation of data analytics techniques that help in the Knowledge Discovery in 

Databases (KDD) process, i.e., in automatically analyzing data to bring out valid, novel, 

potentially useful and ultimately understandable patterns [11]. Since the KDD field is 

characterized by a number of possible techniques, a thorough investigation on the 

characteristics of the data available and of the different variables to analyze represents the 

first step for the selection of the most appropriate one [12]. The maintenance policies 

proposed in this thesis all rely on mining the Association Rules (ARs), a very popular and 
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widely applicable methodology belonging to the KDD field. Two main reasons explain the 

rationale behind this selection, as recommended by Crespo et al. [13]: on the one hand, the 

Association Rule Mining (ARM) represents a powerful methodology to discover non-

trivial, relevant relationships that are not immediately identifiable in a large amount of data; 

on the other hand, ARM is user friendly, since the results are provided intuitively so that 

their interpretation is rapid and intuitive. Moreover, there is no need to formulate research 

hypotheses. 

Additionally, other approaches can be implemented after the ARM, such as decision 

support systems based on threshold definition, optimization approaches, or network 

analysis, in order to guide the decision-making process.  

As the central methodology of this thesis, a four-layer framework is proposed to describe 

the conceptual maintenance management from the early stages of data collection until the 

implementation and performance monitoring of the data analytics-based maintenance 

strategies. Following the same framework, two different lines of research are deployed: the 

first one aims to define data-driven maintenance policies considering data collected from 

the production processes; the second one, instead, is devoted to the extension of the failure 

analysis traditionally carried out by the companies (e.g., the failure modes effects and 

criticality analysis). In this way, the data collected and pretreated are further analyzed to 

extract useful knowledge from them. 

The remainder of this introductory section is dedicated to describing the fundamental 

aspects of the two research lines (Section 1.2 and 1.3) and providing a general outline of the 

rest of the thesis (Section 1.4). 

 

1.2. Defining data-driven maintenance policies 
The monitoring of a production process is connected to several variables that, if 

appropriately traced, generate a large amount of data. Defining the best maintenance policy 

represents a critical issue for all kinds of production plants. The process industry is 

significantly affected by this aspect, as all the activities are sequentially connected. Many 

variables like temperature, flow rates, level, and chemical characteristics of raw materials 

have to be measured [14] and monitored. Indeed, in the Industry 4.0 era, sensors are used 
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by companies to gather a huge amount of data related to production, maintenance events, 

and component failures. KDD techniques can significantly support the automatic extraction 

of valid, useful, and unknown relations from a large amount of data [11], and they are 

suitable to manage such data. Consequently, they can successfully support the maintenance 

policy definition, capitalizing on the data collected along the processes.  

In literature, models for data-driven maintenance already exist. Some of these models are 

used to implement Condition Based Maintenance solutions (e.g., [15,16]),others are used to 

implement models or simulations for predictive maintenance (e.g., [17,18]). The research 

focus is mainly on predicting the occurrence of component failures to reduce unexpected 

events and the consequent stoppage of the production processes. Although the existing 

research is valuable, specific frameworks supporting the maintenance management process 

to analyze and predict relationships between component failures and avoid them are not 

satisfactorily deployed. Indeed, less attention has been paid to developing a framework for 

the decision-making process to capitalize on the implementation of data-driven techniques, 

achieve satisfying levels of reliability, and avoid wasting resources using the available 

amount of data produced and collected during the production processes.  

For these reasons, the framework proposed in this thesis aims to address this gap by 

introducing an innovative decision-making tool in this critical activity capitalizing on the 

vast amount of data available in the production environment. Four different approaches to 

the maintenance policy definition are deployed in the following of this dissertation, basing 

on the case study of an Italian medium-sized oil refinery:  

1. In the first application, KDD is applied to derive AR describing components 

breakdowns after a stoppage of the oil refinery plant (e.g., the mass flow across the 

plant is interrupted). Considering the stoppages of the plant, the purpose of this 

application is to answer the following research questions: what are the components 

likely to break within a given time interval after a plant stoppage? Considering the 

probability level of breakdowns, is a predictive maintenance intervention 

preferable to a corrective one? [19] 

2. The second application focuses on developing a predictive optimization-based 

maintenance policy, under the assumption that a component fails, based on the 
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definition of ARs describing relationships among component breakages. 

Furthermore, an integer linear programming model is formulated aiming to select 

the set of components to repair in order to improve the overall robustness to 

breakages of the plant, respecting both the given total repair time available and 

budget.  An experimental campaign carried out on a real case study of an oil 

refinery and a detailed sensitivity analysis on some parameters of the mathematical 

model are used to evaluate the performances of the proposed approach [18]. 

3. The goal of the third application is to define a data-driven approach, based on the 

available data related to past failures, to predict the components that will break in a 

time interval after a stoppage occurs in order to increase the reliability of the 

whole plant. A bi-objective Mixed Integer Linear Programming (MILP) model for 

the bi-objective Component Repairing Problem (b-CRP) is formulated in order to 

reduce the impact on both the time to recover from a stoppage and the overall 

maintenance costs (e.g., the maintainer hourly cost and the component repair 

costs). The b-CRP problem is solved through the AUGMEnted ε-CONstraint 

(AUGMECON) approach and a bi-objective Large Neighborhood Search (b-LNS) 

meta-heuristic for efficiently addressing medium and large-sized instances, 

carrying out an experimental campaign on real-lifelike case studies inspired by an 

oil refinery plant. Data-driven analysis on the effectiveness of the b-LNS moves is 

also proposed [20]. 

4. Instead, the fourth application is based on the development of a data-driven 

approach simultaneously adopting the Association Rule Mining (ARM) and Social 

Network Analysis (SNA). The objective is to identify the hidden interactions 

between components that lead to a domino effect between failures. The 

implementation of the SNA is rather limited in the maintenance-related field, 

while the joint application of SNA and ARM is entirely lacking. The conjunction 

of these two methodologies is useful because the ARM will be used to identify the 

interaction among events and the SNA to define the nature of such interactions. In 

comparison to previous works, this framework allows researchers to identify 
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communities of nodes in order to analyze local and global paths and define the 

most influential entities. 

 

1.3. Data-driven extension of failure analysis 
Process plants are nowadays required to meet a high number of regulations, norms, as well 

as customer expectations for aspects like safety and environmental protection [21], 

especially companies dealing with high operational risks. In some cases, like in the oil and 

gas field, such plants are characterized by low investments in asset renewals and, thus, 

mainly composed of aging infrastructures and components [22]. As a consequence, there is 

a growing focus on defining ad-hoc maintenance frameworks able to ensure the execution 

of the operations safely [23]. The techniques traditionally applied for monitoring the 

operations and determining the maintenance approaches for improving the asset reliability 

can be accompanied by new methodologies more oriented to data analytics [13,24]. KDD 

can be used for extending the analysis of failure modes and effects since it represents a 

prominent enhancement opportunity of the maintenance policy improvement and risk 

reduction through the application of advanced techniques, expanding the knowledge 

achievable through the traditional approaches.  

In this context, the second line of research pursued in this thesis aims at proposing a 

framework for extending the analysis of the production processes in terms of failures and 

related effects through the well-known and widely applied Failure Mode, Effect and 

Criticality Analysis (FMECA). The results of the FMECA are then used as the input of 

data-driven analysis. The FMECA represents a useful tool for identifying the potential 

failure modes of a system or process, their impact, and the deriving consequences on the 

global performance.  

Many techniques and solutions have been proposed for strategic data-driven FMECA (e.g., 

[25–27]). Some of these models are used to automate the identification of failure modes 

(e.g., [28,29]), others are used to improve the risk assessment process (e.g., [23,30]). At the 

same time, some authors integrate FMECA and remaining useful life prognosis (e.g., 

[31,32]). Less attention has been paid to the introduction of data-driven frameworks for 

supporting the failure analysis. Although the existing research is valuable, a framework 
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based on data-driven approaches that structurally analyze and predict the relationships 

among failure modes and effects, supporting the definition of the maintenance policy, is not 

present in current literature.  

This gap is addressed by introducing an innovative procedure to support the failure analysis 

for enlarging the current body of knowledge, facilitating the visualization, and, thus, the 

understanding of previously unknown paths. In particular, the development of the 

framework relies on the simultaneous adoption of two data-driven techniques for analyzing 

the output data of the FMECA: the ARM and SNA. As previously mentioned, the ARM is 

applied to define the relationships among failure modes, their effects on the system, and the 

adopted maintenance tasks. The rationale behind the adoption of ARM is based on their 

intuitiveness, allowing their interpretation even for non-domain experts, and their 

applicability to different fields (market analysis, operations analysis, and control). 

Moreover, ARM does not require the formulation of hypotheses, allowing an unbiased 

analysis of the whole dataset. In this way, relationships that are not identifiable through the 

FMECA itself can emerge. In parallel, the SNA enables company managers to jointly 

explain the ARs through a graphical representation of the results: the network provides a 

more understandable data format for the decision-makers. The SNA supports the definition 

of the nature of the interactions represented by the ARs, identifying communities of nodes 

to analyze local and global patterns and locate influential entities. 

Two case studies are proposed to present this approach:  

1. The first one considers an offshore and onshore plant for oil and gas extraction and 

storing; the complete process from the data collection to the FMECA and its 

extension is described in detail, providing an extensive description of the 

procedure followed and the results obtained. 

2. The second one regards a hydro-electrical power plant; the implementation of the 

proposed approach is presented in detail, while the stages upwards are treated in a 

less extensive way [33].  
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1.4. Outline 
In the next chapters, the thesis is deployed as follows: Chapter 2 contains the literature 

review; Chapter 3 describes the general framework, while the applications of the two lines 

of research previously mentioned are presented in Chapter 4 and Chapters 5. Chaper 6 and 

7 are respectively dedicated to the discussion and conclusions of the dissertation.  

The thesis is based on the following papers authored by the candidate:  

1. Antomarioni, S., Bevilacqua, M., Potena, D., & Diamantini, C. (2019). Defining a 

data-driven maintenance policy: an application to an oil refinery plant. 

International Journal of Quality & Reliability Management, 36(1), 77-97. 

2. Antomarioni, S., Pisacane, O., Potena, D.,Bevilacqua, M., Ciarapica, F. E., & 

Diamantini, C. (2019). A predictive association rule-based maintenance policy to 

minimize the probability of breakages: application to an oil refinery. The 

International Journal of Advanced Manufacturing Technology, 105(9), 3661-

3675.  

3. Pisacane, O., Potena, D., Antomarioni, S., Bevilacqua, M., Emanuele Ciarapica, 

F., & Diamantini, C. (2020). Data-driven predictive maintenance policy based on 

multi-objective optimization approaches for the component repairing problem. 
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Chapter 2. 

 

Literature review 

 

In the following subsections, the literary contributions considered as state of the art for the 

development of the dissertation are proposed. The chapter is articulated as follows: section 

2.1 describes, in general, the data-driven applications addressing maintenance or reliability 

issues; section 2.2 focuses the attention on the Association Rule Mining applications to the 

production management in general and to the maintenance aspects in particular. In section 

2.3 and 2.4, respectively, the application of mono-objective and multi-objective 

optimization is reviewed. Section 2.5, instead, collects the main contributions concerning 

data-driven failure modes effects and criticalities analysis.  

 

2.1. Data-driven applications for maintenance and reliability 
KDD is an interdisciplinary field aiming at extracting important information and 

knowledge from a large amount of data [34]. Data Mining (DM) approaches represent a 

branch of the KDD techniques that can support companies throughout transforming data 

into value. The focus is on searching for hidden information, patterns, and tendencies in a 

large amount of data [35]. Therefore, DM acts as a facilitator to discover information from 

which extracting value form data is currently available [14].  

Data are produced during almost all the organizational processes, from the design to the 

production scheduling, control, and maintenance [36]. According to Braha [37], DM 

techniques should be integrated into organizational processes, considering its objectives 

and potentialities together with the goals and weaknesses of the manufacturing 

environments. For instance, the design process involves the setting and selection of 

parameters, actions, and components [38] in order to make previsions, such as cost 
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estimating: prior data are often applied to the cost estimation problem during the designing 

phases, and several algorithms have been developed and are currently applied to this end 

[38]. Even quality analysis, such as searching for causes for deteriorating product quality, 

can be performed through KDD techniques [39,40]. Furthermore, the application of DM 

techniques can provide proper support to process analysis: Maki and Teranishi [41] propose 

an automated DM system to detect anomalies in a manufacturing process in order to induce 

engineers to pinpoint and easily prevent their causes. Indeed, problematic issues can be 

found and resolved through DM technology as presented by Gardner and Bieker [42] in an 

application in the semiconductor industry. 

Moreover, the application developed by Batanov et al. [43] communicates to the user 

maintenance policy suggestions, together with machine diagnosis and maintenance 

scheduling for the analyzed devices. Instead, Romanowski and Nagi [44] manage to 

identify subsystems responsible for low equipment availability and, based on these results, 

provided a preventive maintenance schedule. Bumblauskas et al. [45] define a smart 

maintenance decision support system integrating optimization algorithms and analytic 

decision models in order to provide useful suggestions on maintenance execution, while 

Manco et al. [46] perform an outlier-based fault prediction through the study of non-normal 

signals provided by sensors and validated their approach through an experimental case 

study. The review of the principal condition monitoring techniques applied to fault 

detection of offshore wind turbine presented by Kabir et al. [47] is a further example of DM 

applications to maintenance policy. Instead, Antony and Nasira [48] propose a cluster 

analysis to perform a predictive analysis on board of train vehicles. In addition, Sammouri 

et al. [49] present a methodology aiming to predict rare failures mining temporal data 

provided by sensors installed on commercial trains. Even Jin et al. [50] dedicate their work 

to the railway field, developing a procedure for the predictive maintenance of railway point 

machines. Ming [51] creates a maintenance management system for urban transit rails. 

Indeed, through the application of artificial neural networks and decision trees, the author 

was able to supervise the equipment and to mine valuable information. 

In a paper by Sipos et al. [52], a data-driven framework based on multiple-instance learning 

is applied to predict equipment faults: in particular, through the mining of equipment event 
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logs, they extract the operational information useful for the predictive activity. Wang [53] 

implements a fault diagnostic and prognostic system, collecting data through DM 

techniques and exploiting artificial neural networks to train and validate the model. 

Furthermore, Gröger et al. [1] present an innovative DM methodology aiming at the 

optimization of the whole manufacturing process, describing both conceptual and practical 

cases. Bevilacqua et al. [24] develop an analytic model to carry out IoT-based energy 

management, aiming to empower the decision-making process by integrating data provided 

by different smart devices.  

Despite the wide application of DM techniques to manufacturing processes, this theme is 

not widely developed concerning oil and gas refinery plants, even if it would represent a 

successful discriminant in this field [54]. Indeed, according to Köksal et al. [55], only 4% 

of the DM applications to the manufacturing industry regard coke or petroleum refineries. 

In refinery, DM could be applied to analyze the influence of some variables on product 

quality, create rules to manage the manufacturing process, and predict price changes or 

requirements of different kinds of oil [56]. Zhong and Wang [56] propose a theoretical 

combination of computer integrated management systems and tools. Wang and Gao [57] 

develop an indicator to support the maintenance decision-making process, exploiting the 

Internet of Things and apply it to an oil transfer station. Friedemann et al. [58] describe 

some applications of prognostic and diagnostic systems in Energy and Rail fields, 

highlighting the need for adapting the operating plans to the information extracted. 

Moreover, they apply a similar management system to condition monitoring of subsea 

facilities in oil production processes to improve the availability and reliability of the 

infrastructure. Li et al. [59] propose a prototype system based on a rough set to deal with 

incomplete data in fault diagnosis and applied it to centrifugal pumps of a refinery plant. In 

order to predict the deposition of scales in oil wells and avoid the unavailability of the 

equipment, it is found that training a support vector machine can represent a valuable 

solution. Indeed, an appropriate maintenance strategy can be defined according to the 

scaling values predicted by the model [60]. Hu et al. [61] propose a methodology for oil 

pump fault detection, integrating multifractal theory and Mahalanobis–Taguchi system: in 

particular, they aim at predicting failures through vibration signals monitoring. Moreover, 
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they highlight the necessity of storing real-time signals in an integrated diagnosis database 

in order to enable the application of advanced fault detection techniques. 

 

2.1.1 Association Rule-based applications for maintenance and reliability  

ARM is a valuable research area of KDD and can be successfully used for effectively 

representing relationships among data [62]. According to Wang [63], it can be considered 

for performing predictive data analysis since it relates a specific variable to others included 

in the same dataset. As stated by Buddhakulsomsiri et al. [64], in fact, extracting the ARs 

allows deducing attribute-value information contained in a dataset but not immediately 

identifiable due to the amount of data. Intuitiveness is one of the AR strengths, together 

with its applicability to several fields. In fact, various applications exist, ranging from 

customers’ buying habits [65] to product design specifications, as well as production 

process control [66]. For instance, ARM can be applied to improve the design process and 

define the most appropriate geometric dimensions [35]. In addition, Chen [67] use ARM to 

solve the problem of cell-formation, according to group technology requirements, 

evidencing the ability of this method in determining quality solutions. In particular, this 

method is applied to the binary version of the cell-formation problems, and it result in being 

a satisfying procedure both for large and small-scale problems. 

The application of ARM to the manufacturing field can be related to the purpose of 

enhancing overall performance. In order to pursue this aim, ARs can be applied to frequent 

patterns extracted from industrial processes, as they represent a useful methodology in 

disclosing industrial failures [68,69]. 

Djatna and Alitu [70] capitalize on the extraction of ARs to develop a total productive 

maintenance strategy, obtaining an increase in the effectiveness of maintenance response 

and efficiency considering time and costs. Bastos et al. [71] study a decentralized predictive 

maintenance system aiming to forecast the possibility of a breakdown to increase the 

reliability of the system. Furthermore, a manufacturing defect detective model is proposed 

by Chen et al. [72]: AR mining is applied in order to analyze the existing correlations 

between the combination of machines and defects and, integrating this procedure with a 

root cause machine identifier, the root cause could be detected. Wang et al. [73] study the 
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generation of associative rules for manufacturing process planning to improve the 

performances previously obtained through a fuzzy decision technique and entropy-based 

analysis method: indeed, they combine the variable precision rough set and fuzzy 

clustering. Another relevant application of the rule mining algorithm to manufacturing 

processes is the one proposed by Agard and Kusiak [74]. Indeed, their algorithm aims at 

selecting subassemblies through the analysis of orders previously received from the 

customers. This application could ensure an improvement in performance in terms of 

delivery times to the contractor. Moreover, ARM can be applied to fault detection in 

assembly operations [75], achieving progress in terms of quality of the assembly process 

thanks to the monitoring or avoiding critical sequences [66]. An applicative example to a 

drill production process is also present in literature: results show that the approach based on 

AR mining is useful in providing important information on faults and related causes [68].  

The development of an AR-based conceptual model is also found to be valuable in 

detecting the impact of human practices on risky situations in a refinery plant [3]. A further 

application of AR in the refinery field is analyzed by Li et al. [76]: indeed, they show that 

basing AR on fuzzy systemic clustering could allow extracting useful advice on the 

production process, even if some of the rules extracted provide unnecessary or superfluous 

information. 

 

2.1.2 Data-driven maintenance policy definition: a purpose-based 

classification 

Different data-driven methods for predictive maintenance are analyzed in this literature 

review. Most of these methods implement condition-based maintenance solutions, while 

others implement modeled or simulated predictive maintenance (statistically predictive). 

Both these approaches aim to define critical assets for which a physical plant owner should 

allocate maintenance resources. The condition-based methods focus on time and/or 

condition monitoring data (often provided with sensors) and statistical trending. In contrast, 

the latter is focused on a prediction or simulation based on an expected potential for failure 

[45]. 
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Another important classification that can be made on data-driven models is related to the 

objectives that these models seek to achieve. For example, some models aim at predicting 

the remaining useful life of an asset (e.g., [77,78]), even considering the lifespan of a part 

and the lifetime maintenance cost [79], and others again attempt to predict failures or their 

causes (e.g., [9,80,81]). 

According to this classification, Table 1 aims to describe the main literature contributions 

proposed in the field of the maintenance policy definition regarding data-driven predictive 

maintenance techniques and the objectives of the papers. Six main objectives can be 

identified in analyzing such contributions: fault prediction, fault detection and diagnosis, 

optimal maintenance schedule definition, equipment reliability and availability, normal 

behavior modeling, and, lastly, Remaining Useful Life (RUL) estimation. Regarding the 

data-driven techniques, instead, seventeen of them are taken into account. As presented in 

Table 1, Neural Networks are widely applied in all the fields described by the six 

objectives. Indeed, for their versatility in modeling all kinds of processes, they can be used 

for modeling several classes of problems. For instance, Lopes Gerum et al. [17] apply a 

Recurrent Neural Network to study rail and geometry defects to schedule maintenance 

interventions. The Artificial Neural Network deployed by Bangalore and Tjernberg [82], 

instead, serves as a fault detector, as well as the radial basis function neural network 

employed in Gharoun et al. [83]. Among the other techniques, the Support Vector Machine 

(SVM) and Markov models result in being widely used in several applications. For 

instance, Baptista et al. [84] apply SVM to predict the RUL in the aeronautic field, while 

Medjaher et al. [85] pursue the same objective through Gaussian hidden Markov models in 

studying bearings’ useful life. Chen et al. [86], instead, use Hidden Markov models for 

RUL estimation as well as to schedule maintenance interventions.   

According to this literature review in the asset maintenance field, the research focus is 

mainly on predicting the occurrence of component failures in order to reduce unexpected 

events and the consequent stoppage of the production processes. Thus, awareness in the 

decision-making process is mandatory for achieving satisfying reliability levels and 

avoiding the waste of resources [87].  
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Social Network Analysis aims to investigate the features of social structures relying on the 

network and graph theory [88]. Hence, SNA application mainly belongs to the sociological 

field [89]. It has been applied, for instance, to study the information and knowledge flows 

in the construction project teams, to improve collaboration [90], and to identify how, in the 

construction industry, safety communications flow within the local workers and ethnic 

minorities [91].  In the same sector, the fatalities are analyzed through the SNA to identify 

common root causes [92]. The most effective application of SNA for the current analysis 

can be found in Kim et al. [79], where the synchronous replacement of components driven 

by the life-cycle cost analysis is proposed.  

The combination of the ARs and SNA was first proposed to study environmental risk 

management as a framework for the control and improvement of the company's 

environmental performance analyzed [93] and for monitoring the human factor risk 

management [3]. Integrating these techniques can provide a valuable methodology for 

having a deeper understanding of the relations among events through graphic 

representation. Indeed, as shown in other application fields (e.g., human factor risk 

management and environmental risk management), they result in being successful. 

 

Table 1 Summary of literature contributions classified by their objectives and data-driven 

techniques applied. 

Data-driven 

techniques 

Objectives 

 
Fault 

prediction 

Fault 

detection 

and 

diagnosis 

Optimal 

maintenance 

schedule 

Equipment 

reliability 

and 

availability 

Normal 

behavior 

modeling 

RUL 

estimation 

Support 

Vector 

Machine 

[94], [80], 

[95], [96] 

[97], [98], 

[99] 

  
[13] [84], [77] 

K-nearest 

neighbors 

[80] [100] 
    

Regression [80], [96] [101] 
    

Neural 

Networks 

[80], [102],  

[82], [83] 

[97], [99], 

[101] 

[16], [103], 

[17] 

[16], [104], 

[103] 

[102], 

[13] 

[105], [78], 

[106] 
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Random 

Forest 

[80] 
 

[17] 
 

[13] 
 

Instance-

based 

learning 

  
[107] 

   

Naive 

Bayesian 

classifier 

  
[107] 

   

Decision 

trees 

[44] 
 

[107], [44] [44] 
  

Logical 

Analysis of 

Data 

  
[15] 

   

Adaptive 

neuro-fuzzy 

inference 

[83] [98] 
    

Association 

Rules  

This thesis [75], [71], 

[72], [68] 

 
[70] [13] 

 

Case-based 

reasoning 

[108] 
     

Anomaly 

detection 

algorithm 

[95] [95] 
    

Markov 

models 

[45], [17] [109] [110], [86] [45] 
 

[85], [86] 

Clustering [96] [109] 
    

Bayesian 

Networks 

 
[81], [87] [111] 

   

Social 

Network 

Analysis 

This thesis 
 

[79], This 

thesis 

   

 

2.2 Mathematical programming applications in maintenance 

activities 
Defining the best maintenance policy can become complex and, at the same time, 

significant for improving the performance of any company. In this sense, the application of 

mathematical optimization-based approaches is particularly interesting since it can 

contribute to both a cost reduction and a utilization level increment [112]. Moreover, 

optimization methods can be applied to solve problems where a large amount of data is 

used and/or require real-time decisions [113]. For example, Alkamis and Yellen [114] 
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formulate an integer linear programming (ILP) model for preventive maintenance in oil 

refineries aiming to maximize its utilization level, although they do not use AR mining. 

Pistikopoulos et al. [115] propose a mixed-integer linear programming (MILP) model for 

simultaneous design, production, and maintenance planning. Similarly, Goel et al. [116] 

develop a MILP model integrating design, production, and maintenance plan, focused on 

improving the operational availability at the design stage by selecting more reliable 

equipment. As noted by Alrabghi and Tiwari [117], scientific contributions exist in the 

literature in which simulation-based optimization approaches have been successfully 

applied to maintenance policies in several application fields. For example, Allaoui and 

Artiba [118] use a simulation-optimization approach for a flow shop scheduling problem 

subject to maintenance constraints, due dates, and system availability. Moreover, 

simulation-optimization techniques can also be applied to deal with both inventory control 

and maintenance planning [119,120]. The combination of preventive maintenance and 

statistical process control can also be addressed through simulation-optimization 

approaches, as in Cassady et al. [121], as well as maintenance scheduling and production 

control [122]. Tagaras [123] formulates a combined model for process control and 

maintenance activities under a Markovian distribution deterioration hypothesis. Moreover, 

the analytical hierarchy process is combined with the goal programming for centrifugal 

pump maintenance in a refinery plant [124]. Lee et al. [125] propose a model to optimize 

the job scheduling in a multi-machine environment. The aim of the model is to define the 

optimal due date of each job, minimizing the total earliness and tardiness costs, and the 

optimal timing for maintenance activities. Kenne et al. [126] develop a near-optimal policy 

using numerical techniques for production planning and corrective maintenance 

intervention scheduling in a manufacturing system. The work of Vilarinho et al. [127] aims 

at finding the optimal replacement interval through the integration of the analysis of 

components’ reliability and an optimization model for total cost (e.g., preventive 

replacement cost and failure replacement cost) minimization. Similarly, Mokhtari et al. 

[128] solve a maintenance and production scheduling problem through the formulation of a 

MILP model, whose objective is the minimization of the total unavailability of the system. 
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Irawan et al. [129] formulate an optimization model for routing and scheduling offshore 

wind turbine maintenance to minimize cost minimization. For this purpose, they propose a 

solution approach based on the optimization of a MILP model. The minimization of 

maintenance costs and systems interruptions are frequently analyzed together. For example, 

Laggoune et al. [2], instead, formulate a model for reducing the whole system down-times 

and maintenance costs through the preventive replacement of groups of components. Xia et 

al. [130] develop a maintenance procedure to reduce the total maintenance costs of the 

production system, scheduling the optimal time windows for periodic interventions. 

In contrast, in Chalabi et al. [131], a particle swarm-based optimization approach is applied 

to minimize the total maintenance cost and the maximization of the process availability. 

Wang and Liu [132] address both the minimization of production makespan and the 

unavailability of the production process, formulating a multi-objective optimization model 

and solving it through an adaptation of the non-dominated sorting genetic algorithm II. 

Similarly, Hadjaissa et al. [133] concentrate on both the scheduling of the maintenance 

activities and the makespan minimization. They apply a genetic-based algorithm to a hybrid 

renewal power system. In addition, Shafiee and Sorensen [134] propose a cost-effective 

maintenance strategy for both reducing the interruption of systems operating conditions and 

limiting the maintenance costs. In the literature review presented by Ding and Kamaruddin 

[135], it is remarked that the focus of the studies is often on the certainty degree of 

maintenance policies. In particular, they distinguish among the models assuming future 

events certainty, those that assign a risk-level to possible future states, and the ones under 

uncertainty that specifically assume a probability of the occurrence of future events. For 

example, Xia et al. [136] formulate a condition-based predictive maintenance model for 

cost and availability optimization, incorporating the uncertainty related to the components’ 

degradation. The optimization model formulated by Ilgin and Tunali [137], instead, takes 

into account the risk category. Indeed, they adopt a simulation-optimization approach based 

on the genetic algorithm, estimating the crossover probability through a factorial analysis.  
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2.3 Multi-objective mathematical programming in maintenance  
This section describes the main literature contributions proposed in the maintenance field, 

focusing on multi-objective mathematical programming models and solution methods. 

Maintenance is usually a very time-consuming activity from the production objectives point 

of view since it typically requires a system stoppage. However, delaying maintenance 

interventions to avoid interrupting the production flow may significantly increase the 

failure probability [138]. Hence, owing to these contrasting criteria, several literature 

contributions apply multi-objective optimization techniques for designing effective 

maintenance policies. For example, Ruiz, García-Díaz, and Maroto [138] propose Ant 

Colony Optimization (ACO) and Genetic Algorithms (GAs) for preventive machine 

maintenance, minimizing the completion time of the last job in the production schedule. 

Marseguerra et al. [139], propose a GA for a condition-based maintenance policy, 

determining the optimal degradation level for a preventive maintenance policy, maximizing 

the profit and the availability simultaneously. They describe the model predicting the 

evolution of the degrading system through Monte Carlo Simulation (MCS). In Kumar et al. 

[109], a predictive tool aimed at deciding the optimum condition-based maintenance policy 

is designed. Specifically, the authors propose a semi-Markov process in order both to 

model the steady-state availability analysis of mechanical systems and to evaluate the 

optimal condition-monitoring interval. This interval is then used for maximizing the system 

availability through a GA approach. The problem of the best maintenance inspection 

interval identification is tackled by Marseguerra et al. [140], considering both the maximum 

system reliability and the minimum variance of the model parameters, proposing a multi-

objective GA. A similar approach is presented in Huang et al. [141], together with a 

mathematical programming model for maximizing the system reliability and minimizing its 

costs, simultaneously. Okasha and Frangopol [142] formulate the problem of selecting the 

best maintenance actions by mathematical programming, maximizing the system reliability 

while minimizing its redundancy and the life-cycle cost. A non-dominated sorting GA 

(NSGA-II) is also designed. 

Mathematical programming is used in Min et al. [143] for defining the best preventive 

maintenance policy, both minimizing maintenance costs and maximizing the reliability of a 
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high-speed railway power system. A Chaos Self-adaptive Evolutionary Algorithm (CSEA) 

is also proposed. Considering the same objectives, Raad et al. [144] define a maintenance 

policy for water distribution systems, proposing A Multi-ALgorithm Genetically Adaptive 

Multi-objective (AMALGAM) search, outperforming existing approaches like NSGA-II. 

Similarly, Berrichi et al. [145] design an ACO algorithm for both maximizing the 

production system availability and minimizing the makespan. Carlos et al. [146] address a 

maintenance problem in a nuclear power plant, solved by a Particle Swarm Optimization 

(PSO) algorithm. In the same application context, Gjorgiev et al. [147] compare four 

different versions of GA (weight-based classical GA, weight-based steady-state GA, 

weighted-sum GA, and NSGA-II). Tian et al. [148] use Physical Programming (PP) for 

simultaneously maximizing the reliability and minimizing maintenance costs in condition-

based maintenance. In Loganathan and Gandhi [149], a PSO algorithm under reliability 

constraints for minimizing maintenance cost is designed. Moghaddam and Usher [150] 

formulate a multi-objective optimization model to determine the optimal preventive 

maintenance and replacement schedules in a multi-component system. Both a generational 

GA and a Simulated Annealing (SA) algorithm are also designed. A preventive 

maintenance optimization-based approach is also proposed by Moghaddam [151] with the 

aim of determining the optimal maintenance schedules in production systems. The 

formulated model is then solved through a procedure that combines MCS and Goal 

Programming (GP). Ebrahimipour et al. [152] design an exact approach, based on the 

Weighted-Sum (WS) method, to schedule preventive maintenance achieving minimum cost 

and maximum reliability. An interactive fuzzy multi-objective linear model for the 

minimization of the maintenance costs and of the scheduling tardiness is formulated in Seif, 

et al. [153]. The selection of the most appropriate maintenance policy can also be addressed 

through the Analytic Hierarchy Process (AHP) since it requires several criteria to be 

evaluated simultaneously. For example, Bertolini and Bevilacqua [124] apply AHP for 

assessing the maintenance alternative policies (i.e., corrective, preventive, and predictive) 

considering three specific criteria, i.e., the occurrence, the severity, and the detectability. A 

GP model is then formulated for selecting the best maintenance policy for each centrifugal 

pump under budget and human resources constraints. However, they do not focus on the 
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CRP. AHP can also be combined with GP [154]: firstly, AHP is applied to prioritize the 

possible maintenance policies, comparing them in terms of cost and risk; then, selecting the 

best maintenance policy is performed through GP. Moghaddam [155] compares the 

performance of five GAs for optimizing the operational costs and the overall reliability of a 

Computer Numerical Control (CNC) machine. Instead, Fan and Xia [156] apply a GA to 

solve a multi-objective optimization problem related to an energy-efficiency building 

envelope retrofitting plan for maximizing the energy savings and the net present value of 

the investment while minimizing its payback period. A maintenance plan in building 

retrofit is addressed in the multi-objective model proposed by Wu et al. [157] and solved 

through Multi-Objective Neighborhood Field Optimization (MONFO), in which the retrofit 

cost, the energy-saving, and the net present value are optimized simultaneously. Recently, 

imperfect maintenance policies have also been proposed. For example, in Su and Liu [158], 

NSGA-II is applied to solve a multi-objective imperfect preventive maintenance 

optimization problem in the context of electromechanical products. Table 2 summarizes the 

main literature contributions. Specifically, for each article, it is shown whether the 

maintenance policy proposed is predictive (PM) and/or data-driven (DD) and/or multi-

objective (MO). The third column specifies the objective(s) considered for optimization, 

whereas the last column reports its approaches. It is worth noting that only Antomarioni et 

al. [18], which proposes optimization approaches for system maintenance, actually shows 

predictive features1. In fact, they propose a predictive maintenance approach in which the 

CRP is mathematically formulated through Integer Linear Programming (ILP) but only for 

minimizing the breakage probability (single-objective), under the limiting assumption that 

the breakage of a specific component occurs. 

 

 

 

 

 

1 See Section 4.3 for the complete deployment of this application. 
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Table 2 Main literature contributions on optimization approaches for system maintenance 

Paper PM DD MO Objectives Approaches 

[140]   ✓ Reliability, Failure, Uncertainty GA 

[138]   ✓ Makespan ACO, GAs 

[159]   ✓ Reliability, Cost GA 

[143]   ✓ Reliability, Cost CSEA 

[142]   ✓ Reliability, Cost GA 

[144]   ✓ Reliability, Cost AMALGAM 

[154]    ✓ Cost, Risk AHP-GP 

[145]   ✓ Unavailability, Makespan ACO 

[150]   ✓ Reliability, Cost GA, SA 

[146]   ✓ Unavailability, Cost PSO 

[160]   ✓ Unavailability, Cost 
LGP 

ε-constraint 

[147]   ✓ Unavailability, Ageing, Cost, Uncertainty GAs 

[161]   ✓ Unavailability, Cost ε-constraint 

[162]   ✓ Reliability, Cost GA 

[152]   ✓ Reliability, Cost WS 

[155]   ✓ Reliability, Cost GAs 

[157]   ✓ Retrofit cost, Energy saving, Net present value MONFO 
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[156]   ✓ Energy saving, Payback period, Net present value GA 

[153]   ✓ Cost, Tardiness GA 

This thesis 

✓ ✓  Breakages Probability ILP 

✓ ✓ ✓ 
Reliability 

Max Repair Time 
AUGMECON b-LNS 

 

2.4 Data-driven failure modes effects and criticality analysis 
FMECA analysis is a widely applied technique in the maintenance management field. 

Some applications involving its joint implementation, together with data-driven techniques, 

can be found in the literature. For instance, in Savino et al. [163], the fuzzy inference is 

used together with the FMECA to perform the criticality evaluation taking into account 

both safety aspects and the production performance. In Tso et al. [29], the problem of the 

automatic identification of the failure modes to perform an efficient FMECA is addressed 

through a framework based on hardware description languages and knowledge-based fault 

models. The automation of the FMECA has also been addressed in Grunske et al. [28] 

through the implementation of behavior trees that support the failure mode identification by 

injecting faults data. In the attempt to identify all the possible relationships among 

components and failure modes, in Xu et al. [164], text mining is applied to identify the 

potential failure modes related to a specific component. Data regarding the remaining 

useful life of components can be adequately analyzed through data mining techniques and 

used to update the FMECA data, monitor the modification of the risk of failure, and be used 

in the following projects [31,32]. Bayesian Networks have been successfully applied with 

the FMECA, as presented by L. Liu et al. [77] and Ben Said et al. [30]. Some approaches 

for improving the prioritization of components failure risk have also been proposed: for 

instance, in Chang and Cheng [165], who apply the fuzzy ordered weighting average and 

the DEMATEL methods are used for calculating the risk assessment, and H. C. Liu et al. 

[166], where the risk assessment evaluation is performed through the definition of fuzzy 
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digraph and matrix. In Khorshidi et al. [167], the overall failure index is used as a guide for 

the optimal selection of the improvement actions to implement to achieve maximum system 

reliability. As shown in Li et al. [168] and Lv et al. [169], the domain experts’ judgments 

on failure modes can be included in a cloud model so that they can be compared through 

multi-criteria decision-making approaches, while in Ma et al. [170] the quality function 

deployment and the FMECA are integrated to analyze improvement areas of the 

components, taking into account the reliability aspects and customer expectations.  

 

2.5 Rationale for the development of the data-driven 

framework: research gaps identification 
According to the literature review carried out in the previous sections, the maintenance 

management field receives broad attention from researchers and practitioners. Considering 

the ARM implementation in the maintenance field, their application is still limited, 

especially concerning the oil and gas sector.  

Although integrating data mining techniques with those provided by operations research 

and specifically, by mathematical programming, is not a new topic (e.g., [171,172]), to the 

best of the author’s knowledge, this work represents the first contribution in which ARM 

and mathematical programming are combined to each other for defining a predictive 

maintenance policy of an oil refinery plant. In addition, a data-driven predictive 

maintenance policy is proposed, and the Component Repairing Problem is modeled through 

multi-objective mathematical programming for simultaneously maximizing the system 

reliability and minimizing the maximum repair time.  

The application of the ARM in combination with the SNA in analyzing failure data is 

novel, as well as in improving the FMECA process. However, these applications are more 

focused on the improvement of the FMECA itself. Instead, the proposed approach 

addresses the lack of a data-driven framework to support the definition of the maintenance 

strategies, considering the possible cascade effects related to the occurrence of hazardous 

events and their impact on plant reliability.   

Noteworthy, the main scope of the thesis is addressing the research gap characterized by the 

lack of a comprehensive framework guiding the decision-maker during the whole 
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maintenance management process. Indeed, the existing contributions mainly focus on 

addressing a specific issue rather than providing a complete view of the decision making 

process. 
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Chapter 3. 

 

General framework development 

 

In this chapter, the general framework object of the thesis is developed and described. 

Specifically, the insights extracted from the literature review are used in order to define a 

general framework guiding the decision-makers throughout the maintenance management. 

Some researches proposed that a general predictive maintenance framework should be 

organized in three steps, namely data acquisition, processing and maintenance decision 

making [173]. In this work, instead, the procedure is furtherly detailed, both considering the 

three proposed phases in the literature and extending them. Indeed, the proposed framework 

involves the data collection, management, breakage probability estimation, decision support 

model definition, implementation, and control of the approach proposed.  

In Figure 1, a visual representation of the maintenance management system is proposed. In 

particular, as previously mentioned, four layers can be identified, each of whom dealing 

with a specific activity related to data management, processing, and analytics.  
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Figure 1 General framework for data-driven maintenance management 

 

3.1. Data gathering layer 
The data gathering layer represents the first layer of the model, being the aim of the 

framework - the development of data-driven support of the decision-making process. In this 

sense, the quality of the entire framework relies on appropriate data collection. In this 

approach, three different macro-categories of data sources are considered. 

On-field reports: monitoring the operations of an industrial plant is fundamental to control 

it; maintenance department supervisors have to check the sub-plants in order to notice and 

register any possible malfunctioning affecting its performance. During each inspection, the 

supervisor has to record all the relevant information and create a report; in case of abnormal 

events, there are procedures to follow and, possibly, immediate corrective interventions to 

perform, annotating these details. Usually, such reports follow unstructured or semi-

structured paths since free-text annotations often characterize them, making their 
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computerization non-univocal or, at least, complex. However, these data contain useful 

information due to supervisors’ broad knowledge of the process.   

Existing information systems: data coming from the on-field reports are integrated with the 

information systems of the company. Information on both the normal operating conditions 

and on adverse events are stored in such systems, like: 

• EIS: the Enterprise Information System and records administrative data, 

work orders type (e.g., specific replacement of a component, 

lubrication…) and the related costs, purchasing orders, corrective 

interventions, their details, and costs; 

• ERP (Enterprise Resource Planning): it stores information regarding 

resource and inventory management; 

• Plant technical data system: data regarding product and process 

characteristics in terms of design and functioning; 

• Asset maintenance management system: data stored in this information 

system regards all the maintenance activities carried out in the plant 

(corrective, preventive, or predictive), highlighting the date, the kind of 

intervention, the broken component (or set of components), the team in 

charge of the intervention, the duration of the intervention, etc. 

• Supply chain management system: it records the data from suppliers and 

customers– in both cases regarding their general data, order data, real-

time status, and quality rate.  

Plant monitoring system: the functioning of the plant is monitored by a series of sensors 

measuring the production process data, like flow, pressure, and density. Besides, some of 

the components are equipped with embedded sensors so that their state is currently 

monitored, generating a large amount of data to analyze. Each of them has its own IP 

address and communicates with a cloud-based application; hence it is fundamental that 

cloud resources are allocated efficiently [174]. This information integrates the systems 

mentioned above, giving a complete overview of the process. 
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Data coming from the sources mentioned above have to be integrated in order to extract 

information and knowledge for making informed decisions. Thus, in the second layer, the 

management of the collected data is performed. 

 

3.2. Data management layer 
The data management layer, that is the second layer of the framework, aims at integrating 

data coming from different data sources into a unique one. More specifically, the 

information contained in the company’s server and cloud-based applications have to be 

merged, cleaned and transformed, in order to create a unique source to perform the analysis 

in the last step. In this process, all the possible problems affecting the data have to be 

solved to analyze only a consistent data set. For example, errors in recording the measures 

(e.g., misreading, repetitions) have to be removed or replaced with valid ones. In contrast, 

heterogeneities generated by different terminologies used in each source have to be 

standardized. In addition, some data could be filtered, selecting only the attributes 

considered relevant for the aim of the analysis. The Extraction, Transformation, and 

Loading (ETL) process is carried out to integrate data from the original sources to a data 

warehouse, the Computerized Maintenance Management System (CMMS). Specifically, 

the plant monitoring and supply chain management data are extracted from a Cloud 

Application, while the other ones come from the company’s server. The use of a CMMS 

ensures a global view of a company’s operations. It allows the collection of clean data from 

all the sources, integrates them, and provides an aggregation of historical and real-time 

conditions. This technology is particularly useful in the case of a high number of 

components to monitor and maintain [175]. In this way, the predictive analysis can be 

performed relying on a reliable, integrated data warehouse. 

 

3.3. Data analytics layer 
In the data analytics layer, the data collected and integrated into the CMMS can be studied 

in order to build the model for the data-driven predictive maintenance policy definition. In 

general, three main phases can be highlighted in this layer: 

1. Preliminary analysis; 
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2. Breakage probability estimation; 

3. Decision support model definition. 

In the following paragraphs, the three steps are detailed.  

 

3.3.1 Preliminary analysis 

Considering the data collected, prepared, and stored in the CMMS, a study of the failures 

occurring on the asset object of the analysis is required. This step is important for the 

identification of both critical components and their relationships. Moreover, identifying 

only the information sources useful for the analysis, among the ones integrated during the 

data management step, is vital to be able to carry out a meaningful study. Indeed, 

depending on the specific objective of the implementation and the system’s boundaries 

(e.g., extending the implementation to a portion of the plant versus the whole system), some 

data may not be useful. In other cases, it might be necessary to limit the study to the most 

significant components of the production system. Given the objective of the data-driven 

framework, it is important to identify the sets of components frequently failing together, 

i.e., within a given time interval. In this sense, the methodology selected to study such 

relationships is the Association Rule Mining in most case studies. Only in one case, a 

specific algorithm for the breakage probability estimation is introduced.   

Before mining the Association Rules, two aspects have to be taken into account:  

a) the components included in the study: depending on the characteristics of the 

asset, it is crucial to define whether all the components are relevant for the analysis 

or only some of them. Indeed, the study aims to create an interrelation among the 

critical components: the components whose replacement does not impact the 

working conditions of the industrial plant might be excluded from the analysis in 

order not to lose the focus on the critical ones.  

b) the limit for the time interval: since it is stated that the aim of the framework is to 

identify the relations among components frequently failing together (i.e., within a 

given time interval), the temporal dimension has to be limited in order to provide 

interesting results. Indeed, considering a time interval that is too short does not 

provide any significant connection. Having an overly-long interval does not 
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provide any connection in the opposite sense, which presents false relations among 

failures. Even in this case, the expertise of the decision-makers is crucial. 

Once the preliminary analysis is carried out and the scenario in which the framework is 

implemented is defined, the ARM or any other algorithm for the breakage probability 

estimation can be performed.  

 

3.3.2 Breakage probability estimation 

Breakage probability estimation can represent a challenging objective. This estimation is 

mainly based on the Association Rule Mining (ARM) in the proposed general framework. 

ARM aims to identify hidden and previously unknown relations in a vast amount of data, 

supporting the decision-makers in their processes. A formal definition of the Association 

Rules (ARs) and the procedure to mine them is explained in the following.  

Let K={k1, k2, …, kn} be a set of n binary attributes named items and T={t1, t2, …, tm} be a 

set of m transactions. Each transaction ti is unique and contains a subset of the items 

(itemsets) selected from K. In our framework, an item is a component of the analyzed asset. 

In contrast, a transaction is a set of components failing within a defined time interval. As 

defined by Agrawal et al. [176], an Association Rule (AR) is an implication α →β, such 

that α and β are itemsets (α, β ⊆ K) having no common items (α ∩ β =∅). In other words, 

given a time interval of one week, the rule α → β is defined if and only if component β fails 

within one week from the failure of component α. The strength of the rule can be 

determined through several metrics, among which, we recall:  

• supp (α, β)= 
𝑐𝑜𝑢𝑛𝑡{𝛼 𝑈 𝛽}

𝑚
; the support of the rule, which is defined as the set of 

transactions containing both α and β. Remarkably, this measure represents the 

joint probability of having α and β in a transaction (P(α, β)); hence, it measures the 

statistical significance of the rule [176]. 

• conf (α → β)= 
𝑠𝑢𝑝𝑝{𝛼,   𝛽}

𝑠𝑢𝑝𝑝{𝛼}
; the confidence of the rule, instead, is the set of 

transactions containing α, which also contain β. In this sense, the confidence can 

be seen as the conditional probability P(β | α), so it provides a measure of the 

rule’s strength [35]. 
  The ARM is performed according to the following roadmap: 
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(1) Define the frequent itemsets, namely the itemsets appearing in T more frequently than 

user-specified minimum support; in this work, the algorithm selected to perform the 

frequent itemset mining is the FP-growth [177]. 

(2) Considering each itemset IS defined in the previous step, all the ARs A→B are 

generated such that A U B = IS. 

According to the aim of the study, the interest is in creating the relations among 

components frequently failing together.   

 

3.3.3 Decision support model definition 

Once the ARs are mined, a model must be defined to support decision-makers in 

capitalizing on them. As mentioned in the previous chapters, decision making can be based 

on different approaches. In this thesis, four different implementations are proposed:  

1. The first approach adopted relies on the definition of specific thresholds by the 

decision-maker; 

2. The second one adopts an integer linear programming optimization approach; 

3. The third one introduces an integer non-linear programming with two solution 

approaches; 

4. The fourth one relies on Social Network Analysis. 

For the sake of clarity, the theoretical aspects are articulated in Chapter 4 and 5, together 

with the explanation of the case studies.  

In addition, it is also shown how the same general framework can be applied for the 

extension of the failure analysis.  

 

3.4. Control layer 
The last layer of the data-driven framework involves the implementation of the proposed 

methodology and its implementation. During this phase, it is necessary to assess whether 

the implementation of the analytics approach is compliant with the expectations or 

assessing the sensitivity of the decision model. Furthermore, during the actual 

implementation of the data-driven approach, more data are produced that can be useful for 

future modification of the maintenance strategy. In addition, during such steps, data 
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regarding the new implementation are collected and integrated to the organizational 

datasets, so that they can be furtherly processed.  
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Chapter 4. 

 

Research approach applications to the 

case study of an oil refinery 

 

This chapter is dedicated to the implementation of the proposed research. In the following 

sections, the case study involving the use of different decision support models is described. 

The decision support models presented in Sections 4.1, 4.2, 4.3, and 4.4 are based on the 

same case study, i.e., an Italian medium-sized oil refinery. The specific details useful for 

the development of each implementation are reported at the beginning of the related 

section.  

 

4.1 Data-driven maintenance policy through a decision support 

model based on user-defined thresholds 

4.1.1 Data gathering and management 

The case study used for deploying the current application refers to an oil refinery 

characterized by a processing capacity of 3,900,000 tons/year of crude oil, that is about 

85,000 barrel/day. The refinery's storage capacity is more than 1,500,000 m3, and the land-

based shipping system is characterized by a total capacity of more than 12,000 tons per day. 

A fixed sea platform is located 16 km from the coast, and it is able to accommodate tankers 

up to a tonnage of 400,000 tons. Furthermore, an island with a double mooring for ships up 

to 90,000 tons is located 4 km from the coast, while a pier for short-sea shipping is directly 

connected to the refinery and is equipped with three mooring points. In Figure 2, the 

production process executed in the refinery is schematized: noteworthy, the plant is divided 

into 11 sub-plants dedicated to specific functions.  
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The refinery receives about 340,000 tons of crude oil per month, and it goes in input in the 

topping sub-plant, which is the plant responsible for the primary distillation process. In 

general, distillates are classified into three categories, depending on their boiling point. As 

shown in Figure 2, three main processes branch off topping sub-plant. Light fractions, 

mainly characterized by petrol and liquefied petroleum gas (LPG), are processed through a 

unifining sub-plant; at this point, LPG can be extracted from the production process, while 

petrol is dispatched to isomerization or platforming processes. The medium distillate, 

instead, passes through hydro-desulfurization (HDS) in HDS1 or HDS2 plants. Heavy 

fractions and distillation residuum are subjected to thermal cracking and visbreaking. 

 

Figure 2 Schematization of the oil refinery production process 

Data employed in this study belong to two different databases, containing information 

about production and maintenance, respectively. A view containing detailed information 

about the amount of product entered in the process cycle was extracted from the former 

database. In particular, the mass flow is provided considering hourly ranges for each of the 

sub-plants. The analyzed timeframe covers three years, from January 2001 to December 

2003. Each instance of the view contains daily measurements. An excerpt of the view is 

reported in Table 3. The columns respectively contain information about the sub-plant, the 
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code of the sensor used to evaluate the measurement (tag), the date of the measurement, the 

mean values of the mass flow per hour (v01, v02,…, v24), and their sum that represents the 

daily mass flow. The considered database has some missing values in columns containing 

the mean values of the hourly mass flow due to sensor measurement errors or sub-plant 

stoppages. In order to distinguish between the two cases (a and b), the timeframe where the 

data were missing was compared with the table recording the stops of the sub-plants. If a 

stoppage was detected, then the missing value was replaced with zero (case b). Otherwise 

(case a), the mass flow of the previous timeframe has been used to replace the missing 

value. Stoppages are grouped into three categories:  

• shut down if the daily mass flow is null;  

• slow down, if the daily mass flow is lower than the 25 percent of the mean daily 

mass flow of the same year, but not null;  

• non-significant (NS) stoppage when the daily mass flow is greater than the 25 

percent of the mean daily mass flow of the same year. 

On the basis of this classification, a further column reporting the kind of stoppage (see 

Table 4) was added to the original view. The maintenance database contains data related to 

work orders due to malfunctioning components or breakdowns.  

 

Table 3 Excerpt of the view extracted from the production database 

sub-plant tag date v01 v02 v03 … v24 daily mass-flow 

vacuum FC1401 30/05/2002 0 0 0 … 0 0 

vacuum FC1401 31/05/2002  0 0 0 … 90.193 90.193 

vacuum FC1401 01/06/2002  90.193 18.039 0 … 79.740 187.972 

vacuum FC1401 02/06/2002  79.693 79.693 81.560 … 111.904 352.85 

 

Table 4 Stoppages classification ( further column added to Table 3) 

stoppage 

SHUT_DOWN 

SLOW_DOWN 

NS 

- 
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A view with information about the malfunctioning component, the identification code of 

the broken section of the component, the sub-plant where the component is located, and the 

date of the work order was extracted. An excerpt of the view is reported in Table 5. 

 

Table 5 Excerpt of the view extracted from maintenance database 

component item sub-plant date 

filtro P3304B desulphurization 01/01/2001 

tenuta P2613B platforming 02/01/2001 

pilota F3101 desulphurization 02/01/2001 

filtro P1846a visbreaking 03/01/2001 

 

First, the two views have been integrated: when a stoppage of one of the sub-plants was 

detected, all work orders emitted in the following six months were considered. For 

example, looking at Table 3, it can be noticed that a stoppage was detected in the vacuum 

sub-plant on June 2, 2002; hence, all the work orders emitted for malfunctioning 

components – belonging to any of the sub-plants – from June 2, 2002, to December 2, 

2002, were taken into consideration. Table 6 reports an excerpt of the output data. 

 

Table 6 Excerpt of the integration of the views presented in Table 3, Table 4, and Table 5 

stopped sub-

plant 

stoppage 

date 

kind of 

stoppage 

work-order 

sub-plant 

work-order 

date 

component item 

vacuum 01/06/2002 NS vacuum 03/06/2002 valvola PSV1421B 

vacuum 01/06/2002 NS desulphurization 03/06/2002 allarme ZL3328 

vacuum 01/06/2002 NS unifining 03/06/2002 allarme PHH25165 

vacuum 01/06/2002 NS … … … … 

vacuum 01/06/2002 NS naphta-splitter 29/11/2002 controllore FC21005 

vacuum 01/06/2002 NS desulphurization 30/11/2002 - U3200 
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The next subsections are devoted to present the results of the case study. In particular, 

vacuum and topping sub-plants are considered. 

 

4.1.2 Data analytics 

4.1.2.1 Preliminary analysis 

As a preliminary analysis, the possible correlation between a stoppage in a sub-plant and 

work orders in the whole plant within different time slices has been evaluated. The different 

intervals considered were a week, a month, two months, and six months. This analysis 

showed no significant correlations. Hence, the analysis has been refined by considering 

only work orders emitted for the same sub-plant where a stoppage has been detected. In 

Table 7, the output of the integration of the two views is reported. 

 

Table 7 Excerpt of the integration of the views presented in Table 3, Table 4, and Table 5, 

joining on the sub-plant. 

sub-plant stoppage date stoppage work order date component item 

topping 07/01/2001 NS 10/01/2001 cuscinetto P1004A 

topping 07/01/2001 NS 10/01/2001 pilota U1000 

topping 07/01/2001 NS 10/01/2001 analizzatore F1001 

topping 07/01/2001 NS 11/01/2001 serbatoio P1002B 

topping 07/01/2001 NS 11/01/2001 soffiatore F1101 

 

The current work aims at explaining the relationships between the work orders emitted for 

some components after a sub-plant stoppage and within a defined time interval. In order to 

qualitatively evaluate the effectiveness of the proposed approach, three academic experts 

and six members of the maintenance department of the refinery were interviewed. They 

considered the approach a valuable opportunity to anticipate the occurrence of components 

breakdown to improve the operational performances. Moreover, the six members of the 

maintenance department have been involved in data preprocessing and parameter definition 

to adapt the methodology to the specific requirements of the oil refinery analyzed.  
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4.1.2.2 Association Rule Mining 

The data set presented in Table 7 is employed as input for the ARs extraction: indeed, 

through the analysis of the AR, this work aims at identifying the most appropriate 

maintenance strategy for the components that had frequently required maintenance 

interventions after sub-plants stoppages. According to step 1 of the procedure proposed, the 

first parameter to be set was the timeframe: for each stopped sub-plant, members of the 

maintenance department required to analyze four time intervals: 1 day, 1 week, 2 weeks, 

and 1 month. In particular, “1 day” explains that the work order is emitted within 24 hours 

after the stoppage; “1 week” means that the indicated work order occurs within a week after 

the stoppage; “2 weeks” implies that the work order is emitted within fourteen days after 

the stoppage; “1 month” tells that work order is emitted within the 31st day. 

Members of the maintenance department also required that the work orders were separately 

analyzed depending on the stoppage classification (NS, slow down and shut down) and 

decided to set different thresholds of support and confidence for each sub-plant. 

In order to extract the ARs, all the components of the sub-plant that required maintenance 

within the given time interval were identified. An example is reported in Table 8, where the 

first column identifies the stopped sub-plant, which is the one requiring a maintenance 

intervention. In contrast, the second column provides the stoppage classification, followed 

by the date when it occurred and by the time interval. The following 349 columns represent 

the components constituting the various sub-plants: a value of “True” is assigned if a work 

order is emitted for the corresponding component during the indicated time interval. 

Otherwise, the assigned value is “False.”  

 

Table 8 Excerpt from the list of the components requiring maintenance interventions within a 

given time interval after a stoppage. 

sub-

plant 

stoppage Stoppage date time interval accoppiamento allarme … valvola 

topping NS 06/03/2001 1 day False False … False 

topping NS 06/03/2001 1 month False False … True 

topping NS 06/03/2001 1 week True False … False 

topping NS 06/03/2001 2 weeks False False … True 
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topping SHUT_DOWN 08/04/2001 1 day False False … False 

topping SHUT_DOWN 08/04/2001 1 month False False … False 

topping SHUT_DOWN 08/04/2001 1 week False False … False 

topping SHUT_DOWN 08/04/2001 2 weeks False False … False 

topping SLOW_DOWN 11/06/2001 1 day False True … True 

topping SLOW_DOWN 11/06/2001 1 month False True … False 

topping SLOW_DOWN 11/06/2001 1 week True False … True 

topping SLOW_DOWN 11/06/2001 2 weeks False True … True 

 

The tool chosen to deploy the analysis is RapidMiner, a widely used DM platform that 

allows the design of analysis processes by composing predefined tools. According to the 

structure of the record, the process in RapidMiner was structured as reported in Figure 3. 

The first operator, Read Excel, has the function of reading the data set in Microsoft Excel 

format exemplified in Table 8. The second tool, filter time frame, is applied to select only 

data referring to a specific timeframe. Then, Exclude Attributes performed a vertical 

selection is performed by Exclude Attributes, with the aim of excluding attributes like Time 

interval, which would not provide useful information in generating the ARs due to the 

previous filtering. Nominal to Binominal and Numerical to Binominal tools transform the 

selected attributes in a Boolean format. Hence, frequent itemsets are mined through the FP-

growth operator, and the ARs are extracted (Create AR).  

 

 

Figure 3 Representation of the process implemented in RapidMiner 

Due to the complexity of cost estimation related to production losses, the methodology 

proposed as well as the following analysis will take into consideration only the components 

that can be maintained without altering the production process, or, if necessary, recurring to 

the by-pass systems that assure the ordinary running of the process. 
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4.1.2.3 Decision support model based on threshold definition 

The procedure to define the most appropriate maintenance policy basing on the definition 

of appropriate thresholds can be summarized  as follows: 

(1) Define the following parameters: 

a. TF: timeframe, is the time interval, starting from the sub-plant stoppage, 

during which the analysis is performed; 

b. σrule: the minimum support requested to a rule to be considered; 

c. σrep: the minimum value of the support for the execution of predictive 

maintenance on all the items composing the rule;  

d. σconf: the minimum value of the confidence for the execution of predictive 

maintenance on all the items composing the rule. 

(2) Mine ARs for the timeframe TF having support greater than or equal to σrule. For 

each component cj of sub-plant j, an item kj in K is defined such that it assumes a 

true value if the component is broken because of a stoppage, false otherwise. A 

transaction t in T represents the set of components broken for the given time 

interval TF and sub-plant j. FP-growth algorithm is applied over T to obtain the 

frequent item-set FI. From FI, ARs in the form r: A→B are extracted, having 

support (r) ⩾ σrule. 

(3) For each rule r ∈ R, if support(r) ⩾ σrep, then a predictive maintenance intervention 

is performed for all components included in (both head and body of ) the rule r. 

(4) Monitor and control the sub-plant for the whole timeframe TF: 

a. If component A breaks, let RA be the set of rules having A as the body of 

the rule. 

b. For each rule r ∈ RA, If confidence(r) ⩾ σconf, then a predictive 

maintenance intervention is performed on all components in the head of r 

as well as a corrective intervention on A. 

The definition of parameters (i.e., step 1) is of particular importance, as the analysis can be 

limited in two ways: first, according to the temporal dimension, in order to relate 

maintenance interventions only to stoppages in an interval relevant to maintenance policy 

purposes. The definition of σrule and σrep allows limiting the analysis only to critical 



 42 

components. Indeed, in this way, the predictive intervention is performed only for the 

components that present a statistically significant probability of breakdown. Since an oil 

refinery is composed of several components, σrule and σrep should be chosen to be low 

enough so that significant rules are not excluded, allowing at the same time to exclude 

rarely occurring rules. 

Instead, the monitoring activity recommended in the last step assures control of the 

components not maintained before their breakage. Since the confidence of the rule r: A→B 

represents the probability that the component B breaks if a work order for the component A 

is emitted, the choice of σconf affects the decision of predictively maintain or not the 

component B given the breakdown of A. The definition of the parameter σconf should take 

into consideration a twofold aspect. Indeed, if it assumes a value too high, no predictive 

maintenance will be suggested. On the other hand, if it is set too low, the maintenance 

policy will suggest performing predictive interventions even on low breakdown probability 

components. To derive this kind of trade-off, a great experience, as well as the complete 

knowledge of the process, is necessary. 

In order to provide a broader view of the procedure, it will be exemplified through an 

application to the Topping sub-plant. It is fundamental that the Topping sub-plant works 

efficiently, as it is situated at the beginning of the production process. The stoppage 

considered is a slow-down. According to the suggestions provided by the maintenance 

department members, the following parameters are set for the analysis: 

1. TF: 1 month; 

2. 𝜎𝑟𝑢𝑙𝑒= 0.10; 

3. 𝜎𝑟𝑒𝑝=0.50; 

4. 𝜎𝑐𝑜𝑛𝑓 = 0.50; 

From the dataset, 459 frequent item-sets and 678 rules were extracted (see Appendix A for 

an excerpt) with an execution time shorter than 1 second. 120 of the extracted rules were 

excluded as they had support lower than 𝜎𝑟𝑢𝑙𝑒. Considering the remaining 558 rules, it 

turned out that the support of 10 rules was higher than 𝜎𝑟𝑒𝑝. Hence, components of these 

rules (i.e., accoppiamento, controllore, coibentazione and tenuta) were immediately 
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substituted. For the 339 unique components contained in the remaining rules, the procedure 

suggests a monitoring policy.  

During the monitoring phase, when a work-order is emitted for a component A, 

maintenance attendants have to:  

1. Perform a corrective intervention to replace A; 

2. Check the confidence of all rules having A as the body. If the confidence is 

greater than the recommended threshold 𝜎𝑐𝑜𝑛𝑓 = 0.50, then all components in 

the head of these rules have to be predictively replaced. 

Table 9 reports an example of rules having the component indicatore in the body. When a 

work-order is emitted for component indicatore, components in the head of the four rules 

having confidence greater than or equal to 0.50 are considered for maintenance too. In 

Table 9, the four rules are in bold, and components to predictively repair are presa 

campione, rilevatore, illuminazione, and amperometro.  

 

Table 9 Excerpt of the rules extracted for topping sub-plant 

Body Head Support Confidence 

indicatore presa campione 0.324 0.667 

indicatore rilevatore 0.324 0.667 

indicatore illuminazione 0.297 0.611 

indicatore amperometro 0.243 0.500 

indicatore allarme 0.216 0.444 

indicatore batteria 0.189 0.389 

indicatore tracciatura 0.162 0.333 

indicatore dreno 0.162 0.333 

indicatore trasmettitore 0.162 0.333 

indicatore strumentazione 0.162 0.333 

indicatore troppo pieno 0.162 0.333 

indicatore lubrificazione 0.162 0.333 

indicatore condensa 0.162 0.333 

indicatore refrigerante 0.135 0.278 
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indicatore area 0.108 0.222 

indicatore baderna 0.108 0.222 

 

4.1.3 Control layer 

The fourth step of the general framework regards the implementation control of the 

proposed approach. To this end, sensitivity analyses are carried out to understand how the 

applicability can be adjusted depending on the outcomes obtained. For example, some rules 

extracted for Vacuum and Topping sub-plants will be analyzed, varying the timeframe 

considered for the current case study. In particular, Table 10 shows the variation of support 

and confidence, after a slow down of the Vacuum sub-plant, of the rule Tenuta→Valvola 

when the time interval considered increases: the highest probability of occurrence of both 

components breakdown can be observed a week after the stoppage. Moreover, if the 

timeframe is enlarged to two weeks and a month, the probability is lower and lower. On the 

contrary, confidence increases: if a work-order for component Tenuta is emitted on the day 

after the stoppage, only in 40% of cases will this cause a work-order for component 

Valvola. In all other cases, instead, a work-order for Tenuta will be followed by a work-

order for Valvola.  

 

Table 10 Support and confidence values of the rule Tenuta → Valvola for different timeframes 

Tenuta → Valvola Support Confidence 

1 day 0.182 0.400 

1 week 0.286 1.000 

2 weeks 0.125 1.000 

1 month 0.118 1.000 

 

Considering the same values of parameters 𝜎𝑟𝑢𝑙𝑒 , 𝜎𝑐𝑜𝑛𝑓  and 𝜎𝑐𝑜𝑛𝑓  proposed for the 

Topping sub-plant, the couple of components (Tenuta and Valvola) will not be predictively 

maintained, as all the support results lower than 𝜎𝑟𝑒𝑝 =0.50. In case of a work-order for 

component Tenuta after one day, no actions will be performed for Valvola. For the other 
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timeframes, instead, component Valvola would be immediately replaced, as the confidence 

is higher than 𝜎𝑐𝑜𝑛𝑓 .  

Table 11 Support and confidence values of the rule Tenuta→Valvola for different timeframes, in 

case of NS or shut-down stoppages 

Tenuta-->Valvola Support Confidence 

1 day NS - - 

1 day shut-down - - 

1 week NS - - 

1 week slow-down 0.286 1 

1 week shut-down 0.217 0.625 

2 weeks NS - - 

2 weeks shut-down 0.309 0.680 

1 month NS - - 

1 month shut-down 0.375 0.913 

Table 11 reports the performances of the rule Tenuta→Valvola when NS and shut-down 

stoppages are considered. It can be noted that, for NS stoppages, the rule is not significant; 

the two components never break together. Considering shut-down stoppages, support and 

confidence values grow when the timeframe increases: this means that the probability of 

occurring in a breakdown of both Tenuta and Valvola increases.  

Table 12 compares the values of support and confidence for the rule Controllore → 

Soffiatore varying the kind of stoppage. The rule is significant for all cases related to 1-

month time interval, while for a two-week timeframe, it is only meaningful for slow-down 

stoppages. Furtherly reducing the time interval does not lead to relevant outcomes. 

Considering “1 month”, the category of stoppage influences both support and confidence. 

In particular, in case of a shut-down, the rule results in being more likely than in case of 

slow-down or NS stoppages.  

 

Table 12 Support and confidence values of the rule Controllore → Soffiatore for different 

timeframes and different kind of stoppages 

Controllore-->Soffiatore Support Confidence 

1 month 0.212 0.389 



 46 

1 month NS 0.192 0.385 

1 month slow-down 0.176 0.250 

1 month shut-down 0.232 0.448 

2 weeks - - 

2 weeks NS - - 

2 weeks slow-down 0.125 0.333 

2 weeks shut-down - - 

 

Hence, the monitoring of Controllore and Soffiatore components does not have to be 

particularly strict for “1-day” and “1-week” intervals, as well as for “2 weeks” in case of 

NS and shut-down stoppages. On the contrary, it should be intensified two weeks after a 

slow-down and one month after all kinds of stoppages – especially for shut-downs.  

 

4.2 Data-driven maintenance policy through a mathematical 

programming approach 

4.2.1 Data gathering and management 

The proposed approach described in this case study is applied to a real-life oil refinery, 

characterized by a production capacity of 85,000 barrels/day. The refinery plant is 

organized into sub-plants, each devoted to specific activities. In particular, the topping sub-

plant receives crude oil in input and, then, the production process is split into three 

branches:  

(a) The first one is dedicated to liquefied petroleum gas and petrol production. Hence, 

the corresponding subplants are dedicated to unifining, naphtha splitting, 

isomerization, and platforming. 

(b) The second branch produces gas oil by means of the hydro-desulfurization sub-

plant. 

(c) Instead, the third one is composed of thermal cracking, visbreaking, and hydro-

desulfurization subplants for the production of fuel oil and bitumen. 

The data provided by the refinery plant’s maintenance department refer to the period from 

January 2001 to December 2003, and they are organized in two different databases. The 
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former is referred to as the crude oil circulating in the sub-plant. It contains the average 

hourly mass-flow, the daily mass-flow (obtained by adding up the hourly measurements), 

and the average yearly value, calculated from the daily measurements. This database has 

some missing values in the columns reporting hourly mass-flow that could depend on a 

blockage or a measurement error. In order to replace missing values, we compare instances 

of the database with the list of occurred blockages, as follows:  

(a) If a blockage is detected, then the missing value is replaced by 0. 

(b) Otherwise, the missing value is due to a measurement error. Hence, it is replaced 

by the value of the hourly mass-flow measured at the previous hour. 

The refinery classifies the blockages into three groups: 

(1) A shut-down (ShD) is defined as an all-day blockage. Hence, the mass-flow value 

remains null for the whole day observed. 

(2) A slow-down (SlD) blockage causes a decrease of the daily mass-flow less than 

25% of the mean. 

(3) All the others are classified as non-significant (NS).  

In the case of a sub-plant blockage, the corresponding category is stored in the database. 

The other database collects information regarding the maintenance activities. In particular, 

it stores information about the component and the date in which the maintenance has been 

performed for each activity. The maintenance date is equal to or later than one of the 

component’s breakage. In this work, we assume that it is precisely equal to the date on 

which the component’s breakage occurs. During the monitored period, several blockages 

occurred: 21 NS blockages (103 h), 37 SlD blockages (122 h), and 8 days of ShD (192 h). 

Moreover, 767 components required maintenance activities. The two databases have been 

integrated adequately by joining data regarding the sub-plant blockages, and the 

components’ breakage occurred after the blockage in a defined time interval. Table 13 

shows an example of the integrated database where the first two columns report the date in 

which the blockage occurs (Blockage Date) and its category, respectively. The remaining 

columns refer to the maintenance activities performed on a given component. These data 

will be used as the basis for the analytics step. 
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Table 13 Excerpt of the integration between the two databases. 

Blockage date Blockage category Intervention date Component Item 

01/06/2002 NS 03/06/2002 valve PSV1421B 

01/06/2002 NS 03/06/2002 alarm ZL3328 

01/06/2002 NS 03/06/2002 indicator PHH25165 

01/06/2002 NS … … … 

01/06/2002 NS 29/06/2002 controller FC21005 

 

4.2.2 Data analytics 

4.2.2.1 Preliminary analysis 

According to the general framework procedure, in order to extract the ARs, data reported in 

Table 13 are re-arranged as presented in Table 14. In this way, they are suitable to be 

processed on the platform chosen for the ARM process. 

Table 14 Excerpt of the input dataset for RapidMiner. 

Blockage date Blockage category Time interval Coupling Alarm … Impeller 

06/03/2001 NS 1 month False False … True 

06/03/2001 NS 1 week True False … True 

06/03/2001 NS 2 weeks True False … True 

08/04/2001 SHUT-DOWN 1 month True False … False 

08/04/2001 SHUT-DOWN 1 week False False … False 

08/04/2001 SHUT-DOWN 2 weeks False False … False 

11/06/2001 SLOW-DOWN 1 month False True … False 

11/06/2001 SLOW-DOWN 1 week True False … True 

11/06/2001 SLOW-DOWN 2 weeks False True … True 

The first three columns report the date of each blockage, its category, and the considered 

time interval (ΔT ). The following 82 columns contain a list of the components belonging to 

the topping sub-plant. If the corresponding component required a maintenance activity in 

the considered time interval, then the value assigned is true, false otherwise. For example, 

the blockage that occurred on April 8, 2001, is an SlD: a maintenance activity is performed 

on the component coupling in a 1-month time interval. The alarm and impeller are not 
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maintained after this blockage. 

Table 15 summarizes, for each sub-plant, the number of components monitored and the 

percentage of components broken during the period under investigation. Indeed, the 

numbers reported in the table confirm the need for a maintenance policy. In addition, the 

high percentage of component breakages implies a high cost due to the reduced production 

capacity of the sub-plant. And, this implicitly confirms the need to implement a predictive 

maintenance policy. Since the three production processes depend on the topping sub-plant, 

the maintenance policy is applied to its components. Indeed, for the proper functioning of 

the whole refinery plant, the flow along this sub-plant must run smoothly.  

 

Table 15 Resume of the sub-plants, the corresponding number of components monitored in 

each of them, and the percentage of components requiring a maintenance intervention in the 

monitored period 

Sub-plant 
Number of 

components 

Percentage of 

broken components 

Topping 82 88% 

Unifining 73 86% 

Naphta splitting 23 52% 

Isomerization 37 84% 

Platforming 91 70% 

Hydro-desulfurization (1) 59 75% 

Thermal cracking 35 88% 

Visbreaking 86 79% 

Hydro-desulfurization (2) 44 63% 

 

4.2.2.2 Association Rule Mining 

Considering the information extractable from the available data, when a component 

breakage occurs, the ARs having the broken component as their body are extracted. To this 

end, the tools provided by RapidMiner (www.rapidminer.com), a widely applied data-

mining platform, are used.  

http://www.rapidminer.com/
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Figure 4 View of the process implemented in RapidMiner 

In particular, Figure 4 describes the whole process. Firstly, the integrated dataset (as 

represented in Table 14) is loaded from Microsoft Excel; the operator filter example allows 

setting some filters, e.g., limiting the analysis to a specific blockage. Then, through the 

exclude attributes module, attributes that do not provide useful information are excluded 

from the analysis. FP-growth and create AR generate the frequent patterns and the ARs 

from the dataset, respectively.  

 

4.2.2.3 Decision support model based on mathematical programming approach 

Defining a mathematical model to define whether a predictive intervention is necessary can 

support the decision-maker. In this way, indeed, there is no need to define a-priori 

thresholds, thus avoiding any possible subjective bias by the process experts. In this 

section, we describe the solution approach proposed for defining a new predictive 

optimization-based maintenance policy.  

The predictive maintenance policy proposed is mainly based on the integration of ARs 

mining and optimization techniques. Indeed, the approach developed in this section is 

aimed to define the optimal maintenance plan for a set of components in a plant. In fact, in 

large process industries, the plant production capacity is often affected by the blockages 

that can occur and that can be caused by several causes, e.g., scheduled interruptions, safety 

issues, or component breakage. Given the plant complexity, after repairing a blockage and 

restarting the operation, some other components may fail due to the changes of the working 

conditions (e.g., from a full load operation, the system switches to a blockage, then to a 

transient phase before switching back to full load operation). Furthermore, in industry, a 

production plant is often implemented through various activities performed by specific sub-

plants. Without loss of generality, hereafter, the focus is on a sub-plant at a time. In fact, 

this solution approach is based on the idea of individuating correlations between sub-plant 
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blockages and subsequent components’ breakages. Therefore, on the basis of available 

historical data, we aim at discovering the correlations among components’ breakages after a 

sub-plant blockage (using AR mining) in a given time interval. These rules can be applied 

for determining the components that can be predictively maintained given a component’s 

breakage. The decision on which components have to be selected for predictive 

maintenance depends on both the time available for maintenance planning and their repair 

cost. To this purpose, a mathematical model is formulated to select the optimal set of 

components to predictively maintain under time and budget constraints, maximizing the 

overall plant reliability (i.e., minimizing the probability of future breakages). 

An ILP model is formulated for defining the optimal maintenance plan for a given set of 

components. In particular, it aims at selecting the components with the highest breakage 

probability given that the breakage of a component occurs. The notation and the 

assumptions used throughout the paper are given in the following and summarized in Table 

16. 

Table 16 Nomenclature of the input data for the ILP model 

Parameter Meaning 

C Set of components 

cij 
Confidence of the rule i → j (breakage probability of component j given the 

breakage of component i) 

RCj Repair cost of component j 

Tj Repair time of component j 

Tmax Maximum time allowed for maintenance planning 

B Maximum budget allowed for maintenance planning 

 

C is the set of components belonging to a plant under analysis. Each component j is 

characterized by a repair cost RCj and a repair time Tj , i.e., the duration of the maintenance 

activity, expressed in minutes. It is worth noting that, for each component, its repair cost 

also takes into account every cost due to its breakage. Moreover, each component j is 

characterized by the confidence cij = conf (i → j) that expresses its breakage probability, 

given the breakage of component i, i.e., cij = P(j|i). The ILP formulation is modeled by 

introducing the binary decision variable xj, equal to 1 if the component j is selected to be 
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maintained, 0 otherwise. The maintenance planning is then optimized by solving the 

following ILP model: 

 

max ∑ 𝑐𝑖𝑗𝑥𝑗

𝑗 ∈ 𝐶

 (1) 

∑ 𝑇𝑗  𝑥𝑗

𝑗 ∈ 𝐶

 ≤  𝛼 𝑇𝑚𝑎𝑥 (2) 

∑ 𝑅𝐶𝑗 𝑥𝑗

𝑗 ∈ 𝐶

 ≤  𝐵 (3) 

𝑥𝑗  ∈  {0, 1} ∀ 𝑗 ∈  𝐶 (4) 

 

The objective function (1), to maximize, represents the total confidence. Constraint (2) 

assures that the total repair time, required for all selected components, does not exceed a 

percentage (α) of the maximum time allowed for maintenance planning (Tmax). In such a 

constraint, the parameter α can be appropriately modified for scenario analysis. Constraint 

(3) imposes a maximum budget B that can be used for maintenance. Finally, constraints (4) 

provide the variable nature. 

The predictive optimization-based maintenance policy consists of the steps outlined in the 

following, and it is briefly schematized in Figure 5. 

 

INPUTS 

• The set of components C of the plant; 

• The time interval (ΔT ), starting from the plant blockage, during which the 

analysis is performed; 

• The minimum support threshold (min_sup) for ARs’ extraction. 

PROCEDURE 

1. Find the set R of all ARs having a support greater than min_sup, where body and 

head are formed by the components broken during ΔT after past blockages.  

2. Monitor the plant operations within ΔT .  
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(a) When a maintenance activity is required for the component i ∈ C, select 

all rij ∈ R : i → j, where j ∈ C, i = j . 

(b) Solve the ILP model described in (1)-(4) for selecting the components to 

be maintained on the basis of the information extracted at the previous 

step. 

OUTPUTS 

•  The optimal set of components to maintain; 

•  The total time for maintenance planning. 

 

It is worth noting that defining the input parameters is particularly significant in the above 

procedure. Indeed, the time frame has to be set so that the maintenance activities are related 

to plant blockages in a meaningful way. In fact, setting a too short interval could lead to the 

loss of relevant associations, i.e., not to consider all the component breakages related to the 

specific blockage. On the contrary, a time interval too long may provide misleading results. 

Hence, this step of the procedure has to be carried out by domain experts, able to both 

define the most appropriate length of the time interval and evaluate whether shortening or 

enlarging the time for maintenance may result particularly convenient. The number of rules 

also depends on min_sup. In our scenario, the min_sup threshold has to be set as low as 

possible in order to allow analyzing a significant number of ARs. Starting from the plant 

blockage, the system is monitored, and, in the case of breakage (step 2.a), the maintenance 

planning is defined by solving an optimization model (step 2.b). This aspect overcomes 

what was already proposed in section 4.2 in which a maintenance policy, based on user-

defined minimum confidence, is proposed. In our approach, the solution of an ad hoc 

defined optimization model allows selecting the most convenient components to be 

maintained in a predictive way by completely removing the arbitrariness introduced by the 

user-defined confidence threshold. 
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Figure 5 Flow chart schematizing the ARs-based Optimization approach  

The implementation of the RapidMiner process has been run on a machine at 3.40 GHz 

with 16 GB of RAM. It requires 28 s to extract the full set of ARs, namely for ΔT equals to 

1 week, 2 weeks, and 1 month. The ILP model has been implemented in LINGO language 

(www.lindo.com) and runs on the same machine. Solving the ILP model, formulated in 

Section 3.2, requires 0.8 s2. For the sake of clarity, the whole ARs extraction 

 

 

2 The time for extracting ARs and that for solving the ILP model are averaged on 5 runs. 
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4.2.2.4 Methodology validation 

This section aims at validating the proposed methodology by considering a use case with 21 

components. It is assumed that the breakage of the component 𝐶̅ happens. The goal of the 

proposed methodology is to decide which components (hereafter, denoted as Ci ∀i = 1, . . . , 

20) we have to repair in a predictive way while the plant is stopped to repair 𝐶̅. The repair 

time Ti and the repair cost RCi, ∀i = 1, . . . , 20 have been randomly generated in the range 

[30, 300] and [100, 3000], respectively. Here, we are also assuming that ΔT equals to 1 

month. An a priori breakage probability is associated with each component Ci, randomly 

generated in the range [0, 0.6]. Based on this probability, it is possible to determine if, in 

the month in which the breakage of 𝐶̅ occurs, the component Ci breaks too, and a repair 

order is then issued. Hence, 56 months have been simulated. In particular, 36 months have 

been used for generating the ARs, while the remaining 20 months for testing the 

methodology (each denoted as Testing Month TMi , ∀i = 1, . . . , 20). By following the 

proposed methodology, after obtaining the confidence of each of the 20 rules of the type 𝐶̅ 

→ Ci, the ILP model, is then solved by setting Tmax and B equal to 350 and 10,000, 

respectively. For each testing month TMi, the square confusion matrix CMi of order 2 has 

been defined as follows: 

𝐶𝑀𝑖 = [
 𝑅𝑅𝑖  𝑅𝑁𝑖
𝑁𝑅𝑖 𝑁𝑁𝑖

] 

  

where: 

1. RRi denotes the number of components to be repaired in TMi and actually 

selected by the ILP model;  

2. RNi is the number of components to be repaired inTMi but not selected by the 

ILP model; 

3. NRi represents the number of components not to be repaired in TMi but 

selected by the ILP model; 

4. NNi counts the number of components not to be repaired in TMi and actually 

not selected by the ILP model. 

Then, for each TMi , the accuracy ηi has been calculated as: 



 56 

𝜂𝑖 =  
𝑁𝑁𝑖 +  𝑅𝑅𝑖

𝑁𝑁𝑖 +  𝑅𝑅𝑖 +  𝑁𝑅𝑖 +  𝑅𝑁𝑖
 

Then, the average accuracy has been computed over the 20 testing months. We have run 10 

simulations (varying Ti , RCi , and a priori breakage probability), obtaining a high average 

accuracy 𝜂̅ equal to 0.836 with a variance of 0.078, proving the effectiveness of the 

proposed predictive methodology. It is worth noting that errors (i.e., RNi and NRi ) depend 

on the imposed constraints on the total repair time and the total available budget. On the 10 

simulation runs, the average total repair time, as well as the average total budget required, 

was 321 and 3646.3, respectively. Moreover, a critical issue of the proposed methodology 

is the availability of a large amount of data. Indeed, the quality of results depends on the 

extraction of valid ARs, i.e., rules whose confidence represents a reasonable estimation of 

the actual breakage probability, given that the breakage of the component 𝐶̅ occurs. 

 

4.2.2.5 Implementation of the proposed approach 

This section describes the numerical results obtained by applying the solution approach 

detailed in the previous sections. In the following experiments, the attention is focused on 

the component requiring the highest number of maintenance activities, i.e., the controller. 

In order to compare and discuss results, four different cases are presented, considering all 

the blockage categories and differentiating among SlD, ShD, and NS blockages. According 

to the privacy policy adopted by the refinery, the details about the total budget, the repair 

times, and the costs of the components cannot be fully reported. However, in the following 

experiments, reasonably estimated values are used for them.  

The first example presented regards the breakage of the controller since it resulted in the 

most critical component in terms of number of maintenance activities required. Indeed, 

from data, it turns out that the controller is the component with the highest breakage 

probability (87.9%). The parameters setting is performed by following the suggestion 

coming from the maintenance department: the set C is made up of 82 components, 

monitored in the topping sub-plant while the value of ΔT and min_sup are equal to 1 month 

and 0.005, respectively. The budget value is set to 10,000 €, while the maximum time 

Tmax is 350 min. Finally, α is initially set to 1. Firstly, all the ARs of interest are 

individuated as described in the previous section. Then, the monitoring phase starts. 
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When a maintenance activity is required for the component controller, all the ARs whose 

support is greater than min_sup and controller as body are selected. In Table 17, we report 

the ARs extracted for analysis. In particular, the first column shows the body of the rule, 

namely controller, while the second one the head of each rule. Then, in the third column, 

the confidence of the rules is indicated. The last two columns report the repair cost and the 

repair time of the component in the head of the rule. According to these rules, the 

components with the higher probability of breakage given the failure of the controller, i.e., 

confidence of the rule, are coupling, sealing device, and insulation. The solution of the 

optimization model, instead, highlights that when the breakage of the component controller 

occurs, a consequent maintenance activity should be planned for the components ammeter, 

drainer, lighting, liquid level, and piping (all highlighted in italics in Table 17), so that both 

the total repair time and the budget constraints can be respected. In this way, it can be 

obtained total confidence of 1.397. Indeed, the repair times estimated for the selected 

components are 120, 90, 10, 60, and 60, respectively. This means that 340 minutes of the 

350 available are used. Moreover, the total repair cost of the selected components is 2295 €, 

out of the 10,000 € of the total budget. One can argue that a more straightforward way for 

detecting the most convenient set of components to maintain is to order them by decreasing 

confidence and, then, to select starting from the most likely ones, i.e., those with the highest 

confidence, respecting the time and budget constraints.  

 

Table 17 Association rules having support greater than min_sup and controller as body. 

Body Head Confidence RCHead THead 

Controller Coupling 0.690 1184 250 

Controller Sealing device 0.569 5931 600 

Controller Insulation 0.517 2300 750 

Controller Lighting 0.466 90 10 

Controller Tracker 0.431 235 430 

Controller Indicator 0.414 289 300 

Controller Alarm 0.362 4094 275 

Controller Area 0.328 2881 324 

Controller Sampling valve 0.310 150 300 
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Controller Ammeter 0.259 1009 120 

Controller Drainer 0.224 845 90 

Controller Valve 0.224 735 300 

Controller Liquid level 0.224 190 60 

Controller Scanner 0.224 2100 150 

Controller Piping 0.224 161 60 

Controller Bearing 0.207 2500 800 

Controller Auxiliary 0.172 1010 206 

Controller Air analysis system 0.155 2103 170 

Controller Blade 0.155 1233 607 

Controller Condensation detector 0.138 207 420 

Controller Transmitting device 0.138 890 254 

Controller Lubrication 0.138 580 402 

Controller Dimmer 0.138 2930 293 

Controller Refrigerant 0.138 3290 248 

Controller Oil seal 0.138 402 300 

Controller Engine 0.138 4065 348 

Controller Electrode 0.138 5040 122 

Controller Instrumentation 0.121 1300 280 

Controller Button panel 0.121 1600 400 

Controller Pavage 0.121 2065 200 

Controller Level controller 0.121 2300 60 

Controller Battery 0.121 1280 177 
 

 

In this way, the components coupling, lighting, and liquid level are selected for 

maintenance, with total confidence equal to 1.379. The total time required for performing 

this maintenance plan is 320 min, with a total repair cost of about 1500 €. Despite both a 

time and cost-saving, this solution provides total confidence (1.379) lower than the one 

detected by ILP (1.397). A more accurate perspective can be obtained if the rules are 

discriminated on the basis of the blockage category since it can impact the component 

breakages. For instance, Table 18 contains the ARs related to an SlD blockage.  
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Table 18 ARs extracted in the case of SlD blockage having support greater than min_sup and 

controller as body 

Body Head Confidence 

Controller Coupling 0.886 

Controller Sealing device 0.657 

Controller Insulation 0.657 

Controller Indicator 0.514 

Controller Tracker 0.457 

Controller Lighting 0.457 

Controller Sampling area 0.429 

Controller Ammeter 0.400 

Controller Alarm 0.400 

Controller Scanner 0.371 

Controller Area 0.343 

Controller Drainer 0.314 

Controller Liquid level 0.286 

Controller Auxiliary 0.286 

Controller Blade 0.257 

Controller Bearing 0.257 

Controller Air analysis system 0.229 

Controller Oil seal 0.229 

Controller Liquid level 0.224 

Controller Valve 0.200 

Controller Button panel 0.200 

Controller Dimmer 0.200 

Controller Engine 0.200 

Controller Electrode 0.200 

Controller Battery 0.200 

Controller Transmitter 0.171 

Controller Equipment 0.171 

Controller Paving 0.171 

Controller Lubrication 0.171 
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Controller Level controller 0.171 

Controller Condensation detector 0.171 

Controller Refrigerant 0.143 

Controller Belt 0.143 

 

Comparing Table 18 and Table 17, it is noteworthy that in both cases, the rules are almost 

all the same, but with different values of confidence. This is a reasonable result since the 

SlD blockages are the majority. The only exception is the component Belt, whose support is 

higher than the min_sup only in the case of an SlD.  

When an ShD is considered (see Table 19), the number of ARs decreases, and they involve 

some new components, like safety valve, pressure gauge, and piston. The repairing of these 

components would be preferable since an ShD blockage has the highest impact on 

production. However, this kind of blockage is the rarest, so the related rules have a low 

significance. 

 

Table 19 ARs extracted in the case of ShD blockage having support greater than min_sup and 

controller as body 

Body Head Confidence 

Controller Insulation 0.714 

Controller Tracker 0.571 

Controller Lighting 0.571 

Controller Sealing device 0.429 

Controller Indicator 0.429 

Controller Alarm 0.429 

Controller Coupling 0.429 

Controller Safety valve 0.286 

Controller Valve 0.286 

Controller Blower 0.286 

Controller Refrigerant 0.286 

Controller Piston 0.286 

Controller Pressure gauge 0.286 

Controller Liquid level 0.286 
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Controller Joint 0.286 

Controller Tube bundle 0.286 

 

4.2.3 Control layer 

In order to identify how a modification of the parameters may impact on the proposed 

implementation, a sensitivity analysis is carried out and described in the following sections.  

 

4.2.3.1 Sensitivity analysis on α parameter 

Scenario analysis to study the sensitivity of the solution varying the α parameter is carried 

out. In particular, a range is defined, between 0.50 and 1.50, and different cases are tested 

using an incremental step of 0.05. In Figure 6, the values of the objective function (1) are 

reported as the parameter α increases and all kinds of blockages are considered.  

 

Figure 6 Values of the objective function (1) for different α 

This figure shows the trend of the objective function with respect to the portion of the 

maximum repair time used. Reducing the time available for maintenance planning has 

obviously a significant impact on the number of components that can be maintained. 

Indeed, when α = 0.50 (αTmax = 175 min), piping, liquid level, and lighting are selected for 

maintenance planning, but the total confidence decreases by about 53% (0.914). On the 

contrary, increasing the available time of the 50% (α = 1.50, αTmax = 525 min) leads to 

total confidence of 1.862, with 25% growth. In this case, the selected components are 
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coupling, ammeter, lighting, liquid level, and piping. It is worth noting that the components 

with high confidence, i.e., sealing device and insulation (see Table 18), have not been 

selected since they violate the total repair time constraint. In Table 20, for each scenario, 

the corresponding α, the total repair time (TRT) of the selected components are reported. 

Instead, the third column shows the value of the objective function (i.e., the total 

confidence (TC)) while the last one details the selected components. This way, the 

decision-maker can evaluate, on the basis of her own experience, how to properly choose 

the α value and how much she/he is willing to pay for increasing the total time available for 

maintenance. 

Table 20 Optimal solution displayed for the α parameters analyzed 

α TRT TC Selected components 

0.5 130 0.914 Lighting, liquid level, piping  

0.55 190 0.948 Ammeter, lighting, liquid level  

0.6 190 0.948 Ammeter, lighting, liquid level  

0.65 220 1.138 Lighting, liquid level, piping, drainer 

0.7 220 1.138 Lighting, liquid level, piping, drainer 

0.75 250 1.172 Lighting, liquid level, piping, ammeter 

0.8 250 1.172 Lighting, liquid level, piping, ammeter 

0.85 250 1.172 Lighting, liquid level, piping, ammeter 

0.9 250 1.172 Lighting, liquid level, piping, ammeter 

0.95 320 1.379 Coupling, lighting, piping   

1 340 1.397 Ammeter, drainer, lighting, liquid level, piping 

1.05 340 1.397 Ammeter, drainer, lighting, liquid level, piping 

1.1 380 1.603 Coupling, lighting, liquid level, piping 

1.15 380 1.603 Coupling, lighting, liquid level, piping 

1.2 380 1.603 Coupling, lighting, liquid level, piping 

1.25 380 1.603 Coupling, lighting, liquid level, piping 

1.3 440 1.638 Coupling, ammeter, lighting, piping  

1.35 470 1.828 Coupling, drainer, lighting, liquid level, piping 

1.4 470 1.828 Coupling, drainer, lighting, liquid level, piping 

1.45 500 1.862 Coupling, ammeter, lighting, liquid level, piping 
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1.5 500 1.862 Coupling, ammeter, lighting, liquid level, piping 

 

4.2.3.2 Sensitivity analysis on the budget 

An additional sensitivity analysis is presented, varying the budget allocated to maintenance 

activities. The different values tested range from 500 € to 30,000 €, with an increment of 

500 €. The greater the budget, the higher the total confidence obtained. This is due to the 

fact that more components can be repaired in the maximum time allowed. For example, if B 

is set to 500 €, the components selected for maintenance are lighting, liquid level, and 

piping. The total confidence obtained in this case is 0.914. The same solution is obtained in 

the case in which B is set to 1,000 €. If B ranges from 1,500 € to 2,000 €, instead, the total 

confidence is higher (1.379) and the components selected are coupling, lighting, and piping. 

Remarkably, allowing a budget higher than 2,500 € is not useful since the optimal solution 

found remains the same: ammeter, drainer, lighting, liquid level, and piping are the selected 

components, while the total confidence is 1.397. Indeed, above this value, constraint (2) 

becomes tighter than constraint (3), making any variation on the budget irrelevant. 

 

4.2.3.3 Variations of the blockage category 

In order to further detail the experimental campaign, in this section, the analysis is 

performed both distinguishing the blockage category (i.e., NS, SlD, and ShD) and varying 

the α parameter. Indeed, the dataset is properly filtered in order to extract only the ARs 

related to each blockage category and consider the corresponding confidence values to 

solve the model. Figure 7 shows the trends of the objective function (1) with respect to the 

portion of the maintenance time used. Observing the results reported in the figure, it is 

worth noting that in the case of an SlD blockage, the optimization model provides the 

highest total confidence. When ShD and NS blockages are considered, the values of the 

objective function are lower than the values obtained in the case of SlD blockages. Indeed, 

ShD blockages rarely occur, and after them, the number of components that have broken 

within ΔT is less than the one after SlD blockages. A further consequence of this is 

obtaining ARs with very quantized confidence values (see Table 19). This leads to the 

piecewise linear trend of the objective function in case of ShD blockages (see Figure 7). A 

similar trend is also reported in the case of NS blockages, but the reasons are different. It is 
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noteworthy that the decrease of the daily mass-flow due to NS blockages is not significant, 

and its impact on components’ breakage is limited too. Indeed, most of ARs involve only a 

component (e.g., the controller), and there are very few rules involving two components 

within ΔT after an NS blockage. Hence, these rules are characterized by very low 

confidence values. In particular, in case of ShD, when α ranges from 0.5 to 0.7, the 

components selected for maintenance planning are lighting and liquid level (TC = 0.857). 

When α varies from 0.8 to 0.9, the component pressure gauge is also selected, and the 

value of the objective function is 1.143. The components coupling, lighting, and liquid level 

are selected for any α in the range from 0.95 to 1.40 (TC = 1.286). It is worth noting that 

the rule with insulation as head has confidence by far higher (i.e., 0.714) than the ones 

mentioned above, but its repair time exceeds Tmax. Thus, increasing the repair time by 

40% does not lead to any improvement on total confidence. 

 

Figure 7 Comparison between objective function values (1) for different α, discriminating the 

blockage category 

 

 

4.3 Data-driven maintenance policy based on multi-objective 

optimization 

The implementation of the third approach proposed in this thesis is slightly different from 

the ones presented in the previous sections. Firstly, because two different solution 

approaches are compared (i.e., the lexicographic optimization and the Large Neighborhood 



 65 

Search heuristics); secondly, the breakage probability estimation does not use the 

association rule mining: instead, a proper algorithm is developed, starting from the same 

hypothesis as the ARM.   

 

4.3.1 Data gathering and management 

The experimental campaign was carried out on a set of real-lifelike instances inspired by an 

oil refinery. To this end, a three-year time interval, from January 2001 to December 2003, 

was analyzed. Data came from two databases: one containing information on the process 

cycle, recording the hourly amount of product entering each sub-plant and, if any, the 

stoppage detail; the other storing information on both component breakages and the related 

maintenance interventions. Such a refinery is characterized by a total number of 715 

monitorable components. From data, it turns out that, in the period considered, the number 

of component breakages occurring was 6160, and the total number of stoppages was 1164. 

The distributions of both repair costs and times of the components are provided in Figure 8 

and Figure 9. In particular, the repair time distribution is Gaussian-like, while one can note 

that most of the components have a low cost. 

 

 

Figure 8 Distribution of component repair cost. 
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Figure 9 Distribution of component repair time. 

 

4.3.2 Data analytics 

4.3.2.1 Preliminary analysis 

Since this application is based on the development of two different approaches to be 

compared, it is necessary to define the same notation for them.  

The bi-objective Component Repair Problem (b-CRP) aims at finding the optimal set of 

components to repair in order simultaneously to maximize the overall system reliability and 

minimize the maximum repair time required, under constraints on both the total budget B 

and the total repair time 𝑇𝑚𝑎𝑥 . 

The set C contains the components from which the optimal set has to be selected. For each 

𝑐𝑗  ∈  𝐶, a repair cost 𝑟𝑐𝑐𝑗
, a repair time 𝑟𝑡𝑐𝑗

 and the number of maintainers 𝑛𝑐𝑗
 required for 

repairing it are given. The parameter 𝐶𝑤𝑜𝑟𝑘 denotes the fixed hourly cost of employing a 

maintainer, whereas 𝑏𝑝𝑐𝑗
 is the breakage probability of the j-th component in a given time 

interval ∆T of observation after a system stoppage. The notation adopted is also 

summarized in Table 21. 

 

Table 21 Notation used 

Sets  

𝐶 Set of components 

𝐸𝑠 Ordered set of stoppage events 

𝐸𝑏 Ordered set of component breakage events 

Parameters  

𝑏𝑝𝑐𝑗
 Breakage probability of component cj 
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𝑟𝑐𝑐𝑗
 Repair cost of component cj 

𝑟𝑡𝑐𝑗
 Repair time of component cj 

𝑛𝑐𝑗
 Numbers of operators required for repairing component cj 

∆𝐿𝑐𝑗
 Lifespan of component cj 

∆𝐹̅̅̅̅
𝑐𝑗

 Mean time between failures of component cj 

𝑇𝑚𝑎𝑥 Maximum time allowed for maintenance planning 

𝐵 Maximum budget allowed for maintenance planning 

𝐶𝑤𝑜𝑟𝑘 Fixed hourly cost for employing an operator 

∆𝑇 Time interval of observation 

 

4.3.2.2 Breakage probability estimation 

The procedure followed for estimating the breakage probability 𝑏𝑝𝑐𝑗
of each 𝑐𝑗  ∈  𝐶 is 

detailed in Algorithm 1. 

 

Algorithm 1 The data-driven optimization-based approach 

Input: 

Set of components C; 

Component’s life span Δ𝐿𝑐𝑗
 and component MTBF Δ𝐹̅̅̅̅

𝑐𝑗
, ∀ 𝑐𝑗 ∈ 𝐶; 

Time interval ΔT; 

Breakage probability 𝑏𝑝𝑐𝑗
 ∀ 𝑐𝑗 ∈ 𝐶; 

List of stoppage events 𝐸𝑠 = {〈𝑡′
𝑆1

, 𝑡′′
𝑆1

〉, 〈𝑡′
𝑆2

, 𝑡′′
𝑆2

〉, . . ., 〈𝑡′
𝑆𝑚

, 𝑡′′
𝑆𝑚

〉}, where: 

𝑡′𝑆𝑖
 is the timestamp when the stoppage 𝑆𝑖 occurs; 

𝑡′′𝑆𝑖
 is the timestamp when the plant restarts after a stoppage; 

such that 𝑡′𝑆𝑖
 < 𝑡′′𝑆𝑖

, 𝑖 = 1, … , 𝑚 and 𝑡′′𝑆𝑖
 < 𝑡′𝑆𝑖+1

, 𝑖 = 1, … , 𝑚 − 1; 

List of component breakage events 𝐸𝑏 =  {〈𝛾1, 𝑡𝛾1
〉, 〈𝛾2, 𝑡𝛾2

〉, . . . , 〈𝛾𝑘 , 𝑡𝛾𝑘
〉}, where 

𝑡𝛾𝜎
 is the timestamp which the component 𝛾𝜎 ∈ 𝐶 breakage occurs at, and 

𝑡𝛾𝑗
< 𝑡𝛾𝑗+1

, 𝑗 = 1, … , 𝑘 − 1. 

Output: Set of components to repair 𝐶 ⊆ 𝐶 

1: 𝑏𝑝𝑐𝑗
 := 0, ∀ 𝑐𝑗 ∈ 𝐶; 

2: i := 1; 

3: 𝑡𝑠𝑡𝑎𝑟𝑡= 𝑡′′𝑆𝑖
; 

4: 𝑡𝑒𝑛𝑑 = 𝑡′𝑆𝑖+1
; 

5: for 𝜎 := 1 to k do 

6: if 𝑡𝛾𝜎
  > 𝑡𝑠𝑡𝑎𝑟𝑡  then 

7: if (𝑡𝛾𝜎
< 𝑡𝑒𝑛𝑑 ∧ 𝑡𝛾𝜎

 ≤ (𝑡𝑠𝑡𝑎𝑟𝑡 +  Δ𝑇)) then 

8: 𝑏𝑝𝛾𝜎
 := 𝑏𝑝𝛾𝜎

 + 
1

𝑚
 

9: else 

10: if i < m − 1 then 
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11: i := i + 1; 

12: 𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡′′𝑆𝑖
; 

13: 𝑡𝑒𝑛𝑑  = 𝑡′𝑆𝑖+1
; 

14: end if 

15: end if 

16: end if 

17: end for 

18: for j := 1 to |C| do 

19: if  Δ𝐿𝑐𝑗
 < Δ𝐹̅̅̅̅

𝑐𝑗
 then 

20: 𝑏𝑝𝑐𝑗
=     (1 −

Δ𝐹̅̅ ̅̅
𝑐𝑗

 − Δ𝐿𝑐𝑗
 

Δ𝐹̅̅ ̅̅
𝑐𝑗

) 𝑏𝑝𝑐𝑗
 

21: end if 

22: end for 

23: 𝐶:=selectBestComponents(C, Tmax, B, 𝑏𝑝𝑐𝑗
, ∀ 𝑐𝑗 ∈ 𝐶)  

 

Since the phenomenon under investigation is binary (component failure/working), the 

algorithm implements a maximum likelihood estimation to derive the set of 𝑏𝑝𝑐𝑗
. This 

approach returns good probability estimations when working conditions do not change 

considerably over time, and a lot of data on past breakages is available. These two 

assumptions hold in the scenarios considered in this work: complex and constantly active 

process industries (e.g., oil refineries, steel mills, highly automated plants). 

The first part of the algorithm concerns data pre-processing aimed at estimating the set of 

breakage probabilities 𝑏𝑝𝑐𝑗
 from input data. To this end, the algorithm combines 

information regarding component breakages and system stoppages that have occurred in the 

past. In detail, the algorithm scrolls the list Eb of k component breakage events (step 5), 

computing how many times each component breaks within a time window of length ∆T 

starting from the restart of the system after a stoppage (steps 7–9). If a breakage event falls 

outside the time window, the next stoppage is used to define a new time window (steps 10–

14). In order to take into account the lifespan of the component 𝑐𝑗, namely the time since 

the last replacement or repair of 𝑐𝑗, its breakage probability is adjusted based on the Mean 

Time Between Failures (MTBF) of 𝑐𝑗. If the component has recently been repaired, i.e., the 

component lifespan is less than a given percentage of its MTBF (i.e. Δ𝐹̅̅̅̅
𝑐𝑗

), then the 

breakage probability will be decreased in proportion to the difference between its lifespan 
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and Δ𝐹̅̅̅̅
𝑐𝑗

 (step 20). If its lifespan is longer than its MTBF, then 𝑏𝑝𝑐𝑗
 can be set to a very 

large value to increase the chances of the component being selected for repair, or one can 

force its replacement, thus setting its breakage probability to zero in order to prevent its 

being selected. Finally, step 23 (i.e., the routine selectBestComponents) aims at selecting 

the sub-set of components 𝐶̅  ⊆ 𝐶 that is more convenient to repair with regards to the 

minimization of two criteria, under budget and time constraints. More specifically, 𝐶̅  

represents the set of components with a total repair cost and time, neither of which exceeds 

its maximum availability (B and 𝑇𝑚𝑎𝑥 , respectively), simultaneously minimizing the total 

breakage probability and the maximum repair time. 

All parameters in Table 21 are: 

(1) derived from data on past failure events (𝐸𝑠, 𝐸𝑏, ∆𝐿𝑐𝑗
, ∆𝑇); 

(2) extracted from data on components characteristics (𝑟𝑐𝑐𝑗
, 𝑟𝑡𝑐𝑗

, 𝑛𝑐𝑗
 , ∆𝐹̅̅̅̅

𝑐𝑗
 ); 

(3) constants provided by domain experts (𝑇𝑚𝑎𝑥, 𝐵, 𝐶𝑤𝑜𝑟𝑘); or 

(4) estimated by Algorithm 1 (𝑏𝑝𝑐𝑗
). 

It is worth noting that the value of ΔT should not be chosen too small, otherwise only a few 

breakages would be considered, and the maximum likelihood estimation criterion 

implemented in Algorithm 1 would produce inaccurate results. Similarly, ΔT should not be 

too wide; otherwise, the breakages would be poorly correlated with stoppages of the plant, 

again returning inaccurate results. For these reasons, the value of ΔT is set on the basis of 

past knowledge of plant stoppages. In particular, ΔT is set to the average time between two 

consecutive stoppages. 

 

4.3.2.3 Decision support system based on two multi-objective optimization 

approaches 

A bi-objective Mixed-Integer Non-Linear Programming formulation  

In this Section, the bi-objective Mixed-Integer Non-Linear Programming formulation is 

described. It is modeled with the aim of selecting the subset 𝐶̃ of components from the set 

C in order to optimize two criteria simultaneously. The former takes into account the 

minimization of the total breakage probability of the non-selected components (i.e., the 

maximization of the total breakage probability of the selected components and thus, of the 
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system reliability). While the latter refers to the minimization of the maximum repair time 

(i.e., the makespan). For this purpose, we introduce the following decision variable 𝑥𝑐𝑗 , 

∀ 𝑐𝑗 ∈ 𝐶, equal to 1 if the component 𝑐𝑗 is selected for being repaired, 0 otherwise. 

 

min 𝐵𝑃 =  ∑ (1 − 𝑥𝑐𝑗
) 𝑏𝑝𝑐𝑗

𝑐𝑗 ∈ 𝐶

 

(5) 

min 𝑅𝑇𝑚𝑎𝑥 = max
𝑐𝑗∈𝐶

𝑟𝑡𝑐𝑗
𝑥𝑐𝑗

  (6) 

s.t.  

𝐶𝑤𝑜𝑟𝑘 ∑ 𝑛𝑐𝑗
𝑥𝑐𝑗

𝑟𝑡𝑐𝑗
+ ∑ 𝑟𝑐𝑐𝑗

𝑥𝑐𝑗
 ≤ 𝐵

𝑐𝑗 ∈ 𝐶𝑐𝑗 ∈ 𝐶

 
(7) 

∑ 𝑟𝑡𝑐𝑗
𝑥𝑐𝑗

𝑐𝑗 ∈𝐶

 ≤ 𝑇𝑚𝑎𝑥  
(8) 

𝑥𝑐𝑗
∈ {0; 1}   ∀𝑐𝑗 ∈ 𝐶 (9) 

 

The objective function BP (5) to minimize represents the total breakage probability 

associated with the unselected components. While, RTmax (6) to minimize denotes the 

maximum maintenance time, i.e., that the maximum time devoted to repair a selected 

component. This is motivated by the fact that we do not take into account also the 

scheduling of the maintenance activities but only the planning. Therefore, the companies 

may be very interested in having a maintenance plan allowing them to save time. Constraint 

(7) assures that the total cost used for repairing does not exceed the maximum budget 

allowed (B). It is worth noting that the total cost is due to two parts. The former considers 

the effective time cost of the maintainers used, knowing the time required by each 

component to be repaired. Instead, the latter refers to the repair cost of each component that 

also takes into account the material used for repairing. It is worth remarking that the costs 

do not include those due to the component’s shortage. In fact, we consider that the 

predictive maintenance activities, especially in complex systems, are usually performed in 

the medium/long term. Therefore, a shortage of the components to be repaired is highly 
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unlikely. These facts have been confirmed by the company from which we derived the 

problem and the data. Constraint (8) imposes that the total time spent for repairing does not 

exceed the total time available (Tmax). Finally, constraints (9) define the binary nature of 

the decision variables. 

In order to linearize the proposed model, we introduce an additional continuous non-

negative variable y equal to 𝑚𝑎𝑥𝑐𝑗 ∈ 𝐶  𝑟𝑡𝑐𝑗
𝑥𝑐𝑗

 and, thus, the following additional constraint 

(10): 

𝑦 ≥  𝑟𝑡𝑐𝑗
𝑥𝑐𝑗

 ∀𝑐𝑗 ∈ 𝐶 (10) 

For normalizing the values of the two objectives, we also divide the value of the variable y 

by Tmax. Therefore, the Mixed-Integer Linear Programming (MILP) formulation proposed 

for the b-CRP is in the following: 

𝑚𝑖𝑛𝐵𝑃 =  ∑ (1 −  𝑥𝑐𝑗
)𝑏𝑝𝑐𝑗

𝑐𝑗 ∈ 𝐶

 
(11) 

min 𝑅𝑇𝑚𝑎𝑥 =
𝑦

𝑇𝑚𝑎𝑥

 
(12) 

s.t.  

𝐶𝑤𝑜𝑟𝑘 ∑ 𝑛𝑐𝑗
𝑥𝑐𝑗

𝑟𝑡𝑐𝑗
+ ∑ 𝑟𝑐𝑐𝑗

𝑥𝑐𝑗
 ≤ 𝐵

𝑐𝑗 ∈ 𝐶𝑐𝑗 ∈ 𝐶

 
(13) 

∑ 𝑟𝑡𝑐𝑗
𝑥𝑐𝑗

𝑐𝑗 ∈𝐶

 ≤ 𝑇𝑚𝑎𝑥  
(14) 

𝑦 ≥  𝑟𝑡𝑐𝑗
𝑥𝑐𝑗

 ∀𝑐𝑗 ∈ 𝐶 (15) 

𝑥𝑐𝑗
∈ {0; 1}   ∀𝑐𝑗 ∈ 𝐶 (16) 

 

The Augmented ε-Constraint Approach 

In this Section, the AUGMEnted ε-CONstraint (AUGMECON) approach is described. It is 

introduced in Mavrotas [178] and Mavrotas and Florios [179] for solving the bi-objective 

MILP model (11)-(16). Indeed, this approach has already been applied successfully for 

solving several other decision problems (e.g., [180,181]).  
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Generally speaking, in a bi-objective optimization problem, the objective function 𝑓(𝑥), 

supposed to be minimized, can be expressed through a bi-dimensional vector 𝑧 =  𝑓(𝑥)  =

 (𝑧1  =  𝑓1(𝑥), 𝑧2  =  𝑓2(𝑥)), being the n-dimensional vector x a feasible solution in the 

feasible region 𝑋 ⊆  ℝ𝑛. Therefore, the following two definitions hold: 

Definition 1 Dominance condition: 

A solution 𝑥′ with (𝑧1 
′ , 𝑧2 

′ ) dominates a solution 𝑥′′ with(𝑧1 
′′, 𝑧2 

′′) if and only if 𝑧1 
′ ≤  𝑧1 

′′ and 

𝑧2 
′ ≤  𝑧2 

′′ and at least one inequality is strictly satisfied. 

Definition 2 Pareto Efficiency: 

A solution 𝑥 ∈  𝑋 is Pareto Efficient if and only if ∄𝑥′ ∈  𝑋 that dominates i t .  

The Pareto Front contains all the Pareto Efficient solutions. The methods proposed for 

solving multi-objective optimization problems can be classified into three different classes: 

a-priori, interactive, and a-posteriori [182]. The a-priori methods (e.g., GP methods) 

assume to know all the preferences before starting the decision-making process, finding 

solutions that respect all of them. In the interactive approaches instead, it is assumed that 

all the preferences are introduced by the decision-maker during the decision-making 

process. Therefore, these methods require several interactions with him/her. Finally, in the 

a-posteriori approaches, all the efficient solutions are firstly generated and then analyzed 

according to the preferences of the decision-maker. The Weighted Sum and the ε-Constraint 

method are the most widely used a-posteriori approaches. 

Regarding the ε-Constraint approach, in case of bi-objective optimization, the following 

optimization problem is defined (17)-(19): 

 

𝑚𝑖𝑛 𝑧1 (17) 

s.t.  

𝑧2  ≤  𝜀2 (18) 

𝑥 ∈ 𝑋 (19) 
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By properly varying the 𝜀2 parameter, right-hand side of the introduced constraint (18), the 

efficient solutions can be determined. However, one issue is related to how setting the 

variation range of 𝜀2. One way is to build a square payoff table, with a number of columns 

(rows) equal to that of the objective functions, through lexicographic optimization. In case 

of bi-objective optimization, the first row of such a 2 × 2 payoff matrix contains 𝑧1
∗

 and 𝑧2̅, 

respectively, denoting the optimal value of 𝑧1 when only it is optimized and the optimal 

value of 𝑧2 when only it is optimized under the constraint 𝑧1 = 𝑧1
∗. In the second row, 

instead, it reports 𝑧1̅ and 𝑧2
∗, where the latter is the optimal value of 𝑧2 when only it is 

optimized while the former is the optimal value of 𝑧1 when only it is optimized under the 

constraint 𝑧2 = 𝑧2
∗. 

In order to avoid generating weakly Pareto efficient solutions, the AUGMECON approach 

is used where the payoff table is firstly derived through the lexicographic optimization and 

then, the variation range of 𝜀2 is determined as [𝑧2
∗, 𝑧2̅]. In addition, it is required that 

constraint (18) has to be binding. Therefore, it is transformed into an equality by 

subtracting a surplus auxiliary variable s. Such an additional variable is also introduced in 

(17) with lower priority, multiplied by 
𝑒𝑝𝑠

𝛿
, where 𝑒𝑝𝑠 represents a user defined constant 

and 𝛿 is computed as 𝛿 = 𝑧2̅ − 𝑧2
∗ (i.e., it is the width of the variation range). The 𝜀2 

parameter is then varied in the range [𝑧2
∗, 𝑧2̅] by a step 𝛿𝜀2

=
𝛿

𝛼
 where α is a user input 

value. 

It is worth remarking that, in order to avoid the trivial solution (i.e., the one in which no 

component is repaired) when only RTmax is minimized, the following constraint is added to 

the formulation (11)–(16): 

𝑦 ≥  𝑟𝑡𝑚𝑖𝑛  ( 1 −  
1

|𝐶|
 ∑ 𝑥𝑐𝑗

)

𝑐𝑗∈𝐶

 
(20) 

where |C| counts the number of components and 𝑟𝑡𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑐𝑗∈ 𝐶  {𝑟𝑡𝑐𝑗
}.  

 

A Multi-objective Large Neighborhood Search 

In order to efficiently solve also medium and large-sized instances, we propose a bi-

objective Large Neighborhood Search (hereafter, denoted as b-LNS). The Large 
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Neighborhood Search (LNS) is a meta-heuristic successfully used in several and also 

different application contexts (e.g., [183–185]). Its main advantage is searching larger and 

complex neighborhoods so that better quality solutions can be found [186]. In particular, 

when the decision problem is defined with very tight constraints, it could be very easy to 

get stuck at a local minimum [187]. The LNS was proposed in Shaw [188] to solve the 

Capacitated Vehicle Routing Problem.  

The main idea is that, starting from an initial solution (e.g., randomly generated), applying 

both destroy and repair moves at each iteration, a better solution can be detected. In order 

to reduce the computational time, it usually starts with a small-sized neighborhood, 

gradually increased during the search [188]. To the best of the author’s knowledge, very 

few scientific contributions in the literature have already proposed a multi-objective version 

of it. In particular, a b-LNS is proposed for solving a bi-objective Tank Allocation Problem 

and a bi-objective Energy-Flexible Flow Shop Scheduling problem, respectively, in Schaus 

and Hartert [189] and Oddi et al. [190]. In the following, a b-LNS is specifically proposed 

for solving the b-CRP outlined in Algorithm 2. In the b-LNS, the destroy moves are those 

that aim at removing components from the current solution (i.e., remove moves), while the 

repair ones are those aimed at adding new components in the current solution (i.e., add 

moves).  

The b-LNS receives a Time Limit (TL), a user-selected parameter 𝛾 and two integer number 

(𝑛𝑢𝑚𝑅 and 𝑛𝑢𝑚𝐴) denoting, respectively, the number of both remove and add moves 

implemented. The parameter 𝛾, used only in two of the moves described in the following, 

denotes the percentage of either the components already repaired in the current solution that 

have to be removed or the components not repaired in the current solution that have to be 

selected in the new solution. It returns the set 𝑆𝑏𝑒𝑠𝑡  of non-dominated solutions. 

 

Algorithm 2 b-LNS outline 

𝐈𝐧𝐩𝐮𝐭: 𝑇𝐿, 𝛾, 𝑛𝑢𝑚𝑅 , 𝑛𝑢𝑚𝐴; 

𝐎𝐮𝐭𝐩𝐮𝐭: Set of non − dominated feasible solutions 𝑆𝑏𝑒𝑠𝑡 

1: 𝑆𝑏𝑒𝑠𝑡: =  ∅ 

2: 𝑠𝑜𝑙 ∶= 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏(); 

3: 𝑆𝑏𝑒𝑠𝑡  := 𝑆𝑏𝑒𝑠𝑡  ∪  {𝑠𝑜𝑙}; 
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4: 𝒘𝒉𝒊𝒍𝒆 ! 𝒔𝒕𝒐𝒑(𝑇𝐿) 𝒅𝒐 

5: 𝑅𝑀 ∶= 𝐒𝐞𝐥𝐞𝐜𝐭𝐑𝐚𝐧𝐝𝐨𝐦(𝑛𝑢𝑚𝑅); 

6: 𝐼𝑀 ∶= 𝐒𝐞𝐥𝐞𝐜𝐭𝐑𝐚𝐧𝐝𝐨𝐦(𝑛𝑢𝑚𝐴); 

7: 𝐢𝐟 𝑅𝑀 ≠ 0 ∨  𝐼𝑀 ≠ 0 𝐭𝐡𝐞𝐧 

8: 𝑠𝑜𝑙 ∶= 𝐍𝐞𝐢𝐠𝐡(𝑅𝑀, 𝐼𝑀, 𝑠𝑜𝑙, 𝛾); 

9: 𝐞𝐥𝐬𝐞 

10: 𝐼𝑀 ∶= 𝐒𝐞𝐥𝐞𝐜𝐭𝐑𝐚𝐧𝐝𝐨𝐦(𝑛𝑢𝑚𝐴 − 𝟏)  +  𝟏; 

11: 𝑠𝑜𝑙 ∶= 𝐍𝐞𝐢𝐠𝐡(𝑅𝑀, 𝐼𝑀, 𝑠𝑜𝑙, 𝛾); 

12: 𝐞𝐧𝐝 𝐢𝐟 

13: 𝐢𝐟 ! 𝐃𝐨𝐦𝐢𝐧𝐚𝐭𝐞𝐝(𝑠𝑜𝑙) 𝐭𝐡𝐞𝐧 

14: 𝑆𝑏𝑒𝑠𝑡 ∶=  𝑆𝑏𝑒𝑠𝑡  ∪  {𝑠𝑜𝑙}; 

15: 𝐞𝐧𝐝 𝐢𝐟 

16: 𝑠𝑜𝑙 ∶= 𝐒𝐞𝐥𝐞𝐜𝐭𝐑𝐚𝐧𝐝𝐨𝐦(|𝑆𝑏𝑒𝑠𝑡|); 

17: 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 

 

The routine InitialSolution generates an initial solution in which the components to repair 

are selected by decreasing repair times; equal, by increasing breakage probability; equal, by 

decreasing repair cost. In any case, the selection is performed respecting both the total 

budget (B) and the total repair time (Tmax) available. The routine stop returns TRUE if TL is 

reached; FALSE, otherwise.  

The routine SelectRandom receives an integer number (i.e., 𝑛𝑢𝑚𝑅 or 𝑛𝑢𝑚𝐴) and returns an 

integer number, randomly generated, between 0 and the input number, representing the id 

of either a remove or an add move to apply (steps 5−6). In steps 7−12, a new solution is 

found by starting from the current one and by applying the moves selected in the previous 

steps. In particular, the routine Neigh applies the remove move and the add move to the 

current solution sol. The Remove moves are detailed in the following: 

(1) RemoveRandom: randomly selects a component to be removed from those repaired 

in sol; 

(2) RemoveBP: selects the component with the lowest breakage probability to be 

removed from those repaired in sol; 

(3) RemoveTime: selects the component with the highest repair time to be removed 

from those repaired in sol; 
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(4) RemoveBPT: selects the component cj to be removed from those repaired in sol 

(i.e., 𝐶(sol)) such that: 

𝑐𝑗: =  argmin
𝑐𝑘 ∈  𝐶(𝑠𝑜𝑙)

{𝑏𝑝𝑐𝑘
+  

1 −  𝑟𝑡𝑐𝑘

𝑇𝑚𝑎𝑥
𝑠𝑜𝑙

}  
(21) 

where 𝑇𝑚𝑎𝑥
𝑠𝑜𝑙  represents the maximum repair time over all the repair times of the 

components selected in sol; 

(5) RemoveGamma: randomly selects γ components already repaired in sol to be 

removed. 

It is worth remarking that more than one component may be individuated by the 

RemoveBP, RemoveTime, and RemoveBPT moves to be potentially removed. This is due 

to the fact that, especially in the application context of this work, more than one component 

may satisfy the requirements imposed by each of these moves. 

The Add moves are described in the following: 

(1) AddRandom: randomly selects a component to be added from those not repaired in 

sol; 

(2) AddBP: selects the component with the highest breakage probability to be added 

from those not repaired in sol; 

(3) AddTime: selects the component with the lowest repair time to be added 

from those not repaired in sol; 

(4) AddBPT: selects the component cj to be added from those not repaired in sol (i.e., 

C \ 𝐶 (sol)) such that: 
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𝑐𝑗: =  argmin
𝑐𝑘 ∈𝐶\ 𝐶(𝑠𝑜𝑙)

{𝑏𝑝𝑐𝑘
+  

1 −  𝑟𝑡𝑐𝑘

𝑇𝑚𝑎𝑥
′

} 
(22) 

where 𝑇𝑚𝑎𝑥
′

 denotes the maximum repair time of the components not repaired in 

the solution sol; 

(5) AddGamma: randomly selects γ components not repaired in sol to be added. 

It is worth noting that the add moves are applied respecting the constraints of budgeting and 

the total repair time. It means that, for instance, the component randomly chosen in the 

AddRandom move is checked, respecting both the constraints. Moreover, the RemoveBPT 

aims at selecting the component to remove that is a trade-off between a low breakage 

probability and a high repair time. Similarly, the AddBPT adds the component that is a 

good compromise between a high breakage probability and a low repair time. In addition to 

the moves described above, there are two moves (Switch and NoMove), shared between the 

remove and the add moves and applied in the case in which the move id is, respectively, 

equal to 6 and 0. In particular, the Switch move randomly selects one component repaired in 

sol and one component not repaired in sol such that the former is removed and the latter is 

added in the new solution, considering the respect of the problem constraints. While the 

NoMove move does not apply any remove/add move to sol. However, we avoid the 

situation in which both the ids are equal to 0 and then that, at an iteration, no components 

are removed and added from/to sol (steps 10-11). 

The routine Dominated (step 13) returns TRUE if sol is dominated; FALSE, otherwise. In 

order to establish if a solution is dominated, it is compared with all the non-dominated ones 

found so far and already stored in 𝑆𝑏𝑒𝑠𝑡 . If a new non-dominated solution sol is found, it is 

added to 𝑆𝑏𝑒𝑠𝑡 and then, non-dominated solutions already found but dominated by sol are 

consequently removed from 𝑆𝑏𝑒𝑠𝑡 . 

In step 16, the routine SelectRandom returns a randomly generated number that is the 

position in 𝑆𝑏𝑒𝑠𝑡of the new starting solution to select at the next iteration. This step is 

introduced to shake the algorithm, trying to explore different areas of the searching space. 
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It is worth remarking that, in order to speed-up the b-LNS, each time a new solution is 

found the value of the objective (11) can be computed as the gap with that of the current 

solution. More specifically, let 𝐵𝑃(𝑠𝑜𝑙) and 𝐵𝑃(𝑠𝑜𝑙′) be respectively the values of (11) 

with reference to the current solution sol and to the solution sol’ found after applying a 

remove and an add move to sol. Let 𝐶𝑟𝑒𝑚𝑜𝑣𝑒  ⊆  𝐶(𝑠𝑜𝑙) and 𝐶𝑎𝑑𝑑  ⊆  𝐶 \ 𝐶 (𝑠𝑜𝑙) be the list 

of components to remove and to add, respectively. Then, 𝐵𝑃(𝑠𝑜𝑙’) can be computed as 

𝐵𝑃(𝑠𝑜𝑙’) =  𝐵𝑃(𝑠𝑜𝑙) +  ∑ 𝑏𝑝𝑐𝑗𝑗 ∈ 𝐶𝑟𝑒𝑚𝑜𝑣𝑒
 − ∑ 𝑏𝑝𝑐𝑖𝑖 ∈ 𝐶𝑎𝑑𝑑

. 

Concerning 𝑅𝑇 𝑚𝑎𝑥, let 𝑅𝑇𝑚𝑎𝑥(𝑠𝑜𝑙) and 𝑅𝑇𝑚𝑎𝑥(𝑠𝑜𝑙’) be the maximum repair time of 

sol and sol’, respectively. Let 

𝑟𝑡̅ = 𝑚𝑎𝑥𝑐𝑗 ∈ 𝐶𝑎𝑑𝑑
{𝑟𝑡𝑐𝑗

} and 𝑟𝑡̂ = 𝑚𝑎𝑥𝑐𝑗 ∈ 𝐶𝑟𝑒𝑚𝑜𝑣𝑒
{𝑟𝑡𝑐𝑗

} 

be the maximum repair time of the components belonging to 𝐶𝑎𝑑𝑑
 and 𝐶𝑟𝑒𝑚𝑜𝑣𝑒  

respectively. If 𝑅𝑇 𝑚𝑎𝑥(𝑠𝑜𝑙) ≤ 𝑟𝑡 then 𝑅𝑇𝑚𝑎𝑥(𝑠𝑜𝑙’) = 𝑟𝑡, else if 𝑅𝑇 𝑚𝑎𝑥(𝑠𝑜𝑙) > 𝑟𝑡̂ then 

𝑅𝑇 𝑚𝑎𝑥(𝑠𝑜𝑙′)  =  𝑅𝑇 𝑚𝑎𝑥(𝑠𝑜𝑙) , otherwise  

𝑅𝑇max(𝑠𝑜𝑙′)  = 𝑚𝑎𝑥𝑐𝑗∈(𝐶 (𝑠𝑜𝑙)\𝐶𝑟𝑒𝑚𝑜𝑣𝑒)∪𝐶𝑎𝑑𝑑
{𝑟𝑡𝑐𝑗

}. 

Since the number of components to add and remove at each iteration is less than |𝐶̅(𝑠𝑜𝑙)| 

(at most 𝛾|𝐶̅(𝑠𝑜𝑙)|), the time to compute 𝑅𝑇 𝑚𝑎𝑥(𝑠𝑜𝑙′) is on average less than the time to 

compute the maximum on the whole set 𝐶̅(𝑠𝑜𝑙). In the worst case, the complexity of each 

iteration of the b-LNS is O(Γlog(Γ)), where 𝛤 =  𝑚𝑎𝑥{|𝐶̅|, |𝐶 \ 𝐶̅|}. Indeed, in the worst 

case, the complexity of RemoveBP and RemoveTime is O(|𝐶̅|𝑙𝑜𝑔(|𝐶̅|)), the complexity of 

AddBP and AddTime is O( | 𝐶 \ 𝐶̅|𝑙𝑜𝑔(|𝐶 \ 𝐶̅|)). 

 

4.3.2.4 Computational results 

Experimental setting 

The parameter settings are fixed in collaboration with a domain expert. Moreover, seven 

instances are generated and grouped into three sets, namely small (i.e., I20, I40, I80), 

medium (i.e. I160, I320) and large (i.e. I640, I1280) as reported in Table 22. 
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Table 22 Parameter settings and instances generation 

Parameter Value 

B 170000 €  

Tmax 1440 min 

Cwork 30 €/h 

ΔT 1month  

Instance name |C|  

I20 20  

I40 40  

I80 80  

I160 160  

I320 320  

I640 640  

I1280 1280  

 

Each instance was randomly generated from the case study distribution. It is worth 

remarking that the largest number of components is 1280 since it is greater by far than the 

number of components of very complex case study like the one considered, hence it is not 

reasonable to have more than that.  

The AUGMECON method was run with an increasing step equal to one, while eps and the 

total time limit were set to 104 and 3600 seconds, respectively. Furthermore, each MILP, at 

each iteration of AUGMECON, was also solved with a CPU time limit of 3600 seconds. 

Concerning the b-LNS, TL was set to 3600 seconds. Its results were collected in specific 

time instants, namely 0.1, 0.2, 0.5, 1, 2, 3, 5, 10, 20, 30, 50 seconds, then from 100 to 1000 

seconds in steps of 100 and from 1000 to 3600 seconds in steps of 200. However, for the 

sake of simplicity, only the best results obtained are reported. The γ parameter was set to 

0.20 for both small and medium sets. Instead, for large instances, it was varied from 0.05 to 

0.20, and the best value found experimentally was taken. Specifically, for I640 and I1280, 

it was fixed to 0.19 and 0.09, respectively. 

The results of both AUGMECON and b-LNS were evaluated considering the following 

multi-objective metrics: 
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• the number of non-dominated solutions (η); 

• the number of non-dominated solutions of one of the two approaches that are 

actually dominated by the other (𝜂̂); 

• Spacing (S), i.e., a metric introduced in Schott [191] that measures the range 

variance of neighboring solutions in the front. In other words, it measures the 

distribution of the solutions along the front, and it is defined as follows: 

𝑆 =  √
1

𝜂
 ∑(𝑑𝑖 − 𝑑̅)

2

𝜂

𝑖 = 1

 
(23) 

 

where 𝑑̅ is the average of all the distances 𝑑𝑖, for all i = 1, . . . , η, and the ith 

distance 𝑑𝑖 is computed as: 

𝑑𝑖  =  𝑚𝑖𝑛
𝑗 ∈ 𝐹∶ 𝑖 ≠ 𝑗

{|𝐵𝑃̃𝑖 − 𝐵𝑃̃𝑗| + |𝑅𝑇̃𝑖
𝑚𝑎𝑥 − 𝑅𝑇̃𝑗

𝑚𝑎𝑥|} (24) 

where F denotes the front, whereas 𝐵𝑃̃𝑖 and 𝑅𝑇̃𝑖
𝑚𝑎𝑥  represent, respectively, the normalized 

value of the two objective functions of the ith non-dominated solution. For example, 𝐵𝑃̃𝑖 is 

computed as follows: 

𝐵𝑃̃𝑖  =  
𝐵𝑃𝑖  −  𝑚𝑖𝑛

𝑗 ∈ 𝐹
𝐵𝑃𝑗

𝑚𝑎𝑥
𝑗 ∈ 𝐹

𝐵𝑃𝑗  − 𝑚𝑖𝑛
𝑗 ∈ 𝐹

𝐵𝑃𝑗

 (25) 

 

It is worth remarking that the smaller the S value, the higher is the diversification of F. 

 

Numerical results 

Table 23 reports the numerical results of the experiments. Considering the small- and the 

medium-sized instances, both approaches always give the same front and then the same S 

value. In particular, on the small instances, the computational time required by the 

AUGMECON (i.e., 48.51, 92.55, 139.74, respectively) is higher by far than that of b-LNS 

(i.e., 0.5, 0.5, 0.5 seconds, respectively). On I160, the percentage increment of the 

computational time required by AUGMECON (i.e. 223.39 seconds) with respect to that of 
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b-LNS (i.e., three seconds) is 7346%. Finally, on I320, the computational time required by 

AUGMECON is higher by far than that of b-LNS, i.e., 640 seconds against 100 seconds. 

 

Table 23 Numerical results of experiments on small, medium and large sets. 

  
AUGMECON  b-LNS 

 
Instance η 𝜼̂ S  η 𝜼̂ S 

Small 

I20 9 0 0.069  9 0 0.069 

I40 13 0 0.055  13 0 0.055 

I80 12 0 0.1  12 0 0.1 

Medium 
I160 12 0 0.083  12 0 0.083 

I320 8 0 0.155  8 0 0.155 

Large 
I640 8 0 0.038  8 0 0.038 

I1280 6 0 0.057  9 1 0.042 

 

 

 

Figure 10 Computational time of AUGMECON and time for the best front of b-LNS. 

As for the large set of instances, on I640, both approaches give the same front. The 

computational time required by AUGMECON is higher than that of b-LNS, i.e., 1409.45 

seconds against 500 seconds, respectively. Instead, on I1280, AUGMECON, which also 
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reaches the time limit, returns six non-dominated solutions. For b-LNS, η is nine, but one 

solution is actually dominated by those of AUGMECON.  

In order to obtain a better front, AUGMECON was run without a time limit, but after 12 

hours of computation, it failed to finish, fully saturating the memory. The time required by 

b-LNS to return the best front on I1280 was 2600 seconds. Comparing the fronts obtained 

by the two approaches, AUGMECON was not able to find the three solutions with lower 

values of BP. Instead, the solution with a higher value of BP for b-LNS was actually 

dominated by one solution found by AUGMECON. 

In general, as expected, the computational times of AUGMECON are on average about two 

orders of magnitude greater than those of b-LNS for obtaining the same front (see Figure 

10), although both the solution methods are comparable from the non-dominated solutions 

point of view. Indeed, AUGMECON on average solves 3157, 8624 and 20098 MILPs on 

small, medium and large sets, respectively. 

Furthermore, b-LNS never reaches the time limit, whereas AUGMECON reaches one hour 

of computation on I1280. For small and medium sets, the execution time of b-LNS is lower 

than 100 seconds, whereas for large sets, whatever the value of γ, it always requires less 

than 2600 seconds. It is noteworthy that AUGMECON uses CPLEX for solving each 

MILP, which runs in multi-threaded mode exploiting all eight threads of the processor. 

Instead, b-LNS runs sequentially. 

Regarding the γ parameter, it is worth noting that b-LNS returns the best results with high 

values up to I640, whereas small values are used for I1280, as already anticipated in the 

previous section. In fact, the parameter γ denotes the percentage of components in a 

solution that has to be removed/added. In this way, it represents a perturbation (i.e., 

shaking) applied to the search space. Numerical results suggest that, for small/medium 

instances, shaking the current solution a lot may help the algorithm finding new non-

dominated solutions. Instead, for large instances, shaking a bit at a time is preferable. This 

phenomenon mainly depends on the time needed to execute the AddGamma and the 

RemoveGamma moves. Indeed, with high values of γ, both moves require computational 

times to be executed higher than those needed with small values. Therefore, few moves can 

be applied in the CPU time limit of 3600 seconds. This may have a negative impact on the 
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large instances where the solution space increases. Figure 11 shows the trend of 𝜂̂ on I1280, 

by varying the value of γ from 0.05 to 0.20. In particular, with higher values (γ ∈ [0.15, 

0.20]), the b- LNS performance deteriorates since its results are worse than those obtained 

with lower values of this parameter. 

 

Figure 11 Values of 𝜼̂ on I1280 varying the parameter γ . 

 

4.3.3 Control layer: A data-driven analysis of the moves effectiveness 

In this section, the effectiveness of the moves of b-LNS is studied through a data-driven 

analysis performed on I1280. On it, in fact, b-LNS provides more non-dominated solutions 

than those detected by AUGMECON (which reaches the one-hour time limit) but with a 

value of 𝜂̂ equal to one. This means that one of the non-dominated solutions of b-LNS is 

actually dominated by AUGMECON. The data-driven analysis is carried out by running b-

LNS on I1280 for 100 seconds, gathering information on a total number of 6,491,782 pairs 

of moves. Each pair is made up of both a Remove and an Add move and has been classified 

as either an ND or D pair in the case in which it returned either a Non-Dominated or a 

Dominated solution, respectively. 

Table 24 reports the percentage of times in which a given pair of moves has been selected 

and has been classified as an ND pair (i.e., it has been effective). Among the 6,491,782 
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pairs of moves used in 100 seconds, 204 of them have been effective, giving a non-

dominated solution. In particular, the most profitable remove move is RemoveTime, i.e., in 

almost 31.37% of cases, while the second most profitable one is NoMove (i.e., 21.57% of 

cases). The most profitable Add move is AddGamma, in about 52.45% of cases. It is worth 

noting that each solution has 13.89 components on average, and then AddGamma adds 

three components on average. The second most profitable Add move is AddTime, in about 

14.22% of cases. The pairs of moves (RemoveBP, AddGamma), (NoMove, AddTime), 

(RemoveTime, AddGamma) and (RemoveRandom, AddGamma) perform the best. It is 

worth noting that all of them add more components than those removed (at most one at a 

time). 

The Switch move is effective only in 8.33% of cases, and it is also the most time-

consuming move. In addition, RemoveBPT and AddBPT are effective in only 4.90% and 

4.58% of cases, respectively. For this reason, all of these three moves may be candidates to 

be removed from the set of available moves. Therefore, b-LNS is run on I1280 without 

Switch, RemoveBPT or AddBPT moves, obtaining η = 9 (greater than that of 

AUGMECON—equal to six) but with 𝜂̂ equal to zero, meaning that no solution is 

dominated by those of AUGMECON. Moreover, in this case, the best front is obtained by 

b-LNS in only 1200 seconds. 

 

Table 24 Data-driven analysis of the moves effectiveness. 

 
AddRandom AddBP AddTime NoMove AddBPT AddGamma Switch 

 
(%) (%) (%) (%) (%) (%) (%) 

RemoveRandom 0.49 0.49 0 0 0.98 9.8 0.49 

RemoveBP 0.98 0.49 0 0 0 13.73 0 

RemoveTime 2.45 4.41 1.47 5.39 0.98 13.73 2.94 

NoMove 4.41 1.47 10.29 0 1.47 3.92 0 

RemoveBPT 0 0.49 0 1.47 0 2.94 0 

RemoveGamma 1.47 0.49 2.45 0 1.96 3.43 0 

Switch 0 0 0 0 0 4.9 0 
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Figure 12 Solutions generated by b-LNS on I160. 

 

Figure 12 shows the b-LNS execution on I160. In particular, each point represents a new 

nondominated solution generated during a specific iteration. The arc going from point p to 

point p’ indicates that the non-dominated solution p’ has been generated starting from the 

non-dominated solution p. Points with only ingoing arcs are those that, although they have 

been explored further, have not generated new non-dominated solutions (e.g. the point with 

BP = 2 and 𝑅𝑇max = 0.5). It is worth noting that the solutions concentrate on the 

neighborhood of the solutions belonging to the front (denoted by the points). In particular, 

it is interesting to observe that the higher concentration of those solutions is in the right-

hand side of the plot, where there is the highest density of solutions. This indicates that 

around those solutions b-LNS introduces only small adjustments. In fact, the average length 

of arcs linking points having BP>2.7 and 𝑅𝑇max ≤ 0.17 (i.e., the region with 9 of 12 

solutions) is 0.153, while the average length of other arcs is 0.263. 
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4.4 Data-driven maintenance policy based on Social Network 

Analysis 

In this section, a further approach is proposed, basing the decision support model on the 

network built considering the relationships among components failures. The data-driven 

decision support system developed in this section aims at defining the optimal set of 

components to predictively be maintained in order to achieve high-reliability levels, 

avoiding the occurrence of failures. The analysis carried out in this layer is organized in 

three steps, capitalizing on two predictive analytics techniques, Association Rule Mining 

(ARM) and Social Network Analysis (SNA), and on the optimization of an Integer Linear 

Programming (ILP) model.   

 

4.4.1 Data gathering and management 

The data belong to a medium-sized Italian oil refinery plant, specifically to the topping sub-

plant. Details on the case study are not reported, since they can be found in previous 

paragraphs. The time interval of reference for the analysis regards a period of three years, 

during which operational data (e.g., flows, density, pressures) have been monitored: in case 

of missing data, the mean value of the previous working day has been used to replace them, 

as well as in the case of anomalous measurement reported (e.g., out of scale values). In 

addition, the work orders and maintenance activities required for the components of the 

plants have been considered, compared, and integrated with the notes taken by the 

supervisors of the plant, in order to define whether all the activities performed on the plant 

have been inserted into the information system and to ensure consistency among the two 

information sources. As required by the first layer of the decision support system, the 

integrated data are taken from the CMMS of the refinery.   

 

4.4.2 Data analytics 

Like for the other case studies, the data analytics layer is divided into three stages. 
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4.4.2.1 Preliminary analysis 

Considering the data of the CMMS, the preliminary failure analysis is carried out: in all, 82 

components are monitored in the sub-plant. Statistically, 46 of them have been considered 

for the analysis since they caused 615 failures over the 767 failures in three years, which is 

more than 80%. In order to define the time interval to consider the failures “concurrent”, 

the maintenance department members have been interviewed to understand, based on their 

experience, which interval could be suitable for searching related failures. According to the 

interviewees, the maximum interval is set to two weeks: this means that the relations 

searched in the data concern component failures taking place at a distance of a maximum of 

two weeks.  

 

4.4.2.2 Breakage probability estimation 

Through the ARM, the concurrent failures analysis is carried out: from the data stored in 

the CMMS, information on the failures that occurred on the analyzed asset is extracted to 

identify the sets of components frequently failing together and the corresponding failure 

probability. Indeed, ARM aims at individuating attribute-value conditions frequently 

occurring together: in this way, the knowledge of the asset behavior is deepened by 

extracting previously unknown patterns from the data. Then, the association rules 

describing such relations are mined. An excerpt from the rules extracted is reported in 

Table 25. The rules can be interpreted as follows: a failure of component C15 is followed 

by the failure of C2 within a two-week time interval with the confidence of 0.866, hence in 

88.6% of the cases. Remarkably, when C2 fails, also C15 fails as well in the following two 

weeks. In Appendix B, the list of the components’ ID and their related name is reported.  

 

Table 25 Excerpt of the association rules mined. 

α  → β Confidence 

C15 → C2 0.866 

C2 → C15 1 

C15 → C40 0.657 

C15 → C13 0.657 

C40 → C15 0.92 
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C13 → C15 0.958 

C2 → C40 0.677 

C2 → C13 0.677 

C40 → C2 0.84 

C13 → C2 0.875 

……    

 

4.4.2.3 Decision support model based on Social Network Analysis 

After the breakage probability estimation, performed through the ARM, the Social Network 

Analysis (SNA) is used to relate the components frequently failing together and identify the 

possible failure propagations among the related components. In this context, the graph 

theory underlying the SNA facilitates the understanding of the association among 

component failures, and provides a global view of the interactions among the components 

frequently failing together.  

As defined by Otte and Rousseau [88], a Social Network (SN) is the representation of a 

social structure. It can be described by an ordered pair of vertices (or nodes) and connected 

by edges (E), G=(V, E). The classical application of SNA regards the analysis of social 

structures and the interactions among a set of actors: the actors are the nodes of the 

network, while the interactions are the edges. An SN is generated considering the 

associations among components extracted in the previous step of the analysis. In the current 

approach, the SNA is used to represent and analyze the relations among components 

frequently failing together, which is for representing the association rules mined.  

 Specifically, in the proposed framework, the actors, thus the nodes, are the components, 

while the interactions (arcs) are the concurrent failures: that is, if node i is directly 

connected to node j (i→j), it means that the rule i→j is mined in the previous step, 

indicating that when component i fails, usually components j fails as well. The confidence 

of the rule gives the probability of such a conditional event. The confidence value of the 

rule represents the weight of the arc. 

In order to define which nodes might be more critical in terms of failure probability, two 

SN metrics are applied for the analysis:  
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(a) Out-Degree (OD): is calculated as the weighted sum of the arcs outgoing from 

a node [192]. Specifically, OD represents a measure of how much a node is 

connected to another: the higher the OD, the higher the probability that one of 

the following components fails.  

(b) Betweenness Centrality (BC): is determined as follows: the shortest weighted 

paths between all couple of nodes are determined; the BC value equals the 

sum of the shortest weighted paths on which the node appears [193]. In other 

words, the BC measures how much a node is influent across the network [194] 

since a node having a high BC value can be considered as a bridge among 

separate portions of the network. Thus, if a component fails, the right 

candidate for predictive maintenance would be a component characterized by 

a high BC value. 

In the current framework, the OD (a) is considered an indicator of the risk of failure of 

subsequent components: indeed, the OD is calculated for each node, sorting them in 

descending order. The components at the top of the list should be carefully monitored since 

they represent the most critical ones. The BC (b), instead, is considered when a failure on a 

component occurs: the failed component is definitely replaced, but also a predictive 

intervention on the consequent ones could be performed, with the aim of avoiding the 

propagation of a failure chain across the network. In defining the best set of components to 

be predictively replaced, the decision-maker is supported by an ILP model, whose 

formulation can be interpreted as follows:  

 

max ∑ 𝐵𝐶𝑗𝑥𝑗

𝑗

 
(26) 

∑ 𝑐𝑗𝑥𝑗 ≤ 𝑩𝒎𝒂𝒙

𝑗

 
(27) 

∑ 𝑡𝑗𝑥𝑗 ≤ 𝑻𝒎𝒂𝒙

𝑗

 
(28) 

∑ 𝑅𝑗𝑥𝑗 ≤ 𝑹𝒎𝒂𝒙

𝑗

 
(29) 
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𝑥𝑗  ∈  {0, 1} ∀ 𝑗 (30) 

 

the decision variable xj represents the j components of the assets. It can assume a value of 1 

if component j is selected for the predictive maintenance, or 0, otherwise, as expressed in 

constraint (30). The objective function (26), to maximize, assures that the components 

having the highest BC are selected. Constraint (27) requires that the selection is performed 

according to a predefined maximum budget (Bmax), considering the cost of each component 

(cj). Constraints (28) and (29), similarly, require the selected components to respect a 

maximum amount of time (Tmax) and resources (Rmax) to perform the intervention. Indeed, 

among the data, the time required to replace a component (tj) and the number of operators 

necessary for replacing the component (rj) is known.   

The following bullet list aims at summarizing the main stages of the predictive maintenance 

strategy explained in the previous sections, providing a useful roadmap to be followed by 

the maintenance department.  

During the normal operating conditions of the plant, the procedure proposed in this 

application is the following:  

1. Monitor the components having high values of OD, specifically all the 

components j such that ODj>ODmax in order to detect failures early; 

2. When a failure on component i  is detected: 

2.1 Perform a corrective intervention on i; 

2.2 Extract the set of consequent components using the ARM (all 

components j such that i→j); 

2.3 Create the SN graph and calculate the BCj for all j components; 

2.4 Solve the ILP model (26)-(30);  

2.5 Perform a predictive maintenance intervention on the optimal set of 

components identified in 2.4.  

 3. Return to 1.  

 

 

 



 91 

4.4.2.4 Application of the proposed approach 

Considering all the association rules mined, whose excerpt is reported in Table 25, the 

graph representing the relationships among the component failures is created (Figure 13), 

and the Social Network Analysis is performed. The 46 components represent the nodes of 

the SN, while their relations are the AR identified in the previous step. In all, 724 arcs 

connect the 46 nodes. As noted before, the weights assigned to the arcs are the respective 

confidence values of the corresponding rule. The thickness of each arc is proportional to the 

confidence of the relationship represented. For example, according to the representation, 

the confidence of the rule C41→C15 (confidence = 1.000), is higher than the one of 

C41→C25 (confidence = 0.375).  For the sake of clarity, the weights are not reported in 

Figure 13.  

 

Figure 13 Representation of the Social Network characterized by 46 nodes and 724 arcs 



 92 

The size of the nodes, instead, is proportional to the OD of the node itself; even its color is 

furtherly indicative of the OD: in particular, pink nodes are characterized by a high level of 

OD, while green ones by a lower level and the more intense the corresponding color, the 

higher the OD.  

At this stage of the analysis, the calculation of Social Network Analysis is required, and 

hence, for each node, the OD is determined and reported in Table 26. Then the ODmax 

threshold has to be defined in order to identify the components that need to be carefully 

monitored by the operators: as explained before, the higher the OD, the higher the 

probability of failure of one of the consequent components.    

  

Table 26 Out Degree values of the Social Network’s nodes 

Component OD Component OD 

C33 15.83 C43 10.67 

C28 15.83 C29 10.67 

C46 15.43 C14 10.67 

C20 15.43 C15 10.61 

C45 14.13 C40 10.44 

C19 13.67 C30 10.29 

C4 12.71 C26 10.28 

C25 12.44 C32 10.13 

C18 12.42 C42 10.00 

C1 12.07 C39 10.00 

C3 11.79 C41 9.75 

C5 11.67 C31 9.67 

C13 11.50 C6 9.40 

C24 11.50 C35 9.25 

C37 11.40 C16 9.22 

C2 11.26 C10 9.00 

C7 11.00 C12 8.80 

C44 11.00 C27 8.08 
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C11 11.00 C17 7.00 

C7 11.00 C38 6.00 

C36 10.80 C23 6.00 

C9 10.71 C22 6.00 

C34 10.69 C21 3.00 

 

Undoubtedly, the selection of the ODmax threshold has an impact on the operations of the 

maintenance department members. The higher the threshold value, the lower the number of 

components to be monitored. At the same time, it corresponds to a higher risk of failure. On 

the contrary, if the threshold is too low, there would be a high number of components to be 

carefully monitored, and the effort may not be repaid by the benefit. Considering the values 

reported in Table 26, an ODmax= 14.00 has been identified by company maintenance 

managers as a good compromise since it would require the careful monitoring of five 

components (C33, C28, C46, C20, C45). Lowering the threshold, for instance, to 12, would 

imply the double of the components (C33, C28, C46, C20, C45, C19, C4, C25, C18, C1) to 

be monitored, making this activity more onerous in terms of man-hours.  

When a failure on a component occurs, on the other hand, it is necessary to decide whether 

to perform a predictive intervention on the consequent ones. For this purpose, the ILP 

model presented in the previous section is used. For instance, let us consider the failure and 

the replacement of component C15 (this component presents the highest value of 

Betweenness Centrality - BC). According to the association rules mined and the consequent 

SN created, 40 components (the ones highlighted in yellow in Figure 14) are related to C15. 

Hence, it would not be realistic to replace all of them in advance.  

Therefore, the Betweenness Centrality (BC) value for all the components is calculated and 

given as the objective function of the ILP model, as well as the other data reported in Table 

27, ranking them in descending BC. Such ranking allows us to visualize the most influential 

among the network, i.e., the ones with a higher criticality, at the top of the table; while, as 

we descend along the table, the remaining components will gradually become less 

influential and, therefore, less troublesome.  
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Figure 14 Social Network representation highlighting C15’s consequent components. 

 

Table 27 List of C15's consequent components and their associated repair cost (cj), time (tj), 

number of operators required (Rj) and Betweenness Centrality (BCj). 

Component cj [€] tj [min] Rj BC 

C40 5931 600 2 192.79 

C2 1184 250 1 188 

C13 2300 750 1 104.53 

C42 1311 286 1 74.66 

C39 1274 175 1 74.66 

C25 80 10 3 55.79 
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C41 235 299 1 54.17 

C26 289 300 1 51.66 

C5 2881 223 1 32.58 

C27 190 60 2 30.22 

C3 4094 255 1 20.66 

C34 650 300 1 17.95 

C4 1009 120 2 13.88 

C37 2100 150 3 13.88 

C35 1627 495 1 9.1 

C18 845 90 1 8.43 

C19 2103 66 1 7.81 

C45 735 300 1 7.43 

C1 3074 146 1 6.88 

C9 1281 423 1 5.65 

C36 3288 248 1 5.13 

C16 2500 800 1 4.29 

C6 1010 206 1 1.75 

C12 2118 357 1 1.66 

C43 2950 386 1 0.18 

C29 577 529 1 0.18 

C14 207 299 1 0.18 

C31 1233 607 1 0.09 

C32 402 68 1 0.09 

C30 4063 333 1 0.09 

C46 2930 329 1 0 

C20 5041 122 1 0 

C33 2061 212 1 0 

C28 2302 340 2 0 

 



 96 

The parameters of the work are set in collaboration with the maintenance department of the 

topping sub-plant, considering that a participatory approach allows a larger view of the 

entire context [195]. In addition, this decision enables the decision-makers to be consistent 

with their actual policies. Specifically, the maximum budget allowed for predictive 

maintenance of this plant (𝑩𝒎𝒂𝒙) is set to 3,000 € per week, while the maximum time 

(𝑻𝒎𝒂𝒙) is 350 minutes. In addition, a maximum of 5 operators (𝑹𝒎𝒂𝒙) can take part in the 

predictive maintenance activities. Considering these parameters and the data provided in 

Table 27, after the failure of C15, the results obtained recommend the replacement of 

components C2, C25, and C18, obtaining a total BC value of 252.22 (see Experiment 1 in 

Table 28). As presented in Figure 15, the items C15, C2, C25, and C18 are closely 

connected and are characterized by a vast number of ingoing and outgoing edges, making 

them critical in terms of influence among the network. The available time is saturated, as 

well as the number of operators employed in the operations. The budget needed to satisfy 

the requirement of such a solution, on the other hand, is lower than the 𝑩𝒎𝒂𝒙 (2109 € out of 

3000 €).  
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Figure 15 Social Network representation highlighting the components selected in Experiment 1. 

 

4.4.3 Control layer: what-if scenario 

A sensitivity analysis is performed to understand whether a relevant improvement could be 

obtained by adjusting the parameters. Indeed, budget, time, and human resources allocation 

is a critical activity for decision-makers, especially in large organizations, thus it is 

important to verify the impact of their decision and, possibly, adjust them.   

Increasing the 𝑹𝒎𝒂𝒙, without modifying the other parameters, has no impact on the solution 

found, as presented in Experiment 2 of Table 28; while, increasing the 𝑻𝒎𝒂𝒙 by 25% - 

hence, extending it to 437.5 minutes - allows an improvement of the selected components: 
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C2, C25, and C39 are selected for predictive maintenance (Experiment 3 in Table 28). Even 

in this case, the constraint on 𝑹𝒎𝒂𝒙 is saturated, while budget and time ones are not. 

Leaving 𝑻𝒎𝒂𝒙 unchanged while increasing 𝑹𝒎𝒂𝒙, provides the same solution; hence, it is 

decided to furtherly increase both the 𝑻𝒎𝒂𝒙 up to 525 minutes and the 𝑹𝒎𝒂𝒙 up to 10. The 

solution provided by this scenario recommends the replacement of four components (C2, 

C25, C27, and C39) as reported in Table 28 (Experiment 4). Introducing a further 

increment on the budget, hence increasing the 𝑩𝒎𝒂𝒙 by 25% and 50%, assures the selection 

of 5 (C2, C25, C4, C18, and C39) and 6 (C2, C25, C4, C18, C32, and C39) components, 

respectively. As shown in lines with Experiments 5 and 6 of Table 28, there is no relevant 

increment in terms of objective function: this is justified by the fact that the further selected 

component (C32) has a low value in BC (0.09). Hence, in this case, it may not be 

convenient to increase the budget so much.     

 

Table 28 Summary of the what-if scenarios 

 
Selected  

Components 
BC Tmax ∑ 𝒕𝒋𝒙𝒋

𝒋

 Bmax ∑ 𝒄𝒋𝒙𝒋

𝒋

 Rmax ∑ 𝒓𝒋𝒙𝒋

𝒋

 

Experiment 1 C2, C25, C18 252.22 350 350 3000 2109 5 5 

Experiment 2 C2, C25, C18 252.22 350 350 3000 2109 10 5 

Experiment 3 C2, C25, C39 318.45 437.5 435 3000 2538 5 5 

Experiment 4 C2, C25, C27, 

C39 

348.67 525 495 3000 2728 10 7 

Experiment 5 C2, C25, C4, C18, 

C39 

362.55 700 615 3750 3737 10 9 

Experiment 6 C2, C25, C4, C18, 

C32, C39 

362.65 700 683 4650 4139 10 10 

 

According to the ARs mined, several relationships among component failures have been 

identified. Such failures might not be the ones expected by the plant technicians, even 

though they have extensive experience in the field. Indeed, one of the main theoretical 

contributions proposed in this work is that it is data-driven. Hence, the driver followed for 

defining the components to be replaced is the information extracted by the data, rather than 
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the technical and physical structure of the process. For instance, rule C15→C2 indicates 

that, when a failure occurs on component C15, a controller, the coupling C2 also requires a 

replacement within two weeks, quite likely since the confidence is 0.886. This means that 

the controller C15 and the coupling C2 are likely to be replaced concurrently in a two-week 

time interval. Similarly, the ARs C15→C40 (confidence = 0.657) indicates that in more 

than 65.7% of cases after the failure of the controller C15, even the sealing device C40 has 

to be replaced. The explication of such relationships is evident from the data since the 

application of the proposed approach relies on a solid dataset and an appropriate amount of 

data, which is fundamental to deploy a data-driven framework.  

Considering the prioritization of the components to be replaced, results show that the 

rationale is similar to the mining of the association rules. Indeed, the objective function of 

the ILP model takes into account the influence of each component across the SNA since it 

aims at selecting those having the highest BC, respecting the constraints. Recalling the 

example proposed in Section 4.4.2.4, we can say that when the failure of the controller C15 

occurs, the most critical successors according to their BC value would be C40, C2, C13, 

C42, C39, C25, that are, respectively, the sealing device, the coupling, the insulation, the 

transmitting device, the measurement instrumentation, and the lighting. In all the what-if 

scenarios tested, the coupling and the lighting systems are selected, the instrumentation is 

selected in Experiments 3-4-5-6. In contrast, the other ones are excluded to respect the 

constraints imposed by the company policies in favor of components characterized by 

lower BC and lower resource requirements. For instance, in the “case-base”, i.e., 

Experiment 1, the drainer (C18) is replaced or maintained together with the controller (that 

is, the one effectively experiencing the failure), the coupling (C2), and the lighting (C25). 

As previously stated, data provide the support for the execution of such interventions, even 

though there might not seem to be any actual relations, furtherly highlighting the benefits 

driven by the implementation of the approach. Indeed, the reliability of the plant is ensured 

through the adoption of the proposed framework since the domino effect among failures 

frequently occurring together is limited by anticipating the maintenance of critical 

components.  
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Chapter 5.   

 

Research approach application to the 

extension of failure analysis  

 

Sections 5.1 and 5.2 provide the implementation of the proposed general framework from a 

different point of view. Indeed, data related to the failure analysis traditionally carried out 

by the organization are used, and decision models based on the Social Network Analysis 

are proposed. Two different case studies are developed using this methodology.  

 

5.1 Data-driven extension of failure analysis: the case study of 

an on-shore/off-shore platform 

5.1.1 Data gathering and management 

The input data are the equipment list and their characteristics, in which each item represents 

the plant components, or parts of them, whose maintenance policies are under investigation. 

Moreover, in order to evaluate the frequency of the failure modes, it is necessary to consult 

the maintenance policies currently implemented by the company, as well as the historical 

data of previous failures of the plant components and reliability databases (OREDA, 

EIREDA, or IEEE). The failure rate λ (i.e., number of failures per hour) for each failure 

mode of each equipment is retrieved from them. Moreover, on-field reports are integrated 

into the historical data recorded in the information systems to create a spectrum of analysis 

as accurate as possible. In Table 29, a summary of the units, a brief description and the 

number of items analyzed, and the related failure modes are reported. In all, 501 items and 

31 different failure modes referring to the 15 units are analyzed in this application.  
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Table 29 Summary of the units, items, and the related failure modes 

Unit Description Items monitored Failure modes 

UNIT 100 Oil&Gas Production Wellhead 108 232 

UNIT 130 Production Flowlines 6 27 

UNIT 190 Launching Trap 23 15 

UNIT 200 Oil Production Separation 10 63 

UNIT 220 Crude Oil Transport 22 32 

UNIT 230 Flare and Blow-Down 12 58 

UNIT 360 Gas Compression 26 107 

UNIT 390 Glycol Injection Pumps 44 6 

UNIT 420 Fuel Gas 55 137 

UNIT 450O Oil Wellhead Control Panel 24 58 

UNIT 450G Gas Wellhead Control Panel 24 58 

UNIT 460 
Air Compressor, Air Dryer and Filters 

and Receivers 
88 199 

UNIT 470 Main Power Generation System 24 46 

UNIT 500 Sea Water System 20 42 

UNIT 550 Closed Drain System 15 44 

 

5.1.2 Data analytics 

5.1.2.1 Preliminary analysis 

During the preliminary analysis of the analytics layer, the data collected in the previous one 

are analyzed with traditional methods in order to extract valuable information about failure 

mode, risk events, and maintenance policies. The FMECA is performed at this stage, 

following the recommendation provided in the US Military Standard [196,197]. A bottom-

up approach is adopted for its execution, breaking the system under investigation down to 

identify its elementary components (sub-systems or parts) that are separately analyzed. The 

objective of the breaking-down is, indeed, to provide an accurate description of the failure 

modes, effects, and the criticality itself. The approach followed to carry out the FMECA is 

collaborative. It involves discussing the main features of the system among the 

interdisciplinary groups of people engaged in the system’s functioning at different levels 
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(e.g., O&M engineers, managers, technicians, on-field personnel). In this way, several 

perspectives are taken into account, and a complete understanding of the system is 

guaranteed. Additionally, due to the contributions provided by the multi-disciplinary team 

involved in the FMECA, it is possible to limit the subjectivity characterizing each role and 

to avoid the related uncertainty. In case of disturbances on data, it is possible to clear them 

during this phase since the team has to compare the records on the information system and 

on-field reports. The output of this step is a dataset containing the components of the 

system, the potential failure modes, effects, frequency, severity, and a measure of the 

criticality; this information is used to define actions and follow-ups. Indeed, the 

identification of component criticality is aimed to guide the actions to undertake in order to 

anticipate failures or correct them. In this way,  the components that should be strictly 

monitored are determined so that specific inspection policy can be defined, as well as 

roadmaps for the corrective interventions. These analyses are made by maintenance experts 

that are already aware of company policies in order to make the action and follow-ups 

feasible and coherent with the company maintenance strategy. These outcomes should be 

included in the dataset that will be analyzed in the following steps of the procedure in order 

to enlarge the possible identifiable connections. The FMECA is performed every year to 

reconsider the outcomes on the basis of the events verified during this time interval. In this 

way, the framework is always updated with the real behavior of the system. 

A selection of a panel of experts made up of professional figures taking part in the FMECA 

process has been developed not to categorize the study. It is necessary to gather data from 

the on-field technicians who have a direct view of the processes and failures, as well as 

O&M managers who consider the process from a broader perspective, taking into account 

both the technical aspects related to single equipment and the main features of the whole 

process. Other experts of the maintenance team are necessary to globally extend the study 

to the field of machinery, civil structure, material, design, and process. The participants in 

the discussion panel, in yearly meetings, define how the equipment can fail by identifying 

the failure modes, their effects, and their criticality. Firstly, the functions of the equipment 

have to be identified in order to specify how failures can occur. It is then necessary to 

establish how often a failure event occurs on the specific component for each failure mode. 
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In this work, the attribution of the frequency class is performed according to the parameters 

reported in Table 30.   

 

Table 30 Frequency class assigned to each component failure modes. 

Annual 

Frequency 

Class (AFC) 

Description Increasing Annual 

Frequency – IAF (number 

of events per year) 

Meaning  

0 Practical non-credible 

occurrence 

IAF <10-6 Could happen 

A 

 

Rare occurrence 10-6  IAF <10-4 Reported in this 

industry 

B Unlikely occurrence 10-4  IAF <10-3 Occurred at least once 

in the company 

C Credible occurrence 10-3  IAF <10-1 Occurred several times 

in the company 

D Probable occurrence 10-1  IAF <1 Happens several 

times/year in the 

company 

E Frequent occurrence 1 IAF Happens several 

times/year in one 

location 

 

Five levels – 0 for a low level,  4 for a high one - are used to classify the severity of the 

effects of a failure in a qualitative way. In particular, three different categories are 

evaluated when rating the severity of an effect, i.e., safety, environmental, and assets (Table 

31). The severity assignment does not follow objective criteria, i.e., measurable, but is 

defined by the panel of experts: for example, concerning the severity of the failure on 

production capacity (asset), Severity 1 can be assigned to equipment stoppage, Severity 2 to 

quality deviations of production parameters of the output, Severity 3 or 4 to the propagation 

of the effects, e.g., plant stoppage. The attribution of the criticality corresponding to each of 

the three aspects is performed semi-quantitatively, using the matrix reported in Table 31. 

The Criticality indexes are calculated by multiplying the severity of each effect category 

(safety, environmental, asset) by the annual frequency class: 

• Safety Criticality Index, ICS = Severity Safety * Annual frequency class  

• Production/Asset Criticality index, ICA = Severity Production/Asset * Annual 

frequency class 



 104 

• Environment Criticality index, ICE = Severity Environment * Annual frequency 

class 

The frequency class and severity of effects are then inserted in the risk matrix (Table 31) to 

be compared with the acceptability criteria: the risk matrix is applied to define the critical 

elements through thresholds or criteria of "acceptance" of the criticality.  

 

Table 31 Risk matrix used in this case study 

 

 

Within the risk matrix, it is possible to read the three criticalities of the failure event, and 

therefore assess its acceptability threshold. 

• C3: the risk is tolerable; no further impact reduction measures are necessary, but it 

is sufficient to monitor performance and manage it for continuous improvement. 

• C2: The risk is intolerable; the risk will become tolerable after appropriate control 

measures have been identified and implemented. 

• C1: The risk is intolerable; further impact reduction measures are needed. 

The belonging of each item to one of the three categories is determined considering the 

AFC and discussing the severity of the effects by the multi-disciplinary team. In case of 

uncertainty or disagreement, the worst criticality is assigned. In addition, it is possible to 

calculate the Overall Critical Failure Mode (CFM), representing the overall impact of a 

failure mode on a specific item, considering all the types of effects it has; it is calculated as 

the worst of the three effects (i.e., safety, environmental and assets) of that failure mode. To 
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identify the Criticality of the Item (CI), regardless of the specific failure mode, it is possible 

to calculate the following parameter:  

CI = Min (CFM) (31)  

In other words, the CI is defined by considering the criticality of the most critical failure 

mode. In appendix C, an excerpt of the FMECA document regarding two different items is 

reported to provide an example of the basic information noted. In the current analysis, 1196 

failure modes recorded in the previous five years concerning 501 items have been analyzed. 

For each failure mode, it is specified whether a corrective, cyclical (time-based) or 

condition-based maintenance policy is adopted. Remarkably, the company relies on a 

cyclical maintenance policy for preventing the occurrence of the majority of failure modes 

(693). The condition-based approach, instead, is adopted only in a low number of cases 

(34). The most critical plant section is Unit 100, which shows 248 failure modes.  

 

5.1.2.2 Association Rule Mining 

In the development of the data analytics layer, a top-down approach is followed, firstly 

analyzing the general situation and then exploring further the areas of interest, according to 

this sequence:   

• STEP 1 - Relationship analysis among failure modes, effects, and criticalities of 

the whole plant: this analysis allows company managers to have an overview of 

failure mode and effects on the overall plant to highlight the riskiest components 

of the plant and the related measures of occurrence and severity.   

• STEP 2 - Relationships among failure modes and effects of the single unit: more 

specific analysis of the riskiest plant unit is necessary. In fact, the individual 

functional units may behave differently to the entire production system. This 

analysis aims at highlighting the domino effect among failure modes within the 

unit, focusing on details that may be unclear with the general representation.   

• STEP 3 - Relationships among effects, maintenance tasks, and policies on every 

unit. The decisions made in terms of maintenance policies are included in the input 

dataset for the ARM, allowing the analysis of the repetitive relationships among 

inputs, i.e., the attributes of the FMECA and outputs (e.g., maintenance policies 
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adopted, criticality levels). The objective is the assessment of the maintenance 

policies' effectiveness to identify best practices.  

The thresholds’ setting to define the interestingness of the rules should take into account 

two different factors. On the one hand, the size of the output: low support and confidence 

thresholds can cause the generation of many rules, possibly exponential with regards to the 

input size, yielding several uninteresting relationships. On the other hand, setting high 

thresholds can cause the loss of interesting patterns, leading to ineffective dataset 

exploitation. As noted in [198], there is no absolute optimal measure to set the thresholds; it 

strictly depends on the application case. For this reason, the expertise of the panel of 

experts is required to perform this process consistently. Specifically, for each case 

represented in the case study, the support threshold min_sup is initially set to a very low 

value (e.g., 0.01) and incremented to display the most statistically significant rules. 

The analysis of the total rules at the same time is somewhat unrealistic, even though 

selecting appropriate thresholds means that only the most relevant are considered. In this 

application, the criticality of the items considered is used as a prioritization metric. When a 

failure mode occurs, corrective interventions or control and monitoring actions are 

performed according to the guidelines indicated in Table 32, prioritizing the items 

characterized by a higher criticality (CI). In case of more items belonging to the same 

category, if the interventions cannot be performed simultaneously, the support is used as a 

discriminant (the higher the support, the higher the priority of the item over the concurrent 

ones). 

 

Table 32 Time scale for performing corrective actions or monitoring 

Items criticality 

rate 

Policy adopted 

Criticality Index = 1 The analysis must be started immediately 

Criticality Index = 2 The analysis should be started within 24-48 hours 

Criticality Index = 3 The analysis should be started within a week 

 

Before starting the actual analysis of the dataset, a comparison among different algorithms 

is performed. In this way, it is ensured that the more efficient one is adopted. According to 

the existing literature (e.g., [196,197]), the selected algorithms are FP-Growth and Apriori 
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algorithm. The ARM is performed, and the execution time required for extracting the ARs, 

varying the minimum support threshold, is compared. Each experiment is carried out ten 

times using the software RapidMiner Studio on a two-core processor at 2.70GHz. The 

processing times reported in Table 35 are the mean values obtained for each case. Despite 

both algorithms are processed in a reasonable time, the FP-growth results in being the most 

effective. Hence, it is the one adopted for the case study. 

 

Table 33 Average processing time for the FP-growth and Apriori algorithms, varying the 

minimum support threshold. 

 Min_supp 

 0.010 0.05 0.100 0.200 0.500 

FP-growth 

[sec] 
0.287 0.276 0.275 0.275 0.275 

Apriori [sec] 8.721 8.717 8.601 8.601 6.686 

 

5.1.2.3 Decision support model based on Social Network Analysis 

STEP 1: Relationships among failure modes and effects of the whole plant 

The network reported in Figure 16 is comprehensive of the principal relationships among 

failure modes and effects occurring across the entire production system, as well as the 

annual frequency class of the failure modes and the severity levels assessed in terms of 

asset, environment, and safety. In addition, in order to identify the most critical units and 

items, this information is reported in the network. The ARs’ number and the SN 

characteristics obtained in Step 1 are shown in Table 34, varying the minimum support 

threshold, which is initially set to 0.01, while the minimum confidence threshold is set to 

0.10, leading to the extraction of 1648 association rules. In terms of strength of the rules 

(i.e., confidence), there is no limitation caused by the increase of the support from 0.01 to 

0.05. However, the number of communities does not change incrementing the min_sup 

since the attributes involved in the analysis at this first stage are numerous; hence, none of 

the nodes are separated from the other ones. For the sake of clarity, Figure 16 shows the 

network obtained by increasing the support to 0.05 and the minimum confidence to 0.25 

(370 associations referring to 44 nodes). The number of ARs selected in this case allows 
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both an understandable visual representation and, in parallel, constitutes a considerable 

amount of relationships.  

 

Table 34 ARs’ number and SN characteristics varying the minimum support threshold 

ARs and SN 

characteristics 
min_sup 

 0.01 0.05 0.1 0.2 0.5 

# of ARs 1648 370 179 75 20 

Minimum 

confidence in 

the selected 

range of ARs 

0.10 0.10 0.11 0.22 0.75 

# of 

communities 
1 1 1 1 1 

Out-Degree 

(OD) range 
[0.0; 11.0] [1.0; 8.6] [1.9; 7.0] [0.9;6.6] [6.9; 7.2] 

 

In the network of Figure 16, the thickness of the edges represents the confidence of the rule, 

while the dimension and the color of the node indicate its out-degree level – i.e., the 

weighted sum of its outgoing edges: the smaller the node, the lower the OD is; similarly, 

the colors of the nodes indicate different OD values, following a pink-white-green scale: 

pink nodes are characterized by low OD, white by a medium OD and, the greener they 

become, the higher the OD is. Since the graph is directed, there are reciprocal relationships 

among the nodes. Figure 16 highlights that the most critical functional unit is UNIT100. 

Indeed, it is represented by the biggest and green node among the units, indicating that its 

out-degree is elevated (OD=6.64). As previously noticed, a high OD indicates a strong 

influence of the node across the network; hence, further analysis of the possible chain 

effects in these areas is worthy of investigation. Among the failure modes, the ones 

characterized by the highest out-degree is “Fail to close on demand” (OD=7.67) and “Fail 

to regulate” (OD=7.34). Both the failure modes are linked to the item “Flow control valve”: 

the association rules “Failure Mode = Fail to regulate”→ “Item = Flow Control Valve” and 

“Failure Mode = Fail to close on demand”→ “Item = Flow Control Valve” are 

characterized by support of 0.05 and confidence of 0.65.  
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Figure 16 Relationships among items, criticalities, failure modes and effects of the whole plant; 

node dimension is proportional to the OD (the bigger the node, the higher the OD). Color scale, 

pick-white-green, represents growing OD levels. 

 

STEP 2: Relationships among items, failure modes, and effects of every unit 

The analysis carried out for the whole plant has been repeated for every single unit to 

develop further the knowledge of every single part of the plant. This analysis aims at 

highlighting the domino effect among failure modes within the unit. For example, the 

following SN (Figure 17) reports the relationships regarding failure modes and the effects 

of the Oil&Gas production wellhead unit (unit 100). In order to provide a clear 

representation of the SNs, following the same procedure deployed in Table 34, the 

minimum support threshold is set to 0.10.   

Three communities of nodes are highlighted in the Unit 100 case (Figure 17a, b, and c). 

The first community of nodes reported in Figure 17a, “Item = Pressure indicator” ↔ 
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“Equipment effect = wrong value indication”, indicates two events only related among 

them. In other words, both the rule “Item = Pressure indicator” → “Equipment effect = 

wrong value indication” and “Equipment effect = wrong value indication”→ “Item = 

Pressure indicator” are defined. The support and the confidence of both the rules are, 

respectively, 0.13 and 1.00: specifically, the two attribute-value relationships appear 

together in 13% of the dataset instances and, since the confidence is 100% for both sides of 

the rule, in every instance where “Item = Pressure indicator”, there is also “Equipment 

effect = wrong value indication”, and vice versa. 

Similarly, in Figure 17b, the community is composed of four nodes: one is representative of 

all the failure modes (“Failure mode = all modes”), while the other three nodes regard the 

related effects. Specifically, at the equipment level, the effect that verifies in the case of 

every failure mode is a wrong signal recorded by the distributed computer system 

(“Equipment effect = Wrong signal to DCS”). In contrast, no effect is related to such a 

failure mode at the system and functional level. The rules describing this relationship 

among the failure mode and the three effects are characterized by the highest confidence 

(0.81): “Failure mode = all modes” → “Equipment effect = wrong signal to DCS”; “Failure 

mode = all modes” → “System effect = no effect”; “Failure mode = all modes” → 

“Functional effect = no effect”. 
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Figure 17 Relationships among items, failure modes, and effects of unit 100; node dimension is 

proportional to the OD (the bigger the node, the higher the OD). Color scale, pick-white-green, 

represents growing OD levels.   

 

The community of nodes reported in Figure 17c is more complex: four failure modes are 

represented, as well as two effects at each level and an item. The node “Item = Flow control 

valve” has an important function. Indeed, it represents the joint between two opposite sides 

of the community. If major attention is dedicated to this item indeed, it is possible to 

control all the failure modes and effects related to it. For example, if the failure mode is 

“External leakage process medium”, then in 65% of cases, there is a gas leakage at the 

equipment level (“Failure mode = leakage process medium” → “Equipment effect = gas 

leakage”) and a reduction of delivered gas to the onshore plant (“Failure mode = leakage 

process medium” → “System effect = Reduction of delivered gas to Onshore plant”) occurs 

with the same probability (confidence = 0.65).  
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Remarkably, in the SN reported in Figure 17c, there are two different categories of the 

effects: on the upper side of the SN, we can see the equipment, functional, and system 

effects labeled with “n.a.”. This means that these effects are not assessable. Thus it is not 

possible to monitor or prevent them. On the other hand, effects like “Equipment effect = 

gas leakage” and “System effect = reduction of delivered gas to the onshore plant” can be 

critical in terms of safety or asset integrity. Hence, these aspects will be analyzed further in 

the third step of the data-analytics phase. 

 

STEP 3: Relationships among effects, maintenance tasks, and policies on Unit 100  

 

Figure 18 Relationships among effects, maintenance tasks, and policies of Unit 100; node 

dimension is proportional to the OD (the bigger the node, the higher the OD). Color scale, pick-

white-green, represents growing OD levels. 

 

The relationships among effects, maintenance tasks, and policies are analyzed to assess the 

effectiveness of the maintenance policies adopted and to identify best practices. In Figure 
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18, the interrelations represented regard maintenance tasks and policies, items, effects (at 

all levels), criticality indexes, and severity of Unit 100. In this case, the minimum support 

threshold is set to 0.1, while the minimum confidence at 0.20: 360 rules are presented in the 

SN of Figure 18; according to the procedure deployed in Table 34, these values represent 

the most appropriate trade-offs. It is also is pointed out how the node “Item = Flow control 

valve” should be considered for its influence across the SN. The severity impact of a failure 

on this item is always null for the environmental aspects (“Item = Flow control 

valve”→Severity_ENVIRONMENT = 0, confidence = 1.00), while in terms of asset, the 

following rules are defined:  

• “Item = Flow control valve”→”Severity_ASSET = 0”, confidence =0.72, 

• “Item = Flow control valve”→”Severity_ASSET = 2”, confidence =0.28. 

Generally, the flow control valve is associated with a Criticality index = 2 (confidence = 

1.00). Thus, it can be assumed that there is a need for measures aiming at reducing the 

impact of the effects related to this item.  

From the SN, it is clear that when no effect is shown at a system and functional level, but 

only at an equipment level, the maintenance policy adopted is still corrective, as testified by 

the following rules:  

• System effect = no effect → Maintenance policy = Corrective, confidence = 1.00;  

• Functional effect = no effect → Maintenance policy = Corrective, confidence = 

1.00;  

• Equipment effect = Wrong signal to DCS→ Maintenance policy = Corrective, 

confidence = 1.00;   

• Equipment effect = Wrong value indication → Maintenance policy = Corrective, 

confidence = 1.00;   

However, when the maintenance policy defined for a specific failure mode is corrective, the 

effect related to it could also be non-assessable (n.a.) both at a system and functional level 

(Maintenance policy = Corrective → System effect = n.a., confidence = 0.21; Maintenance 

policy = Corrective → Functional effect = n.a., confidence = 0.21). In this case, the 

functional verification is foreseen with different percentages depending on the level of the 

effect (system, functional, or equipment level):  
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• In case of a non-assessable effect at the equipment level, the functional 

verification is always required (Equipment effect = n.a. → Maintenance task = 

Functional verification, confidence = 1.00); 

•  In case of a non-assessable effect at the functional level, the functional 

verification is required in 81% of the situations (Functional effect = n.a. → 

Maintenance task = Functional verification, confidence = 0.81); 

• In case of a non-assessable effect at the system level, the functional verification is 

required in 83% of cases (System effect = n.a. → Maintenance task = Functional 

verification, confidence = 0.83). 

Several effects are related to a time-based preventive maintenance policy. At the equipment 

level, both gas leakage and no gas flow are prevented through cyclical maintenance 

interventions (“Equipment effect = Gas leakage” → “Maintenance policy = Cyclical”, 

confidence = 1.00; “Equipment effect = No gas flow” → “Maintenance policy = Cyclical”, 

confidence = 1.00), as well as the reduction or absence of gas flow at a functional 

(“Functional effect = Reduction of delivered gas to Unit 190 Launching Trap” → 

“Maintenance policy = Cyclical”, confidence = 1.00; “Functional effect = no gas flow to 

Unit 190 Launching Trap” → “Maintenance policy = Cyclical”, confidence = 1.00) and 

system level (“System effect = Reduction of delivered gas to On shore plant” → 

“Maintenance policy = Cyclical”, confidence = 1.00; “System effect = no gas flow to 

onshore plant” → “Maintenance policy = Cyclical”, confidence = 1.00). 

 

5.1.3 Control layer  

5.1.3.1 An example of a decision-making step based on SNA 

The analysis of the SN is useful for identifying the chain of nodes that leads to high-risk 

events and supports during the control phase of the decision model implementation. For 

example, in the case shown below, a potential misleading maintenance policy application 

leads to high-risk events. The knowledge of this sequence of nodes helps to break this chain 

with the aim of reducing the risk level of the processes under investigation. In Figure 19, 

for example, the SN showing the associations among items, equipment effects, maintenance 

policies, and criticality indexes is reported. The two biggest nodes of the network (i.e., 
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having the highest OD values, so the strongest influence of the node across the network) are 

“Criticality Index = 1” and “Maintenance policy = Corrective”. Moreover, there is an 

association rule between these nodes. Since the Criticality index = 1 indicates the highest 

risk for the plant, further investigation is needed to justify the association with a corrective 

maintenance policy. Specifically, the item associated with these values is the pressure 

indicator.  

If a wrong indication does not affect the functional and system levels in some cases, 

sometimes it implies a wrong setting on the downstream machinery and uncontrolled 

pressure values on the downstream plant. A modification in the maintenance policy is then 

defined to avoid the occurrence of cascade effects: periodical inspection routes are 

established to control the physical integrity of the pressure indicators and specific alerts are 

set on the management system to advise the operators in case of unexpected pressure 

values.    

 

Figure 19 Relationships among effects, maintenance policies and criticality indexes; node 

dimension is proportional to the OD (the bigger the node, the higher the OD). 

 



 116 

5.1.3.2 Procedure validation 

The mining of the ARs on a well-known data-analytics platform ensures that the 

calculations are performed correctly. However, there is a three-step validation of the results 

before and during their implementation.  

1. The first check is performed after the FMECA is carried out. Indeed, the objective 

is to avoid missing data at the first instance and prepare a starting dataset as much 

complete as possible. For this reason, the FMECA is carried out by multi-

disciplinary teams, and the results have to be validated by every one of them, as 

well as by the plant chief. The document is updated every year in order to be 

adjourned with the latest events and keep up with modifications of the plant.  

2. The procedure implemented on the selected software (i.e., RapidMiner, in the case 

study) is double-checked by the engineers in charge of this step. Any possible 

unnoticed error can be fixed before the actual implementation, thanks to this 

control. 

3. During the first stages of the implementation, the failure events occurring are 

compared with the rules extracted to verify if the probability distribution of their 

occurrence and effects reflects the one described by the support and confidence of 

the ARs mined. The beginning of the procedure implementation dates back to 

April 2020. Data concerning the following eight months are considered: in 87.5%, 

the two compared cases correspond, showing an acceptable accuracy of the 

proposed approach.  

The entire process is then reiterated every year once the FMECA is updated. 

 

5.2 Data-driven extension of failure analysis: the case study of 

a hydro-electrical power plant 
The proposed approach is applied to a Brazilian hydroelectric power plant (HPP). It is 

equipped with three hydro generators type Kaplan units, which operate at 166.25 MW. 

Kaplan hydro generators units can work where a small head of water is involved; the 

turbines are applied in sites having a head range of 2–40 m. Since the angles of their blades 

can be modified to adapt to the water flow, Kaplan turbines can also work efficiently at a 
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broader range of water head, allowing for variations in the dam’s water level. Three 

principal systems compose the hydro-generator Kaplan unit: speed governor, turbine 

system, and axis. In all, 152 components have been identified during the FMEA analysis of 

the HPP; thus, they are treated in the failure analysis.  

 

5.2.1 Data collection and management 

The hydroelectric industry requires a high level of availability and reliability. The FMEA is 

regularly carried out on the system to identify components’ criticality and prioritize their 

maintenance. In this way, the risk involved in the production process is monitored; 

however, further knowledge of the HPP can be extracted by implementing the proposed 

approach. The FMEA is performed following the US Military Standard’s recommendation, 

adopting a bottom-up approach: the system under investigation is broken down to analyze 

its elementary components separately. Through the breaking-down, the objective is to 

provide an accurate description of the failure modes, effects, and impact on safety, 

environment, and assets. The main advantage of taking the FMEA as a starting point is that 

several perspectives are questioned so that a complete understanding of the potential 

failures and effects is achieved. Additionally, due to the multi-disciplinary team’s 

contributions in the FMEA, it is possible to limit the subjective bias related to each role and 

avoid the related uncertainty. Finally, in carrying out the FMEA, a dataset containing the 

system’s equipment under investigation, the potential failure modes, and the associated 

effects are created and can be analyzed through the association rule mining. Additional 

information can be added, such as the mean time to repair (MTTR) or the failure mode 

criticalities. Starting from the FMEA has different advantages: on the one hand, it allows 

the company to improve the plant’s knowledge further. On the other hand, the data-driven 

analysis is carried out basing on the expertise of the multi-functional team that is usually 

charged with deploying the FMEA—so benefiting from different and wide-ranges 

perspectives. A collaborative approach is adopted to deploy the FMEA. The HPP’s main 

features are discussed by interdisciplinary groups of people involved in the system’s 

operations at different levels (e.g., maintenance engineers, managers, on-field technical 

personnel). The dataset structure used as a starting point for the data-driven analysis is 
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reported in Table 35. Specifically, data refer to the FMEA traditionally carried out by the 

company and regard: 

1. System: one of the three main systems composing the HPP; 

2. Name: one of the 152 components relevant for the study; 

3. PFM: potential failure mode occurring on the component; 

4. Main functions: effect of the PFM on the main functionality of the 

component; 

5. FR: the failure rate of the component (it can be actual if the FM has 

already occurred or theoretical if the FM is potential); 

6. MTTR: the mean time to repair, expressed in hours; 

7. SAI: the impact of the FM occurrence on the availability of the 

system; 

8. IOP: the impact of the FM occurrence on people; 

9. EI: the impact of the FM occurrence on the environment. 

Attributes 7–9 are evaluated by the multi-disciplinary team members responsible for 

performing the FMEA on a 1:9 scale. 

 

Table 35 Structure of the Failure Mode and Effects Analysis (FMEA) dataset. 

System Name PFM Main Functions FR MTTR SAI IOP EI 

AXIS Generator 

Shaft 

Break Provide rotation 

for electricity 

generation 

0.000001 168 9 7 1 

 

5.2.2 Data analytics 

The second phase of the work regards the analytics execution, considering the FMEA 

dataset as a starting point.  

 

5.2.2.1 Preliminary analysis 

During the preliminary analysis, the attributes identified by the FMEA are taken into 

account. They are selected to consider only the ones relevant for the aim of the analysis. 
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The dataset, whose structure is presented in Table 35, comprises 432 transactions (rows of 

the dataset). The components analyzed are 152, while the distinct PFMs are 113: this means 

that the same failure mode can affect different components. The dimension of the dataset 

and the aim of the application suggest that to extract all the possible association rules 

worthy of investigation and not limit their extraction: null support and confidence 

thresholds are set (min_sup = 0; min_conf = 0).  

 

5.2.2.2 Association Rule Mining  

The second step of the analytics phase requires defining the relevant associations among the 

events extracted from the FMEA dataset. Specifically, relevant information may regard the 

failure modes frequently occurring on different items or the same effects deriving from 

different failure modes. 

This exploratory analysis aims to extend the existing knowledge of the analyzed system. 

The larger the dataset, the more complex the data analysis is: in this sense, data-driven 

techniques overcome the traditional statistical ones, which are no longer able to provide 

useful insights alone, without the need for formulating hypotheses. Hence, the ARM 

selection represents a valid alternative [199] since it allows both the simultaneous analysis 

of a large amount of data and an intuitive results interpretation [72] due to the structure of 

the outcomes. In this sense, it is also easier to involve the non-expert of the data analytics 

field to understand and implement the insights obtained in the data-driven analysis. The 

applications of the ARM are widespread and can be found in different fields, such as the 

operations and production-related ones; however, the first one regards the extraction of 

hidden patterns from large datasets for marketing scopes [176]. 

 

5.2.2.3 Data-driven decision model based on Social Network Analysis 

The ARs among all the attributes explained in Table 35 are mined. In all, 4147 associations 

among 362 itemsets are extracted and are represented using the open-source software 

Gephi. To limit the study to the relevant associations and to be able to analyze them 

properly, the following procedure is applied: 

1. Create the SN using all the ARs; 

2. Determine the most interesting node based on the OD; 
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3. Filter the ARs and create more specific SNs, limiting the analysis to the 

nodes considered more relevant;  

4. Formalize the information extracted. 

The turbine node has the highest OD (4.645) if compared to the axis (4.301) and the speed 

governor (4.419); hence, the ARs referring to this portion of the HPP is extracted. 

Therefore, the ARs referring to the turbine are extracted to focus the analysis on this branch 

of the system primarily. This filter leads to the mining of 1248 ARs (127 itemsets). To 

focus on the most relevant portions of the network, the attributes Item, PFM, and Functions 

are taken into account, creating an SN composed of 102 nodes and 308 arcs. 

Interestingly, as reported in Figure 20, 13 communities of nodes originated, considering 

these ARs.  
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Figure 20 Social Network representing the relationships between Item, Potential Failure Mode 

(PFM) and Functions of the turbine system: (a–m); represent the thirteen communities of nodes 

originated from the analysis 
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This structure indicates that not all the nodes are connected among the others, limiting the 

potentiality of spreading their occurrence across the network. Indeed, if the nodes are not 

connected among them, there is no relation among the events represented by such nodes. 

This aspect limits the attention that the maintenance managers have to pay to the so-called 

domino effect. In particular, eight networks simply represent the connection among the 

item, the related function, and failure modes: this information is not new since it can be 

derived from the FMEA with no reason for extending the analysis through the data-driven 

framework. Indeed, the proposed approach aims to extend the current body of knowledge 

on the existing plant by extracting previously unknown relationships. On the contrary, three 

networks (Figure 20d, e, i) display relevant and previously unknown relationships. Indeed. 

These relationships involve more than one item and several PFM, supporting the 

maintenance managers in identifying potential combined inspections and actions to 

anticipate the potential failures across the plant.  

For example, in Figure 21a—which deploys Figure 20i in detail, it can be noticed that the 

node PFM = External leak acts as a bridge among the two portions of the network: indeed, 

its BC is the highest in the SN (74.67). In this sense, the occurrence of an external leak may 

have an impact on control valves, the oil pump, and the pump drainage system, as 

evidenced in Table 36. The confidence associated with the three rules (PFM = external leak 

→ Item = pump drainage system; PFM = external leak → Item = oil pump; PFM = external 

leak → Item = control valves) is 0.333 since it is equiprobable that, when an external leak 

occurs, the item is one of those listed. These connections highlight the need for establishing 

a protocol for the inspection of the item when an external leak occurs. Specifically, such 

protocol should require the verification of the normal functioning of the items, e.g., the 

flow of the fluid at the desired pressure (Function = promote the flow of fluid at the desired 

pressure → Item = Oil pump), the drainage of the water (Function = Drain the water that 

eventually passes through the inner cover seal → Item = Pump drainage system) and the 

control of the oil flow (Function = Check the oil flow for actuating the gate → Item = 

Control valves). 



 123 

 

Figure 21 Relationships among potential failure modes, items, and functions. (a) refers to 

Figure 20i; (b) refers to Figure 20d. 

The confidence is 100% for the three cases since each function is associated with a single 

item. Similarly, in Figure 21b, the communities of nodes reported in Figure 20e are 

reported. The considerations drawn for Figure 21a can be extended to this community too. 

Indeed, the two items noted in this network (i.e., gate and adduction grid) share a common 

potential failure mode (PFM = deterioration of concrete) that acts as a bridge for the two 

portions of the network. When this failure mode occurs is then essential to check whether 



 124 

both the items are normally functioning or if an intervention is needed. As noticeable from 

Table 37, when the potential failure mode “deterioration of concrete” occurs, the 

confidence of 50% indicates that it regards either the gate or the adduction grid (see the first 

two rules reported in Table 37). 

 

Table 36 Association Rules (ARs) among the PFM, item, and function of the network’s portion 

reported in Figure 21a 

Left-Hand Side Right-Hand Side Supp Conf 

PFM = External leak Item = Pump drainage system 0.011 0.333 

PFM = External leak Item = Oil pump 0.011 0.333 

PFM = External leak Item = Control valves 0.011 0.333 

PFM = External leak 
Function = Promote the flow of fluid at the desired 

pressure 
0.011 0.333 

PFM = External leak 
Function = Drain the water that eventually passes 

through the inner cover seal 
0.011 0.333 

PFM = External leak Function = Check the oil flow for actuating the gate 0.011 0.333 

Function = Check the oil flow for actuating the 

gate 
Item = Control valves 0.056 1 

Function = Drain the water that eventually passes 

through the inner cover seal 
Item = Pump drainage system 0.033 1 

Function = Promote the flow of fluid at the desired 

pressure 
Item = Oil pump 0.033 1 

 

Table 37 Excerpt of the ARs among the PFM, item of the portion of the network reported in 

Figure 21b. 

Left-Hand Side Right-Hand Side Supp Conf 

PFM = Deterioration of concrete Item = Gate 0.011 0.500 

PFM = Deterioration of concrete Item = Adduction grid 0.011 0.500 

PFM = Deterioration of concrete Function = Allow the intake of water 0.011 0.500 

PFM = Deterioration of concrete 
Function = Prevent solid particles from entering the 

turbine 
0.011 0.500 

Item = Gate PFM = Deterioration of concrete 0.011 0.250 

Item = Adduction grid PFM = Deterioration of concrete 0.011 0.333 

Function = Prevent solid particles from entering the 

turbine 
PFM = Deterioration of concrete 0.011 0.333 

Function = Allow the intake of water PFM = Deterioration of concrete 0.011 0.250 

Item = Gate Function = Allow the intake of water 0.044 1.000 

Item = Adduction grid 
Function = Prevent solid particles from entering the 

turbine 
0.033 1.000 

Function = Allow the intake of water Item = Gate 0.044 1.000 

Function = Prevent solid particles from entering the 

turbine 
Item = Adduction grid 0.033 1.000 

 

It is noteworthy to evaluate the impact of a failure on the related items, taking Figure 21a as 

a reference: the ARs involving the item, the measures of the impacts on people, system 

availability, and environment are taken into consideration to create the SN reported in 

Figure 22. According to the experts’ opinion, failures on the three items cause low impact 

at a system availability (Item = Control Valves → System_Availability_Impact = 1; Item = 
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Oil pump → System_Availability_Impact = 1; Item = Pump Drainage System → 

System_Availability_Impact = 1) in all cases, since the confidence associated with these 

rules is 100%. At an environmental level, instead, the pump drainage system and the oil 

pump are associated with a value of 3 on the 1:9 scale, while control valves are less critical 

(1 out of 9). A score of 3 is assigned to the pump drainage system and the control valves, 

while the oil pump is less critical. These evaluations support the decision-makers in 

defining which areas should be monitored first after the occurrence of a malfunctioning, 

prioritizing the interventions in the area where the impact is higher: referring to Figure 22, 

for example, people safety is the primary concern (hence the first aspect to be investigated) 

in case of a failure on control valves, while both people and environment have the priority 

over the impact on system availability in case of a failure of the pump drainage system. In 

this way, the areas characterized by a higher risk are controlled and repaired firstly. 

 

 

Figure 22 Relationships among items, potential failure modes, impact on safety, environment, 

and system availability. 

 



 126 

5.2.3 Control layer 

The last stage of the framework implementation regards the control of the framework 

implementation. For this specific application, the framework is still being implemented, so 

no tangible results can be listed. However, the monitored aspects are the following ones:  

• The occurrence of the PFM and their effects, to analyze whether any benefit has 

already been evident; 

• The evolution of the network describing the relationships among PFM, effects, and 

their impact to analyze whether the implementation of the proposed insights is 

beneficial for the plant.  
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Chapter 6. 

 

Discussion 

 

This session contains the general remarks, implications and insights related to each of the 

applications described in chapter 4 and 5. Specifically, the results are discussed critically 

and the usefulness of the analysis is remarked.  

 

6.1 General remarks on the data-driven decision model based 

on threshold development 
When analyzing refinery processes and maintenance activities, it should be considered that 

some maintenance interventions can be executed without interrupting the production 

processes, while others require a complete stoppage of the sub-plant. In the former case, the 

procedure presented in section 4.1.2.3 can be applied in order to decide whether it is 

preferable to perform a predictive intervention or if it is better to wait for the actual 

breakage of the component. In the latter case, instead, together with the cost of the 

component and the maintenance intervention, the production cost has to be added.  

In particular, given the rule A→B, four cases can occur: 

• Both A and B can be maintained continuing the production process: depending on 

the parameters set in the procedure and on the ones characterizing the rule, it is 

possible to perform a predictive or a corrective intervention. Indeed, these 

interventions do not have an impact on the production process; 

• A can be maintained during the production process, while B requires process 

interruption: in this case, it might be convenient to wait for the actual breakdown 

of component B before intervening on it, while A can be replaced both 

predictively and correctively. If the probability associated with B’s breakage in the 
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chosen timeframe (i.e., 
#{𝐵}

#{𝐷}
= 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝐵)) is high, the functioning of B 

should be monitored utilizing proper KPIs. Moreover, its replacement can be 

planned, and, based on the probability of breakdown, a new component can be 

purchased or ordered.  

• A requires an interruption of the production process, while B can be replaced 

while the sub-plant is operating: in this case, waiting for the breakdown that 

imposes the interruption of the production process is more convenient. Component 

A should be monitored in order to detect the breakage promptly. In addition, if the 

probability of the breakdown is high, the substitutive component should be 

purchased. When the breakdown of component A occurs, B’s maintenance can be 

parallelized or executed after a breakage. 

• Both A and B require an interruption of the production process to be maintained: 

in this case, waiting for the breakdown of one of the two components may result 

conveniently. Strict monitoring of the components could make fault detection 

more timely. Preventively purchasing two new components might also shorten the 

duration of the production interruption. The intervention could be performed on 

both A and B, possibly parallelizing the interventions or sequencing them in these 

conditions. 

When implementing the proposed maintenance policy, it is also essential to schedule the 

updating of the extracted rules. Since the refinery continues processing, further stoppages 

may occur, and additional work orders could be emitted. A clever plan should foresee an 

updating interval proportional to the one chosen for the analysis. In this way, rules 

generated for the last timeframe would not be lost.  

Moreover, during the update of the rules, maintenance department members can choose 

from two different strategies:  

1) consider a fixed interval – three years in the shown application-, hence 

progressively exclude the oldest data; 

2) progressively enlarge the time interval, adding new data to existing ones.  
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For instance, in case of modifications to refinery structure or components characteristics, 

the interval should be shortened. Otherwise, the second alternative should be preferred as it 

provides much more information and requires a limited processing time.  

Expert maintenance members should define the parameters since it represents the core of 

the maintenance policy. For instance, setting values of support (𝜎𝑟𝑢𝑙𝑒 , 𝜎𝑟𝑒𝑝) and 

confidence(𝜎𝑐𝑜𝑛𝑓) too low would imply the execution of predictive interventions even on 

components with a low probability of breakdown. On the other hand, if these parameters 

were too high, a wide range of interventions would be performed after the occurrence of a 

breakdown, overcoming the aim of the predictive maintenance policy. 

Noteworthy, 𝜎𝑟𝑢𝑙𝑒 , 𝜎𝑟𝑒𝑝, 𝜎𝑐𝑜𝑛𝑓 , as well as the time interval,  can be adjusted and modified 

during the run-time, allowing the adaptation of the maintenance policy to refinery 

necessity. For example, if it is required to skimp on maintenance 𝜎𝑟𝑢𝑙𝑒 , 𝜎𝑟𝑒𝑝, 𝜎𝑐𝑜𝑛𝑓   - or at 

least some of them - can be scaled up, reducing the number of predictive interventions and 

maintaining the components only after the actual breakdown. Instead, if it is required to 

increase the safety of the process, support and confidence threshold could be lowered: in 

this case, the number of predictive actions would increase, eliminating the need for future 

corrective interventions. 

 

6.2 General remarks on the data-driven decision model based 

on mathematical programming 

6.2.1 Scalability analysis 

As already remarked, the proposed mathematical programming approach does not require 

higher computational times (i.e., one minute, on average). However, in order to highlight 

the potentiality of the proposed methodology, a sensitivity analysis on the number of 

components is carried out. This aims at testing how the number of components given as 

input may affect the total computational time. For this purpose, 12 different instances are 

generated using the available real data and reasonably estimating the unavailable ones. The 

instances have a number of components ranging from 10 to 20,480, so that the i-th instance 

has 102i−1 components. Each instance is tested five times, and the average computational 

time is considered for both the ARs extraction and the ILP solution. Mining the ARs of 10 
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and 20 components requires, on average, 7 s, while for the 40 components, it takes 21 s, on 

average. In the case of 80 components, 28 s are required on average, while for 160, 320, 

and 640 components, it takes on average about 33, 41, and 56 s, respectively. Increasing the 

number of components to 1280, 2560, and 5120, the ARs are extracted, on average in 67, 

75, and 84 s, respectively, and in any case, it continues to be a reasonable time. In addition, 

also the large-sized instances (i.e., with 10,240 and 20,480 components) can be analyzed in 

a reasonable amount of seconds (i.e., on average, 123 and 180 s, respectively). For what 

instead concerns the total times required by the ILP model, we can conclude that the 

instances with 10, 20, 40, 80, 160, 320, 640, and 1280 components are solved in less than 1 

s, on average. Moreover, the instances with 2560, 5120, and 10,240 components are solved 

on average in 1.33 s. Finally, the instance with 20,480 components is solved in about 3.2 s. 

These experiments remark that the proposed methodology scales well with the number of 

components.  

 

6.2.2 Update intervals and plant modifications 

An issue worthy of discussion regards the databases update. Indeed, during the application 

of the maintenance policy, other blockages may occur, as well as other maintenance 

activities, leading to AR changes. The update interval depends on the specific production 

process: in our case study, an update interval proportional to ΔT defined by members of the 

maintenance department, i.e., monthly, is a valid option. Moreover, the maintenance policy 

implementation modifies the correlations among component breakage. Thus, the database 

should be updated by adding new data gathered within the update interval (e.g., ΔT ) and 

removing the oldest ones (i.e., related to the oldest update interval) to take into account the 

effect of the policy itself. Parameters setting surely has an impact on the set of components 

to maintain. For instance, the minimum support threshold could be critical: setting a high 

min_sup value implies the exclusion of some ARs from the analysis. On the contrary, a 

value too low may cause an increment of the time to execute the maintenance policy. 

However, in the current application, the optimal solution is computed in reasonable time 

also in the cases in which a high number of components is considered. However, if the 
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amount of data stored in the database is significantly higher (e.g., in the case of streaming 

data), an increment of the min_sup could speed up the analysis.  

It is worth noting that any structural modification of the (sub-)plant, as well as any other 

change in terms of components’ characteristics, limits the available data validity. In the 

process industry, like the oil refinery considered in the case study, this is a reasonable 

hypothesis since structural modifications are very rare. Otherwise, it is necessary to create a 

new dataset collecting new data on the (sub-)plant blockages, components breakages, and 

maintenance activities.  

After the experimental campaign carried out on a real-life case study, we can conclude that 

two are indeed the main limits of the proposed methodology: the number of available data 

and the fact that the focus is on a sub-plant at a time. In fact, the breakage of a component 

in a sub-plant could depend on the blockage of upstream sub-plants. Finally, one can 

observe that the extraction of the ARs depends on the number of components. However, it 

is de facto performed before the sub-plant is monitored, and therefore, it is a one-time 

procedure that requires at most 180 s in the case study with 20,480 components. While the 

computational time required by the optimization solver may increase in the cases with 

many components, it remains reasonable in any case. 

 

6.3 General remarks on the data-driven decision model based 

on multi-objective optimization 
The proposed approach aims to develop a predictive maintenance policy to identify the 

optimal set of components to replace for maximizing the plant reliability and minimizing 

the maximum time spent for repairs. This problem, modeled through bi-objective MILP, 

supports maintenance managers in implementing an effective maintenance policy, 

considering not only breakage probabilities but also resource constraints. The current 

approach is entirely data-driven since all parameters are derived from data on past failure 

events, are extracted from data on component characteristics, are constants provided by 

domain experts, or are breakage probabilities estimated by Algorithm 1. In this way, the 

proposed approach can (1) be applied to different application contexts, and (2) does not 

require parameter tuning. Moreover, the input parameters are those known at the moment of 
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system stoppage. The proposed approach adapts well to changes in working conditions 

(e.g., B, Tmax, repair costs, and the number of operators needed for repairing each 

component). If the working conditions do not change, all available historical data on 

breakages can be used to estimate probabilities better. Otherwise, the oldest information 

can be weighted less with respect to the newest, or a sliding time window of observation 

can be used. 

Additionally, depending on the plant characteristics, the decision-makers should define 

whether, considering the whole plant, to limit the implementation of the predictive 

maintenance policy to its portion or most critical components.  

Considering the impact of the approach with a broader perspective, its implementation also 

involves other departments. In fact, one can run the proposed approach before a stoppage 

occurs. This way, it is possible to know in advance which components could be used for 

maintenance purposes, and hence to implement an appropriate supply policy. 

 

6.4 General remarks on the data-driven decision model based 

on the Social Network Analysis 
The proposed framework aims at helping maintenance managers come to better, more 

informed decisions in the day-to-day business practices in order to maximize availability, 

minimize failures, and optimize costs of Asset Maintenance. From this framework, some 

theoretical contributions and implications for management can be underlined.  

The theoretical contribution provided in this work is essentially twofold: in the problem 

addressed and in the methodology used. The problem addressed regards a research gap in 

literature: the prediction of the domino effect between component failures. It is important to 

underline the importance of using the proposed framework in all companies where there is 

this domino effect between failures or malfunctioning of components. The results obtained 

have shown that this phenomenon often occurs in the analyzed plant. It is easy to predict 

that this behavior is present in many process industries, where the various components 

(pumps, valves, pipes, tanks, ...) are physically connected to each other. 

In addition, this work adopts a data-driven perspective. Hence, the decision-maker 

implementing such a framework on the process industry relies on the information extracted 
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by the data, rather than on the technical and physical structure of the system – that is, 

instead, the rationale followed by the model-driven paradigm. This vision expands the body 

of knowledge of the plant technicians by integrating it with the insights derived from the 

data analytics. 

From a methodological point of view, different techniques have been combined in the 

proposed framework providing complementary contributions from a theoretical perspective. 

In particular, the Association Rule Mining method provided researchers with tools to 

overcome the problems related to the use of traditional statistical techniques such as the 

vast number of predictive variables, the independence hypothesis, and the non-homogeneity 

and non-linearity distribution of collected data. The intrinsic organization and complexity 

of the data collected might jeopardize the use of traditional tools for analysis since the 

variables showed some critical features. The method based on Association Rules offers 

many readable patterns (rules) that define the interaction between variables and also avoids 

the need to formulate a research hypothesis for each failure event before doing a formal 

evaluation that may become practically infeasible even for a moderately sized set of 

variables. 

The key contribution of the Social Network Analysis concerns the possibility of identifying 

different communities in network rules and defining how these communities are connected 

to each other. A community is a cluster of nodes with dense connections internally. The 

identification of these communities within a network can provide insight into how network 

function and topology affect each other. Furthermore, identifying communities allows asset 

managers to predict missing links or false links in the network. During the examination of 

failure and maintenance events, some links were not understood by asset managers. 

Similarly, some links were falsely entered into the data because of the errors in the 

evaluation. Both these cases are well-managed by the community detection algorithm since 

it assigns the probability of the presence of an edge between a given pair of nodes. In 

existing literary contributions, as shown in the literature review, only Kim et al. [79] 

proposed the implementation of an SNA for the synchronous replacement of components. 

The main difference with their work resides both in the application area and in the 

definition of the relations among components: indeed, the application area is the 
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construction industry while the relationships among components to be replaced is model-

driven, i.e., based on the knowledge of the structure. The approach proposed in this work, 

on the other hand, is data-driven since the relationships among failures are derived from the 

records of previous breakages.   

Moreover, the contribution provided by the use of both ARM and SNA must be inserted in 

the context of the process industry, where data derives from different sources affected by 

veracity problems and which are provided with distinct velocities. The gathering of 

massive, heterogeneous, and frequently-produced data created a significant management 

problem. The growth in the dataset volume and its complexity and volatility makes 

processing and analysis very hard to realize. This work addresses this problem by 

developing a framework that can be useful to merge and analyze complex data sets through 

Big Data Analytics techniques in order to extract useful information at different levels of 

detail. In addition, recurring to the ILP model optimization for selecting the optimal set of 

components to be replaced ensures the consideration of objective constraints, avoiding any 

bias possibly introduced by a decision-maker in choosing them arbitrarily.    

From a practical point of view, the proposed framework - developing tools for monitoring 

critical components and predicting fault events - can help different refinery departments, as 

well as other process industries. The proposed data-driven decision support system enables 

asset managers to turn predictive analytics insight into prescriptive analytics action by 

converting information on what is likely to happen in maintenance activities, transforming 

the raw data into useful and applicable knowledge. In particular, the framework aims to be 

useful for the maintenance planner, who needs to decide when to maintain each asset, what 

tasks need to be done, and which parts need to be replaced at each maintenance interval in 

order to meet reliability targets at an optimal cost. The combined use of ARM and SNA 

highlights the domino effect among events, with both a visual perspective of the network 

and the relations existing among the components being determined through a data-driven 

technique. This is valid support in the decision-making process regarding the predictive 

component replacement in case of related failures of components: indeed, being a data-

driven approach, the work usually carried out by the technicians having a thorough 

knowledge of the process is supported by the evidence provided by data. Visualizing the 
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relations identified through a data-driven approach helps to identify previously unknown 

patterns and to take into consideration new perspectives rather than only the traditional ones 

(e.g., maintenance selection according to the model-driven characteristics of the plant). 

Moreover, the integration of ILP helps the maintenance planner to schedule maintenance 

activities. It provides valid support in the definition of the components to be prioritized for 

the maintenance, taking into account the resource constraints (e.g., time, budget, number of 

employees) actually existing in the company. These tools are also important for the parts 

planner who needs to decide how many of each of the spare parts are needed in which 

locations and when, so that they can maximize first-time fix rate and reduce spare parts 

acquisition and holding costs. 

Finally, the refinery maintenance technicians, who need to determine the root cause of 

failures, decide on the best fix and determine whether an asset should be repaired or 

replaced to minimize turn time, reduce repair cost, and eliminate rework. These decisions 

must be made for each asset, although each asset has a unique configuration, history, usage, 

environment, conditions, and parameters, which begins with the commissioning and start-

up steps. In this context, the importance of Big Data Analytics tools to determine the best 

decision option and action plan for each asset becomes evident. Indeed, the proposed 

framework aims to integrate the analysis of large amounts of data in everyday processes to 

support real-time decision-making. Decisions in real-time drive efficient maintenance 

operations, increase equipment reliability, uptime, safety, and reduce overall costs. The 

proposed asset maintenance framework will not completely change the current oil refinery 

procedure as a case example. The analytics tools are introduced as an addition to the 

present one. Therefore, they have to be used both for on-line and off-line asset maintenance 

activities to ensure a resilient system, i.e., a system able to absorb and resist adverse 

occurrences. 

 

 

6.5 General remarks on the data-driven failure extension 

through the proposed framework  
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From a theoretical perspective, combining different techniques within the same framework 

offers insights worthy of mention.  

When wanting to analyze the outcome of the FMECA, especially in the case of large and 

critical plants, a tool enabling the analysis of a vast amount of data is more suitable than the 

traditional statistical techniques. Specifically, it is one of the benefits introduced by the 

ARM: indeed, it allows the extraction of patterns characterized by potentially-unknown 

relationships. Moreover, since the dataset can be analyzed all at once, it is not necessary to 

formulate further research hypotheses, leaving all data-driven search possibilities 

unrestricted. Defining all the possible item-sets represents an NP-hard problem since the 

possible combinations of the items have a size 2n – 1 (n being the number of items in the 

dataset under investigation), excluding the non-valid and empty sets. This issue makes the 

dimensionality of the input space a critical aspect. However, due to the anti-monotonicity 

(or downward-closure) property of the support, the definition of the frequent itemset is 

more efficient since none of the infrequent itemsets is a subset of a frequent itemset. 

Additionally, the data must be cleaned before starting the ARM process. Indeed, the 

presence of redundancy in data has an impact both on the quality of the results and on the 

efficiency of the algorithms.   

Through the SNA, instead, it is possible to highlight different communities of nodes and 

study their interconnections in order to be aware of them and avoid the spread of failure 

events across the network, interrupting the failure chain. On the other hand, the missing 

connection among nodes can help experts to understand whether some critical details have 

been missed during the first stages of the analysis. In this way, the accuracy of the first two 

stages of the process, namely the data collection and the FMECA, is also verifiable, and 

corrections to the procedure can be implemented in reasonable time intervals. Including 

ARM and SNA in the context of process industry is also strategic from a managerial point 

of view: indeed, for the benefits highlighted, these data-driven techniques provide valid 

support in analyzing the data coming from different sources, at different velocities and, 

possibly, characterized by different level of veracity. In this sense, aggregating data from 

different datasets helps to define whether some replicated data from different sources are 
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corrupted. Hence, it is also possible to correct them before undertaking inconsistent 

decisions. 

Additionally, a complete view of the relationships among FMECA attributes helps the 

management to identify the improvement areas of the O&M processes. For example, in the 

SNs proposed in this study, a considerable amount of non-assessable events are presented. 

These unassessed effects might have critical consequences in a long term perspective since 

no corrective actions are undertaken to limit or avoid them. Indeed, it is in the best interest 

of the company to recognize the erratic procedures in the data acquisition process or in the 

failure effects assessment in order to improve the reliability of the process.      

From a practical point of view, this framework enables a major control of the process 

analysis, specifically in the maintenance field. Firstly, having a procedure defining how the 

traditional FMECA can be used for furthering the analysis of the failure modes, effects, and 

maintenance procedure, can provide strategic support and a growth opportunity for the 

company. Indeed, the more reliable the failure analysis is, the more consistent the 

achievable benefits. Additionally, the identification of the potential failure modes, effects, 

and criticalities is useful for supporting the definition of which resources are to be destined 

to the maintenance procedure. The proposed method enables company managers to connect 

multidimensional and multidisciplinary concepts (e.g., failure mode, equipment criticality, 

failure effects at different levels, and maintenance policies adopted).   

As stated before, SNA is useful for knowing how a failure mode impacts the possible effect 

identified and whether these effects are corrected or monitored cyclically, making the 

understanding of the interactions very intuitive both for domain experts and non-experts. 

On the other hand, a missing connection among nodes can help experts to understand 

whether some important details have been missed during the first stages of the analysis. In 

this way, it also easier to implement corrections and improvements, for instance, by 

integrating the actions defined after the FMECA or, even further upstream, by adding a 

failure mode or an effect to equipment.  

From an engineering point of view, this visualization is useful for defining the event chains 

that are more critical since they can act as a trigger for other effects, not only at an 

equipment level but also at a functional or system level. In this way, specific resources can 
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be dedicated to the analysis of the most critical areas, and not only the critical components, 

like defining ad-hoc strategies or analyzing the structural improvement of such areas. 

Furthermore, identifying the possible causes of concatenating failure modes and effects on 

items allows the identification of the critical items not only from a traditional risk-

assessment perspective but also considering the patterns extracted from the data-driven 

analytics. Indeed, the nodes acting as bridges in the SN, thus connecting different 

communities of nodes, has to be taken into particular consideration. For such nodes (e.g., 

the flow control valve in Figure 17), specific monitoring activities can be planned to 

prevent the spreading of failures or effects across the network. Indeed, in process industries, 

it is important to be aware of the possible propagation of the effects due to the hazardous 

nature of the production process and the deriving danger. 

The adoption of the proposed framework is also useful in case of re-layout of the plant or 

designing of similar ones. Indeed, the reliability and failure modes should be taken into 

account even in the early stages of the realization of a production system: anticipating these 

issues helps to define proper strategies to deal with them and organize the O&M activities 

accordingly.  

The adoption of new techniques, like ARM and SNA, does not completely change the 

procedure for failure analysis in the company. They are adopted as an addition to the 

present one. In this way, the change for the workers is not radical and allows gradual 

habituation to the new methodologies. This aspect is fundamental in guaranteeing that the 

personnel accepts the introduction of new methodologies without completely abandoning 

the previous habits, avoiding possible resistance to change.  
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Chapter 7. 

 

Conclusions 

 

In this thesis, a framework supporting the implementation of data-driven maintenance 

policies based on the implementation of data analytics techniques is proposed. Specifically, 

the development of a framework for the decision-making process is developed to capitalize 

on the implementation of data-driven techniques, achieve satisfying levels of reliability, and 

avoid wasting resources using the available amount of data produced and collected during 

the production processes.  

The research gap addressed in this thesis is filled by introducing an innovative decision-

making tool in this critical activity through the proposed data-driven framework. Different 

approaches are proposed, all following the same general procedure.  

The framework involves the data collection and management steps, which allow obtaining 

all the relevant information from the production processes, and it is followed by a thorough 

analysis of its outcomes. Indeed, during the analytics phase, a preliminary analysis is 

carried out in order to adjust the data collected in the first stages for the following analysis; 

then, there is a probability estimation phase – that in this work is carried out through the 

implementation of the Association Rule Mining or an appositely deployed algorithms. The 

last stage of the data analytics layer involves developing a decision model that drives the 

decision-making process, helping the decision-maker make an informed decision. Different 

decision models are presented in the proposed applications so that the wide applicability of 

the general framework is presented.  

The fourth step of the framework, instead, aims to control the implementation of the data-

driven techniques to check whether improvement or modifications to the proposed decision 

model are needed.  
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The same general procedure is also proposed in extending the failure analysis. Indeed, the 

Association Rule Mining is used to define the co-occurrence of events, like failure modes 

and the related effects, to have a clearer idea of the dynamics describing the possible failure 

in a company. Thanks to the Social Network Analysis, the Association Rules are 

represented as a network of nodes (the attributes of the Failure Modes Effects and 

Criticality Analysis) and direct edges (the Association Rules among the nodes). The 

possibility of having a graphical representation of the association rules facilitates the global 

understanding of the context, highlighting which failure modes and effects are related 

among them and detecting a possible lack of information in order to have a clear view of 

the process and implement improvement actions. 

The proposed research approach is applied to real-life case studies, focusing on industrial 

plants characterized by high operational risk (e.g., oil refinery plants and on-shore/off-shore 

plants used for oil and gas extraction).  

The results of these implementation highlight that having a precise framework to follow 

helps in making optimal decisions. If the decision-maker relies on the definition of 

opportune threshold, there is the need for a wide knowledge of the production plant and the 

failure frequency. Instead, relying on objective criteria, for example, through the single-

objective or multi-objective mathematical programming, the decision-maker is excused 

from this problem, and the optimal solution is always defined. 

The development of a Large Neighborhood Search heuristics to solve the Component 

Repair Problem as well as the lexicographic optimization represents an innovation in the 

maintenance management field, as well as the joint use of the Association Rule Mining and 

mathematical programming. Similarly, the application of the two data-driven techniques, 

Association Rule Mining and the Social Network Analysis, is rather innovative in the 

maintenance management field both singularly and jointly.  

However, the innovative aspect is not on the algorithm of the single techniques adopted: it 

lies in how these techniques because are used. Indeed, they are applied in sequence 

providing information about communities and possible chains of components failing or 

failure mode propagation across the plant. The idea of combining them after the 

deployment of the traditional Failure Modes Effects and Criticality Analysis process 
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implies the integration of these new methodologies into this kind of analysis, not its 

elimination.  

From a practical point of view, the implementation of the proposed framework supports in 

having a major control of system status and of the procedure implemented. Moreover, 

being able to anticipate the occurrence of component failures and visualizing them ensures 

that decisions are made basing on data and considering a broad set of relationships, rather 

than focusing only on the associations known by the field experts. The possibility of 

applying different methodologies with the same objective ensures a flexible applicability of 

the proposed framework. Indeed, companies may prefer introducing the proposed approach 

gradually into their operations so they could start by applying a decision support model 

based on thresholds definition and, subsequently, extending through optimization methods. 

Similarly, SNA might be introduced after the ARM so that the initial benefit provided by 

the latter technique, i.e., the associations among component failures, is firstly acquired and 

comprehended by the technicians, that have to get used to the new policy; then, the 

possibility of visualizing the association through the SNA becomes the finisher of the new 

procedures, without providing excessive new insights all at once and, thus, avoiding the 

generation of too much information. In this way, the “resistance to change” typical of 

environment dealing with substantial innovative processes can be mitigated and the new 

procedures can be gradually accepted even by more expert operators.  

Future research directions regard the development of further case studies so that standard 

procedure belonging to the same field of research might be provided, as well as the 

extension of the procedure to other industrial sectors. Specifically, applications to 

manufacturing companies of different dimensions is desirable so that comparisons can be 

carried out.  

A further development regards the introduction of the environmental sustainability 

dimension inside the framework. Indeed, it is only considered indirectly in the current form 

since, for example, reducing the number and the impact of failures might avoid any spillage 

in the environment. On the other hand, being conscious of the impact of a predictive 

component replacement on the environment can drive the decision-making process in 

another direction, also considering the disposal of such components. To this end, a 
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hypothesis could be considering the environmental impact derived, for instance, from a Life 

Cycle Assessment, in the objective function of the optimization models or as an additional 

constraint.  
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Appendix 

 

Appendix A 
 

Excerpt of the rules extracted for topping sub-plant, considering a one-month 

timeframe and a slow-down stoppage. 

 
Sub-

plant 

Time 

interval 

Stoppage Premises Conclusion Support Confidence 

Topping 1 month SLOW_DOWN accoppiamento controllore 0.837838 1 

Topping 1 month SLOW_DOWN controllore accoppiamento 0.837838 0.885714 

Topping 1 month SLOW_DOWN coibentazione controllore 0.621622 0.958333 

Topping 1 month SLOW_DOWN tenuta controllore 0.621622 0.92 

Topping 1 month SLOW_DOWN controllore tenuta 0.621622 0.657143 

Topping 1 month SLOW_DOWN controllore coibentazione 0.621622 0.657143 

Topping 1 month SLOW_DOWN coibentazione accoppiamento 0.567568 0.875 

Topping 1 month SLOW_DOWN tenuta accoppiamento 0.567568 0.84 

Topping 1 month SLOW_DOWN accoppiamento tenuta 0.567568 0.677419 

Topping 1 month SLOW_DOWN accoppiamento coibentazione 0.567568 0.677419 

Topping 1 month SLOW_DOWN indicatore controllore 0.486486 1 

Topping 1 month SLOW_DOWN indicatore coibentazione 0.486486 1 

Topping 1 month SLOW_DOWN coibentazione indicatore 0.486486 0.75 

Topping 1 month SLOW_DOWN tracciatura controllore 0.432432 1 

Topping 1 month SLOW_DOWN illuminazione controllore 0.432432 1 

Topping 1 month SLOW_DOWN tracciatura accoppiamento 0.432432 1 

Topping 1 month SLOW_DOWN illuminazione coibentazione 0.432432 1 

Topping 1 month SLOW_DOWN indicatore accoppiamento 0.432432 0.888889 

Topping 1 month SLOW_DOWN coibentazione illuminazione 0.432432 0.666667 

Topping 1 month SLOW_DOWN presa campione controllore 0.405405 0.9375 

Topping 1 month SLOW_DOWN illuminazione accoppiamento 0.405405 0.9375 

Topping 1 month SLOW_DOWN presa campione coibentazione 0.405405 0.9375 

Topping 1 month SLOW_DOWN coibentazione presa campione 0.405405 0.625 

Topping 1 month SLOW_DOWN amperometro controllore 0.378378 1 

Topping 1 month SLOW_DOWN allarme controllore 0.378378 1 

Topping 1 month SLOW_DOWN - controllore 0.378378 1 

Topping 1 month SLOW_DOWN amperometro coibentazione 0.378378 1 
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Topping 1 month SLOW_DOWN rilevatore controllore 0.351351 1 

Topping 1 month SLOW_DOWN rilevatore coibentazione 0.351351 1 

Topping 1 month SLOW_DOWN rilevatore presa campione 0.351351 1 

Topping 1 month SLOW_DOWN amperometro accoppiamento 0.351351 0.928571 

Topping 1 month SLOW_DOWN amperometro tenuta 0.351351 0.928571 

Topping 1 month SLOW_DOWN allarme tenuta 0.351351 0.928571 

Topping 1 month SLOW_DOWN allarme coibentazione 0.351351 0.928571 

Topping 1 month SLOW_DOWN - coibentazione 0.351351 0.928571 

Topping 1 month SLOW_DOWN amperometro allarme 0.351351 0.928571 

Topping 1 month SLOW_DOWN allarme amperometro 0.351351 0.928571 

Topping 1 month SLOW_DOWN presa campione rilevatore 0.351351 0.8125 

Topping 1 month SLOW_DOWN area controllore 0.324324 1 

Topping 1 month SLOW_DOWN dreno coibentazione 0.324324 1 

Topping 1 month SLOW_DOWN rilevatore indicatore 0.324324 0.923077 

Topping 1 month SLOW_DOWN allarme accoppiamento 0.324324 0.857143 

Topping 1 month SLOW_DOWN presa campione accoppiamento 0.324324 0.75 

Topping 1 month SLOW_DOWN presa campione tenuta 0.324324 0.75 

Topping 1 month SLOW_DOWN presa campione indicatore 0.324324 0.75 

Topping 1 month SLOW_DOWN indicatore presa campione 0.324324 0.666667 

Topping 1 month SLOW_DOWN indicatore rilevatore 0.324324 0.666667 

Topping 1 month SLOW_DOWN dreno controllore 0.297297 0.916667 

Topping 1 month SLOW_DOWN dreno - 0.297297 0.916667 

Topping 1 month SLOW_DOWN rilevatore accoppiamento 0.297297 0.846154 

Topping 1 month SLOW_DOWN - accoppiamento 0.297297 0.785714 

Topping 1 month SLOW_DOWN amperometro presa campione 0.297297 0.785714 

Topping 1 month SLOW_DOWN allarme presa campione 0.297297 0.785714 

Topping 1 month SLOW_DOWN - presa campione 0.297297 0.785714 

Topping 1 month SLOW_DOWN - dreno 0.297297 0.785714 

Topping 1 month SLOW_DOWN illuminazione indicatore 0.297297 0.6875 

Topping 1 month SLOW_DOWN presa campione amperometro 0.297297 0.6875 

Topping 1 month SLOW_DOWN presa campione allarme 0.297297 0.6875 

Topping 1 month SLOW_DOWN presa campione - 0.297297 0.6875 

Topping 1 month SLOW_DOWN indicatore illuminazione 0.297297 0.611111 

Topping 1 month SLOW_DOWN ausiliare controllore 0.27027 1 

Topping 1 month SLOW_DOWN ausiliare accoppiamento 0.27027 1 

Topping 1 month SLOW_DOWN ausiliare tracciatura 0.27027 1 
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Topping 1 month SLOW_DOWN ausiliare livello 0.27027 1 

Topping 1 month SLOW_DOWN livello controllore 0.27027 0.833333 

Topping 1 month SLOW_DOWN livello accoppiamento 0.27027 0.833333 

Topping 1 month SLOW_DOWN area accoppiamento 0.27027 0.833333 

Topping 1 month SLOW_DOWN livello tenuta 0.27027 0.833333 

Topping 1 month SLOW_DOWN livello tracciatura 0.27027 0.833333 

Topping 1 month SLOW_DOWN livello ausiliare 0.27027 0.833333 

Topping 1 month SLOW_DOWN rilevatore amperometro 0.27027 0.769231 

Topping 1 month SLOW_DOWN - tenuta 0.27027 0.714286 

Topping 1 month SLOW_DOWN amperometro - 0.27027 0.714286 

Topping 1 month SLOW_DOWN - amperometro 0.27027 0.714286 

Topping 1 month SLOW_DOWN amperometro rilevatore 0.27027 0.714286 

Topping 1 month SLOW_DOWN allarme - 0.27027 0.714286 

Topping 1 month SLOW_DOWN - allarme 0.27027 0.714286 

Topping 1 month SLOW_DOWN tracciatura livello 0.27027 0.625 

Topping 1 month SLOW_DOWN tracciatura ausiliare 0.27027 0.625 
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Appendix B 
List of the components’ ID and the corresponding name.  

ID Component name ID Component name 

C1 Undefined Component C24 Joint 

C2 Coupling C25 Lighting 

C3 Alarm C26 Indicator 

C4 Ammeter C27 Liquid Level Indicator 

C5 Area C28 Level Switch 

C6 Auxiliary C29 Lubrication 

C7 Shovel C30 Engine 

C8 Keg C31 Shovels 

C9 Battery C32 Oil Seal 

C10 Burner C33 Flooring 

C11 Bypass C34 Sampling Valve 

C12 Strap C35 Button Panel 

C13 Insulation C36 Refrigerant 

C14 Condensation Indicator C37 Detector 

C15 Controller C38 Blower 

C16 Bearing C39 Instrumentation 

C17 Caliber Disc C40 Sealing Device 

C18 Drainer C41 Tracing 

C19 Ecos C42 Transmitting Device 

C20 Electrode C43 Overfilling Indicator 

C21 Tube Bundle C44 Pipeline 

C22 Filter C45 Valve 

C23 Fittings C46 Shifter 
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Appendix C  

Excerpt of the FMECA of the on-shore/off-shore platform 

In Table C, an excerpt of the FMECA document regarding two different items is shown to 

provide an example of the basic information reported. The table reports the ID number of 

the item analyzed, followed by its synthetic description that makes it understandable, and 

the list of failure modes. In addition, the effects deriving from the failure modes are 

reported. A specification is made in considering the effects, individuating three different 

levels:  

• Equipment effect, describes the failure at the item level; 

• Functional effect, describes the failure at a facility functional level (i.e., inside the 

same unit); 

• System effect, describes the effect on the whole plant (i.e., more than one unit is 

involved);.  

Moreover, the annual frequency class, severity levels and their combination (ICA, ICS, 

ICE) are reported, as well as the criticality in terms of assets, environment and safety.The 

overall criticality failure mode CFM (for each failure mode) and the item criticality CI (for 

each item) are also expressed. 
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Table C Excerpt of the data coming from the FMECA process 

TAG 

Number 

Item 

description  

Failure 

Mode 

Description 

Equipm

ent 

effect 

Functiona

l effect 

System 

effect 

AF

C 

Severit

y 

Safety 

Severit

y Asset 

Severity 

Environme

nt 

IC

S 

IC

A 

IC

E 

CSS CS

A 

CSE CF

M 

CI 

013036100

0SSSV070 

Flow 

Control 

Valve 

Fail to close 

on demand 

n.a. n.a. n.a. C 0 0 0 C

0 

C

0 

C

0 

3 3 3 3 2 

Flow 

Control 

Valve 

Fail to open 

on demand 

No oil 

flow 

no oil 

flow to 

unit 200 

Oil 

Productio

n 

Separatio

n 

no oil 

flow to 

on 

shore 

plant 

C 0 0 0 C

0 

C

0 

C

0 

3 3 3 3 

Flow Fail to n.a. n.a. n.a. C 0 0 0 C C C 3 3 3 3 
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Control 

Valve 

regulate  0 0 0 

Flow 

Control 

Valve 

External 

leakage 

process 

medium 

Gas & 

Oil 

Leakage 

Reductio

n of 

delivered 

oil & 

GAS to  

Unit 200 

Oil 

Productio

n 

Separatio

n 

Reducti

on of 

delivere

d oil & 

gas to 

On 

shore 

plant 

C 1 0 0 C

1 

C

0 

C

0 

3 3 3 3 

Flow 

Control 

Valve 

External 

leakage 

process 

medium 

Gas & 

Oil 

Leakage 

Reductio

n of 

delivered 

oil & 

Reducti

on of 

delivere

d oil & 

C 1 2 0 C

1 

C

2 

C

0 

3 2 3 2 
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GAS to  

Unit 200 

Oil 

Productio

n 

Separatio

n 

gas to 

On 

shore 

plant 

013036100

0SSV071 

Flow 

Control 

Valve 

Fail to close 

on demand 

n.a. n.a. n.a. C 0 0 0 C

0 

C

0 

C

0 

3 3 3 3 2 

Flow 

Control 

Valve 

Fail to open 

on demand 

No oil 

flow 

no oil 

flow to 

unit 200 

Oil 

Productio

n 

Separatio

no oil 

flow to 

on 

shore 

plant 

C 0 0 0 C

0 

C

0 

C

0 

3 3 3 3 
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n 

Flow 

Control 

Valve 

Fail to 

regulate  

n.a. n.a. n.a. C 0 0 0 C

0 

C

0 

C

0 

3 3 3 3 

Flow 

Control 

Valve 

External 

leakage 

process 

medium 

Gas & 

Oil 

Leakage 

Reductio

n of 

delivered 

oil & 

GAS to  

Unit 200 

Oil 

Productio

n 

Separatio

n 

Reducti

on of 

delivere

d oil & 

gas to 

On 

shore 

plant 

C 0 0 0 C

0 

C

0 

C

0 

3 3 3 3 
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Flow 

Control 

Valve 

External 

leakage 

process 

medium 

Gas & 

Oil 

Leakage 

Reductio

n of 

delivered 

oil & 

GAS to  

Unit 200 

Oil 

Productio

n 

Separatio

n 

Reducti

on of 

delivere

d oil & 

gas to 

On 

shore 

plant 

C 1 2 0 C

1 

C

2 

C

0 

3 2 3 2 



 

 

 

 


