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Abstract  

 

 
The exploitation of energy flexibility in buildings represents one of the most promising 

solutions to allow the transition to energy systems with a high penetration of renewable 

energy sources. Having a high flexible building means to be able to efficiently apply 

demand side management strategies (DSMs) which represent one of the main aspects 

characterizing the concept of Smart Grid. DMS is defined as the set of all those strategies 

aimed at influencing customer uses of electricity in ways that will produce desired 

changes in the utility’s load shape.  

Given the increasing electricity demand in the residential sector, especially for the 

diffusion of heating and cooling systems electrically powered (e.g., split systems and 

heat pumps), buildings show a predisposition to produce variations in the electrical 

demand, due to the different levels of thermal inertia already available in them (e.g., the 

thermal mass embedded in the envelope or dedicated devices as cold and/or hot water 

tank). Moreover, thanks to advanced control techniques, buildings could exploit 

different energy sources (i.e., fuels) to satisfy their thermal requirements, while reducing 

withdrawals from the power grid.   

The work presented in this thesis fits into this context. The objective of this thesis is to 

provide an overview of the different aspects that characterize the energy flexibility 

obtainable from the management of thermal and electrical loads in residential buildings 

equipped with heat pumps. In particular, the analysis is gradually extended from the 

context of the design scenario of single buildings to the operative analysis of clusters of 

buildings. Firstly, a quantification methodology that allows to estimate the energy 

flexibility of a single building with a single indicator (the flexibility performance 

indicator, FPI) is presented and it is tested in different simulation-based case studies. 

Then, the focus is on the identification of reserves of flexibility outside the building, 

such as flexible energy sources (i.e. district heating and cooling networks) and the 

optimal management of multi energy systems (i.e. fuel switching). For the latter aspect, 

an analysis on the role of controls (i.e. model predictive controls) is also provided. In the 

final parts of the thesis, flexibility evaluations at the design level (i.e. with the FPI) are 

compared with operational analyses (focus on the space cooling sector) and a 

preliminary assessment of the energy flexibility obtainable from aggregation of 

buildings is realized.  
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All the results reported are extrapolated from a series of papers that have been published 

in scientific journals. In general, all the analyses and the evaluations allow to confirm 

the great potential of residential buildings in providing energy flexibility services. A 

great influence of the intrinsic features of the building (i.e., its thermal properties and 

the thermal inertia of its distribution system) on its design flexibility reserve has 

emerged. Moreover, performance differences between design and operational 

evaluations are observed. The assessment on cluster level highlights how the 

differentiation of the users involved allows to increase the number of degrees of freedom 

with which a demand side management event can be realized. The latter aspect can be 

seen as a reaffirmation of the great potential that residential buildings have to produce 

energy flexibility services. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvi 

 

Sommario  

 

 
Lo sfruttamento della flessibilità energetica negli edifici rappresenta una delle soluzioni 

più promettenti per consentire il passaggio a sistemi energetici ad alta penetrazione di 

fonti rinnovabili. Disporre di un edificio energeticamente flessibile significa poter 

applicare in modo efficiente strategie di gestione della domanda (Demand Side 

Management, DSM) che rappresentano uno degli aspetti principali caratterizzanti il 

concetto di Smart Grid. Il DMS è definito come l'insieme di tutte quelle strategie volte 

ad influenzare gli usi di elettricità degli utenti in modo da produrre cambiamenti 

desiderati nella forma della loro curva di carico. 

Data la crescente domanda elettrica del settore residenziale, soprattutto per la diffusione 

di impianti di riscaldamento e raffrescamento alimentati elettricamente (es. split e pompe 

di calore), gli edifici mostrano una predisposizione a produrre variazioni programmate 

della loro domanda elettrica, dovuta ai diversi livelli di inerzia termica in essi già 

disponibile (es. massa termica dell’involucro o dispositivi dedicati come serbatoi di 

acqua calda o fredda). Inoltre, grazie a tecniche di controllo avanzate, possono sfruttare 

diverse fonti energetiche (ad esempio combustibili) per soddisfare i propri fabbisogni 

termici, riducendo al contempo i prelievi dalla rete elettrica. 

Il lavoro presentato in questa tesi si inserisce in questo contesto. L'obiettivo è quello di 

fornire un'analisi dei diversi aspetti che caratterizzano la flessibilità energetica ottenibile 

dalla gestione dei carichi termici ed elettrici in edifici residenziali dotati di pompe di 

calore. L'analisi si estende progressivamente dal contesto dello scenario progettuale dei 

singoli edifici a quello operativo degli aggregati (cluster di edifici). In primo luogo, è 

proposta una metodologia innovativa che consente di quantificare la flessibilità 

energetica di un singolo edificio con un unico indicatore (Flexibility Performance 

Indicator, FPI). Nella tesi tale metodologia è applicata per valutare diversi casi di studio. 

Proseguendo nell’analisi, l’attenzione è spostata verso l'identificazione e la valutazione 

di riserve aggiuntive di flessibilità disponibili all'esterno degli edifici, come le fonti 

energetiche flessibili (es. reti di teleriscaldamento e teleraffrescamento) e la gestione 

ottimizzata dei sistemi multienergetici (es. variazione programmata di combustibile 

utilizzato). Per quest'ultimo aspetto è prevista anche un'analisi sul ruolo dei controlli (es. 

ruolo dei controlli predittivi, Model Predictive Control). Inoltre, nelle parti finali della 

tesi vengono confrontate valutazioni di flessibilità a livello progettuale (con l'FPI) con 

analisi operative (focus sul settore del raffrescamento degli ambienti) e viene proposta 
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una valutazione preliminare della flessibilità energetica ottenibile dall'aggregazione 

degli edifici. 

Tutti i risultati riportati sono estrapolati da una serie di articoli pubblicati su riviste 

scientifiche. In generale, tutte le analisi e le valutazioni presentate consentono di 

confermare le grandi potenzialità degli edifici residenziali nella fornitura di servizi di 

flessibilità energetica. È emersa una grande influenza delle caratteristiche intrinseche 

dell'edificio (cioè le sue proprietà termiche e l'inerzia termica del suo sistema di 

distribuzione) sulla sua riserva di flessibilità progettuale. Inoltre, si possono osservare 

differenze di prestazioni tra le valutazioni progettuali e quelle operative. L’analisi a 

livello di cluster evidenzia come la differenziazione degli utenti coinvolti consenta di 

aumentare il numero di gradi di libertà con cui è possibile realizzare un evento di demand 

side management. Quest'ultimo aspetto può essere visto come una riaffermazione del 

grande potenziale degli edifici residenziali nel produrre servizi di flessibilità energetica. 
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Chapter 1  

 
Introduction 

 
1.1 Background and motivation 

 
Global energy demand is increasing rapidly in recent years, showing an average growth 

of 2%/year over the 2000-2018 period [1]. Facing the progressive reduction of fossil fuel 

reserves and the increasing amount of the greenhouse emissions, many countries 

developed policies to promote Renewable Energy Resources (RESs). For instance, the 

European Union (EU) has set the ambitious target of 32% for RES in the EU’s energy 

mix by 2030 [2], having almost reached the share of 20 % set for 2020 (18.9% in 2018 

according to Eurostat [3]).  

However, in an energy system where renewable energy resources represent an important 

contribution to generation, problems may arise related to the casual and non-

programmable nature of many of them (e.g., wind and solar energy). Indeed, the 

traditional way of managing the electricity grid involves the adaptation of generation to 

demand. This paradigm may not be effective and lead to balancing difficulties when the 

generation source is unpredictable.  

In this scenario, to ensure the reliability and the stability of the power grid, a change of 

perspective will be necessary: the electricity grid of the future will have to be able to 

adapt the demand to the actual availability on the generation side. This concept is 

commonly referred to as Demand Side Management (DSM) and it is one of the main 

aspects characterizing the concept of Smart Grid [4]. DSM is defined as the set of all 

those strategies aimed at “influencing customer uses of electricity in ways that will 

produce desired changes in the utility’s load shape” [5]. In general, it can be 

implemented in three different ways: (i) energy-efficient end-use devices; (ii) additional 

equipment, systems and controls to enable load shaping (e.g., energy storage) and (iii) 

communication systems between end-users and external parties, e.g., demand response 

(DR) [6]. Building sector appears very suitable for the implementation of these 

strategies. Indeed, they are responsible for a large proportion of overall energy demand. 

According to the European Commission [7], they are responsible for approximately 40% 

of EU energy consumption and 36% of the greenhouse gas emissions. Moreover, many 
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enabling technologies are more and more integrated into them, even thanks to their 

gradual refurbishment imposed by the Energy Performance of Buildings Directive 

(EPDB) [8]. Examples are charging stations of electric vehicles, shifting of plug-loads 

and management of the Heating, Ventilation and Air Conditioning (HVAC) systems [9]. 

This latter aspect has a great potential for easily activating demand side management 

services as there are both large margins of efficiency and different levels of energy 

storage (e.g., thermal and electrical) to be exploited. In fact, the use of heat pumps 

systems (HPs) is increasingly frequent in buildings. Only in EU, the number of operating 

heat pumps has increased by roughly 15 million between 2013 and 2019 [10] and, thanks 

to the transition from non-inverter to inverter technologies, their seasonal performance 

factor (an indicator of average annual energy performance) has incremented since 2010 

to nearly 4 today for most space heating applications [11].  

The interest in heat pumps is motivated by the fact that they allow to establish a direct 

link between the thermal and electrical demand of the building. Therefore, thanks to HPs 

the thermal load of the building could be managed in order to produce variations in its 

electricity demand. In this sense, the thermal energy storage potential of buildings can 

be exploited for electrical load-shifting strategies (e.g., DR) [12].  

It is in this context that the analysis proposed in this thesis is inserted. Indeed, with the 

intention of increasing knowledge in the sector, this work wants to analyze with novel 

methodologies and introducing specific case studies, the different aspects that 

characterize the topic of the energy flexibility obtainable from the management of 

thermal loads in residential buildings. The analysis, by mean of both qualitative and 

quantitative methodologies, aims to provide an overview of the topic analyzed.  

 

1.2 Outline  
 
The work presented in this thesis is structured starting from the single building 

evaluation and then gradually enlarging the context. At first, the design operation is 

taken into account with the proposal of a method (i.e. calculation of a single indicator 

for estimating performance in terms of energy flexibility: the Flexibility Performance 

Indicator) to quantify the energy flexibility reserve of single buildings according to their 

intrinsic characteristics (i.e. thermal and geometrical properties of the building envelope 

and features of the heating/cooling system). Then, before moving on to the operational 

flexibility assessment, a focus on the possible sources of energy flexibility outside the 

building is presented. In particular, the flexibility derived by the fuel switching in the 

context of multi energy carriers is investigated. Particular attention is paid to the role of 

the district heating and cooling networks since they allow the exploitation of additional 

energy storage capabilities. Afterwards, the operational context is investigated. First of 
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all, the role of the control is analyzed with a focus on the effectiveness of the model-

based predictive control (MPC). In this context, a case study involving the activation of 

the energy flexibility reserves both inside and outside the building is tested with the 

implementation of an operative MPC. Then, remaining in the context of a single 

building, a comparison between the design and operational flexibility evaluation is 

provided with a focus on the residential space cooling sector. Finally, the additional 

energy flexibility potential that can be obtained involving clusters of buildings is 

discussed.  

To summarize the structure of the thesis, Figure 1.1 reports a schematic of the different 

points of view with which the energy flexibility of buildings is assessed in this thesis. 

  

 

Figure 1.1: Schematic of the energy flexibility analysis. 

 
Specifically, the thesis is divided into the following chapters: 

 

Chapter 1 (current chapter) defines the background of the topic matter of this work and 

summarizes the objectives and the contents of the thesis.  

 

Chapter 2 provides a summary of the state of art on the topic of the energy flexibility 

in buildings. In this chapter definitions and applications are discussed with an analysis 

of the scientific literature available to date. 

 

Chapter 3 provides an evaluation of the energy flexibility of single buildings at design 

level. Hereby, a novel methodology to assess the potential reserve of energy flexibility 

of different buildings (e.g., different constrictions features, heating and cooling systems) 
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is introduced. It is based on the calculation of a single quantity: the Flexibility 

Performance Indicator (FPI). To show its effectiveness, the methodology is applied to 

different case studies both for heating and cooling applications.  

 

Chapter 4 provides an overview of the potential energy reserves outside the buildings 

that can be exploitable for activate flexibility services. In particular, the potential of 

district heating and cooling systems is discussed with a focus on the cooling case. In this 

regard, a novel application to recover waste cold energy is introduced and its energy 

performance are discussed.  

 

Chapter 5 provides an operative evaluation of the energy flexibility potential of single 

buildings. At first, the aspect of the controller is investigated. The performance of a 

Model Predictive Control (MPC) in comparison with traditional Rule Based Control 

(RBC) are evaluated. In particular, the role of the building model (e.g., white box, black 

box) in the MPC is discussed. Then, its operation to control a building with the 

availability of multi energy sources including district systems (i.e. district cooling) is 

shown.  

 

Chapter 6 provides a comparison between a design and an operative evaluation of the 

energy flexibility reserve of single residential buildings. In particular, the analysis is 

focused on the space cooling sector.  

 

Chapter 7 provides some points of reflections on the energy flexibility potential 

deriving from the aggregation of the buildings demand. 

 

Chapter 8 summarizes the main conclusions and future developments. 

 

1.3 Publications discussed in this work 

 
This thesis is mainly based on the research studies and activities published in the 

following papers:  

 

Paper 1. A. Mugnini; F. Polonara; A. Arteconi. Design energy flexibility for Italian 

residential buildings. Proceedings of 5th International High-Performance Buildings 

Conference, Purdue (West Lafayette, Indiana, USA), July 9-12, 2018. DOI: 

docs.lib.purdue.edu/ihpbc/278 

 

https://docs.lib.purdue.edu/ihpbc/278
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Paper 2. A. Arteconi; A. Mugnini; F. Polonara. Energy flexible buildings: A 

methodology for rating the flexibility performance of buildings with electric heating and 

cooling system. Applied Energy. Volume 251, 1 October 2019, 113387. DOI: 

doi.org/10.1016/j.apenergy.2019.113387  

 

Paper 3. A. Mugnini; F. Polonara; A. Arteconi. Design Optimization of Energy 

Flexibility for Residential Buildings. Proceedings of the 16th International Building 

Performance Simulation Association (IBPSA) Conference, Rome (Italy), Sept. 2-4, 

2019. ISSN: 2522-2708. DOI: doi.org/10.26868/25222708.2019.210255 

 

Paper 4. A. Mugnini; F. Polonara; A. Arteconi. Evaluation of energy flexibility from 

residential district cooling. Proceedings of 4th Building Simulation Applications (BSA) 

Conference, Bolzano (South Tyrol, Italy), June 19 – 21, 2019. ISSN: 2531-6702 

 

Paper 5. A. Mugnini; G. Coccia; F. Polonara; A. Arteconi. Potential of District Cooling 

Systems: A Case Study on Recovering Cold Energy from Liquefied Natural Gas 

Vaporization. Energies 2019, 12(15), 3027. DOI: doi.org/10.3390/en12153027 

 

Paper 6. A. Mugnini; G. Coccia; F. Polonara; A. Arteconi. Performance Assessment of 

Data-Driven and Physical-Based Models to Predict Building Energy Demand in Model 

Predictive Controls. Energies 2020, 13(12), 3125. DOI: doi.org/10.3390/en13123125  

 

Paper 7. G. Coccia; A. Mugnini; F. Polonara; A. Arteconi. “Artificial-neural-network-

based model predictive control to exploit energy flexibility in multi-energy systems 

comprising district cooling”. Energy. 2021, 119958. DOI: 

doi.org/10.1016/j.energy.2021.119958 

 

Paper 8. A. Mugnini; G. Coccia; F. Polonara; A. Arteconi. Energy Flexibility as 

Additional Energy Source in Multi-Energy Systems with District Cooling. Energies 

2021, 14, 519. DOI: doi.org/10.3390/en14020519 

 

Paper 9. G. Coccia; A. Mugnini; F. Polonara; A. Arteconi. (2020). “Artificial neural 

networks for building modeling in model predictive controls: Analysis of the issues 

related to unlocking energy flexibility”. TECNICA ITALIANA-Italian Journal of 

Engineering Science, Vol. 64, No. 2-4, pp. 207-212. DOI: doi.org/10.18280/ti-ijes.642-

412  

 

Paper 10. A. Mugnini; F. Polonara; A. Arteconi. Quantification of energy flexibility 

from air conditioning of residential buildings. Proceedings of 25th IIR International 

https://doi.org/10.3390/en12153027
https://doi.org/10.18280/ti-ijes.642-412
https://doi.org/10.18280/ti-ijes.642-412
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Congress of Refrigeration, Montréal (Québec, Canada). August 24-30, 2019. DOI: 

10.18462/iir.icr.2019.966 

 

Paper 11. A. Mugnini; F. Polonara; A. Arteconi. Energy flexibility in residential 

buildings clusters. E3S Web Conf. Volume 197, 2020 75th National ATI Congress – #7 

Clean Energy for all (ATI 2020). DOI: doi.org/10.1051/e3sconf/202019703002 
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Chapter 2  

 

Energy flexibility from HVAC systems in 

buildings: state of art 

 
The International Energy Agency (IEA) in the program ‘Energy in Buildings and 

Communities’ (EBC) with the international Annex 67 (IEA EBC ANNEX 67) [12]) 

introduced the definition of energy flexibility in buildings. It is defined as the ability to 

manage the demand and generation of the building according to local climate conditions, 

user needs, and energy network requirements [9].  

Focusing on the heating and cooling systems, several solutions can be identified to 

manage the thermal demand of a building. For instance, the thermal demand could be 

easily decoupled from the generation thanks to thermal energy storage systems (TESs) 

[13]. Different thermal energy storage systems are exploitable in buildings. For instance, 

with the adoption of heat pump systems, the thermal mass of the envelope can be used 

to accumulate thermal energy when electricity consumption is convenient or to release 

it when the use of electricity wants to be avoided [14]. The same role can be played by 

external devices in combination with the thermal distribution systems. Simple and 

already widespread systems are hot or cold-water tanks [15] connected to the hydronic 

distribution system. Interest is also growing towards the use of innovative thermal 

energy storage systems as phase change materials (PCM) [16] or thermo chemical 

materials (TCM) [17].  

Another way for a building to provide energy flexibility lies in the scheduled 

management of thermostatically controlled loads (TCLs) [18]. Indeed, through 

variations in the users’ set-point, the thermal demand of the building can be varied rather 

quickly to adapt to fluctuations in power grids.  

Moreover, when multiple energy systems (MESs) are available to cover the thermal 

demand of a building, an additional energy flexibility source is provided by the 

possibility to vary the fuel used [19]. Indeed, a building may dispose of local generation 

systems (e.g., photovoltaic or solar panels) or it can exploit different energy networks as 

the power or the gas grid. Furthermore, the connection to a district heating or cooling 

network can be possible. In this last case, also the storage capability of the network could 

be used by the building as further flexibility reserve.  
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A very interesting interpretation of how the building demand can provide flexibility 

services, is given by Klein et. all [19]. For them, the impact of a building on the energy 

system is determined by the trajectory of the net power load (Figure 2.1). Involving the 

heating and/or the cooling systems of the building, this trajectory can be varied in four 

ways: (i) with electrical batteries, (ii) switching the fuel, (iii) with the adoption of a 

dedicated device as thermal energy storage and finally (iv) exploiting the thermal 

building mass.  

 

 
Figure 2.1. Ways of obtaining energy flexibility according to Klein et all. [19]. 

 

However, to allow the exploitation of the aforementioned sources of flexibility there is 

a need for an advanced logic control [20]. Both when the programmed management of 

demand must be done at the single building level and, even more so when aggregate 

strategy wants to be realized, the role of the controller is an aspect to consider when 

moving from the design to the operational phase.  

The following subsections contain a literature review on the mains topics concerning the 

analysis of the energy flexibility in buildings, distinguished on the basis of the main 

points discussed above and also reported in Figure 1.1.  

 

2.1 Method for quantifying the energy flexibility of buildings 
 
As mentioned, there are some intrinsic characteristics of the building (i.e., thermal mass 

and thermal insulation level) and its heating and/or cooling system (i.e., the storage 

capability of the distribution system) which in themselves could allow the potential 

obtaining of greater or lesser energy flexibility services. The adoption of a common and 
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simple methodology to evaluate this potential can be very useful to obtain a preliminary 

evaluation of the load-shifting potential of single buildings. In sub-section 2.1.1, a 

literature analysis on the mains flexibility quantification methods are reported. The main 

indicators derived from this analysis are used as a starting point to formulate the 

Flexibility Performance Indicator (FPI) discussed in Chapter 3. Then, in sub-section 

2.1.2, the state of art of the mains flexibility quantification method at aggregated level 

is reported.  

 
2.1.1 Single buildings 

 
The importance of having a method for easily quantify the energy flexibility potential of 

a building is highlighted by the updated EPDB [21]. Unlike the previous version [22], 

in which only the buildings energy labelling was required, the new one introduces the 

need to identify a method to calculate an indicator, the Smartness Readiness Indicator 

(SRI), that is able to assess the capability of a building to adapt its operation to the needs 

of the occupants and of the grid [8]. 

In this regard, many scientific works are produced in recent years [23][24]. However, 

according to Reynders et al. [23], regardless of the reason why the building actives its 

energy flexibility reserves, three general properties characterize the energy flexibility 

performance of the building: 

▪ The time aspect (the time over which energy and power can be shifted or delayed). 

▪ The capacity aspect (the amount of energy or power that can be shifted or delayed). 

▪ The cost aspect.  

This latter aspect (cost) can have different interpretations. For instance, Reynders et all. 

[23] refer it to the associated cost or efficiency loss at the building level that results from 

activating this flexibility. Jensen et al., in the position paper of the Annex 67 [12], talk 

about the potential cost saving or energy use associated to activating the available 

flexibility.  

Given the dynamic nature of the problem, it seems difficult to evaluate the building 

response to a certain request of energy flexibility considering fixed boundary conditions. 

Indeed, when a building activates its energy flexibility reserve, it produces a variation 

of its power demand compared to its reference operation [9]. And, both the reference 

and the flexible operations are strongly affected by the dynamic of the system itself and 

on external environment (e.g., ambient temperature, solar gains…). This fact implies 

that, the result of a demand side management event is not univocal, but it is strongly 

affected by context in which the building operates (i.e. the boundary conditions) [14]. 

For these reasons all the quantification methods available in literature are simulation-

based and requires a transient simulation tool. As mentioned, there are many works 
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assessing the topic of the quantification methods for evaluate the energy flexibility of 

single buildings. In fact, also different review papers are available [23]. However, in this 

literature review it is chosen to mention only some of them, as they represented the 

starting point for the method discussed in Chapter 3.  

Mainly reference is made to the work of Reynders et al. [14]. In fact, they introduced a 

simulation-based method for the generic characterization of energy flexibility potential 

derived from the exploitation of the thermal mass of the building. The methodology is 

based on the calculation of three indicators (the available structural storage capacity, the 

storage efficiency and the power shifting capability). Also, Stinner et al. [25] introduced 

a quantification method based on three indicators: the temporal flexibility (forced and 

delayed), the power flexibility and energy flexibility. In particular, they evaluated the 

flexibility potential of a building heating systems by the simulation of opposite events 

(i.e., charge and discharge) for the storage system. Le Dréau and Heiselberg [26] 

characterized the behavior of the building thermal mass as storage medium during a load 

shifting strategy by means of the calculation of: the discharged heat (the energy use 

decreases compared to the reference case), the charged heat (the energy use increases 

compared to the reference case) and the shifting efficiency (ratio between the discharged 

and the charged heat). Another work that is taken into account for the formulation of the 

methodology presented in Papers 1 and 2 is that of Finck et al. [27]. In this work the 

authors also quantified the energy flexibility potential of buildings with thermal energy 

storage systems with the calculation of different performance indicators that sufficiently 

characterize flexibility in terms of energy (available storage capacity and storage 

efficiency), power (power shifting capability, electrical and thermal instantaneous power 

flexibility) and cost (the flexibility factor).  

What is interesting to observe is that in all the mentioned works the application of the 

methodology is related to a specific case study. Contrariwise, the aim of the 

methodology presented in this thesis (the FPI calculation proposed in Chapter 3 referred 

to Papers 1 and 2) is to define a standard quantification method, the result of which 

depends only on the intrinsic characteristics of the building, as for the energy 

performance certificate (EPC).  

 
2.1.2 Clusters of buildings 

 
Evaluating the energy flexibility reserve of a single building is essential from a resource 

planning perspective. However, the energy quantities involved (except for large 

industrial or commercial buildings) are not interesting from a market point of view. For 

this reason, when planning demand response strategies, it is necessary to consider the 

aggregation of several buildings (i.e., a cluster of buildings). A definition of building 
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cluster is provided by Vigna et al. [28]: “a building cluster identifies a group of buildings 

interconnected to the same energy infrastructure, such that the change of 

behavior/energy performance of each building affects both the energy infrastructure and 

the other buildings of the whole cluster”. To specify in the concept, the authors 

highlighted that the interconnection of the building is not necessarily physical, but it can 

be also market related (e.g., different buildings belonging to the same owner).  

In order to estimate the energy flexibility potential of different building cluster, it is 

necessary to identify a methodology to model the cluster. As highlighted by Goy and 

Finn [29], typically reference buildings (i.e., archetypes) are used. Then, buildings with 

similar features are grouped together with classification of clustering techniques.  

Many works are available in literature in which large-scale building energy models are 

formulated with archetypal buildings. For instance, Mata et al. [30] presented a 

methodology by which national building stocks (considering buildings located in France, 

Germany, Spain and in the UK) may be aggregated through archetypes. In particular 

they differentiated the archetypes by: (i) type of buildings (e.g., residential or not 

residential), (ii) construction year, (iii) climate region and (iv) the main fuel source for 

heating purposes. Also Famuyibo et al. [31] introduced a methodology for the 

development of archetypes based on information from literature and a sample of detailed 

energy-related housing data. To differentiate the archetypes, they used characteristics 

that are significant in establishing how house energy use might change according to the 

building regulations (e.g., wall U-value, roof U-value, window U-values, floor U-value, 

air change rate, floor area, heating system efficiency, dwelling type and domestic hot 

water cylinder insulation thickness) and characteristics of construction detail or 

construction type (e.g., wall construction types, roof insulation types, floor construction 

types and window insulation types). Hence, through cluster analysis, they identified 13 

archetypes representing 65% of the population of the existing Irish housing stock.  

Another interesting work available in literature is presented by Hu and Xiao [32]. They 

adopted clustering techniques starting from archetypal buildings to model the energy 

dynamics of the cluster. In particular, the authors introduced two aspects, which are 

partly connected to each other, that cannot be neglected when the analysis of the load 

shifting potential of a cluster of buildings wants to be evaluated: the uncertainty in 

quantification of the energy flexibility and the role of the occupancy profile of the users. 

Indeed, they observed how the evaluation of the building cluster’s energy flexibility is 

more reliable than that of a single building (aggregated energy flexibility exponentially 

decreased from 19.12% for 8 households to 0.74% for 5120 households).  

In this latter work, the energy flexibility is evaluated by calculating the load shedding 

compared to a baseline. In particular, the energy-flexible case is modelled raising the set 

point temperature during on-peak hours.  
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This can be one of the indicators for evaluating the peak reduction capacity of a cluster. 

However, as also the authors highlight in [32], most existing studies focused on the 

energy flexibility of individual buildings rather than building clusters. Indeed, all the 

indicators proposed by Vigna et al. [28] derived by works in which the single building 

is investigated.   

Although therefore there are few studies that aim to provide methods of quantifying 

flexibility at the cluster level, what should not be overlooked is cluster modeling 

approach. In fact, all the studies cited above show the importance of the archetypal 

buildings and occupancy patterns definition. 

   

2.2 Flexibility sources outside the building  

 
A building can provide flexibility sources to obtain different levels of performance 

improvement (e.g., to reduce polluting emissions, to maximize self-consumption of 

certain energy sources as RES or minimize energy bill). The medium with which the 

energy flexibility is activated can be inside the building (i.e., with the exploitation of 

storage systems or with the management of thermostatically controlled loads) or outside 

the building. This latter is possible when multi energy sources to cover the thermal 

demand of the building are available. Indeed, in this context the energy flexibility 

provided by the fuel switching is exploitable (Figure 2.1).   

When different energy sources are integrated into a building, they are commonly named 

as hybrid or multi-energy systems (MESs). A MES is where electricity, heating, fuels, 

and other type of energy vectors optimally interact with each other at various levels [33]. 

Focusing on residential buildings, natural gas and electricity can be the energy sources 

to different generators such as boilers, electric heat pumps (HPs), chillers and combined 

heat and power (CHP) systems, which can be used to produce electricity, heating and 

cooling [33]. Furthermore, MESs can integrate RESs and use energy sources recovered 

from optimized system management (e.g., energy harvesting from natural gas 

distribution networks [34]). Also, the interaction of buildings at district level (e.g., 

heating or cooling energy in district heating or cooling networks) can be exploited and 

building loads can be easily shifted thanks to the different energy storage systems that 

can be integrated in MESs [35].  

As highlighted by Zong et al. [36] there are several configurations of multi-energy 

systems applied to buildings analyzed in literature. Among all possible, the energy 

sources that can be available for the satisfaction of the building thermal demand, 

attention must be paid to the integration of district heating and cooling system in an 
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efficient multi energy system. In the next sub-section, a dedicated focus on the 

importance of district heating and cooling systems in an energy flexibility context is 

provided.  

 
2.2.1 District systems  

 
According to IEA [37], district heating and cooling systems are expected to play a key 

role in the energy grid and supply, particularly when heat pumps are connected to the 

system. Indeed, they offer important advantage to the whole energy systems.  

As summarized by Guelpa and Verda [37] with their literature review, the adoption of 

district heating and cooling systems provide many advantages, thanks to the possibility 

of combining [38][39]:  

▪ Renewable energy sources. 

▪ Heat pumps systems. 

▪ Waste heat recovered by industrial plants or energy plants. 

▪ Cogeneration plants for the combined production of electricity and heat. 

▪ Conventional plants (i.e., boiler system). 

▪ Heat produced by the prosumers connected to the network. 

Moreover, as highlighted by Vandermeulen et al. [35], thanks to the different levels of 

thermal inertia that can be exploited in thermal networks, district heating and cooling 

systems show great potential also in providing flexibility services. Indeed, they 

distinguished three different contributions to accumulate energy, located in different 

point of the network: (i)  the heat or cold carrier fluid, (ii) the possible addition of a 

thermal storage device and (iii) the thermal inertia of the buildings to which heat or cold 

is supplied.  

Given all these advantages highlighted, it is clear how to set up a flexibility analysis that 

also involves the contribution of shared energy sources such as district heating and 

cooling networks can be fundamental to broaden the context of the assessment from an 

individual point of view to an aggregate one (i.e., from the single building to clusters). 

 

2.3 Control logics to activate flexibility services  
 
Advanced control methods for energy management in buildings are required if the goal 

is obtaining an optimized operational performance [20]. In general, the controls of the 

HVAC of a building can be distinguished in two main categories: traditional control 
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strategies and advanced control strategies [40]. The first one can be in turn classified in 

rule-based control (e.g., on-off control) and process control (e.g., PID control) [40]. As 

well, three classifications for advanced control strategies can be identified: (i) soft-

computing control strategies (e.g., reinforcement learning, deep learning based on 

artificial neural network, fuzzy logic controls and agent-based controls), (ii) hard-

computing control strategies (e.g., auto-tuning PID control, gain- scheduling control, 

self- tuning control, supervisory/optimal control, model predictive control and robust 

control) and (iii) hybrid control strategies, which is a combination of soft and hard 

control strategies [40].  

Among all, model predictive control (i.e., hard-computing control strategies) represents 

one of the most investigated controls in academic literature [41][42], given its ability to 

easily merge the principles of feedback control and numerical optimization [43]. In the 

last decade, MPC has become a dominant control strategy in research on intelligent 

building operation [44]. Indeed, as highlighted by Drgôna et al. [44], the main benefit of 

model predictive controls in buildings is a systematic thermal comfort improvement with 

simultaneous energy savings [45][46], as well as grid flexibility services via price-

responsiveness and active demand response capabilities [47].  

The basic concept of the MPC is to use a dynamic model to forecast a system behavior 

and to optimize the actuations in order to operate under the best sequence of decisions 

[48]. A key feature of MPCs consists in selecting future control actions, taking into 

account both predictions of future disturbances and system constraints [43], while the 

goal is pursued. Therefore, in order to be effective, the MPC should be provided with an 

accurate model that is able to forecast the actual building energy demand [49]. Analyzing 

the scientific literature, three categories of building energy modeling are widespread for 

short-term predictions: physical-based, data-driven, and hybrid models [50].  

Physical-based systems are white box models [51] that need a detailed description of the 

building’s physical and thermal properties in order to describe the building’s dynamics 

with mathematical equations. Typically, they solve energy conservation equations based 

on heat transfer phenomena. No training data are required, and the parameters of the 

model are usually obtained from design plans, manufacture catalogues, or on-site 

measurements [50]. Most of the popular software, such as Energy Plus, TRNSYS, DOE-

2, or ESP-r, is based on a physical-based approach [52]. On the other hand, data-driven 

(or black box) models do not require a physical knowledge of the system, but they need 

a large amount of training data to be collected over an exhaustive period [50], i.e., both 

the data and the considered period should be statistically representative of the system 

operation. Statistical models have been directly applied in order to capture the 

correlation between building energy consumption and available measurement data [51]. 

The most common black box models are support vector machines, statistical regression 

(e.g., linear auto regressive models with exogenous inputs, ARX) and artificial neural 
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networks (ANNs) [53]. Unlike white box models, in which all the model parameters 

have a physical meaning, the parameters involved in a black box model cannot be 

interpreted in such terms. A compromise between the two approaches is represented by 

hybrid (or grey box) models. Grey box models are a combination of physical-based and 

data-driven prediction models; thereby, some internal parameters and equations are 

physically interpretable, while others are estimated with a data-driven approach. Grey 

box models are widespread in building energy modeling [54], although they require both 

the system structure and training data. 

Different works are available in literature assessing the adoption of model predictive 

control to manage the HVAC of a building. They are mainly focused on evaluating the 

best model configuration to be adopted in an MPC (e.g., parameters identification, 

selection of inputs and outputs) or on the energy benefits that can be obtained through 

the adoption of such controls in specific buildings. For instance, Ferracuti et al. [55] 

compared the performance of three different data-driven models for short-term thermal 

prediction in a real building: a lumped element grey box model, an ARX, and a nonlinear 

ARX. They demonstrated that all the data-driven models investigated can be used to 

predict the short-term flexibility of the building for DR applications. In fact, for a 

prediction horizon of one hour, all the models showed a maximum root mean square 

error, RMSE (Root Mean Square Error), less than 0.5 °C in the tested period (among the 

grey box models, the third order one showed the best performance). Touretzky and Patil 

[56] developed an ARX model to forecast the building power demand, also adopting 

physics-based modeling approaches for building energy management. They investigated 

different configurations of options for inputs and outputs in relation to the available 

measurements, highlighting the importance of an appropriate selection of exogenous 

inputs in order to capture the effect of common demand management practices.  

On the other hand, there are many examples of studies that focus on the energy 

performance improvement that is obtained when a predictive control is used in a building 

with respect to a classic ruled-based control. For instance, Drgôna et al. [57], obtained 

an energy use savings equal to 53.5% and a thermal comfort improvement of 36.9% for 

an office building in Belgium when a white box MPC based on first-principle physical 

equations is adopted. Ferreira et al. [58] found similar energy savings (greater than 50%) 

when an MPC is adopted in the building sector. In this case, they proposed a discrete 

MPC that used radial-basis-function ANNs as predictive models and demonstrated the 

feasibility of the model with experimental results obtained in a building of the University 

of Algarve. Also, Joe and Karava [59] introduced a smart operation strategy based on an 

MPC in order to optimize the performance of hydronic radiant floor systems in office 

buildings. They obtained a 34% cost saving compared to the baseline feedback control 

during the cooling season and a 16% energy use reduction during the heating season. 
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It is important to note that the works mentioned represent only a small part of all the 

scientific production available in the literature on the use of model predictive controls in 

buildings. For this reason, they are chosen as controls to be used for the activation of 

energy flexibility in buildings in the analysis proposed in this thesis. In particular, an 

aspect that is not always considered when applying the MPCs in buildings for flexibility 

analysis, is the ability of the model contained in the control to predict not only the energy 

demand of the building but also its ability to vary its needs when flexibility due to TCLs 

is activated. This aspect is treated in this thesis also comparing differing model 

techniques (i.e., white and black box approaches). 
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Chapter 3  

 

Quantification of the design energy 

flexibility in single building 

 
In this chapter, the methodology for buildings energy flexibility labelling introduced in 

Paper 2 is presented. The method is based on a standard procedure that allows the 

assessment of the flexibility performance of buildings equipped with electrically driven 

heating and cooling systems. In particular, the methodology allows to calculate a single 

indicator: the Flexibility Performance Indicator (FPI) that summarizes the energy 

flexibility performance of a building and its HVAC system. The objective is to broaden 

the energy characterization of the building also considering the aspect of the potential 

reserve of flexibility contained in it. Indeed, as for the energy efficiency labelling already 

defined in the energy performance certificate, the FPI allows the identification of 

flexibility classes to label buildings according to their energy flexibility potential derived 

by their intrinsic features (e.g., level of thermal insulation, thermal mass, characteristics 

of the emission system). Details about the methodology formulation are provided in 

Section 3.1, while in Section 3.2 its application to different case studies id discussed.  

 

3.1 Flexibility performance indicator 
 
The flexibility performance indicator depends on the most relevant parameters for 

energy flexibility (i.e., time, power and capability) as suggested in literature [14]. As the 

methodology is designed to evaluate the flexibility that can be provided to the electricity 

grid, only the electricity demand is taken into account.  

As mentioned, since the energy flexibility evaluation requires a dynamic analysis, a 

transient simulation tool must be used. However, before introducing the calculation 

method (sub-section 3.1.2), in order to introduce a univocal quantification method 

standard boundary conditions has to be defined (sub-section 3.1.1).  
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3.1.1 Standard boundary conditions 

 
The boundary conditions which affect the energy flexibility assessment are: (i) the 

weather data, (ii) the demand response (DR) event and (iii) the thermal comfort 

constraints. 

To represent the dynamic of the external environment (i), a climatic file representing a  

typical meteorological year must be considered for each location. First of all, a 

representative day in which the DR event occurs must be selected. It is assumed to be, 

the most representative day of summer and winter season referring to available standard 

data. For instance, for the Italian case the reference standard UNI 10349-1 [60] reports 

the climatic data to assess the buildings energy performance. In particular, for the most 

representative Italian cities with a weather station, the standard identifies an average 

daily temperature for each month. This method proposes to select from the climatic file 

as representative day that one whose average daily temperature matches better with the 

values obtained from the standard (the lowest average daily temperature indicated by the 

standard in winter and the highest average daily temperature in summer are taken in 

order to capture the most extreme cases).  

Once the day is identified, it is also necessary to set the starting time of the demand 

response event. First of all, the selected DR event (ii) is a peak shaving strategy. It 

consists in interrupting power supply to the heating/cooling system at the electric grid 

peak power demand time until the internal comfort conditions reach a desired lower 

bound. This is the first phase called “response period”. Then the heating/cooling system 

is switched on to restore the initial internal comfort conditions (“recovery period”). From 

the building point of view the DR event is realized with a rule-based control that varies 

the comfort temperature set points to reduce the demand during peak periods.  

To evaluate the peak time, it is suggested to consider the peak electricity demand times 

for the country where the building is located. For example, for the Italian case, from the 

daily balancing data available on Terna website [61], it can be noted that the Italian 

electricity demand has always two peaks, one in the first part of the day and the other in 

the second part (Figure 3.1). In winter the first peak occurs between 10.00 am and 12.00 

pm, and the second one between 6.00 pm and 7.00 pm. In summer, instead, the first peak 

occurs between 12.00 pm and 1.00 pm and the second one between 5.00 and 6.00 pm. 

Therefore, considering the most severe cases, the Italian starting time for the demand 

response event to be used is 7.00 pm for the heating case and 12.00 pm for the cooling 

case.  
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Figure 3.1. Two Italian daily electric power demand curves: 25 January 2018 and 4 July 2018. 

 

As concern the comfort bounds (iii), according to Fanger [62], the following comfort 

temperature ranges are selected:  

▪ For the heating season between 20 °C and 22 °C. 

▪ For the cooling season between 24 °C and 26 °C.  

Moreover, in the cooling season, when also a punctual humidity control is allowed by 

the HVAC system, a comfort range between 60% and 70% is selected for the indoor 

relative humidity (RH).  

During the demand response event the flexibility provided by the management of the 

thermostatically controlled load is activated is this way: for the heating case a 2 °C 

decrease is allowed starting from a setpoint temperature of 22 °C, while for the cooling 

case the temperature can increase 2 °C from a temperature setpoint of 24 °C and, if it 

can be controlled, a 10% RH increase is allowed. 

In Figure 3.2 is showed a representation of a demand response event in heating season 

with a distinction between the two phases: the response and the recovery periods.   
 

 

Figure 3.2. Indoor temperature during the demand response event in heating case: distinction 

between response and recovery periods. 
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3.1.2 Labelling method 

 
The methodology to quantify and label the buildings energy flexibility is formulated 

according to the method of Reynders et al. [14] and it is introduced in its definitive 

formulation in Paper 2. As mentioned, the quantification method allows the calculation 

of a single indicator (the Flexibility Performance Indicator, FPI) which includes the 

aspect of both the time, the power and the capability.  

In general, the FPI depends on four flexibility parameters:  

▪ The response time ( tres ) that represents the time necessary to the internal 

temperature to reach the lower or upper comfort temperature bound respectively in 

winter and summer. This parameter quantifies how much time the heating/cooling 

generator can remain off while the building can maintain its comfort conditions.  

▪ The committed power (Ṗres) that represents the effect of the demand response event 

in terms of electrical power engaged. It is defined as the integral of the difference 

between the heat pump reference power demand (i.e., without DR) and the heat 

pump power demand during the demand response event divided by the duration of 

the response phase (i.e., tres).   

Ṗres =
1

tres 
∫ (𝑃̇REF − 𝑃̇DR) dt

tres 

0

 Eq. (1) 

𝑃̇REF refers to normal operation of the system, when no event is in place, and it 

represents the heat pump electric power demand for heating/cooling during the same 

period in the representative day as for the demand response event. 

▪ The recovery time (trec) that represents the time necessary to the restore the starting 

comfort conditions.  

▪ The actual energy variation (EDR) that is defined as the difference in energy use 

between the reference condition and the demand response event during the whole 

demand response event (i.e., tDR). 

EDR = ∫ (𝑃̇REF − 𝑃̇DR) dt
tDR 

0

 Eq. (2) 

The first two parameters are more interesting for the electric grid side. Indeed, they refer 

to the response period when the heating/cooling systems are switched off and then the 

network load is reduced. The other two parameters, on the other hand, are of greater 

interest for the user side, because they consider how fast the initial comfort is restored 

after a demand response event and the actual impact of the event on energy use.  
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The flexibility performance indicator is defined in a dimensionless form as weighted 

average of four contributions, as shown in Equation (3): 

FPI =
1

4
(p1 ∙ tres

∗ + p2 ∙ Ṗres
∗ − p3 ∙ trec

∗ + p4 ∙ ηDR) Eq. (3) 

With:  

tres
∗ =

tres

24
 Eq. (4) 

Ṗres
∗ =

|Ṗres|

Ṗrated

 Eq. (5) 

trec
∗ =

trec

24
 Eq. (6) 

ηDR = {

EDR

∫ 𝑃̇REF dt
tDR 

0

0 if EDR < 0 in peak shaving

 Eq. (7) 

 

The first term in Equation (4) is the response time referred to 24 h, with a weight of 60% 

(p1 equal to 60). The second is the committed power normalized to the installed rated 

power (Ṗrated) with a weight of 20% (p2 equal to 20). The third is the recovery time 

normalized on 24 h with a weight of 10% (p3 equal to 10) and the last one is a sort of 

demand response energy efficiency, since it is calculated as the ratio between the actual 

energy variation achieved during the event and the building electricity use in reference 

operation (i.e., without DR) during the duration of the event (i.e., tDR). It has a weight 

of 10% (p4 equal to 10). As highlighted, in Equation (7), the demand response efficiency 

is zero if the peak shaving strategy does not produce any energy saving. 

The weights distribution is determined with an empirical approach by observing 

simulation data representing the behavior of a large amount of buildings configurations 

during a demand response event. Different configurations of buildings are tested and 

most of them are discussed in the next section (Section 3.2). The trend of the different 

parameters composing the FPI is analyzed and, keeping in mind their effect on the 

available flexibility, they received a weight that could provide reasonable overall FPI 

values with a trial and error approach. In particular, on the basis of the expected 

flexibility performance, different combinations of weights are tried and, the one that 

seemed to best represent the differences between the cases studied is chosen. 

Furthermore, the criterion that is used also provides that the numerical values of the 

weights are assigned to emphasize the impact of the demand response event on the 
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electricity grid. Therefore, a greater weight is given to those parameters which denote 

the interaction with the grid side (i.e., p1 and p2), especially to the response time that 

represents the time that the heating system is independent from the grid. Whereas it is 

assumed the same weight for the two parameters representing the user’s side (p3 and 

p4). It is important to note that the numerical values of the weights reported in this 

formulation represents a first hypothesis to calculate the FPI that is based on the observed 

case studies. However, the results could be different if the weighting factors of the FPI 

are differently selected. Though, the chosen set of values represents the configuration 

that seems to best represent the different performance of buildings in terms of energy 

flexibility. 

Once the FPI is calculated, through the definition of limit thresholds, it is possible to rate 

a building in a specific flexibility class. The same approach as the energy labelling is 

supposed. Indeed, to calibrate the actual building flexibility and reduce the influence of 

the building location (i.e., weather data) ideal reference conditions are assumed.  

In the ideal reference conditions a building with the same thermal resistance of the 

building under evaluation is considered, but its thermal mass (both for the envelope and 

heating/cooling distribution system) is neglected. It is assumed that the building is 

subject to the same demand response event when the outside ambient temperature is 

constant at the design value used to size the heating and cooling systems, respectively in 

winter and summer. An FPIlimit value in steady state conditions is calculated with the 

following assumptions:   

▪ Thermal losses evaluated considering an average indoor condition 21 °C in winter 

and 25 °C and 60% of relative humidity in summer. 

▪ Solar gains and internal gains are considered only in summer and they include both 

sensible and latent contributions if the plant can control the relative humidity. 

▪ The heating/cooling system without the demand response event works at fixed 

conditions equal to design values. 

▪ In case without the demand response event the heating/cooling system works for the 

whole period at nominal power. 

▪ In case with the demand response event the heating/cooling system works during the 

recovery period at nominal power. 

Consequently, the flexibility parameters are calculated in the following way:  

▪ The response time is calculated as the energy necessary to produce a 2 °C variation 

of the indoor air divided by the net value of thermal losses and gains. 

▪ The committed power is equal to nominal power.  

▪ The recovery time is calculated as the energy necessary to produce a 2 °C variation 

of the indoor air divided by the heating/cooling system nominal capacity. 

▪ The actual energy variation is calculated as showed in Equation (2).  
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The FPIlimit refers to an extreme case where the inertia of the building is neglected, and 

the heating/cooling system load is always at its design value.  

The reference condition represents a configuration with limited flexibility due to thermal 

mass but with a fast responsiveness of the heating/cooling system (i.e., it works always 

at nominal conditions), then it is assumed to be a medium flexibility level and it is set in 

class B.  

The flexibility class for the considered building is determined on the basis of the ratio 

between FPI and FPIlimit as represented in Figure 3.3, where the subdivision in classes 

is showed. However, more details about the methodology formulation and the flexibility 

classes partition can be founded in Paper 2, where the methodology is presented.  

 

 

Figure 3.3. Energy flexibility classes for buildings labelling. 

 

3.2 FPI application  
 
In order to evaluate the reliability of the methodology, the FPI is calculated for different 

buildings both in heating and in cooling season. Buildings are differentiated according 

to location (e.g., different weather data are considered), thermal and geometrical features 

(e.g., wall stratigraphy, thermal losses and heaviness of the envelope) and HVAC system 

(e.g., radiant distribution systems, fan coils units, radiators and split systems).  

The presented case studies are evaluated in Papers 1, 2 and 3. All of them are 

representative for the Italian scenario and TRNSYS [63] is used as dynamic energy 

simulation tool to implement the methodology. It is important to notice that, the 

mentioned works are aimed to evaluate the effectiveness of the methodology in showing 

variations in the flexibility performance indicators when buildings with different 

features are tested. In particular, in the sub-section 3.2.1 the construction age of the 

buildings is taken into account. In sub-section 3.2.2 the analysis is focused on the role 

of the heaviness and the composition of the building envelope in different locations. 

And, finally, in sub-section 3.2.3 is presented a case study in which the FPI is used to 
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evaluate the effect of the most widespread renovation strategies on the energy flexibility 

performance.  

 
3.2.1 Role of the construction age 

 
The effectiveness of the methodology in evaluating the different energy flexibility 

performance of buildings with different construction ages is evaluated in Paper 1. In this 

case a preliminary version of the methodology is used. In particular, a tighter comfort 

limit is used (from 19 °C to 20 °C for the heating season and from 23 °C to 25 °C in the 

cooling season), the weights of the four parameters composing the FPI (Equation (3)) 

are different (p1 equal to 50 %, p2 equal to 20%, p3 equal to 15 % and p4 equal to 15 

%) and the FPIlimit calculation is not intended. Thus, the flexibility classes are defined 

only according to the value of the FPI: when the FPI is greater than 10 the building is 

labelled in class A+, for values between 8 and 10 the class is A, for FPI between 5.5 

and 8 the class becomes B, for values between 4 and 5.5 the class is C and, finally, for 

FPI lower than 4 the D is the flexibility class.  

To test the methodology, a set of representative buildings are selected. Their main 

characteristics are extrapolated from TABULA project [64]. Since only heating and 

cooling systems provided with heat pump must be considered for the flexibility 

evaluation, not all the construction classes that are included in the TABULA are 

considered, but only those built from 1961 to the present. However, Table 3.1 contains 

values of the thermal transmittances of the selected age classes.  

 
Table 3.1. U-value (W m-2 K-1) implemented in Paper 1. 

Age class External walls Floor Roof Windows 

1961-1975 (Class 5) 1.57 1.09 1.30 5.83 

1976-1990 (Class 6) 0.90 0.99 0.74 5.68 

1991-2005 (Class 7) 0.60 0.69 0.53 2.83 

2006-today (Class 8) 0.29 0.29 0.28 1.40 

 

All the dwellings are composed of single climatic zone with a living area of 100 m2 as 

apartments in multi-family houses (i.e. each apartment is are considered on a raised floor, 

with a wall and the floor adjacent to another apartment and on the top floor of the 

building). For each wall, 10% of percentage of windowed area is assumed and an air 

changes per hour (ACH) are equal to 0.5 h-1 is considered.  

As concerning the HVAC systems, compatibly with the age class, four configurations 

for the heating system and two configurations for the cooling system are modelled. 

Starting from the heating systems, for the most recent classes (classes 7 and 8 in Table 

3.1) a radiant distribution system coupled with air to water heat pump is modelled. In 
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this case the heat pump, whose performance are derived from a manufacturer catalogue 

[65], is sized to cover 70% of the building design power (calculated as the maximum 

thermal load of the buildings at reference conditions for the external environment [66]).  

For these two age classes (7 and 8) also a split system is modelled for the thermal 

distribution. In this case the refrigerant exchanges heat at the condenser/evaporator 

directly with the indoor air.  

For the age class 7, imagining a small variation of the typical heating systems of 

buildings of this age (i.e. methane gas boiler and radiators), also an air source heat pump 

coupled with radiators is modelled as heating system. In a retrofit scenario, the air source 

heat pump replaces the boiler. In this case the system is equipped with a small thermal 

storage (a hot water tank of 60 liters) to limit the on-off cycles of the heat pump.  

For the older buildings (classes 5 and 6 in Table 3.1), assuming a possible renovation, a 

hybrid heating system is present. An heat pump is added to a classic 25 kW boiler, used 

both for heating and domestic hot water. An alternative-parallel configuration is 

considered in which the heat pump is sized for an external temperature of 5 °C [67]. 

Also, in this case the system is equipped with a small thermal storage to limit the on-off 

cycles of the heat pump (80 liters for class 6 and 100 liters for class 5).  

As far as the cooling system is concerned, a typical configuration with direct expansion 

air source heat pump (i.e., split system) is applied to all the age classes. For the most 

recent classes (7 and 8 in Table 3.1) also a radiant distribution system coupled with an 

internal air dehumidifier is modelled. In this latter configuration the same heat pump 

used in the heating case reverses its operation and sends chilled water to the distribution 

system. Summing up the case studies analyzed for the heating season are:  

(i) Age class 8 (2006-today) with an air to water heat pump coupled with radiant 

floor as distribution system. 

(ii) Age class 7 (1991-2005) with an air to water heat pump coupled with radiant 

floor as distribution system. 

(iii) Age class 8 (2006-today) with a direct expansion air source heat pump (split 

system). 

(iv) Age class 7 (1991-2005) with a direct expansion air source heat pump (split 

system). 

(v) Age class 7 (1991-2005) with an air to water heat pump with radiators as 

distribution system. 

(vi) Age class 6 (1976-1990) with an hybrid system (air to water heat pump and 

traditional boiler) with radiators as distribution system.  

(vii) Age class 5 (1961-1975) with an hybrid system (air to water heat pump and 

traditional boiler) with radiators as distribution system.  

For the cooling season, instead, the modelled case studies are: 
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(i) Age class 8 (2006-today) with a direct expansion air source heat pump (split 

system.  

(ii) Age class 8 (2006-today) with an air to water heat pump and dehumidifier with 

radiant distribution system.   

(iii) Age class 7 (1991-2005) with an air to water heat pump and dehumidifier with 

radiant distribution system. 

(iv) Age class 7 (1991-2005) with a direct expansion air source heat pump (split 

system). 

(v) Age class 6 (1976-1990) with a direct expansion air source heat pump (split 

system). 

(vi) Age class 5 (1961-1975) with a direct expansion air source heat pump (split 

system). 

More details about the case studies are reported in Paper 1, where also the description of 

the different HVAC systems sizing procedure is presented.  

In this evaluation, all the models are located in the city of Ancona (43°35′39″ N, 

13°30′12″ E) in central Italy. The representative winter day is January 18 (the average 

daily temperature obtained from the climate file is 6 °C when the average monthly 

temperature for the month of January for the city of Ancona indicated in the norm is 

6.3°C [66]). In the summer case, the representative day considered is July 11. In this day 

the average daily temperature is 24.5°C when the standard indicates to consider a 

temperature of 24.4°C [66]. 

Figure 3.4 shows the results for the application of the methodology to the heating case 

(Figure 3.4(a)) and to the cooling case (Figure 3.4(b)). It is important to notice that the 

results presented, in accordance with Paper 1, are obtained starting the DR event in 

heating season at 11.00 am (first peak power, Figure 3.1) while, for the cooling case the 

12.00 pm is maintained.  

 
 

 
(a) 
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(b) 

Figure 3.4. Buildings flexibility label for the case studies considered in Paper 1: (a) FPI for 

buildings in heating season and (b) FPI for buildings in cooling season. 

 

Starting from the evaluation in the building season, as expected, the methodology label 

in the higher flexibility class (A+) the building with a more recent age class, therefore 

with an excellent level of thermal insulation and equipped with a radiant floor as 

distribution system (Figure 3.4(a)). On the other hand, the model with the worst 

performance (flexibility class C) is the older one equipped with radiators. Table 3.2 

shows the values of the flexibility indicators in their dimensionless form.  

 
Table 3.2. Flexibility parameters and labelling in heating case for case studies considered in 

Paper 1. 
Heating system Age class 𝐭𝐫𝐞𝐬

∗  𝐏̇𝐫𝐞𝐬
∗  𝐭𝐫𝐞𝐜

∗  𝛈𝐃𝐑 

Radiant floor 2006-today 0.67 0.31 0.37 0.13 

Split system 2006-today 0.19 0.38 0.01 0.88 

Radiant floor 1990-2005 0.42 0.37 0.55 0.11 

Radiator 1990-2005 0.03 0.40 0.01 0.59 

Split system 1990-2005 0.02 0.39 0.01 0.41 

Hybrid 1976-1990 0.01 0.29 0.01 0.68 

Hybrid 1961-1975 0.01 0.28 0.01 0.44 

  

Looking at the results, the methodology allows to appreciate both the influence of the 

isolation level and the thermal inertia of the distribution system. Indeed, comparing the 

two building of age class 8 (2006-today) and 7 (1990-2005) equipped with the radiant 

floor as heating system, different values of tres
∗  and trec

∗  are obtained. The higher level 

of thermal insulation of the building in class 8 (2006-today) allows to obtain a greater 

inertia in the thermal response. Then it is translated into the building ability to maintain 

the conditions within the comfort zone for a longer period (tres
∗ ). Also, the trec

∗  differs 

slightly between the two models as a consequent of the higher thermal loss in the 

building in class 7 (1990-2005). However, with this heating system, relatively low values 



28 

 

of ηDR (13% for building in class 8 and 11% for building in class 7 (1990-2005), Table 

3.4) are obtained. This is due to the great energy consumption in the recovery phase that 

makes the actual energy saving lower.  

Passing at the observation of the results for the other models, an overall decrease of tres
∗  

is observed compared to the two cases discussed so far. It mainly depends on the almost 

total absence of thermal inertia introduced by the other distribution systems. With the 

same construction class, for example class 8 (2006-today), tres
∗  decreases by 72% if the 

building is equipped with a direct expansion heating system rather than with a radiant 

floor system and a very consistent variation is obtained for class 7 (1990-2005) too.  

Another observation can be made by looking at the results obtained for the models in 

class 7 (1990-2005) equipped respectively with radiant floor, radiators and split system. 

Looking at Figure 3.5, another difference in the application of the method in Paper 1 

resect the above discussed methodology can be notice. Indeed, the demand response 

event starts at 11.00 am for the test in heating season. However, a different in the 

evolution of the event due to the thermal inertia of the distribution system can be 

observed. Although small, in fact, radiators have a thermal inertia greater than splits, this 

allows to take a longer time in reaching the comfort limit condition. These types of 

distribution systems (radiators and splits) however, show lower performance compared 

to the radiant floor, even if their demand response efficiency is higher (Table 3.2).  
 

 
Figure 3.5. Air temperature during the demand response event in heating season for building of 

class 7 (1990-2005) with different heating systems: radiant floor, radiator and split system. 

 

Regarding the models of older age classes (i.e., 6 and 5, respectively buildings build 

between 1976 and 1990 and between 1961 and 1975), the flexibility time indices are 

greatly influenced by the low thermal inertia of the system. Consequently, relatively low 

values of flexibility indices are obtained.  

Passing to the cooling season analysis, Table 3.3 shows the flexibility indicators 

obtained for the cooling case. From a first observation of the results (Table 3.3 and 

Figure 3.4(b)), the methodology evaluates the best performance in term of energy 
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flexibility for the radiant system coupled with the air dehumidifier (applied only to the 

most recent construction classes: 7 and 8, respectively buildings build between 1990 and 

2005 and from 2006 onwards).  

 
Table 3.3. Flexibility parameters and labelling in cooling case for case studies considered in 

Paper 1. 
Cooling system Age class 𝐭𝐫𝐞𝐬

∗  𝐏̇𝐫𝐞𝐬
∗  𝐭𝐫𝐞𝐜

∗  𝛈𝐃𝐑 

Radiant and dehumidifier 2006-today 0.07 0.59 0.02 0.60 

Split system 2006-today 0.02 0.68 0.02 0.41 

Radiant and dehumidifier 1990-2005 0.06 0.61 0.02 0.55 

Split system 1990-2005 0.02 0.60 0.01 0.45 

Split system 1976-1990 0.02 0.71 0.01 0.35 

Split system 1961-1975 0.02 0.57 0.01 0.44 

 

In these models, since it is possible to control the humidity of the indoor air too, the 

tres
∗  indicator is so evaluated with the comfort limit condition reached earlier, between 

temperature and humidity. In the specific case, the boundary condition for humidity is 

reached faster, limiting the duration of the response phase and therefore the exploitation 

of the thermal inertia of the distribution system.  

As far as the other cooling system is concerned (all the dwellings are modelled with a 

split system), considering all the modelled age classes, from 5 to 8, the demand response 

events have a duration ranging between 0.73 hours and 0.89 hours and also the efficiency 

of the event the has similar values among the various cases (from 35 % to 45 %). This 

behavior makes possible to conclude that, according to the model formulation, for the 

modelled dwellings in summer period there is a lower overall capacity to provide energy 

flexibility than the heating season. Furthermore, there is a small influence of the 

structural composition of the building in case of reduced thermal inertia of the 

distribution system.  

However, albeit in a preliminary formulation, the calculation of the FPI has shown itself 

capable of representing the variation in the intrinsic features of the buildings (i.e. level 

of thermal insulation and thermal inertia of the HVAC system) both in heating and 

cooling season.  

 
3.2.2 Role of the envelope composition 

 
In order to assess the reliability of the methodology, in this section the FPI is calculated 

for buildings differentiated in base of locations (i.e., the weather data) and of the building 

envelope characteristics. This analysis is contained in Paper 2, where the final version 

of the methodology is also presented.  
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Two extreme climatic zones are assumed as building locations in the Italian scenario: 

Messina (climatic zone B, 38° 11′ N, 15° 32′ E) and Turin (climatic zone E, 45° 7′ N, 7° 

43′ E) respectively in the south and in the north of Italy. Then, different building 

specifications are modelled (i.e., variation of the wall stratigraphy and heaviness of the 

building envelope). To extend the analysis, two HVAC systems are introduced for each 

building: an air to water heat pump coupled with a radiant distribution system and with 

fan coils units. 

As reference conditions for the thermal features of the buildings, the Italian regulation 

D.M. 11 March 2008 [68] is assumed since it is representative of a consistent share of 

the building stock where the heat pump technology can be integrated. Table 3.4 shows 

the prescribed thermal transmittances (U-values) of the building envelope for the two 

different climatic zones modelled.  

 
Table 3.4. U-values (W m-2 K-1) implemented in Paper 2. 

Location External walls Floor Roof Windows 

Climatic zone B 0.48 0.49 0.38 3.00 

Climatic zone E 0.34 0.33 0.30 2.20 

 

All the buildings are modelled with the same value of thermal transmittance for each 

location but, to evaluate the effect of the envelope thermal inertia, the external walls 

(i.e., vertical walls, roof and floor) are considered with different compositions and 

thermal properties of the construction materials. In particular, the wall stratigraphy is 

varied by changing the position of the thermal insulation. Three position of the thermal 

insulation (thermal conductivity 0.04 W m-1K-1) are tested: external insulation, cavity 

wall insulation and internal insulation. Then, for each insulation position, two different 

heaviness for the walls, which differ in the load-bearing layers, are distinguished.  

A heavy structure is modelled with solid bricks (density 1800 kg m-3, thermal 

conductivity 0.72 W m-1K-1 and specific heat 1000 J kg-1K-1) and a more light structure 

with hollow bricks (density 1000 kg m-3, thermal conductivity 0.34 W m-1K-1 and specific 

heat 1000 J kg-1K-1). More details about the characteristics of the building models are 

reported in Paper 2, where also the thermal properties of each layer of the building 

envelope are provided.  

Going to the HVAC systems, as mentioned, two different heating and cooling systems 

are introduced in order to distinguish a low and a high thermal inertia contribution. The 

first one has a high/medium thermal inertia level as it is composed of an air to water heat 

pump coupled with a radiant distribution system, underfloor for the heating case and 

chilled ceiling for the cooling case. The cooling system includes also an air dehumidifier 

to control the internal humidity.  
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In heating season, the heat pump is sized to cover 70% of the building peak demand 

(calculated on the basis of the maximum thermal load of the buildings in stationary 

conditions, considering the outdoor temperature equal to the minimum winter 

temperature for the chosen locations, as suggested by UNI ENI 10349-2 [66]), as 

typically assumed in presence of high thermal inertia distribution systems [15]. In this 

case, the system is not equipped with a storage tank, since the thermal inertia introduced 

by the floor is sufficient to limit the on-off cycles of the heat pump [15].  

In cooling mode, instead, the heat pump is sized to cover only the amount of sensible 

heat while the treatment of latent heat is entrusted to an internal air dehumidifier (the 

cooling system is sized by means of the Carrier-Pizzetti technical dynamic method [69]). 

In particular, the chilled ceiling is composed of pipes set on panels in the first internal 

layer of the roof, for this reason it is considered a medium thermal inertia system if 

compared with underfloor systems (high thermal inertia system). 

The low thermal inertia HVAC system is composed of an air to water heat pump coupled 

with fan coil units used both for heating and cooling season. In this case the heat pump 

is sized to cover the whole heating/cooling thermal load and a small water tank is 

introduced in to limit its on-off cycles. In this case, even if a management of the latent 

contribution is possible in cooling case, a relative humidity punctual control is not 

possible.  

Summing up, for each location the following building models are tested:  

(i) Internal thermal insulation position with light envelope and fan coil units.  

(ii) Internal thermal insulation position with light envelope and radiant system. 

(iii) Cavity wall thermal insulation position with light envelope and fan coil units.  

(iv) Cavity wall insulation position with light envelope and radiant system. 

(v) External thermal insulation position with light envelope and fan coil units. 

(vi) External thermal insulation position with light envelope and radiant system. 

(vii) Internal thermal insulation position with heavy envelope and fan coil units.  

(viii) Internal thermal insulation position with heavy envelope and radiant system. 

(ix) Cavity wall thermal insulation position with heavy envelope and fan coil units. 

(x) Cavity wall insulation position with heavy envelope and radiant system. 

(xi) External thermal insulation position with heavy envelope and fan coil units. 

(xii) External thermal insulation position with heavy envelope and radiant system. 

The value of the FPIlim for the considered cases are reported in Tables 3.5 and 3.6 

respectively for buildings located in Messina and in Turin.  
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Table 3.5. FPIlim for buildings located in Messina (Paper 2). 
Location Season HVAC FPIlim 

Messina Heating Fan coil units 6.36 

Messina Heating Radiant system 6.14 

Messina Cooling Fan coil units 6.39 

Messina Cooling Radiant system 5.62 

 

Table 3.6. FPIlim for buildings located in Turin (Paper 2). 
Location Season HVAC FPIlim 

Turin Heating Fan coil units 6.29 

Turin Heating Radiant system 6.03 

Turin Cooling Fan coil units 6.39 

Turin Cooling Radiant system 5.66 

 

According to the boundary conditions specifications described in sub-section 3.1.1, the 

representative winter day for Messina is February 6 and for Turin January 11, while the 

representative summer day for Messina is July 2 and for Turin July 8.  

In Figures 3.6 and 3.7 are presented the results of the methodology for the modelled case 

studies. In particular, the FPI calculated for all the heating and cooling cases are showed 

together with their flexibility label. Moreover, in Tables 3.7, 3.8, 3.9 and 3.10 the 

flexibility parameters calculated for each building are reported.  

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 3.6. Buildings flexibility labels for the case studies considered in Paper 2 (located in 

Messina): (a) FPI for buildings in heating season and equipped with fan coil units, (b) FPI for 

buildings in heating season and equipped with radiant system, (c) FPI for buildings in cooling 

season equipped with fan coil units and (d) FPI for buildings in cooling season equipped with 

radiant system. 
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(a) 

 

(b) 

 

(c) 
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(d) 

Figure 3.7. Buildings flexibility labels for the case studies considered in Paper 2 (located in 

Turin). (a) FPI for buildings in heating season and equipped with fan coil units, (b) FPI for 

buildings in heating season and equipped with radiant system, (c) FPI for buildings in cooling 

season equipped with fan coil units and (d) FPI for buildings in cooling season equipped with 

radiant system. 

 
Table 3.7. Flexibility parameters in heating season for case studies considered in Paper 2 (located 

in Messina). 
Heaviness of the 

envelope 

Insulation 

position 
HVAC 𝐭𝐫𝐞𝐬

∗  𝐏̇𝐫𝐞𝐬
∗  𝐭𝐫𝐞𝐜

∗  𝛈𝐃𝐑 

Heavy External Fan coil units 1.37 0.17 0.02 0.95 

Heavy Internal Fan coil units 0.25 0.17 0.02 0.76 

Heavy Cavity Fan coil units 1.27 0.17 0.02 0.93 

Light External Fan coil units 1.25 0.17 0.02 0.94 

Light Internal Fan coil units 0.24 0.18 0.02 0.83 

Light Cavity Fan coil units 1.22 0.18 0.02 0.92 

Light External Fan coil units 1.34 0.40 0.39 0.55 

Heavy External Radiant system 1.21 0.32 0.50 0.39 

Heavy Internal Radiant system 1.25 0.37 0.47 0.47 

Heavy Cavity Radiant system 1.28 0.36 0.44 0.48 

Light External Radiant system 1.19 0.34 0.52 0.38 

Light Internal Radiant system 1.25 0.35 0.47 0.45 

Light Cavity Radiant system 1.37 0.17 0.02 0.95 

Light External Radiant system 0.25 0.17 0.02 0.76 
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Table 3.8. Flexibility parameters in cooling season for case studies considered in Paper 2 (located 

in Messina). 
Heaviness of the 

envelope 

Insulation 

position 
HVAC 𝐭𝐫𝐞𝐬

∗  𝐏̇𝐫𝐞𝐬
∗  𝐭𝐫𝐞𝐜

∗  𝛈𝐃𝐑 

Heavy External Fan coil units 0.10 0.34 0.01 0.83 

Heavy Internal Fan coil units 0.02 0.43 0.01 0.38 

Heavy Cavity Fan coil units 0.09 0.34 0.01 0.80 

Light External Fan coil units 0.06 0.35 0.01 0.75 

Light Internal Fan coil units 0.02 0.46 0.01 0.42 

Light Cavity Fan coil units 0.05 0.36 0.01 0.73 

Light External Fan coil units 0.17 0.78 0.08 0.60 

Heavy External Radiant system 0.09 0.74 0.13 0.29 

Heavy Internal Radiant system 0.18 0.81 0.12 0.56 

Heavy Cavity Radiant system 0.17 0.77 0.11 0.50 

Light External Radiant system 0.09 0.67 0.12 0.31 

Light Internal Radiant system 0.14 0.71 0.11 0.46 

Light Cavity Radiant system 0.10 0.34 0.01 0.83 

Light External Radiant system 0.02 0.43 0.01 0.38 

 
Table 3.9. Flexibility parameters in heating season for case studies considered in Paper 2 (located 

in Turin). 
Heaviness of the 

envelope 

Insulation 

position 
HVAC 𝐭𝐫𝐞𝐬

∗  𝐏̇𝐫𝐞𝐬
∗  𝐭𝐫𝐞𝐜

∗  𝛈𝐃𝐑 

Heavy External Fan coil units 0.22 0.18 0.01 0.99 

Heavy Internal Fan coil units 0.09 0.18 0.01 0.86 

Heavy Cavity Fan coil units 0.21 0.19 0.01 0.93 

Light External Fan coil units 0.21 0.19 0.01 0.87 

Light Internal Fan coil units 0.07 0.18 0.01 0.96 

Light Cavity Fan coil units 0.21 0.19 0.01 0.99 

Light External Fan coil units 0.33 0.64 0.48 0.26 

Heavy External Radiant system 0.31 0.39 0.47 0.16 

Heavy Internal Radiant system 0.32 0.54 0.51 0.17 

Heavy Cavity Radiant system 0.34 0.53 0.46 0.22 

Light External Radiant system 0.30 0.41 0.49 0.14 

Light Internal Radiant system 0.34 0.49 0.50 0.16 

Light Cavity Radiant system 0.22 0.18 0.01 0.99 

Light External Radiant system 0.09 0.18 0.01 0.86 
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Table 3.10. Flexibility parameters in cooling season for case studies considered in Paper 2 

(located in Turin). 
Heaviness of the 

envelope 

Insulation 

position 
HVAC 𝐭𝐫𝐞𝐬

∗  𝐏̇𝐫𝐞𝐬
∗  𝐭𝐫𝐞𝐜

∗  𝛈𝐃𝐑 

Heavy External Fan coil units 0.30 0.32 0.01 0.91 

Heavy Internal Fan coil units 0.03 0.37 0.01 0.59 

Heavy Cavity Fan coil units 0.18 0.32 0.01 0.88 

Light External Fan coil units 0.17 0.33 0.01 0.88 

Light Internal Fan coil units 0.03 0.33 0.01 0.53 

Light Cavity Fan coil units 0.13 0.34 0.01 0.86 

Light External Fan coil units 0.10 0.58 0.04 0.53 

Heavy External Radiant system 0.14 0.68 0.13 0.39 

Heavy Internal Radiant system 0.11 0.57 0.04 0.58 

Heavy Cavity Radiant system 0.12 0.60 0.03 0.62 

Light External Radiant system 0.14 0.66 0.12 0.38 

Light Internal Radiant system 0.12 0.61 0.04 0.63 

Light Cavity Radiant system 0.30 0.32 0.01 0.91 

Light External Radiant system 0.03 0.37 0.01 0.59 

 

Looking at the results show in Figures 3.6 and 3.7 and the flexibility parameters reported 

in Tables 3.7, 3.8, 3.9 and 3.10, it can be noted that the weather data have a great impact 

on the achievable flexibility performance according to the presented methodology. 

Indeed, comparing corresponding cases in terms of building and HVAC technical 

specification (i.e. Figure 3.6(a) vs Figure 3.7(a) and Figure 3.6(b) vs Figure 3.7(b)), a 

great difference in the FPI values, especially in the heating season is highlighted between 

buildings located in Messina and in Turin. As the FPI is calculated in operating 

conditions during a limited period of time (one or two days according to the duration of 

the response and the recovery period), the influence of weather data is more relevant 

than for the average annual energy demand used in energy performance labelling. This 

behavior allows to observe that the energy efficiency minimum requirements may not 

be enough to identify buildings able to provide also good level of energy flexibility.  

Looking at Tables 3.7 and 3.9 for the heating season, it is possible to see that the 

difference between the FPI values is ascribable mainly to the length of the response 

period. Indeed, the buildings located in Messina can maintain their internal temperature 

within the comfort band for a time about four times greater than that of the building 

located in Turin. For the summer case similar considerations can be made. The warmer 

weather in Messina negatively affects the duration of the response period in contrast 

with the milder summer in Turin (Table 3.8 vs Table 3.10). However, in term of 

flexibility classes (Figure 3.6(c) vs Figure 3.7(c) and Figure 3.6(d) vs Figure 3.7(d)) the 

behaviors are rather mitigated in relation to the values assumed by others flexibility 

parameters. 
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Considering the evaluation of the influence of the building thermal mass and the thermal 

insulation position on FPI calculation, a single representative case is discussed: building 

with fan coil units located in Turin for the heating season (Figure 3.7(a) and flexibility 

parameters contained in Table 3.9) and in Messina for cooling season (Figure 3.6(b) and 

flexibility parameters contained in Table 3.8). The choice is made not to involve the 

effect of the thermal inertia of the heating system and the location. Indeed, the more 

severe weather conditions in winter and in summer are considered. However, the same 

consideration can be extended to the other case studies modelled.  

Starting from the heating season evaluation, it can be noted that when the building 

thermal mass increases, the FPI value increases too. Considering buildings with the same 

heaviness, the external insulation and the cavity walls insulation allow to obtain a better 

flexibility performance than the internal insulation according to the presented 

methodology. This is mainly represented by duration of the response period as shown 

also in Figure 3.8. In particular, in buildings with external walls it is more than two times 

greater than that with internal insulation. The same behavior can be observed both for 

heavy and light envelope (Table 3.9). Consequently, the actual energy variation is lower 

in case of internal insulation, even if the efficiency maintains always similar values in 

all cases.  

 

 
Figure 3.8. Comparison between inside temperature in presence of external and internal 

insulation in heating mode for a building with heavy walls and fan coil units located in Turin. 

 

Results allow to conclude that the insulation position has a great influence on the energy 

flexibility performance of the buildings and the FPI can represent this trend (moving the 

thermal insulation position from the inside to the outside of the wall, the flexibility class 

increases from C to B in Turin (Figure 3.6(a)) and in Messina (Figure 3.7(a)) from B to 

A3). On the other hand, the heaviness of the walls does not seem to have the same impact 

on the FPI. Indeed, its increase with the heaviness of the envelope is not relevant and the 

flexibility class remains the same for the same stratigraphy.  
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Also, in cooling season, moving the insulation towards the external side of the wall 

increases the FPI value (Figure 3.6(b)). However, for the same building, the flexibility 

performance is generally lower than in heating case and the differences are more 

mitigated. The introduced building models allow to confirm the role of the thermal 

inertia of the distribution system, in particular when the building thermal mass is low 

(i.e. in case of internal insulation). As regards the heating case, for both locations, a great 

difference in response period duration can be observed between the radiant system and 

the fan coil units (Figures 3.7, 3.8, 3.9 and 3.10). However, such greater inertia also 

affects the recovery phase. Indeed, with the radiant system, the initial comfort condition 

restoration takes more time than for the case with fan coil units, which instead is very 

rapid. Furthermore, considering the last indicator ηDR in Tables 3.7 and 3.9 a great 

difference in the two distribution systems can be highlighted. If the radiant system allows 

the achievement of higher response durations, the efficiencies of the demand response 

event (ηDR) have an opposite trend. This is due to the great energy use during the 

recovery phase, which makes the total saving small compared to the energy use in 

reference conditions.  

Regarding the cooling case, the radiant distribution system coupled with the 

dehumidifier achieves a better flexibility performance than fan coil units (see Tables 3.8 

and 3.10). In these cases, as already mentioned, it is possible to control also the humidity 

of the indoor air and response duration is evaluated based on the comfort limit condition, 

between temperature and humidity, reached earlier.  

From the simulations results, a strong connection between internal temperature and 

humidity trends and building envelope thermal inertia emerges. When the building 

thermal mass increases, the internal temperature tends to rise more slowly. The increase 

in internal temperature, however, counteracts the rise in relative humidity. Therefore, 

when the internal temperature decreases at a low rate, the relative humidity increases 

fast. This aspect affects the limit condition that is reached first: as shown in Figure 3.9, 

in Turin where buildings have a better level of thermal insulation, the relative humidity 

reaches the comfort limit condition first than the temperature for heavy and externally 

insulated walls. 
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(a) 

 
 

(b) 

Figure 3.9. Temperature (a) and relative humidity (b) during demand response event in cooling 

case for a building located in Turin with heavy walls materials and external insulation position. 

Chilled ceiling distribution system with and without air dehumidifier. 

 

However in these latter cases, the two flexibility indicators that represent the flexibility  

behavior of the building in term of power and energy (Ṗres
∗  and ηDR) account for both 

the heat pump and the dehumidifier energy demand. Since the thermal inertia introduced 

by the chilled ceiling is lower than that of the underfloor heating system, the response 

period as well as the recovery one, although longer than that with fan coil units, are 

significantly reduced compared to the winter radiant system. However, the energy 

saving, and the not-engaged-electric-power have improved values. The FPI label for 

buildings equipped with fan coil units is generally in a lower class than that of buildings 

with chilled ceiling. Furthermore, the FPI shows typically a lower overall capacity to 

provide energy flexibility in cooling mode.  
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3.2.3 Optimization of energy flexibility in buildings under renovation 

 
In this last section, starting from a low energy performance reference building, the 

energy flexibility performance obtainable with different energy efficiency interventions 

is assessed with the FPI  calculation. In addition, to show the effectiveness of the 

proposed quantification methodology, the aim of this analysis (presented in Paper 3), is 

to provide guidelines to improve the energy flexibility of buildings in phase of 

refurbishment.   

With reference to Paper 3, a single-family house belonging to class 5 (1960-1975) of 

Tabula project [64] is selected as starting reference building. The building is located in 

Milan (45°25’ N, 9°16’ E, climatic zone E) and it has an area of 100 m2 and 10% of 

window surface area.  

Starting from this reference building model, different renovation strategies are 

considered by adding insulation to the external walls, roof and floor respectively and by 

changing the windows. Thermal insulation (1 cm increments) is added to all the opaque 

structures. The final most energy performing configuration considered is in accordance 

with values from the Italian regulation for buildings undergone to energy requalification 

from 2021 [70]. It is obtained with an external wall insulation thickness of 11 cm, a roof 

insulation thickness of 14 cm, 11 cm for the insulation layer in floor and argon gas 

double glazing windows. Table 3.11 shows the U-values both for the starting reference 

building, which does not contain thermal insulation in the walls ,and for the most energy 

performing configuration.  

 
Table 3.11. U-value (W m-2 K-1) implemented in Paper 3. 

Building External walls Floor Roof Windows 

Starting reference  1.26 2.00 2.20 5.83 

Most energy performing 0.24 0.28 0.29 1.40 

 

For the flexibility evaluation only the heating season is considered. In particular, an air 

to water heat pump [71] is used and low temperature radiators are adopted as thermal 

distribution system. A small water tank (from 60 liters to 200 liters) is also introduced 

in the heating system to limit the on-off cycles of the heat pump. However, it is important 

to notice that, as the thickness of the thermal insulation layer increases the design peak 

load of the building decreases. Indeed, five different commercial heat pump sizes are 

chosen for all the possible renovation configurations (and consequently the size of the 

tank). They are:  

(i) Level 1: from a maximum of 13.2 kW to a minimum heat load of 11.2 kW (design 

capacity of the heat pump of 12.2 kW).  



42 

 

(ii) Level 2: from a maximum of 11.2 kW to a minimum heat load of 9.2 kW (design 

capacity of the heat pump of 10.2 kW).  

(iii) Level 3: from a maximum of 9.2 kW to a minimum heat load of 7.2 kW (design 

capacity of the heat pump of 8.2 kW).  

(iv) Level 4: from a maximum of 7.2 kW to a minimum heat load of 5.2 kW (design 

capacity of the heat pump of 6.2 kW).  

(v) Level 5: from a maximum of 5.2 kW to a minimum heat load of 3.2 kW (design 

capacity of the heat pump of 4.2 kW).  

In order to evaluate a large number of building renovation configurations, TRNSYS is 

combined to GenOpt [72], a generic optimization tool. The algorithm Mesh is used as it 

allows to span a multi-dimensional grid in the space of the independent parameters so to 

evaluate the objective function (i.e., FPI) at each grid point (more details about the 

optimization problem are reported in Paper 3).  

According to the boundary conditions specifications described in the previous section, 

the representative winter day for Milan is January 27 (average daily temperature 3.6 °C 

[60]). However, as for the case tested in sub-section 3.2.1, also in this case the flexibility 

classes are defined only with the values of the FPI  ( FPIlimit  is not calculated). 

However, the same formulation introduced in sub-section 3.1.2 is adopted (Equation 

(3)). In particular, a building is labelled in class A3 if its FPI is greater than 20, if the 

FPI is between 10 and 20 the class is A2, if the FPI is between 8 and 10 the class is A1, 

if the FPI is between 5.5 and 8 the class is B, if the FPI is between 4 and 5.5 the class 

is C and finally, when the FPI is lower than 4 the class is D. With these assumptions the 

results can be evaluated.  

The FPI for the starting building shows very poor flexibility performance. In fact, 

without thermal insulation, the comfort limit condition is reached very quickly (tres is 

equal to 0.05 hours) and the building is labelled in flexibility class D with a FPI of 2.5. 

Insulating only a singular part of the envelope (external walls, roof or floor) the 

flexibility performance does not increase significantly. Even with 11 cm of thermal 

insulation added to one surface at a time, the flexibility class remain D. Similar 

considerations can be made if only the windows are replaced. This is due to the fact that, 

with these single renovation strategies, the heat losses of the other not insulated surfaces 

are still significant and the comfort limit condition is early reached. 

No improvements are observed even if two portions of the structure are thermally 

insulated or if one of them is combined with windows replacement.  

The flexibility class remains D, if thermal insulation is added to the external walls and 

roof, while if also the windows are replaced, a slow improvement begins to be observed 

for high levels of insulation. In particular, the building flexibility class becomes C with 
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an FPI of 4.2 with windows replacement, 11 cm of insulation for the external wall and 

14 cm for the roof. 

Introducing a minimum level of thermal insulation (1 cm) in the floor stratigraphy 

increases sensibly the FPI values. Referring to Figure 3.10, this behavior can be 

observed. The building reaches flexibility class B (FPI equal to 6) with 12 cm of thermal 

insulation in the roof and 8 cm in the external walls. The response period is about 2.37 

hours, the recovery 0.25 hours and the actual energy variation (EDR) is about 2.83 kWh. 

 

Figure 3.10. Flexibility performance indicator by varying the insulation thickness in the roof and 

external walls with windows replacement and a minimum floor insulation (1 cm, fixed). 

 

A great improvement can be observed only if each part of the envelope is well thermally 

insulated and windows are replaced. Figure 3.11 shows the building flexibility 

performance by varying the thickness insulation in the external walls and in the roof, 

assuming a high level of thermal insulation in the floor (11 cm) and new windows. The 

thermal loss reduction derived from the whole envelope insulation, in addition to the 

effect of more energy efficient windows, allows the increase of building thermal inertia, 

which can be activated during the demand response event so to maintain for long time 

the internal comfort conditions. It is possible to see that the high level of thermal 

insulation in the floor allows to obtain a strongly increasing trend of the FPI with the 

increase of the insulation thickness of the other walls of the building. The maximum FPI 
achievable is 10.8 (class A2) and the building can maintain for about 9.4 hours the 

comfort conditions (tres).  
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Important FPI improvements are anyway observed for high values of thermal insulation 

(from 8 cm upwards for external walls and roof). Medium insulation thickness (from 5 

to 7 cm) allows to obtain FPI values  between 4.5 and 7, so buildings are generally 

classified in flexibility class C or, at maximum, B. 

 
Figure 3.11. Flexibility performance indicator by varying the insulation thickness in the roof and 

external walls with windows replaced and 11 cm floor insulation (fixed). 

 

From the analysis of the presented results, it is possible to observe that although a 

consistent reduction of thermal energy demand can be obtained by increasing the 

insulation level of the building envelope, the same behavior seem to not be verified for 

the energy flexibility evaluation.  

If the energy flexibility is quantified with the proposed methodology (i.e., with the FPI), 
the  positive effect on flexibility due to building thermal mass is evident only if the 

thermal insulation is applied at the same time in the external walls, floor and roof.  

If there is even only one surface with high heat losses, the building is not able to maintain 

in an acceptable band the internal comfort and the flexibility performance is low.  
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Chapter 4  

 
Evaluation of district cooling solutions 

 
As mentioned in Section 2.1, solutions for district air conditioning (i.e., district heating 

and cooling systems) show great potential to increase the performance of the energy 

supply process. In this thesis greater attention is placed on district cooling (DC) networks 

as they are often less analyzed than the heating application (i.e., district heating).  

The identification of flexible and efficient solutions to cover the building cooling 

requirements is an increasingly urgent need given the growth of the cooling demand [73] 

and the higher difficulty in its prediction [74]. Indeed, the cooling demand depends on 

different factors that can change quickly, such as solar radiation, internal heat gains, and 

the urban heat island [75].  

In general, the building cooling demand can be met using individual solutions (air-

conditioning split systems, or more efficient solutions such as absorption cycles and 

electric chillers), or using one solution for the whole building or cluster of buildings [76]. 

In this last case, DC systems can have a paramount role. According to EU Energy 

Efficiency Directive [77], district cooling networks are one of the most important pillars 

for achieving the energy efficiency target of reducing primary energy consumption by 

20%. Furthermore, the Strategic Energy Technologies Information System (SETIS) [78] 

has recognized district cooling systems as Best Available Technology (BAT) for the 

cooling market in the European Union.   

To provide a definition, district cooling systems are networks able to distribute thermal 

energy, usually as chilled water, from a central source to industrial, commercial, and 

residential consumers, to be used for space cooling/dehumidification. A typical district 

cooling system includes the following elements: a central generation unit, a distribution 

network, customers and a heat rejection system. Given its cost-effectiveness, chilled 

water is often used as heat transfer fluid.  

In the following subsections an analysis about the energy potential of exploiting district 

cooling systems to cover the cooling demand of residential buildings is provided. In 

particular, in sub-section 4.1, a preliminary qualitative analysis of the energy flexibility 

that can be obtained from a small residential district cooling network is presented in 

reference to Paper 4, while in sub-section 4.2, an innovative case study in which a district 

cooling network is powered with wasted cold energy is presented (Paper 5). 
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4.1 Preliminary energy evaluation  

 
As mentioned above, there are several studies in the literature that prove the energy 

benefits of district heating networks, but not much can be found on district cooling 

systems. With this sub-section, that retraces the work presented in Paper 4, a preliminary 

qualitative analysis of the energy flexibility that can be obtained from a small residential 

district cooling network is provided. In particular, the effect of the different thermal 

inertia levels (i.e., the pipes of the network, the buildings envelope thermal mass and the 

contribution of a dedicated device) available in the DC systems is investigated in an 

attempt to maximize the use of the available cooling energy, while maintaining indoor 

thermal conditions of the users. The evaluation is realized by means of daily energy 

simulations of a hypothetical residential district realized in TRNSYS [63]. 

In general, the specific thermal inertia contribution is activated when there is a cooling 

demand but there is no more cooling availability on the supply side. Each thermal inertia 

contribution is activated as explained in the following:  

▪ For the network contribution, that is represented by the thermal energy carried by 

the fluid in the pipes, the fluid can warm up until a limit condition occurs (i.e., 

thermal balance with the ground temperature).  

▪ For the building inertia, it is activated with a control strategy on the users’ 

temperature setpoints. In this case, the building thermal mass is used as passive 

thermal storage with a precooling of the living areas with programmed lowering of 

the users’ indoor temperature.  

▪ For the addition of a dedicated device, a sensible thermal energy storage (i.e., a cold-

water tank) is added to the district cooling circuit.  

A hypothetical daily profile of available cooling thermal power (Figure 4.1) is provided 

to the district as a cold flow rate available at a given supply temperature. It is assumed 

that the cooling power profile can satisfy the average daily cold energy demand and the 

peak cooling power demand of the district but with a random time displacement between 

demand and supply curves.  

To evaluate the effectiveness of the different thermal inertia levels, two qualitative 

indicators are calculated: (i) the wasted cold energy (defined as the percentage of daily 

energy actually used compared to the given supply cooling energy availability) and (ii) 

the overheating time (defined as the hours per day in which the user comfort, set at 26 

°C, cannot be maintained).  
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Figure 4.1. Cooling power profile available in the district cooling network modelled in Paper 4. 

 

The modelled case study is composed of a small residential district (14 buildings) located 

in Rome (41° 55' N, 12° 31' E). Each user is modelled in a simplified way (i.e., single 

thermal zone with a simple lumped capacitance structure) with Type 88 in TRNSYS. Its 

thermal and geometrical characteristics are derived by Tabula Project [64].  

Each building is modelled as modern single-family houses built after 2006 (Table 4.1). 

More details about the building model are contained in Paper 4, where also the 

stratigraphy of the building envelope is reported.  

 
Table 4.1. U-value (W m-2 K-1) implemented in Paper 4. 

External walls Floor Roof Windows 

0.34 0.33 0.28 2.20 

 

The cooling emission system of each user is realized by fan coil units (Type 996). The 

design peak cooling demand is about 6.3 kW (comfort conditions are set to 26 °C and 

50% of relative humidity) with a latent contribution of about 2 kW.  

Figure 4.2 represents the link between the cooling system of each user and the district 

cooling network. In particular, the heat exchange between the water circuit of the fan 

coil units and the district cooling network is realized by means of a simple constant 

effectiveness heat exchanger. A mixture of water and glycol is used as heat transfer fluid 

[79] and, in design conditions, it is delivered at a temperature of -10 °C (with a design 

temperature difference between supply and return of 5 °C). On the other hand, the cold 

water in the fan coil circuit is supplied at a design temperature of 7 °C, with a temperature 

difference between delivery of 5 °C.  

The pipes of the district cooling network are modelled as underground pipes (ground 

temperature of 14 °C) with Type 31 that models the thermal behavior of a fluid flow in 

a pipe using variable size segments of fluid. 
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Figure 4.2. District cooling network plant scheme. Configuration 1: heat exchange between 

demand and supply realized with a heat exchanger. Configuration 2: heat exchange between 

cooling demand and supply realized with a cold-water tank. 

 

As showed in Figure 4.2, two plant configurations, which differ on the interaction 

between the supply side and the demand side, are modelled. In the first one 

(configuration 1) the heat exchange between the cooling demand and the supply is 

realized with a simple heat exchanger. It is used to investigate the flexibility potential of 

the network and of the building envelope. The second configuration (configuration 2), 

by comparison, includes a cold-water tank on the demand side. In this case, the heat 

exchanger is not included and, when there is cooling power availability, the heat transfer 

fluid enters directly into the cold side of the tank (when the temperature difference 

between the inlet and outlet tank flow rates is below 2 °C the tank is considered 

discharged).  

The results of the analysis are presented for the day in which the daily users cold demand 

is closer to the average cooling supply (820 kWh). In this way, the wasted cold energy 

is mainly due to a not effective use of the energy flexibility rather than to a difference 

between energy demand and supply.  

Starting from the investigation of the flexibility contribution provided by the pipes of 

the network, Figure 4.3 reports the daily energy demand, supply and total heat exchanged 

by the heat exchanger on the supply side when the cooling power availability is directly 

combined with the cooling demand of the users (configuration 1 in Figure 4.2).  
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As can be noticed in Figure 4.3, the network flexibility contribution is low. At 7.00 pm, 

when there is no more cooling power availability, but users continue to ask for cooling, 

the network thermal inertia allows the demand to be satisfied for a very short time (about 

25 minutes). The wasted cold energy is about 468 kWh (57 % of the total) with more 

than 4 hours of overheating. 

 

 
Figure 4.3. Daily cooling power demand, supply and heat exchanged in the case of district 

cooling system configuration 1 (Figure 4.2). 

 

As far as the inertia of the envelope of the buildings is concerned, a good flexibility 

performance can be observed. Figure 4.4 shows the case in which the thermal inertia of 

the building is activated for 1 hour (precooling the buildings by lowering the internal 

temperature set-points by 1 °C) before the daily cooling demand occurs. In this case no 

overheating is measured and the wasted cold energy decreases to 337 kWh (41 %). 

Furthermore, different precooling strategies to activate the buildings thermal mass are 

tested. The most interesting case can be noticed when the internal temperature set point 

is lowest during the early hours of the day (for 3 hours, from 8.00 am to 11.00 am) by 

all the users simultaneously. Indeed, during this period, there is no cooling demand, but 

cold supply energy is available. The wasted cold energy becomes 13 % without 

overheating. However, it is important to underline that this solution needs predictive 

control and more sophisticated management systems to be implemented. 



50 

 

 
Figure 4.4. Daily cooling power demand, supply and heat exchanged in case of district cooling 

system configuration 1. Building envelope thermal inertia activation for 1 hour. 

 

 
Figure 4.5. Daily cooling power demand and supply in the case of district cooling system 

configuration 2 with a 4500 liters TES. 

 

Coming to the flexibility contribution provided by the addition of a dedicated thermal 

energy storage system (i.e., a cold-water tank), it is clear from the results that it is the 

means that allows a simpler and better decoupling in real-time of demand and supply. In 

Figure 4.5, the cooling demand and the supply availability, when a 4500 liters cold water 

tank (1 hour of autonomy) is added to the demand side, is shown. The thermal comfort 

can be maintained (overheating < 1%) with 36% of wasted cooling energy.  

Increasing the size of the tank, the energy flexibility performance increases as shown in 

Table 4.2, where performance indicators are summarized for all the tested cases. 

Practically, without overheating (consistently less than 20 minutes), the wasted cold 

energy decreases, arriving at the minimum value when a 26000 liters TES (6 hours of 

autonomy) is used. 

However, comparing the flexibility obtainable from the tank with the building thermal 

mass flexibility (Table 4.2), it is interesting to notice that, assuming it is possible to 

control the inside temperature set points with appropriate predictive control strategies, 

the activation of the thermal inertia of the buildings can also guarantee good results.  
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Indeed, the building precooling for 1 hour allows a similar flexibility as a 4500 liters 

tank, while a building precooling for 3 hour offers the same flexibility as a 26000 liters 

TES (6 hours). It can therefore be concluded, even if a higher management complexity 

is required, a great flexibility potential is contained in the building envelope thermal 

mass. This result highlights how promoting the diffusion of smart buildings, whose 

energy demand could be managed by a district energy manager, can be a useful solution 

to optimize the energy sustainability and flexibility of the space cooling sector. 

 
Table 4.2. Qualitative indicators for the flexibility contributions analyzed. Wasted cold energy 

assessed as percentage of the average daily cold energy supply (820 kWh). Overheating hours as 

percentage of 24 hours (ref. to Paper 4). 
Flexibility contribution Wasted cold energy (%) Overheating time (%) 

Network 57 % 18 % 

Buildings (activation 1 hour) 41 % 0 % 

Buildings (activation 3 hour) 13 % 0 % 

Tank of 4500 liters (autonomy 1 hour) 36 % <1 % 

Tank of 9000 liters (autonomy 2 hours) 17 % <1 % 

Tank of 13000 liters (autonomy 3 hours) 19 % <1 % 

Tank of 26000 liters (autonomy 6 hours) 7 % <1 % 

 

4.2 Evaluation of a case study on recovering cold energy from 

liquefied natural gas vaporization 
 
As highlighted by Werner [80], district cooling networks have strong potentials to be 

viable cold supply options in a future world, because they can deliver higher security of 

supply, lower costs, and lower carbon dioxide emissions. Indeed, district cooling 

systems can carry cooling energy obtained in multiple ways. Waste cold energy from 

the industry, commercial, and transport sectors can be usefully recovered as cold source 

of DC network.  

A suitable source for district cooling systems seems to be liquefied natural gas (LNG). 

LNG is widely used to transport natural gas, especially when the distance between the 

production site and the market is longer than 2000 km [81]. It is obtained by cooling 

natural gas to -162 °C at the atmospheric pressure. One cubic meter of LNG contains 

around 600 m3 of natural gas, making the energy density of LNG significantly higher 

[82]. Before being sent to the customers, LNG is re-gasified and a large quantity of cold 

energy can be released. A typical liquefaction process requires around 2900 kJ kg-1 of 

energy. Of this amount, 2070 kJ kg-1 are dissipated as heat, while 830 kJ kg-1 are stored 

in LNG as cold [83].  
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Liquefied natural gas can also be used as vehicle fuel in its liquid form or re-gasified as 

compressed natural gas (CNG). In the latter case, the Liquid to Compressed Natural Gas 

(L-CNG) refuelling station has higher efficiency than traditional CNG refuelling stations 

[84]. In these peculiar fuel stations, natural gas is stored in its liquid form and the CNG 

to refuel vehicles is obtained from LNG vaporization. The LNG is typically stored in a 

low-pressure cryogenic tank and then pumped with a cryogenic pump to increase the 

pressure of LNG up to the CNG pressure. Then, a high-pressure atmospheric vaporizer 

converts LNG into CNG, stored in pressurized cylinders [85].  

L–CNG refuelling plants present several advantages:  

▪ The possibility to distribute CNG when no grid is available nearby.  

▪ A higher fuel purity, since LNG is already purified at the liquefaction stage. 

▪ A reduced operational cost compared to a standard compressor solution, thanks to 

the power saving from the LNG pumping. 

▪ The possibility to supply also directly LNG to vehicles using it as fuel.  

Nowadays in Italy there are 85 LNG and CNG refuelling stations powered by LNG [86] 

and their diffusion throughout the territory is increasing. Since the cooling potential of 

vaporized L–CNG represents a free cooling source, its efficient exploitation may greatly 

reduce the electric demand of the air-conditioning sector. Indeed, the application that 

will be discussed in this section, and presented for the first time in Paper 5, aims to 

evaluate the impact of the recovery of the waste cold energy derived from a typical L–

CNG refuelling stations to cover the cooling demand of a residential neighbouring. 

In order to analyze the potential of district cooling network as a technologic solution to 

improve the sustainability and the efficiency of the air-conditioning sector, a simulation-

based case study is presented (Figure 4.6).   

To estimate the potential daily availability of recoverable cold energy from a L-CNG 

plant in a fuel station, data of CNG end-uses (available for 2015) in Italy are 

manipulated. Franci [87] reports that the CNG consumption for the automotive sector 

and derived by L-CNG plants was about 5400 t year-1. Assuming a quantity of energy of 

about 830 kJ kg-1 of LNG wasted during the LNG regasification process, about 380 kWh 

day-1 of cold energy can be recovered if the fuel station is in operation every day of the 

year; excluding the weekends the amount could result in about 550 kWh day-1.  
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Figure 4.6. Plant scheme: cooling energy recovery from L-CNG vaporizer to fulfil a residential 

district cooling network (focus on the cooling supply side). 

 

In order to evaluate the capability of the district cooling network to adapt its demand to 

the supply, the available cold energy is provided to the network by means of three 

different daily cooling power profiles (Figure 4.7). In the first case (Figure 4.7(a), profile 

P1), the cooling power is constant and available 10 hours a day, for every day of the 

year. This situation describes the typical opening and closing times of the Italian fuel 

stations, which are assumed to be from 7.00 am to 7.00 pm and represents the best 

possible condition for the DC plant. However, this condition is unlikely to occur. In Italy, 

many CNG fuel stations are closed during the central hours of the day and the weekends; 

thus, a more realistic cooling power profile is considered in Figure 4.7(b) (profile P2). 

The last case, shown in Figure 4.7(c) (profile P3), introduces a peak power availability, 

too. In fact, as Farzaneh-Gord et al. [88] highlighted in their analysis by monitoring the 

number of refueling CNG vehicles in a day, a peak is generally observed between 6.00 

and 7.00 pm. This last scenario is therefore introduced to consider a cooling power 

availability variable during the day. 
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(a) 

 
(b) 

 
(c) 

Figure 4.7. Daily cooling power recovery from a L–CNG fuel station: (a) constant profile for a 

station working every day of the year (P1), (b) constant profile for a station not working during 

weekends and stopping during lunch time (P2) and (c) variable profile for a station not working 

during weekends and stopping during lunch time (P3). 
 

The cooling power is supplied to the DC network by means of a heat exchanger (“supply 

side heat exchanger” in Figure 4.6). The free cooling, released by the LNG vaporizer, is 

transported by a heat transfer fluid (water glycol mixture) supposed available at a 
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temperature of -10 °C and used to maintain the supply water temperature in the district 

cooling at 5 °C. 

To model the cooling demand in the DC system, a hypothetical residential neighborhood 

composed of 14 users with the same thermal and geometrical features, located in Rome, 

Italy (41° 55’ N, 12°31’ E), is modelled in TRNSYS. As for the building presented in 

the previous section (sub-section 4.1), the single user is modelled in a simplified way 

with Type 88. Also in this case the main features of the envelope are extrapolated from 

TABULA Project [64] and a single-family house building with the most recent 

construction year class (from 2006 onwards) is chosen. Therefore, the description of the 

building model in the same reported in sub-section 4.1 (Table 4.1). However, for more 

details, Papers 4 and 5 can be consulted.  

As concern the cooling distribution system of the single user, it comprises fan coil units, 

whose water circuit is supplied at a temperature of about 10 °C, with a design 

temperature difference between delivery and return of 5 °C. To cover higher energy 

demands or to cool buildings on days when there is no free cooling availability, every 

user is equipped with a backup system. The latter includes an air-to-water heat pump 

connected to the fan coils water circuit. Since there may be days in which there is no 

cold availability from the network (e.g., weekends), the heat pumps are sized to cover 

the entire design sensible load (see sub-section 4.1). Figure 4.8 represents the schematic 

of the model from the DC network point of view.  

 

 
Figure 4.8. Residential district cooling network scheme (see Figure 4.6 for the details of the 

supply side). Focus on a single user configuration. 
 

Looking at Figure 4.8 it can be noted that, the connection between the water fan coil 

units circuit and the district cooling is realized with a heat exchanger (Type 91 in 
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TRNSYS). To uncouple the cooling demand from the supply, a sensible thermal energy 

storage is also introduced (modelled through Type 4 as a stratified cold-water tank).  

In the district cooling network, water is selected as heat transfer fluid. It is delivered 

from the tank at a temperature of 5 °C, with a design temperature difference between 

supply and return of 3 °C.  

To evaluate the energy performance of the application, a reference case is introduced. It 

is represented by the same residential district in case of separate cooling systems: fan 

coil units powered by the same heat pump used for the backup. From the energy 

simulation for the summer warmer months (July and August), a total cold energy 

requirement of about 47 MWh and an electrical consumption of about 17 MWh are 

obtained. 

The first analysis evaluates the capability of the district cooling to adapt its cooling 

demand to the free cooling power availability. A preliminary case, in which the district 

cooling network is directly connected to the supply side heat exchanger (without the 

thermal energy storage), is evaluated and the three profiles of free cooling power 

reported in Figure 4.7 are applied to the supply side.  

In general, results show that the case study has a great energy recovery potential. Figure 

4.9 represents how the cooling energy requirements of the users are satisfied during the 

warmer summer months in case of different free cooling power profiles. In all cases the 

coverage of the buildings cooling demand exceeds 49%. However, although in a slight 

way, the shape of the free cooling profile seems to influence the district energy behavior. 

If the DC is supplied with a constant cooling power profile (P1, Figure 4.7(a)) every day, 

50 % of the user cooling demand is covered by the DC itself and the electricity 

consumption is reduced by 52 % compared to the reference case. With the increasing of 

the free cooling power capability (profile P2, Figure 4.7(b)) during weekdays, a better 

exploitation of the cold energy provided by the DC is obtained and the electricity saving 

becomes 58 %. Introducing a most variable cooling power profile (P3, Figure 4.7(c)) 

this improvement seems to be mitigated. Due to the daily mismatch between the cooling 

demand and supply, the P3 higher cooling peak power cannot be well exploited. 

Therefore, it is evident that to minimize the electricity used for backup systems, a 

sufficiently high and continuous free cooling power is beneficial (i.e., P2). 
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Figure 4.9. Total district electric consumption and users’ cold energy demand divided into the 

share provided by DC and by the backup systems (i.e., heat pump) with different free cooling 

power profile (months of July and August). 

 

The effect of the introduction of a certain level of thermal inertia at the demand side is 

investigated in order to evaluate if it helps to decouple the cooling demand and the 

supply both in terms of time and of peak power potential. The installation of a tank of 

60 m3, which in design conditions can provide the users’ peak power demand (about 88 

kW) for 2 hours with a temperature difference of 3 °C, is considered. Figure 4.10 shows 

how the users’ cooling energy requirements are satisfied during the warmer summer 

months in case of different free cooling power profiles when the thermal energy storage 

is introduced at the demand side. Comparing them to the data shown in Figure 4.9, a 

good increase in the district cooling energy performance can be noticed in case of P3 

profile: the seasonal demand covered by the district cooling goes up to 59% with an 

electricity consumption reduction of about 60 % compared to the reference case. For the 

other two cases (P1 and P2), the storage has practically no contribution, being their trend 

much more regular. Figure 4.11 shows how the thermal energy stored in the tank allows 

a better daily balance of energy demand and supply, avoiding the switching on of the 

backup systems to maintain the users’ temperature set points. 
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Figure 4.10. Total district electric consumption and cold energy demand of the users divided into 

the share provided by DC and by the backup systems (i.e., heat pump) with different free cooling 

power profile (months of July and August) in presence of a cold-water tank of 60 m3. 

 

 

(a) 

 

(b) 

Figure 4.11. Daily cooling demand breakdown into the DC and backup (i.e., heat pump) in case 

of cooling supply profile P3: (a) without the tank, (b) in presence of a cold-water tank of 60 m3. 
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Even though in the analyzed case the use of a thermal storage allows a higher level of 

energy recovery with higher electricity saving, in the district cooling plant sizing special 

attention must be paid to the choice of the tank volume. Tanks too small or too large, in 

fact, could cause performance degradation. Figure 4.12 reports the cold energy recovery 

from the L-CNG vaporizer compared to the global district cooling demand and the 

percentage of electricity saving for different volumes of the tank (profile P3). The best 

energy performance is obtained for tanks with a size between 30 m3 and 90 m3. Lower 

values do not provide enough level of thermal inertia, while higher values seem to slow 

down the dynamics of the system too much. In fact, if the tank is empty and the cooling 

power demand is at its peak, the large thermal inertia introduced by the tank prevents 

from satisfying the demand because the tank has to be first recharged; therefore, backup 

systems need to be switched on. Moreover, increasing the size of the tank enlarges the 

heat losses towards the environment, thus resulting in an energy efficiency penalization 

of the system. 

 
Figure 4.12. Percentage share of cooling from DC to meet the total users’ demand and electricity 

saving for different cold tank sizes. 

 

To conclude, although a simplified case study is analyzed, the evaluations presented in 

this section (deducted from Paper 5) allow to highlight that cold energy recovery from 

liquified natural gas vaporization in refueling stations can be effectively used to supply 

a residential district cooling network. Furthermore, since both the transport and the 

residential sector are included into the urban environment, the potential benefits of this 

integrated system are evident. 
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4.3 Criticalities of the analysis  
 
The results presented in the previous subsections confirm the potential of district cooling 

systems combined with waste energy sources to increase both the flexibility (subsection 

4.1) and efficiency (subsection 4.2) of the residential space cooling sector. However, it 

is important to highlight that the extent of the benefits obtained appears to be very 

dependent on the configurations of the system.  

Two fundamental points emerged from the simulation of the scenarios presented. First 

of all, the design choice. This is understood as the selection of some fundamental 

parameters such as the configuration of the network (e.g., topographical structure) or the 

number and the type of users to connect to it. Connecting a small number of users can 

lead to the non-exploitation of a quota of energy available in the network. On the other 

hand, a high number of connected users can lead to a high use of additional cooling 

systems (i.e. backup systems). This choice is not obvious even in the face of the second 

criticality that has emerged. This concerns the dependence of performance on the energy 

availability curve of the network. Which in turn depends on the heat/cold generation or 

on the recovery profile. In many cases the estimation of the latter is not simple since, as 

in the case analyzed in sub-section 4.2, it depends on some random factors such as the 

stop of cars in a refueling station.  

It is clear that, this criticality can compromise the estimation of efficiency and flexibility 

performances. In addition, system design can also be challenging. Therefore, due to the 

daily variability of the thermal power availability curve, the performance and operation 

of the network could vary considerably from one day to the next. In the results presented 

in sub-section 4.2 only a variation between holidays and weekdays is modeled. However, 

the results obtained for the cooling season (months of June and July) showed a different 

operation of the system between this latter variation and the approximation of an average 

(constant) daily availability profile. 

A possible solution that has emerged from both the analyzes presented could be the 

decoupling of demand from generation, for instance, through the installation of an 

additional thermal inertia device (a sensible thermal energy storage). Moreover, the 

adoption of predictive controls or algorithms capable of training itself with experience 

can also represent an important operational solution. However, they would not allow us 

to overcome the initial problem of network sizing. The results shown therefore suggested 

the need for further studies to identify a unique evaluation method. This involves the 

need for a focus on estimating energy availability and on quantifying the dependence of 

flexibility and efficiency performance on it. 
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Chapter 5  

 

Operational energy flexibility evaluation: 

role of the control 

 
Considering the operational scenario rather than the design characterization, it is 

important to assess the role of the control in the activation of the energy flexibility of 

buildings. Indeed, as mentioned in Chapter 2 (sub-section 2.3), in order to obtain 

optimized operational energy  performance, advanced control methods are required 

and, among them, model predictive control (MPCs) are the most promising.  

In this Chapter, an analysis on the application of model predictive controls to unlock the 

energy flexibility in buildings is provided. The performances of the MPC are compared 

to a traditional Rule Based Control (RBC) realized with a simple thermostat.  

Before providing an operative evaluation, a focus on the role of the building model 

techniques adopted in the MPC to manage the flexibility of the building derived by 

thermostatically controlled loads (TCLs) is provided (Section 5.1). Then, an operative 

comparison between the two extreme building modeling approaches (i.e., white and 

black box models) in a MPC formulized to control a building with multi energy sources 

(including district cooling) availabilities is shown (Section 5.2). At the end of the 

Chapter, based on the results obtained, the Section 5.3 is dedicated to summarizing all 

the considerations and the issues obtained regarding the comparison between the two 

modelling approaches in an operative MPC.  

 

5.1 Model predictive controls 
 
The basic concept of MPC is to use a dynamic model to forecast the system behavior 

(i.e., the building energy requirements and the temperature trends) and to optimize the 

actuations in order to operate under the best sequence of decisions [89]. In other words, 

the model predictive controls select future control actions, taking into account both 

predictions of future disturbances and system constraints [43], while the goal is pursued.  

A typical structure of a MPC adopted in a building is showed in Figure 5.1. As can be 

noted it is mainly composed of two parts: the building predictive model and the 



62 

 

optimizer. The building predictive model should be able to dynamically forecast the 

building’s energy response in a certain period (prediction horizon, PH), while its inputs 

can vary both in a controlled (manipulated variables) and in an uncontrolled 

(disturbances) way. 
 

 
Figure 5.1. Architecture of a typical model predictive control (MPC) applied to a building. 

 

To solve the optimization problem, it is important to define a proper objective function 

(OF) and to respect the system constraints; in this way, the optimizer has the possibility 

to select the best control actions to maximize the performance. Following a “receding 

horizon” logic (Figure 5.2), the model predictive control updates the best control actions 

at each timestep, moving the prediction horizon forward and repeating the optimization 

[89].  

In buildings, model predictive controls can be applied for many purposes: to exploit the 

energy storage capability in high-massive buildings, to maximize the use of renewable 

energy sources, or to implement demand side management strategies. However, in order 

to be effective, an MPC must be based on a reliable model of the system under study 

[49]. In the following sub-section (5.1) a focus on the role of the different building 

modelling approach in an operative MPC is evaluated retracing the analysis proposed in 

Papers 6 and 7.  
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Figure 5.2. Model predictive control receding horizon scheme. 

 
5.1.1 Focus on the building model  

 
A building is a complex systems consisting of smaller systems which interact with the 

occupants [90]. Its dynamic evolution depends on several factors: the environment, the 

envelope, the HVAC system, the occupancy patters and the indoor environmental quality  

[91]. In general, for short-time predictions, three categories of building energy modelling 

are available: white, black, and grey box models [50]. 

White bock or physical-based models need a detailed description of the physical and 

thermal properties of the building in order to describe its dynamics with mathematical 

equations [51]. Typically, white box models solve energy conservation equations based 

on heat transfer phenomena. The parameters of the model are usually obtained from 

design plans, manufacture catalogues, or on-site measurements [50]. Therefore, no 

training data are required. Most of the popular software, such as Energy Plus, TRNSYS, 

DOE-2, or ESP-r, is based on a physical-based approach [52]. 

On the other hand, black box or data-driven models do not require a physical knowledge 

of the system, but they need to collect a large amount of training data [50]. The most 

common black box models are [53] support vector machines [92], statistical regression 

(e.g., linear auto regressive models with exogenous inputs [93]), and artificial neural 
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networks (ANNs) [94]. However, unlike white box models, the parameters involved in 

a black box model have no physical meaning.  

A compromise between the two approaches is represented by grey box (or hybrid) 

models. They are a combination of physical-based and data-driven prediction models; 

thereby, some internal parameters and equations are physically interpretable, while 

others are estimated with a data-driven approach. Grey box models are widespread in 

building energy modeling [54], although they require both the system structure and 

training data. 

As mentioned in sub-section 2.3, many works are available in the literature concerning 

the performance evaluation of the different hybrid and data-driven building models to 

be used in an building MPC [95][55][96]. However, most of the works focus on 

evaluating the best model configuration to be adopted in a model predictive control (e.g., 

parameters identification, selection of inputs and outputs) with little reference to 

operational assessments. Instead, the evaluation presented in this thesis and introduced 

in Paper 6, is aimed at operatively comparing the two extremes modelling approaches 

(i.e., the physical based and the data driven approach) when also the energy flexibility 

provided by the thermostatically controlled load is unlocked. The comparison is realized 

by evaluating: the capability of the models to reproduce the building energy behavior of 

a reference case and the practical implementation of a simple model predictive control 

designed to minimize the energy supply cost. In this sub-section the description of the 

two modelling approaches are reported, while their comparison is discussed in the next 

sub-section (5.1.2).  

Starting from the white box model, a lumped-parameter model based on the thermal–

electrical analogy is chosen. The building thermal dynamic is represented by an 

equivalent circuit of thermal resistances and capacitances (i.e., RC network) [97]. A third 

order model is selected since it represented a good compromise between network 

complexity and capability of predicting the short-term dynamic of the building [98]. 

Each node is described by a temperature (T) and a thermal capacitance (C). Then, four 

thermal resistances (R) are used to model the heat transfer between the nodes. Figure 5.3 

report the RC-network.  

 

Figure 5.3. RC-network network for building model (white box approach). 
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All the numerical values of the parameters (R and C) are deducted by the knowledge of 

the thermal and geometrical building features. Specifically, the first node (Te, Ce) 

represents the external building thermal mass, the second node (Tair, Cair) is the indoor 

air node, while the last node (Ti, Ci) is the internal building thermal mass. The numerical 

value of the envelope capacitances (Ce and Ci) are calculated by summing the heat 

capacitances of all the building elements (up to the thermal insulation) in direct thermal 

contact with the internal air zone [99]. As concerns the thermal resistance, Rw is the 

thermal resistance from the indoor air node temperature to the ambient air temperature 

(Tamb), due to air changes and windows. Ree and Rie are the thermal resistances between 

the external building thermal mass node and Tamb and Tair, respectively. They are 

calculated as equivalent thermal resistances due to the conductive heat transfer of all the 

building envelope layers, from outdoor to the thermal insulation for Ree, and from 

thermal insulation to indoor for Rie. These thermal resistances also take into account the 

convective heat transfer phenomena between the external surface and ambient 

temperature (Ree) and between the internal building envelope surface and indoor air 

temperature (Rie). In the same fashion, Ri considers the thermal resistance between the 

indoor air node and the internal thermal mass Ti. The heat fluxes, directly applied to the 

internal thermal nodes Tair and Ti, are the heating or the cooling power derived by the 

HVAC system (𝑄̇) and the total heat gains (𝐺̇). The latter includes both solar and internal 

contributions, which are provided with a scalar factor (f) for both the internal air (fair) 

and the internal mass node (fi).  

The dynamics of the resistance–capacitance model can be represented by the following 

equations: 

 

Cair

d𝑇air

d𝑡
=

(𝑇e − 𝑇air)

Rie
+

(𝑇amb − 𝑇air)

Rw
+

(𝑇i − 𝑇air)

Ri
+ fair𝐺̇ + 𝑄̇ Eq. (8) 

Ce

d𝑇e

d𝑡
=

(𝑇amb − 𝑇e)

Ree
+

(𝑇air − 𝑇e)

Rie
 Eq. (9) 

Ci

d𝑇i

d𝑡
=

(𝑇air − 𝑇i)

Ri
+ fi𝐺̇ Eq. (10) 

 

Using these relations, a discrete time invariant State Space Model (SSM) formulation 

can be set up: 

𝑿(𝑘 + 1) = 𝐀 ∙ 𝑿(𝑘) + 𝐁 ∙ 𝑼(𝑘) Eq. (11) 
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where 𝑿 represents the system state at each simulation step k, 𝑼 is the vector of the 

inputs, and 𝐀 and 𝐁 are coefficient matrices.  

As concern the black box model, a data-driven system based on an artificial neural 

network (ANN) is adopted. In an ANN, the inputs (x) have the same role of biological 

dendrites, while the outputs (y) can be regarded as biological axons [100]. The 

processing of the data takes place in the neurons, which in an ANN apply a nonlinear 

activation function, g, on the input data. Being a pure mathematical model without 

physical meaning, an ANN needs to be trained with existing data. The purpose of the 

training, which can be carried out with different error minimization techniques, is to 

determine the coefficient weights and biases of the network (i.e., the parameters that 

fully describe an ANN). Taking into account a feedforward ANN consisting of only one 

layer of neurons (also called hidden layer, because its activation values are not directly 

accessible from outside the network) and a linear activation function in the output layer 

(with just one output), the mapping carried out by the ANN on the input can be expressed 

as follows: 

𝑦 = ∑ (𝑤̂𝑗g (∑ w𝑗𝑖𝑥𝑖 + b

d

𝑖=1

) + b̂)

m

𝑗=1

 Eq. (12) 

 

where d is the number of inputs, wji is the weights matrix of the inputs, b is the bias 

vector of the inputs, m is the number of neurons in the hidden layer, 𝑤̂𝑗 is the weights 

matrix of the hidden layer, and b̂ is the bias vector of the hidden layer. 

Generally, training data are divided into inputs and targets, and a well-trained ANN is 

expected to determine its outputs with a low deviation in respect to the provided targets. 

The available data of the system under study need to be studied carefully, in order to 

train the ANN only with the inputs that mostly influence the objective targets. If the 

physics of the system under study is complex, a method to individuate the most effective 

inputs involves the use of statistical approaches such as factor analysis. Instead, if the 

physics of the system is not entirely unknown, the operator can try to select the input 

variables that mostly influence the desired target. In the present work, since the thermal 

behavior of a building is known, these four input variables are selected: (i) outdoor 

temperature, (ii) solar gains, (iii) internal gains and (iv) indoor temperature.  

ANNs are available in different architectures, based on the physical-mathematical 

problem being studied. In the present work, since the goal is to estimate the thermal 

power required by a building, a fitting ANN is chosen. In MATLAB (which corresponds 

to the environment in which it is developed the MPC, see sub-section 5.1.2), fitting 

ANNs have a feedforward architecture and are trained according to a Levenberg-

Marquardt backpropagation algorithm, which uses regression analysis and RMSE to 
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evaluate the performance. One hidden layer with 5 neurons is used (it is well-know that 

even one layer of neurons is sufficient to represent complex, nonlinear problems [100]). 

The neurons use a hyperbolic tangent sigmoid as activation function. The ANN has 

therefore the architecture represented in Figure 5.4.  

 

 
Figure 5.4. ANN architecture of building prediction model. 

 
5.1.2 Preliminary operative evaluation 

 
In this sub-section, the two extreme modelling approaches (i.e., the physical based 

approach based on the RC-network and the data driven model implemented with an 

artificial neural network) for the building prediction model (sub-section 5.1.1) are 

applied to an operative model predictive control. The MPC routine is written in 

MATLAB [101], and for each timestep (t in Figure 5.2) the controlled building starts the 

MATLAB engine to run the controller. The uncontrolled inputs of the models are 

weather conditions (Tamb) and heat gains (𝐺̇), while the manipulated variable is the hourly 

building energy demand (𝑄̇). 

In this preliminary evaluation, for both the approaches, an ideal HVAC system is 

considered in the building and in particular the cooling season is evaluated. Therefore, 

the cooling demand (𝑄̇) is directly treated as a control action (Figure 5.1).  

The optimizer solves the optimization problem in the prediction horizon, PH, to 

minimize the total energy cost with constraints on the internal comfort conditions: 

minimize (∑ 𝑝(𝑘)𝑄̇(𝑘)) Eq. (13) 
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∀ 𝑘   Tmin ≤ 𝑇air(𝑘) ≤ Tmax Eq. (14) 

  

∀ 𝑘        0 ≤ 𝑄̇(𝑘) ≤ Q̇max Eq. (15) 

 

Where Tmin and Tmax are the comfort constraints allowed for the internal comfort and 

Q̇max is the maximum capability of the HACV system.  

Looking at Equation (13), it can be noted the presence of a factor p. Indeed, as incentive 

for the exploitation of the energy flexibility, a dynamic energy cost tariff is considered 

[102]. Therefore, to amplify the cost variations, a penalty signal (p) is used in the MPC 

optimizer (Equation (13)). It is obtained with a statistical method based on mean and 

standard deviation: 

𝑝(𝑡) =
𝑐(𝑡) − 𝜇𝑐

𝜎𝑐
 Eq. (16) 

 

where c is the energy cost, while μc and σc are the cost signal mean value and standard 

deviation, respectively. Figure 5.5 represents the original energy cost profile (Figure 

5.5(a)) and its corresponding penalty signal (Figure 5.5(b)) in a representative summer 

week. As can be noted, the use of the penalty signal, instead of the actual energy cost, 

allows to amplify the costs variation and, thus, to incentivize the unlocking of the 

building energy flexibility.  

 

 
(a) 
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(b) 

Figure 5.5. Electricity cost signal for the selected summer week: (a) hourly energy cost and (b) 

penalty signal. 

 

To evaluate the performance of the two modelling approaches, the Root Mean Square 

Error (RSME) and the Root Square Error (RSE) are calculated in reference to available 

data: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑇model,j − 𝑇data,j)

2
𝑛

𝑗=1

 Eq. (17) 

𝑅𝑆𝐸𝑗 = |𝑇model,j − 𝑇data,j| Eq. (18)  

 

where n is the number of points considered.  

Data relating to the controlled building (Figure 5.1) are obtained from a detailed building 

model implemented in TRNSYS using Type 56. The model is composed of a single 

thermal zone and the envelope characteristics are the same reported in Table 4.1.  

In this analysis (also reported in Paper 6), as mentioned, the cooling season is selected 

for the MPC test and no specific HVAC system is modelled. Instead, an ideal cooling 

system is used in Type 56 to extrapolate the training data. Therefore, the control actions 

calculated by the control are applied as convective heat gains to the air nodes (negative 

for cooling). An indoor air temperature range of 25-27 °C is chosen as comfort condition 

(i.e., Tmin and Tmax in Equation (14)) and a maximum cooling load power of 7 kW is 

fixed (i.e., Q̇max in Equation (15)). Since the cooling power is directly applied to the air 

zone, the ideal HVAC can be compared to a traditional heat pump split system. 

Assuming an average 𝐶𝑂𝑃̅̅ ̅̅ ̅̅  of 2.5, the thermal energy requirement can be converted in 

electricity consumption, and the penalty signal obtained consequently (Equation (16)). 

By means of energy simulations on the controlled building, different scenarios of data 

are obtained:  
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▪ data to compare the effectiveness of the MPC in comparison to a traditional RBC (a 

thermostat that maintains a fixed setpoint of 26 °C). 

▪ data to train the data-driven building model and to evaluate the performance of the 

two buildings modelling approaches (Equations (17) and (18)). 

In particular, to train the ANN, 168 hourly-based input/target data referred to a typical 

week are used (the same shows in Figure 5.5). These data are not obtained with a fixed 

setpoint condition. In this case, in fact, the ANN performance would have been 

insignificant, as there would have been no correlation between the output and the 

controlled variable (i.e., the indoor temperature). Indeed, the control unlocks the energy 

flexibility of the building and allows indoor temperature variations in a given comfort 

range. Therefore, to improve the ANN prediction capability, the building simulation 

environment is allowed to work with multiple indoor setpoint temperatures, varying in 

a reasonable comfort range. To avoid overfitting of the data, (i.e., an exaggerated 

interpolating behavior of the ANN), only a fraction of the dataset is actually used to train 

the network (more details about the training and validation process od the ANN are 

reported in Paper 6).  

Comparing the two building models, it is important to notice that, for the ANN the indoor 

temperature is a controlled input (Figure 5.4) while for the RC-network it is obtained as 

a component of the state vector (i.e., which coincides in this case with an output). Also, 

for the ANN the objective function of the optimization algorithm can be written as in 

Equation (13), subject to the constraints defined in Equations (14) and (15). Therefore, 

if the optimization problem for the RC network (linear programming optimization) is 

linear, that of the ANN is not. For this latter the optimization algorithm chosen is a 

programming solver based on the gradient method, that uses an initial value for the 

indoor temperature as first attempt of solution.  

Passing at the performance analysis, the ANN training data are selected as comparison 

terms to test the two building models. Figures 5.6 and 5.7 show the results in the entire 

168-point dataset for the ANN-based model and for the RC-network, respectively. Since 

the output of the models is different in the two approaches, for the ANN the hourly 

cooling power forecasting is evaluated (Figure 5.6(a)), while for the RC-network the 

internal air node temperature is considered (Figure 5.7(a)). As can be seen, both the 

prediction models are able to reply the dynamic variation of the training data. In the first 

case, the RMSE is 0.26 kW, while the value found for the RC-network is 0.34 °C. As 

highlighted by the RSE profile in Figure 5.6(b), for the ANN the deviation is mainly due 

to the inability of the network to simulate the cases with reduced or zero cooling demand. 

For the physical-based model, instead (Figure 5.7(b)), there seems to be a regular 

prediction error rather than specific peaks. It is worth noting that the RSE assumes a 

maximum value of 0.9 °C in the RC-network, and a value of 0.8 kW in ANN model.  
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(a) 

 
(b) 

Figure 5.6. ANN model prediction results compared to training data: (a) cooling power demand 

and (b) RSE. 

 

(a) 
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(b) 

Figure 5.7. RC-network model prediction results compared to training data: (a) indoor air 

temperature and (b) RSE. 

 

On the other side, Figures 5.8 and 5.9 show the MPC results for both the prediction 

models. The results are presented with a prediction horizon, PH, of 6 hours. Specifically, 

Figures 5.8(a) and 5.9(a) show the comparison between the building actual internal air 

temperature (i.e., Type 56 as controlled building) and the MPC predicted value for the 

same time step (t). Instead, in Figures 5.8(b) and 5.9(b), the control actions selected by 

the controller at each time step (t) are represented. Looking at the black curves in Figures 

5.8(a) and 5.9(a), it is possible to note that both the prediction models are able to activate 

the building energy flexibility exploiting the whole comfort temperature range. Low 

temperature values are preferred when the energy cost is low and subsequent increases 

are expected. Conversely, the temperature is maintained close to the higher comfort 

range when high energy costs are detected. 

 

 
(a) 
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(b) 

Figure 5.8. MPC with ANN as building prediction model: (a) internal air temperature, 

comparison between the actual Type 56 air zone temperature and ANN prediction at each 

timestep and (b) cooling power profile (control action sequences). 

 

 
(a) 

 
(b) 

Figure 5.9. MPC with RC as building prediction model: (a) internal air temperature, comparison 

between the actual Type 56 air zone temperature and RC-network prediction at each timestep and 

(b) cooling power profile (control action sequences). 
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The application of the MPC with both the prediction models produces a total cost 

reduction of about 16 % if compared to the reference building with a fixed setpoint of 

26 °C (i.e., RBC). The RMSE between the actual air temperature and that predicted by 

the MPC at each time step also shows similar error values for the two models: 1.1 °C for 

the controller with the ANN, and 0.99 °C for the RC model. However, comparing these 

values with the RMSEs found in first part of the analysis, a degradation in the prediction 

performance can be noted for both the approaches. This is due to the fact that the building 

operates in variable dynamic conditions when the energy flexibility is activated. Thus, 

the prediction depends on constantly updated factors (such as the starting temperature 

conditions, the charge and discharge level of thermal inertia, etc.) which clearly amplify 

the prediction error.  

Although the models seem to have similar performances, different on-time trends for the 

two models can be expected if the actual building air temperature is observed (the red 

curves in Figures 5.8(a) and 5.9(a)). In particular, the MPC with the RC-network seems 

to follow the system dynamics more accurately than the controller with the ANN. 

Indeed, when the ANN is operatively used in the controller, it appears to perform worse 

than the RC-network. In both cases, in the second half of the tested period, the prediction 

error starts to grow but, in case of ANN, the actual air zone temperature exceeds more 

than one degree the upper comfort limit (28.8 °C is the maximum value reached with the 

ANN in the controller, against 27.5 °C in case of the RC-network). The behavior is also 

confirmed by the duration curves reported in Figure 5.10. In the building regulated by 

the ANN-based MPC, the indoor temperature is found to be above the upper control 

limit for the 36 % of the simulation time. This percentage drops to 24% when the RC-

network is used. This behavior is due to the difficulty of the control to maintain the 

comfort when the temperature is too close to the upper comfort boundary: also, a small 

error in prediction can cause temperature violations. 

 

 
Figure 5.10. Indoor air temperature duration curves. 
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Therefore, according to the presented results, both the controllers show good ability to 

replicate the reference case behavior at equal inputs, but in case of real implementation 

some differences can be noted. Indeed, for the ANN-based MPC the comfort constraint 

violations can occur more frequently with a higher difficulty of the control to follow the 

real-time variations of the system. About this, as will be discussed more fully in the sub-

section 5.3 after the examination of the two modelling approaches in a MES building 

(sub-section 5.2), the use of a data-driven model poses an issue on the training dataset 

operatively representing the energy flexibility contribution in buildings. On the other 

hand, the physical-based model seems to better reproduce the system dynamics but, it 

must always be considered that an accurate knowledge of the building, which is not 

always possible, is required. 

 

5.2 Effectiveness of the model predictive control to manage multi 

energy system (MES) in buildings 
 
In this section a simulation-based case study in which a MES building is managed with 

a MPC is assessed with two different modelling approaches (i.e., with a data-driven and 

a physical based building model) in comparison to a typical RBC.  

The case study consists of a residential building modelled in TRNSYS (i.e., controlled 

building in Figure 5.1) whose cooling power demand can be satisfied with different 

energy sources: electricity form the power grid, photovoltaic modules (both used to feed 

a variable load heat pump) and the connection to a district cooling network. Additionally, 

a certain degree of energy flexibility is provided by a wider variation of the indoor air 

temperature comfort conditions allowed (i.e., flexibility derived by TCLs). The variation 

of the cooling demand according to the setpoint can be exploited by the control as 

additional virtual energy source.  

As for the MPC formulized in Section 5.1, the MPC is used to control the HVAC of the 

building. In this case however, the control actions should lead to an optimal exploitation 

of each energy source available in the MES, according to the goal to be reached. 

Therefore, the optimizer should determine whether each source has to be used by the 

HVAC, while the energy requirement of the building is being satisfied. Thus, the 

predictions of the energy sources availability profile must be also provided as inputs to 

the optimizer. In Figure 5.11, a scheme of the proposed MPC is presented. 

 



76 

 

 
Figure 5.11. Schematic of the MPC to control the MES building case study. 

 

In the following sections the two different modelling approaches discussed in Section 

5.1 (i.e., the data driven and the physical based building models) are compared in the 

MPC showed in Figure 5.11. Although, they are referred to the same case study, there is 

a difference in the RBC setting of the cooling system between the two approaches. In 

the analysis introduced in Paper 7, the cooling demand of the building is satisfied with 

a ON/OFF control logic. Therefore, the combination of the energy sources provides to 

the building always the nominal power. On the other hand, the RBC adopted in Paper 8 

is realized with a compensation curve (the heat pump can modulate the load). However, 

the in the following sub-sections (5.2.1 and 5.2.2) mode details are provided.  

Before showing the results of the two analyses, more details about the case study has to 

be provided. Starting from the controlled building, it is composed of a single thermal 

zone. Also in this case the thermal and geometrical features of the building are extrapolated 

by Tabula Project [64] for a detached house (single family house) recently built (Table 

4.1). Moreover, the floor is directly placed on ground and an ACH equal to 0.2 hr-1 is 

selected for natural ventilation. As concerns the internal gains, they are supplied by 

artificial lighting and occupancy. An artificial light density of 5 W m-2 is considered when 

the total horizontal radiation is less than 120 W m-2, while an occupancy of four people is 
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hypothesized (heat gain of 120 W per person) [103]. Also in this case, the controlled 

building is located in Rome, Italy (41°55’ N, 12°31’ E), and a typical meteorological year 

[104] is adopted to derive the outdoor temperature and the solar radiation contribution. In 

this way, the weather forecasts are obtained (Figure 5.11).  

The cooling power is provided with of fan coil units (FCUs) working as an air-to-water 

heat exchanger, in which the internal air is cooled by cold water acting as heat transfer 

fluid. As mentioned, the water circuit can be cooled by different energy sources (Figure 

5.11): (i) cooling power coming from a district cooling network (DC) or from a variable-

load air-to-water heat pump (HP), which is supplied by electricity that can be produced by 

either (ii) on-site photovoltaic (PV) modules or (iii) drawn from the grid.  

Starting from the DC source, the connection of the user to the network is made through 

a heat exchanger in which the cold side uses glycolate water [79] as heat transfer fluid 

(ṁdc), while the hot fluid flowing in the FCU is water (ṁwater).  

The cooling power availability profile is assumed in relation to the possible cold energy 

recovery application presented in Section 4.2, in which a DC network can be used to 

dispose of cold energy coming from a liquid-to-compressed natural gas (L-CNG) 

refueling plant vaporizer. Figure 5.12 reports the daily availability profile of the source.  

 

 
Figure 5.12. Daily cooling power profile from DC (for the single building). 

 

The peak cooling power (6.3 kW from 6.00 pm to 7.00 pm) is comparable to the design 

peak cooling load of the building (6.7 kW), obtained applying the Carrier-Pizzetti 

technical dynamic method [69]. Therefore, the water flowrate (ṁwater) is calculated to 

guarantee a difference between supply and delivery temperature of 5 °C. In this 

condition, a design water supply temperature of 7 °C is assumed. As far the glycolate 

water side is concerned, a constant flow rate (ṁdc) is assumed and the cooling power 

availability profile (Figure 5.12) determines its inlet temperature into the heat exchanger. 

In particular, the numerical value of ṁdc  is calculated considering a temperature 

difference of 7 °C at the peak cooling power, with a minimum supply temperature of -5 

°C.  
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The variable-load air-to-water heat pump (HP) is connected in series to the heat 

exchanger. It is modelled interpolating the manufacturer’s data of a commercial unit 

(VITOCAL 200-S) [65], according to EN 14825 [105]. The model 201.D04 [65] is 

selected (the performance in cooling mode, according to EN 14511 [106].  

The heat pump can be powered either by the electricity from the grid (G) or produced 

by photovoltaic (PV) modules installed on-site. The PV plant is modelled in TRNSYS 

with Type 194 and it is composed of 3 arrays. Each array includes 4 polycrystalline-

silicon panels connected in series with a nominal peak power of 250 W. The 

characteristics of the single panel are derived from a commercial datasheet [107]. The 

expected electricity availability from the panels is obtained by simulating the hourly 

electricity generation of the PV plant for the whole cooling season (from June to 

September). 

To evaluate the performance of the MPC in the optimal exploitation of the energy 

sources, a classic rule-based control (RBC) is modelled as reference operation. It acts as 

a simple thermostatic control: cooling power is required when the indoor zone 

temperature exceeds a maximum setpoint temperature (25.5 °C), with a tolerance of 0.5 

°C (from 25 °C to 26 °C). The cooling control is then turned off when the measured 

temperature falls below the setpoint reduced by the tolerance (25 °C). The RBC acts on 

the fan coil units, and the energy sources exploitation occurs sequentially according to 

the order provided in Figure 5.11. Cold thermal energy provided by the DC is consumed 

at first then, if it is insufficient to cover the demand, the HP is activated. Unable to follow 

an optimized control logic, the HP uses the electricity produced by the PV modules only 

if it is available at the considered time step, otherwise the HP withdraws energy from 

the power grid.  

 
5.2.1 Application of a data-driven building model in MPC  

 
As discussed in the previous section (sub-section 5.1.2), when a ANN is used in an MPC 

to predict the cooling demand of a building, it can be trained with a large amount of data, 

deriving from either experimental measures or numerical evaluations. Before training, 

however, it is important choosing the best architecture of the ANN that represents the 

system in exam under a logical-mathematical point of view.  

The application of the ANN-based MPC to the MES building described above is 

introduced for the first time in Paper 7. As mentioned, the performance of the predictive 

controller is evaluated in comparison to a reference scenario. This latter is a simple a 

rule-based control in which the cooling demand of the building is satisfied with a heat 

pump managed by a ON/OFF control logic. In this case, the heat pump works always 

near the design nominal capacity, equal to 6.7 kW. In other words, the modelling of the 
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cooling demand basically consists in determining when the building needs to be cooled, 

and this can be regarded as a Boolean problem. The most appropriate ANN to choose in 

this case is therefore an architecture dedicated to classification problems. In MATLAB, 

the ANNs used to solve classification problems are referred to as pattern recognition 

networks. Pattern recognition networks are feedforward networks that can be trained to 

classify inputs according to the target classes. 

To reduce the classification errors of the network, it is important to train the ANN with 

a proper dataset. The main variables influencing the cooling demand are therefore 

investigated: (i) indoor setpoint temperature, (ii) outdoor temperature, and (iii) building 

thermal gains. Among these variables, the most relevant input is the indoor setpoint 

temperature, which strongly influences the thermal behaviour of the building. For the 

reasons mentioned in Section 5.1.2 (i.e., to allow to the ANN to represent the flexibility 

of TCLs), also in this case, a random daily setpoints profile is used to obtain training 

data (for more refer to Paper 7).  

Once the ANN is obtained, it is able to predict the cooling demand (𝑄̇) of the building 

as a function of the imposed setpoint 𝑇sp (𝑇sp and  𝑇air in Figure 5.4 coincide in this 

configuration of ANN that solves classification problem). At this point, the MPC should 

be allowed to know the free energy sources available in the system in a certain PH: the 

waste cold thermal energy provided by the DC (𝑄̇DC) and the electricity producible by 

the PV plant (𝑃̇PV), as well as the coefficient of performance (COP) of the heat pump 

used in the building. If all these quantities are known, the MPC can process an energy 

minimization algorithm and determine an optimal indoor setpoint temperature (𝑇sp) 

according to the energy flexibility availability of the building. The optimization variable 

𝑇sp is not allowed to assume any possible value, but its domain is limited in the set of 

constraints from 24.5 °C to 27.5 °C with 1°C increases.  

The goal of the MPC discussed in this study (Paper 7) is to reduce the electricity taken 

from the grid. Given the nature of the multi-energy system under study, the MPC is not 

limited to just calculating an optimal setpoint temperature. In fact, based on the 

availability of the free sources in the chosen PH, the MPC should also evaluate for each 

time step if either the DC or the HP are allowed to work. In summary, the supervisory 

MPC should provide the local control unit with three data for each time step: an optimal 

indoor setpoint temperature (𝑇sp), a Boolean control for the heat exchange with the DC 

(𝐶𝑇𝑅𝐿DC), and a Boolean control for the functioning of the HP (𝐶𝑇𝑅𝐿HP). While 𝑇sp is 

the result of an energy minimization carried out for the whole prediction time, the 

selection of the two Boolean controls also depends on the actual availability of the free 

energy sources in the current time (t) step under evaluation. In fact, there could be 

occurrences where there is no availability of the free sources in the current time step, 

even if they will become available in the following hours. In such a case, the Boolean 
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controls determined by the MPC for the current time step should be 𝐶𝑇𝑅𝐿DC equal to 

𝐶𝑇𝑅𝐿HP equal to 0. This trivial example highlights that the MPC cannot be based only 

on an energy balance referred to the chosen prediction horizon, but it is also necessary 

to carefully evaluate what happens in the first hour of the evaluation period. 

Based on the aforementioned considerations, there is no possibility to write a standalone 

objective function based on an energy balance equation and it is therefore necessary to 

subdivide the energy problem in cases.  

Let 𝑄̇ be the cooling demand of the building for all the admissible values of 𝑇sp and 

PH be the chosen prediction horizon for the current time step t. The MPC should evaluate 

the cases provided in Table 5.1. As will be noted, some of these cases result in trivial 

mathematical problems to be solved, where it is sufficient to select the highest admissible 

𝑇sp (i.e., 27.5 °C). Most of the cases, however, requires the definition of a proper energy 

objective function, 𝐸G, that must be minimized by the MPC optimization algorithm. 

 
Table 5.1. Cases managed by the MPC routine with ANN (hourly resolution). 

Case Equations Comments 

0 

𝑄̇[1, 𝑃𝐻] = 0 

𝑇sp[1, 𝑃𝐻] = Tmax 

𝐶𝑇𝑅𝐿HP = 0 

𝐶𝑇𝑅𝐿DC = 0 

𝐸G(𝑡) = 0 

There is no cooling demand in the 

current time step and in the whole 

prediction horizon, for all the 

admissible setpoint values 

1 

𝑄̇DC(𝑡) = 0 

𝑃̇PV(𝑡) = 0 

𝑄̇(𝑡) = 0 

𝑇sp[1, 𝑃𝐻] = Tmax 

𝐶𝑇𝑅𝐿HP = 0 

𝐶𝑇𝑅𝐿DC = 0 

𝐸G(𝑡) = 0 

At the current time step, there is no 

cooling demand and no free energy 

source available 

 2 

𝑄̇DC(𝑡) = 0 

𝑃̇PV(𝑡) ≠ 0 

𝑄̇(𝑡) = 0 

find 𝑇sp[1, 𝑃𝐻] so that   

𝐸𝐺[1, 𝑃𝐻] = min (𝐸𝐺[1, 𝑃𝐻]) 

𝑇sp[1, 𝑃𝐻] = Tsp,minimization   

𝐶𝑇𝑅𝐿HP = 0 

𝐶𝑇𝑅𝐿DC = 0 

At the current time step, there is no 

cooling demand, but the photovoltaic 

source is available. The optimal 

value of 𝑇sp is chosen based on the 

minimization of the energy objective 

function 

3 

𝑄̇DC(𝑡) ≠ 0 

𝑃̇PV(𝑡) = 0 

𝑄̇(𝑡) = 0 

find 𝑇sp[1, 𝑃𝐻] so that   

𝐸𝐺[1, 𝑃𝐻] = min (𝐸𝐺[1, 𝑃𝐻]) 

At the current time step, there is no 

cooling demand, but the waste cold 

thermal energy provided by the DC is 

available. The optimal value of 

𝑇sp is chosen based on the 
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𝑇sp[1, 𝑃𝐻] = 𝑇sp,minimization   

𝐶𝑇𝑅𝐿HP = 0 

𝐶𝑇𝑅𝐿DC = 1 

minimization of the energy objective 

function 

4 

𝑄̇DC(𝑡) ≠ 0 

𝑃̇PV(𝑡) ≠ 0 

𝑄̇(𝑡) = 0 

find 𝑇sp[1, 𝑃𝐻] so that   

𝐸𝐺[1, 𝑃𝐻] = min (𝐸𝐺[1, 𝑃𝐻]) 

𝑇sp[1, 𝑃𝐻] = 𝑇sp,minimization   

𝐶𝑇𝑅𝐿HP = 1 

𝐶𝑇𝑅𝐿DC = 1 

At the current time step, there is no 

cooling demand, but both the free 

energy sources are available. The 

optimal value of 𝑇sp is chosen based 

on the minimization of the energy 

objective function 

5 

𝑄̇DC(𝑡) = 0 

𝑃̇PV(𝑡) = 0 

𝑄̇(𝑡) ≠ 0 

find 𝑇sp[1, 𝑃𝐻] so that   

𝐸G[1, 𝑃𝐻] = min (𝐸G[1, 𝑃𝐻]) 

𝑇sp[1, 𝑃𝐻] = Tmax  

𝐶𝑇𝑅𝐿HP = 1 

𝐶𝑇𝑅𝐿DC = 0 

At the current time step, there is 

cooling demand for at least one value 

of 𝑇sp , but both the free energy 

sources are not available 

7 

𝑄̇DC(𝑡) ≠ 0 

𝑃̇PV(𝑡) = 0 

𝑄̇(𝑡) ≠ 0 

find 𝑇sp[1, 𝑃𝐻] so that   

𝐸𝐺[1, 𝑃𝐻] = min (𝐸𝐺[1, 𝑃𝐻]) 

𝑇sp[1, 𝑃𝐻] = 𝑇sp,minimization  

𝐶𝑇𝑅𝐿HP = 1 

𝐶𝑇𝑅𝐿DC = 1 

At the current time step, there is 

cooling demand for at least one value 

of 𝑇sp, and the waste cold thermal 

energy provided by the DC is 

available. The optimal value of 𝑇sp 

is chosen based on the minimization 

of the energy objective function 

8 

𝑄̇DC(𝑡) ≠ 0 

𝑃̇PV(𝑡) ≠ 0 

𝑄̇(𝑡) ≠ 0 

find 𝑇sp[1, 𝑃𝐻] so that   

𝐸𝐺[1, 𝑃𝐻] = min (𝐸𝐺[1, 𝑃𝐻]) 

𝑇sp[1, 𝑃𝐻] = 𝑇sp,minimization  

𝐶𝑇𝑅𝐿HP = 1 

𝐶𝑇𝑅𝐿DC = 1 

At the current time step, there is 

cooling demand for at least one value 

of 𝑇sp , and both the free energy 

sources are available. The optimal 

value of 𝑇sp is chosen based on the 

minimization of the energy objective 

function 

 

The objective function that the MPC optimization algorithm must minimize is based on 

a general energy balance of the building, evaluated for the whole prediction horizon 

chosen. It can be written as: 

𝐸G = ∑ 𝑃̇G(𝑘)

𝑃𝐻

𝑘

∆𝑘 Eq. (19) 

where ∆𝑘 is the timestep and for each k in PH (hourly resolution) and:  
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if (𝑄̇(𝑘) − 𝑄̇DC(𝑘)) 𝐶𝑂𝑃(𝑘)⁄ − 𝑃̇PV > 0   

𝑃̇G(𝑘) = (𝑄̇(𝑘) − 𝑄̇DC(𝑘)) 𝐶𝑂𝑃(𝑘)⁄ − 𝑃̇PV(𝑘) 

 

Eq. (20) 

if (𝑄̇(𝑘) − 𝑄̇DC(𝑘)) 𝐶𝑂𝑃(𝑘)⁄ − 𝑃̇PV ≤ 0  

𝑃̇G(𝑘) = 0 

 

Eq. (21) 

Through Equation (19), for each time step t of the simulation, the MPC can estimate the 

overall electrical energy that the system will collect from the grid from t to the end of 

the prediction horizon (PH). The minimization algorithm of the MPC must therefore 

find for which indoor setpoint temperature, 𝑇sp, the overall electricity absorbed from the 

grid is minimum. With a mathematical formulation, this can be written as: 

 

find 𝑇sp[1, 𝑃𝐻]|𝐸G[1, 𝑃𝐻] = min (𝐸G[1, 𝑃𝐻]) Eq. (22) 

 

The optimization problem described by Equation (22) belongs to the paradigm of 

constraint programming [108] . Referring to a general constraint satisfaction problem 

[109], this can be defined by a triplet (X, D, C) where: 

▪ X = 𝑇sp is the variable of the problem. 

▪ D = ℚ+ is the mathematical domain of the variable, in this case the field of positive 

rational numbers. 

▪ C = {24.5, 25.5, 26.5, 27.5} °C is the set of constraints, that in the present case are 

hard equality constraints defined in a finite domain. 

When a constraint satisfaction problem is associated to an objective function, constraint 

optimization problems are used [108].   

As can be noted from Equation (22) and the problem cases reported above (Table 5.1), 

the 𝑇sp value found by the MPC minimization algorithm for each time step t is referred 

to the whole evaluation time PH, and not to the current time step. In other words, the 

setpoint temperature found by the MPC is a single, optimal average value that minimizes 

𝐸G  in the whole evaluation time. This simplification of the optimization process is 

necessary in order to guarantee acceptable calculation times for the MPC. In fact, being 

it based on a pattern recognition ANN, the 𝑄̇ function that appears in the objective 

function described by Equation (19) is a complicated nonlinear mapping of the building 

cooling demand, that extends the optimization process significantly. The simplification, 

however, does not worsen the optimization results excessively, as they are anyway 

bounded in the set of constraints reported in Equation (22). In summary, the optimization 

problem under study is defined under a limited set of equality constraints and the 

objective function depends on one variable only. In this case, a substitution method can 
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be used, i.e. Equation (22) can be solved for the four allowable values of 𝑇sp, and then 

the MPC can select the actual value of 𝑇sp that minimizes 𝐸G. 

Analyzing the behavior in different PHs, it seems that the choice of the prediction time 

horizon has a role in the performance of the MPC. Taking into account the typical 

meteorological conditions for Rome (41°55’ N, 12°31’ E), during the cooling season 

(from June to September), Figure 5.13 shows how the MPC performs respect to the RBC 

(i.e., simple thermostat control) for typical values of the prediction horizon (6, 12, 18, 

24 hours). As can be seen, the use of the MPC allows to reduce the electricity collected 

from the grid regardless of the extent of the prediction horizon. However, it is found that 

the prediction horizon value that minimizes EG is 18 hours. In this case, the MPC is able 

to reduce the energy absorbed from the grid by -71%. This trend highlight how the best 

prediction horizon is usually a tradeoff between a short prediction time, more precise but 

more limited in the prediction capability, and a long prediction time, which provides 

more information to the control, but whose reliability could be inferior. 

 
Figure 5.13. Electricity absorbed from the grid for different values of the prediction time horizon. 

The energy deviations are referred to the baseline (i.e., RBC). 

 

Focusing on the results obtained for a prediction horizon of 18 hours, Figure 5.14 reports 

the mix of energy sources used by the building, subdivided for the months considered in 

the cooling season. In each month, the MPC prioritizes the use of the waste cold thermal 

energy provided by the DC. In the periods with higher availability of solar radiation 

(mainly July and August), the MPC also tries to use the electricity produced by the PV 

plant, if available. If there is no possibility to meet the cooling demand of the building 

with the free energy sources, the MPC allows the heat pump to collect the remaining 

fraction of energy from the electrical grid. This fraction, however, is limited during the 

cooling season. In fact, the MPC has the possibility to unlock the energy flexibility of 

the building by adjusting the variable indoor setpoint temperature, thus allowing a pre-

cooling of the building several hours before the actual request of cooling demand. 
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(a) (b) 

  
(c) (d) 

Figure 5.14. Use of the energy sources by the building with the MPC working at a prediction 

horizon of 18 hours: (a) month of June, (b) month of July, (c) month of August and (d) month of 

September. 

 

To investigate in detail how the MPC operates, it is necessary to analyze the trend of the 

variable indoor setpoint temperature, as well as the availability and use of the free energy 

sources. Starting from the former, Figure 5.15 shows how indoor temperature changes 

for the building during a typical week. Referring to the RBC, it can be seen that the 

setpoint temperature is fixed at 25.5 °C, and the corresponding indoor temperature 

fluctuates in a narrow band (± 0.5 °C). In the same Figure, it is possible to note that, for 

a prediction horizon of 18 hours, the MPC allows the setpoint temperature to vary in the 

range 24.5-27.5 °C. For each hour, the indoor setpoint temperature used in the local 

thermostat control of the building comes from the energy optimization carried out by the 

supervisory MPC, which tries to unlock the energy flexibility of the building. As a 

consequence of flexibility, there is a wider fluctuation of the actual indoor temperature. 
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By predicting a cooling demand in the hottest hours of the day, the MPC takes advantage 

of the availability of waste cold thermal energy from the DC in the morning hours and 

lowers the setpoint temperature to obtain a pre-cooling of the building. 

 

 
Figure 5.15. Indoor and setpoint temperatures during a typical week for the baseline (i.e., RBC) 

and the MPC working at a prediction horizon of 18 hours. 

 

Even without the MPC, the system is able to use the free energy sources available, as 

depicted for example in Figure 5.16 for the cold thermal energy drawn from the DC. 

However, this is only possible when there is a temporal match between the availability 

of the source and the cooling demand, because in the RBC there is no possibility to use 

the energy flexibility of the building. Without the MPC, the RBC is not able to operate 

a pre-cooling of the building, thus there are periods where the operation of the heat pump 

cannot be avoided (as visible in the central four days of Figure 5.17). In this case, the 

only way to avoid electricity absorption from the grid relies on the availability of the 

solar source. When there is a match between electricity demand and production from the 

PV plant, there is no absorption from the grid even in the RBC. In some days, however, 

this condition is not met, and the multi-energy system is forced to draw electrical energy 

from the grid, as shown in two days of Figure 5.18. In these situations, the operation of 

the multi-energy system and the interaction between its subsystems are not optimized, 

leading to an inadequate exploitation of the free energy sources available. The reduction 

of electrical energy consumption is therefore limited, even in presence of a DC fed with 

waste cold thermal energy and a PV plant. 
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Figure 5.16. Cooling demand covered by the DC during a typical week for the baseline (i.e., 

RBC) and the MPC working at a prediction horizon of 18 hours. 

 

 
Figure 5.17. Electrical power used by the HP to meet the cooling demand of the building during 

a typical week. The curves refer to the baseline (i.e., RBC) and the MPC working at a prediction 

horizon of 18 hours. 

 

 
Figure 5.18. The curves refer to the baseline (i.e., RBC) and the MPC working at a prediction 

horizon of 18 hours. 
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Attempting to generalize the results, the development and use of a dedicated supervisory 

ANN-MPC, able to predict both the sources and the demand in a proper prediction 

horizon, can help the management of the energy systems. Through the prediction, the 

MPC is able to unlock the energy flexibility provided by the building and thus to 

minimize the temporal mismatches between the free energy sources and the demand. 

However, it should be also noted that MPCs based on black box models such as ANNs 

require an articulated formulation of the control along with a series of training data that 

are not easy to have (i.e., the behavior of the building with a random set point profiles).  

Anyhow the black box models have the possibility to be trained again when new data 

are available, thus they can continuously improve the model they represent. This 

remarkable advantage, however, is counterbalanced by other issues, in particular a 

greater difficulty in training an ANN capable of managing energy flexibility properly. It 

is possible to deal with this issue by using, for the training of the ANN, an adequate 

dataset able to account for the effects of flexibility in the parameters considered; 

otherwise, the trained ANN would show poor performance in this regard, worsening the 

general performance of the ANN-based MPC. 

 
5.2.2 Application of a physical based building model in MPC  

 
The application of the MPC with a physical based model (i.e., RC-network with a white 

box approach to identify the parameters) to the MES building is presented in Paper 8. In 

particular, as for the analysis presented in the previous sub-section, the objective of this 

mentioned work is to highlight the effectiveness of exploiting building energy flexibility 

provided by thermostatically controlled loads (TCLs) to manage a multi-energy system 

(MES) through a model predictive control (MPC) formulated with a RC-network 

building model.  

Starting from the model of the building, a RC-network similar to Figure 5.3 is 

introduced. Also, in this case (as discussed in Section 5.1.1), the performances of the 

model are compared to the results of a detailed model in TRNSYS (i.e., Type 56) with 

the evaluation of the RMSE (Equation (17)). 

Despite of the ANN-based MPC, the application of a RC-network-based involves the 

real-time resolution of a linear optimization problem, whose objective function and 

equality or inequality constraints are linear. As explained, when the MPC is adopted to 

control a MES building, forecasts of the energy sources availability have to be included 

in the optimizer inputs (Figure 5.11). In case of linear optimization problem, however a 

further distinction should be made between the energy sources that depend on the actual 

system state and those that do not. Indeed, as described in Section 5.1.1, in case of 

physical based model, the system state is represented by the nodes temperatures (𝑇air, 
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𝑇i  and 𝑇e ), which are strongly linked to the thermal demand of the building ( 𝑄̇ ). 

Therefore, 𝑄̇  acts as a controlled input for the building model and, hence, as a 

continuous decision variable for the optimization problem. In this context, the 

exploitation of an energy source can take place according to two different logics. When 

the source availability is defined by a given profile (uncontrollable input), the system 

adapts its state to use the source in the right measure. On the contrary, if the availability 

of the source is potentially limitless and its employment is strongly linked to the actual 

energy request of the building, such source has to be considered as a manipulated 

variable in the optimization problem (i.e., to maintain the linearity of the problem). The 

latter category is represented by the energy sources that are taken from the grid (e.g., 

natural gas or electricity drawn from the grid).  

To formulize the control in general terms, this distinction among energy sources needs. 

Let ES be the number of usable energy sources acting as uncontrolled inputs (index 𝑒) 

and ∆𝑘 the control timestep, 𝐸̇𝑒(𝑘) is the availability profile for each 𝑒 at each k while 

𝐸̇G(𝑘)  is the energy source drawn from the grid (G). Associating a penalty factor 

( 𝑃𝐹𝑒 , 𝑃𝐹G ) to each energy source ( 𝐸̇𝑒  and 𝐸̇G ), the optimization problem can be 

formulated in general terms (Equations (23) and (24)).  

By varying 𝑃𝐹, the utilization of some sources rather than others can be penalized or 

encouraged according to the intended purpose of the optimization problem (e.g., 

minimizing the total costs or the primary energy consumption). 

 

OF(𝑄̇, 𝑈𝐹) = ∑ ∆𝑘 [𝑃𝐹G(𝑘) (
𝑄̇(𝑘)

𝐶𝐹G(𝑘)
− ∑

𝐶𝐹𝑒(𝑘)𝐸̇𝑒(𝑘)𝑈𝐹𝑒(𝑘)

𝐶𝐹G(𝑘)

ES

𝑒=1
)

𝑃𝐻

1

+ ∑ 𝑃𝐹𝑒(𝑘)𝐸̇𝑒(𝑘)𝑈𝐹𝑒(𝑘)
ES

1
] 

Eq.(23) 

 

minimize OF(𝑄̇, 𝑈𝐹) 

 

Eq.(24) 

 

In Equation (23), 𝐶𝐹𝑒 and 𝐶𝐹G are the conversion factors of 𝐸̇𝑒 and 𝐸̇G into thermal 

energy. Therefore, 𝐶𝐹𝑒𝐸̇𝑒 and 𝐶𝐹G𝐸̇G represent the building thermal demand that can 

be covered by each e or drawn by the grid G. Since e is referred to an uncontrollable 

input, its actual use is decided by an utilization factor (𝑈𝐹𝑒 ), acting as continuous 

decision variable, which can assume values between 0 and 1.  

The objective function defined in Equation (24) must be minimized by respecting some 

system constraints. Firstly, the internal comfort of the occupants has to be satisfied for 

each k. This condition is represented by Equation (14). Furthermore, the optimization 

constraints related to the HVAC system must be defined. They concern the maximum 
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capability (Q̇max) of the system involved (Equation (15)) and, if a withdrawal from the 

grid is envisaged, the constraint expressed by Equation (25) has to be added in order to 

avoid unacceptable solutions when the availability of the energy sources is too high (i.e. 

negative values of electricity drawn for the grid). 

 

∀ 𝑘       𝐸̇G(𝑘) ≥ 0 Eq. (25) 

 

With this formulation, the objective function, the decision variables and the constraints 

are all linear functions. Therefore, the optimization problem can be treated as a typical 

linear programming. However, it is important to notice that, to ensure the linearity of the 

optimization problem, the presented formulation allows the involvement of a single 

energy source drawn from the grid. In fact, the latter is interpreted by the controller as a 

supplementary energy source to be used when the availability of other energy sources is 

not enough.  

As described at the start of Section 5.2, three energy sources can be used to cover the 

cooling demand of the building in the specific case study: (i) cold thermal energy from 

the DC network, (ii) electricity produced by on-site PV modules to power the HP and 

(iii) withdrawal of electricity from the power grid. The first two sources act as 

uncontrollable inputs for the optimizer (ES equal to 2, according to Equation (23)). To 

refer to the individual energy sources, each element e is identified with the specific 

subscript DC and PV, therefore they coincide with 𝑄̇DC and 𝑃̇PV. Since 𝑄̇DC represents 

a thermal power, its conversion factor (𝐶𝐹DC) is set equal to 1 for each k while, for 𝑃̇PV 

and 𝑃̇G, the conversion factor is represented by the heat pump expected coefficient of 

performance (𝐶𝑂𝑃exp): 

 

𝐶𝐹PV(𝑘) =  𝐶𝐹G(𝑘) =  𝐶𝑂𝑃exp(𝑘) Eq. (26) 

 

In order to maintain the linearity of the optimization problem, an approximation is made 

for the assessment of the COP in the MPC optimizer. In fact, since the heat pump is 

modelled as a variable-load air-to-water unit, its performance varies according to the 

outdoor air temperature, the water supply temperature and the capacity ratio. However, 

the two latter quantities are closely related to the actual energy demand 𝑄̇, which is a 

decision variable of the optimization problem. The inclusion of these expressions in the 

constraints of the optimization problem would make it nonlinear. Therefore, as 

suggested by [111], the COP is considered, with an acceptable error, as a function of the 

expected value of the water supply temperature (assumed equal to 9.5 °C).  To avoid an 

overestimation of heat pump performance in the control, a capacity ratio of 1 is 

considered. In this way, the expected coefficient of performance 𝐶𝑂𝑃exp could be 
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calculated a priori as only function of the outdoor air temperature, which is an input of 

the MPC.  

Assigning different values to the penalty factors (PF), the different ways to exploit the 

available energy resources by the MPC can be evaluated. Three objective functions are 

used for the purpose to test the effectiveness of the MPC. They concern the minimization 

within PH of: (i) the electricity taken from the grid, (ii) the energy cost and (iii) the total 

primary energy consumption.  

As far as the first objective function is concerned, Equation (23) can be written for the 

case study assigning the value 0 to 𝑃𝐹DC and 𝑃𝐹PV, and 1 to 𝑃𝐹G: 

 

OFG(𝑄̇, 𝑈𝐹) = ∑ ∆𝑘 [
𝑄̇(𝑘)

𝐶𝑂𝑃exp(𝑘)
−

𝑄̇DC(𝑘)𝑈𝐹DC(𝑘)

𝐶𝑂𝑃exp(𝑘)

𝑃𝐻

𝑘

− 𝑃̇PV(𝑘)𝑈𝐹PV(𝑘)] 

Eq. (27) 

 

Instead, if the total energy cost has to be minimized, the penalty factors represent the 

costs per unit of energy consumption. In particular, 𝑃𝐹DC is the cost per energy unit of 

the cold thermal energy absorbed by the DC network (cth,DC), while 𝑃𝐹PV and 𝑃𝐹G are, 

respectively, the costs per energy unit of the electricity produced by PV (cel,PV) and 

supplied from the grid (cel,G). Their numerical values are: 0.20 EUR kWh-1 for cel,G 

[112], 0 EUR kWh-1 for cel,PV (on-site generation) and 0.035 EUR kWh-1 for cth,DC. 

With regard to cth,DC, in absence of real data, the following hypothesis is made: the cost 

of 1 kWh from DC is 30% lower than the production of the same amount of energy with 

a traditional heat pump (a rated 𝐶𝑂𝑃̅̅ ̅̅ ̅̅  of 4 is considered). With these assumptions, the 

objective function can be written as: 

 

OFC(𝑄̇, 𝑈𝐹) = ∑ ∆𝑘 [cel,G (
𝑄̇(𝑘)

𝐶𝑂𝑃exp(𝑘)
−

𝑄̇DC(𝑘)𝑈𝐹DC(𝑘)

𝐶𝑂𝑃exp,𝑘

𝑃𝐻

𝑘

− 𝑃̇PV(𝑘)𝑈𝐹PV(𝑘)) + cth,DC𝑄̇DC(𝑘)𝑈𝐹DC(𝑘)] 

Eq.(28) 

 

Finally, Equation (29) represents the third objective function: the minimization of the 

overall primary energy consumption. In this case, PF stands for the primary energy 

factor (pf) to convert each energy source into primary energy. The corresponding 

numerical values are extrapolated from [70] and are: 2.42 (pfG) for the electricity taken 
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from the grid, 1 (pfPV) for the PV generation, and 0.5 (pfDC) for the cold thermal energy 

from DC.  

 

OFP(𝑄̇, 𝑈𝐹) = ∑ ∆𝑘 [pfG (
𝑄̇(𝑘)

𝐶𝑂𝑃exp(𝑘)
−

𝑄̇DC(𝑘)𝑈𝐹DC(𝑘)

𝐶𝑂𝑃exp(𝑘)

𝑃𝐻

𝑘

− 𝑃̇PV(𝑘)𝑈𝐹PV(𝑘)) + pfDC𝑄̇DC(𝑘)𝑈𝐹DC(𝑘)

+ pfPV𝑃̇PV(𝑘)𝑈𝐹PV(𝑘)] 

Eq.(29) 

 

As described, the constraints of the optimization problem concern the internal comfort 

(with Tmax  and Tmin  equal to 24 °C and 27 °C in Equation (14)), the maximum 

capability of the cooling system (Q̇max assumed equal to the design peak power in 

Equation (15)) and the condition on the withdrawal from the grid expressed by Equation 

(25). For the case under study, the latter can be expressed as: 

 

∀𝑘:    (
𝑄̇(𝑘)

𝐶𝑂𝑃exp(𝑘)
−

𝑄̇DC(𝑘)𝑈𝐹DC(𝑘)

𝐶𝑂𝑃exp(𝑘)
− 𝑃̇PV(𝑘)𝑈𝐹PV(𝑘)) ≥ 0 Eq.(30) 

 

Also in this case, the optimization problem is solved with a MATLAB, where the whole 

MPC routine is written. At each time step t, the measurement of the internal air 

temperature at the previous (𝑇air(𝑡 − 1)) is passed to the controller as starting condition 

for the MPC building model. Once the optimization problem is solved, the controller 

determines the control actions for the cooling system within PH. They are: (i) the control 

signal for the DC pump (𝐶𝑇𝑅𝐿DC(𝑡)), (ii) the circuit flowrate (ṁdc(𝑡)) modulated in 

relation to the 𝑈𝐹DC, (iii) the control signal for the heat pump (𝐶𝑇𝑅𝐿HP(𝑡)) and (iv) the 

heat pump water supply temperature (𝑇sup(𝑡)). 𝐶𝑇𝑅𝐿DC  and 𝐶𝑇𝑅𝐿HP  are Boolean 

variables (the value 1 indicates a switch on, while 0 a switch off) related to the decision 

variables 𝑈𝐹DC and 𝑈𝐹PV, while the water supply temperature, instead, is derived from 

the energy demand prediction 𝑄̇(𝑘) . More details about the MPC formulation are 

reported in Paper 8, where also parts of the algorithm in provided.  

Passing to analysis of the results, all the cooling season is taken into account (from June 

to September) as for the case analyzed in the previous sub-section. Table 5.2 reports the 

seasonal energy performance and cost when the rule-based control is used to cover the 

building cooling demand managing the multi energy systems. Since the control involves 

the sequential use of the MES (first DC, then PV and finally G, Figure 5.11), a good use 

of the available resources (DC and PV) can be noted observing the values shown in 
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Table 5.2. In fact, 46% of the total cooling demand is covered by the DC, while the 

remaining 54% is provided by the HP. In particular, 64% of the HP electricity demand 

is satisfied by PV generation, while the rest supplied by the power grid (G).  

 
Table 5.2. Energy and cost performance with the RBC for the whole cooling season. 

Quantity Value 

Total cooling demand (kWh) 4263 

Cooling demand covered by DC (kWh) 1944 

Cooling demand covered by HP (kWh) 2319 

Total electricity demand (kWh) 665 

Electricity demand covered by PV (kWh) 426 

Electricity demand covered by G (kWh) 239 

Total energy cost (EUR) 116 

Total primary energy consumption (kWh) 1977 

 

However, in this case (i.e., RBC) the choice of a specific energy source to cover the 

thermal demand of the building depends exclusively on the instantaneous demand and 

on the cooling system configuration. Moreover, no exploitation of the energy flexibility 

of the building is allowed, since a simple thermostat is used as control system (i.e., the 

RBC). Instead, when the MPC is implemented, the control logic acts to manage the MES 

to maximize the energy performance of the building based on an objective function, 

regardless of the position of each source in the cooling system and exploiting the energy 

flexibility provided by the TCLs as additional resource.  

In particular, when the MPC involves the minimization of the electricity withdrawal 

from the grid (OFG in Equation (27)), a penalty factor is applied only to the source G 

(𝑃𝐹G = 1) while the remaining are not penalized (𝑃𝐹DC = 𝑃𝐹PV = 0). In this way, the 

logic of the control has no preference in privileging the source DC rather PV. Thus, the 

same result in term of objective function (i.e., electricity supplied by the grid 

consumption) could be obtained with different ways of exploitation of the two free 

sources at times when the two availabilities far exceed the demand.   

Focusing on a representative summer week, Figures 5.19 and 5.20 show the uncontrolled 

energy sources exploitation (DC and PV) in meeting the energy demand of the building 

both in case of RBC (Figure 5.19) and MPC operation with a PH of 18 hours (Figure 

5.20). Apparently, there does not seem to be a sensitive difference between the two ways 

of exploitation of the DC and PV sources. In particular, it can be noted that a greater 

exploitation of the DC is obtained with the RBC (80% of the total weekly cold energy 

availability in relation to the 71% in case of the MPC, Figure 5.19(a) and Figure 5.20(a)), 

while the opposite behavior is achieved for the PV use (Figure 5.19(b) and Figure 
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5.20(b)): 52% of the total weekly electricity production is consumed by the heat pump 

in case of MPC operation, while 41% with the RBC.  

 

 
(a) 

 
(b) 

Figure 5.19. Energy sources used to cover the weekly cooling demand of the building compared 

to the availability profiles with RBC: (a) DC and (b) PV. 

 

 
(a) 
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(b) 

Figure 5.20. Energy sources used to cover the weekly cooling demand of the building compared 

to the availability profiles with MPC (OFG, PH of 18 hours): (a) DC and (b) PV. 

 

However, looking at the electricity taken from the power grid, the effectiveness of the 

MPC can be observed. Figure 5.21 compares, in the same week, the use of G source in 

case of RBC and MPC with OFG. The area highlighted represents the time when the 

other energy sources (DC and PV) are available. Thanks to the activation of the energy 

flexibility of TCLs, the MPC acts both reducing the electricity consumption in the period 

in which no other sources are available, by lowering the total cooling demand (and 

maintaining the maximum allowed setpoint, Figure 5.22), and removing the electricity 

peaks that occur during periods of sources availability (Figure 5.21). In the 

representative week, in fact, the electricity consumption passes from 26.4 kWh in case 

of RBC to 10 kWh in case of MPC (reduction of 62%). In particular, to confirm the 

effectiveness of the control, the electricity use in case of DC and PV availability presence 

is reduced by 76% in case of MPC operation (from 7.7 kWh with RBC to 1.9 kWh with 

MPC).  

Looking at Figure 5.22, a good performance of the control in predicting the real-time 

internal air temperature value can also be noted. Comparing the actual value of 𝑇air with 

its prediction in the same timestep, an RMSE of 0.43 °C is calculated for the 

representative week with a maximum overheating temperature of 27.4 °C.  
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Figure 5.21. Electricity from the power grid (G) used to cover the weekly cooling demand of the 

building. Comparison between RBC and MPC (OFG, PH of 18 hours).  

 

 
Figure 5.22. Comparison between actual indoor air temperature (Tair) and its prediction in the 

MPC. MPC with OFG and PH of 18 hours. 

 

Generalizing the considerations made to the entire cooling season, a reduction of 53% 

of the consumption of the electricity from the grid (G) is obtained compared to the RBC. 

In particular, the electricity withdrawal in presence of DC and PV availability is reduced 

by 77% (from 68.7 kWh to 16 kWh). An RMSE of 0.33 °C is obtained, with a maximum 

indoor air temperature of 27.4 °C.  

On the other hand, when the MPC is formulized with OFC, the total energy costs are 

minimized. In this case, a penalty is also assigned to the DC (𝑃𝐹DC = cth,DC, 𝑃𝐹G = 

cel,G , 𝑃𝐹PV = 0) and the use of the heat pump with electricity from PV is encouraged, 

as shown in Figure 5.23. The DC use becomes 22% of the total energy availability, while 

78% of the electricity produced by the PV is consumed by the HP. To avoid the use of 

other energy sources (DC and G), the virtual energy sources represented by the building 

energy flexibility is involved. Indeed, the MPC acts to maintain the highest comfort band 

when there is not PV availability, and to lower temperature only when there is PV 

availability (Figure 5.24, where the highlighted areas represent the periods of PV 
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generation). In this way, the total cooling demand is reduced by 20% compared to the 

RBC operation. The operative RMSE in the week depicted in Figure 5.24 becomes 0.38 

°C, with a maximum temperature reached of 27.6 °C.  

 

 

(a) 

 

(b) 

Figure 5.23. Energy sources use to cover the weekly cooling demand of the building compared 

to the availability profiles with MPC (OFC, PH of 18 hours): (a) DC and (b) PV. 

 

Referring to the use of the sources to meet the weekly cooling demand, the PV 

exploitation increases by 107 % respect to the RBC, while the DC and G sources use 

decreases, respectively, by 66 % and 46 %. The total weekly energy cost is reduced by 

61%. The behavior of the control is confirmed also in case of seasonal evaluation. In 

fact, a cost reduction of 64 % is obtained in reference to the RBC operation with an 

increase of PV use of 102 % (from 426 kWh to 862 kWh). The RMSE lowers to 0.33 °C 

with a maximum overheating temperature of 27.6 °C (Figure 5.24).  
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Figure 5.24. Comparison between actual indoor air temperature (Tair) and its prediction in the 

MPC. MPC with OFC and PH of 18 hours. 

 

Finally, if the MPC acts to minimize the total primary energy consumption, no free 

sources (𝑃𝐹 = 0) are available and a penalty factor is assigned to all the energy sources 

(𝑃𝐹DC = pfDC, 𝑃𝐹G = pfG , 𝑃𝐹PV = pfPV). Figure 5.25 and Figure 5.26 represents the 

sources exploitation (Figure 5.25(a) for the DC and Figure 5.25(b) for PV) and the 

internal temperature 𝑇air in case of MPC operation with OFP, in a representative week. 

Looking at Figure 5.26, it can be noted that in this case the control tends to minimize the 

overall energy demand keeping the indoor air temperature close to the upper temperature 

limit imposed to the optimization problem. The total demand is reduced by 28% 

compared to the baseline, and an operatively RMSE of 0.30 °C is calculated. In this case, 

the maximum temperature reached is 27.7 °C. 

A weekly primary energy consumption reduction of about 34% is obtained compared to 

the RBC and a reduction of the same order of magnitude also occurs in case of seasonal 

evaluation (30%, from 1977 kWh in case of RBC to 1386 kWh in case of MPC with OFP 

and a PH of 18 hours). The RMSE becomes 0.25 °C and a maximum temperature of 27.8 

°C is reached.  

 

 

(a) 
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(b) 

Figure 5.25. Energy sources used to cover the weekly cooling demand of the building compared 

to the availability profiles with MPC (OFP, PH of 18 hours): (a) DC and (b) PV. 

 

 
Figure 5.26. Comparison between actual indoor air temperature (Tair) and its prediction in the 

MPC. MPC with OFP and PH of 18 hours. 

 

Comparing all the discussed cases in the whole cooling season, the different use of the 

available energy sources by the MPC, according to the tested objective functions (OFG, 

OFC and OFP), can be evaluated. In Figure 5.27, the shares of sources exploitation to 

meet the total seasonal demand are provided in comparison with the RBC operation 

(Figure 5.27(a)). The seasonal simulations confirm the trends observed during the 

reference week for the various controls.  

As expected, in fact, due to the system configuration (Figure 5.11), the highest 

consumption of cooling from DC is realized by the RBC (46% of the cooling demand). 

A small reduction of 8 % in the DC use is obtained with the MPC operating with OFG 

(42% of the cooling demand, Figure 5.27(b)), while in case of OFC and OFP the total 

demand share covered falls by 75% and 60% (Figures 5.27(c) and (d)). As concerns the 

use of HP with PV, in all the tested controls there is an increase in the exploitation of the 

resource. In particular, the highest use is obtained with OFC (the share of total demand 
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covered by the PV increases from 35 % to 78 %, with an increase of 122 %; Figures 

5.27(a) and (c)), while increases of smaller amplitudes are obtained with OFG (increase 

of 41 % respect to RBC, Figure 27(b)) and OFP (increase of 81% respect to RBC, Figure 

5.27(d)). To confirm the effectiveness of the control, the lowest share of demand covered 

by the grid is realized with OFG: the demand share decreases by 54 % respect to RBC, 

while in case of OFC and OFP the reduction become 43 % and 4 % respectively.  

  
(a) (b) 

  
(c) (d) 

Figure 5.27. Seasonal thermal demand satisfaction divided by energy sources: (a) RBC, (b) MPC 

with OFG, (c) MPC with OFC and (d) MPC with OFP. Results obtained with a PH of 18 hours. 

 

In all the tested MPCs (i.e., OFG, OFC and OFP), results show a large exploitation of the 

energy flexibility provided by the TCLs. In particular, for OFC and OFP, the 

minimization of the cooling demand (maintaining the temperature as high as possible) 

is evaluated by the control as the better strategy to achieve the objective. Instead, in case 

of OFG, the dynamic variation of the indoor temperature is realized by the control 
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lowering the setpoint in moments with high availability of free sources (DC and PV) and 

minimizing the demand at other times. Figure 5.28 summarizes the results discussed so 

far, allowing a faster comparison between the ways to exploit the available energy 

sources (Figure 5.28(a)) when the different objective functions are pursued. Compared 

to the RBC operation, where there is no logic able to choose the use of one source rather 

than another, the MPC formulated to manage the MES shows good operational 

performance in terms of optimized management of resources, according to the OFs. 

Results show that the highest percentage reduction in the desired optimized quantities is 

obtained with each specific OF implementation, confirming the successful management 

of the available energy sources (Figure 5.28(b)). 

 

 
(a) 

 
(b) 

Figure 5.28. Comparison between OFG, OFC and OFP in the MPC for the whole cooling season 

(PH of 18 hours) in terms of percentage variation, compared to RBC, of: (a) thermal demand 

composition and (b) seasonal values of the three optimized quantities percentage reduction. 

 

To conclude, as showed by the results, the predictive control formulized with the RC-

network building model allow to manage the exploitation of the energy sources 

according to the formulated objective function in the optimization problem: the control 

acts to maximize the use of free and of energy flexibility to avoid the use of penalized 
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sources. Moreover, results show good operational performance of the control in terms 

of seasonal optimized quantities, according to the defined OFs and the exploitation of 

the energy flexibility of TCLs is fundamental to allow the controller to apply the optimal 

control actions.  

 

5.3 Comparison between data-driven and physical based 

approaches in an operative MPC 
 
Assuming that both control formations (ANN-MPC and RC-network-MPC) show they 

are able to exploit TCLs flexibility as an additional energy source, a reversal of 

performance between the two models can be found when the evaluation is carried out 

for the application in a realistic MPC controller. Indeed, while the ANN has showed 

grater performances in replicating training data than the RC-network, in the operative 

scenario the behaviors appear the opposite. The main reason is related to the difficulty 

in selecting the proper dataset for the ANN training. In fact, the model must not only be 

able to replicate the response of the building in the same input conditions (and this is 

done well in the present studies), but must also predict the system response in different 

scenarios, taking into account the contribution given by energy flexibility derived by 

thermostatically controlled loads. When the latter is introduced, it becomes difficult to 

identify a dataset that can train the black box model adequately, since the problem 

becomes dynamically affected by the operation of the system. Therefore, as also 

summarized in Paper 9, specifically three different issues can be found for an ANN 

dedicated to the aforementioned purpose:  

(i) Difficulty in the training of the ANN. 

(ii) Errors in the prediction of the thermal demand. 

(iii) Difficulty in managing energy flexibility with the MPC used in the real buildings. 

When referring to point (ii), it is not meant that there is a certain deviation between the 

results of the ANN and the training dataset. This deviation, in fact, could be opportunely 

reduced by modifying the architecture of the ANN or by changing the training 

parameters. Instead, it is mean that the prediction capability of the ANN could result in 

amplified deviations when new situations (combinations of outdoor and indoor variables 

for the building) are provided to the network. This issue cannot be solved easily and 

requires a careful evaluation of the performance of the MPC when integrated in the real 

building. In extreme cases, the ANN should be trained again (perhaps with a 

reinforcement learning approach) with new data that consider behaviors of the building 

that the network fails to predict correctly. The same considerations can be applied also 

for the third issues (iii), i.e. the difficulty in managing energy flexibility with the MPC 
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used in the real buildings. In fact, the possibility given to the optimizer to work in a 

larger comfort band could result in an MPC that tends to operate often near the 

boundaries of the defined comfort band. As a consequence, the thermal comfort quality 

in the building could be significantly worsened respect to the reference case, and in some 

scenarios this could not be acceptable. In the same fashion of the second issue (i.e., errors 

in the prediction of the thermal demand) there is no simple solution for this problem, 

which is likely dependent on the fact that a black box model, having no information on 

the thermo-physics of the building as well as no details on the behavior of the occupants, 

struggles to simulate energy flexibility properly. As indicated, reinforcement learning 

could represent a valid technique to bypass the problem. 

Passing to the white box approach, the flexibility contribution seems to be better 

represented by model based on the RC network. When using a white box model however, 

a relevant amount of detailed data relating to the design and construction characteristics 

of the building should be known in order to implement an accurate model. Moreover, it 

is not always obvious choosing the best network structure to use in the physical-based 

approach. For very complex buildings, it may be exceedingly difficult to identify an 

appropriate model and the corresponding parameters, even if a detailed knowledge of 

the building is available. Another aspect that should be considered when using a purely 

physical-based model is that some dynamics (e.g., occupancy) cannot be considered in 

any way, unless dedicated models are not added. When, instead, measured data are used 

for the model training, such information may be intrinsically provided to the model. For 

these reasons, it could be convenient monitoring data and using hybrid models. 

To conclude, Table 5.3 reports a comparison summary between the two building model 

approaches, subdivided into the main steps of configuration and implementation in an 

MPC.  
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Table 5.3. Comparison summary between a physical-based and a data-driven approach in an 

operative MPC (in Paper 6). 
Step Physical-based approach Data-driven approach 

Preparation of the 

building model 

▪ No measured data are 

required. 

▪ An accurate knowledge of 

the geometrical and thermal 

characteristics of the 

building is needed. 

▪ Measured data are required. 

▪ The knowledge of the 

geometrical and thermal 

characteristics of the 

building is not needed. 

Identification of the 

model configuration 

▪ Difficulty in selecting the 

proper RC network and the 

numerical values of the 

parameters for complex 

buildings. 

▪ Necessity to provide an 

accurate occupancy model 

if this aspect needs to be 

considered. 

▪ There is no systematic 

procedure to choose the best 

network architecture, and 

the optimal number of 

neurons is the result of a 

trial-and-error process. 

▪ Difficulty in selecting 

proper input and output 

quantities when representing 

energy flexibility. 

Model development 
Linear model that can be represented 

with a state-space formulation 

Nonlinear model, one hidden layer of 

neurons is generally sufficient 

Comparison with 

the reference 

building 

Good ability to replicate the reference 

case behavior at the same inputs 

Good ability to replicate the reference 

case behavior at the same inputs 

Implementation in 

an MPC 

▪ Improved performance in 

terms of objective functions 

compared to the reference 

operation. 

▪ Good ability to represent 

flexibility and follow 

thermal dynamics, with 

occasional comfort 

constraint violations 

▪ An amplification of the 

prediction error however 

occurs when real 

implementation is tested 

▪ Improved performance in 

terms of objective functions 

compared to the reference 

operation. 

▪ Relevant errors in demand 

prediction when energy 

flexibility is managed. 

▪ Comfort constraint 

violations can occur during 

real implementation. 

▪ An amplification of the 

prediction error occurs when 

real implementation is 

tested. 
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Chapter 6  

 
Operational energy flexibility evaluation: 

focus on the residential space cooling sector 

 
In this Chapter a comparison between the design and the operative energy flexibility 

evaluation is provided with a focus on the space cooling (SC) sector. The attention on 

the space cooling is motivated by the fact that it is one of the sectors whose energy 

demand is constantly growing. Indeed, the IEA in a recent report estimates that space 

cooling is the fastest growing end energy use in buildings, having increased by 3.3% a 

year since 2010 [113]. In this context, the investigation of the energy flexibility 

performance that can be obtained by the demand management of the residential cooling 

systems, can have a paramount role to limit grid instability and reduce overall demand.  

About that, the objective of this Chapter is to evaluate the role of the different residential 

space cooling technologies in obtaining different level of flexibility resources. A 

preliminary evaluation is presented in Paper 10 where the methodology to quantify the 

energy flexibility performance (i.e., FPI) discussed in Chapter 3 is applied to a building 

with different cooling systems (sub-section 6.1). Moreover, in the sub-section 6.2, the 

flexibility evaluation of the different residential space cooling technologies is moved on 

operative scenario.  

 

6.1 Case studies and design flexibility evaluation 
 
In order to make the analysis independent of the thermal characteristics of the building 

envelope, the same building model is used to test different space cooling technologies. 

In particular, the building is modelled in TRNSYS with thermal properties derived from 

the Italian regulation D.M. 26 June 2015 [70], since it is representative of a consistent 

share of the building stock where modern cooling systems can be integrated. A single 

building with four apartments of 100 m2 of living area is modelled (i.e., four thermal 

zones, schematic of the planimetry with the different cooling system in Figure 6.1). In 

particular, Table 6.1 reports the value of the building envelope surfaces facing outwards, 

in accordance with [70].  
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Table 6.1. U-value (W m-2 K-1) implemented in Paper 10. 

External walls Floor Roof Windows 

0.36 0.36 0.28 2.10 

 

As concern the space cooling technologies, four different systems, whose distribution 

systems have different thermal inertia levels, are taken into account. They are sized on 

the basis of the peak cooling demand [69] of the building. In Rome, Italy (41°55’ N, 

12°31’ E) where the building is located, the cooling peak load, with the outside design 

condition suggested by Italian standard UNI 10349-2 [66] (0 °C) and an internal 

temperature of 25°C with 60% RH is about 5.7 kW, of which 4.5 kW sensible and 1.2 

kW latent. In particular, the modelled cooling systems are:  

(i) Split system (S). It is composed of an air source heat pump with direct expansion 

split system. In this system, the indoor air cooling is realized by direct contact with 

the evaporator in which the refrigerant flows. The split system allows only a 

punctual control of the indoor temperature. Moreover, it is the system with lower 

thermal inertia. However, it is introduced for its large diffusion due to its 

inexpensiveness and installation easiness (Figure 6.1). 

(ii) Fan coil units (FCU). It is composed of an air to water heat pump with fan coil units 

as emission system. As for the split system, only the indoor temperature is 

controlled, and a punctual control of the relative humidity is not possible. Although 

characterized by a low thermal inertia as split systems, the presence of a water loop 

allows the addition of a thermal energy storage (i.e., a cold-water tank), with 

consequent increase in thermal inertia. In this case a 200 liters cold water tank is 

added in order to model a medium thermal inertia cooling system (Figure 6.1). 

(iii) Radiant ceiling panels system (CP). It is composed of an air source heat pump 

coupled with ceiling panels. In this case also an air dehumidifier (DH) is added to 

the system to treat the latent contribution. Therefore, both the internal temperature 

and relative humidity can be controlled. The chilled ceiling is composed of pipes set 

on panels in the first internal layer of the roof, for this reason it is considered a 

medium thermal inertia system if compared with radiant cooling concrete ceiling 

(Figure 6.1). 

(iv) Radiant cooling concrete ceiling (CC). It is composed of an air source heat pump 

with radiant cooling concrete ceiling. It is modelled as a massive layer in the ceiling 

stratigraphy. Even in this case the treatment of latent heat is entrusted to an internal 

air dehumidifier (DH). This emission system has the highest thermal inertia, since 

the pipes are embedded in a concrete layer of 0.1 m (Figure 6.1).  

A separate discussion must be made on generation systems. Indeed, in case of the 

analysis showed in Paper 10, all the cooling systems are modelled in TRNSYS with 



106 

 

Type 954 for the air source heat pump and Type 941 for the air to water heat pump. Both 

the Types have a ON/OFF regulation. In the operative evaluation, discussed in the 

following sub-section (sub-section 6.2), this approximation is outdated by modelling all 

the systems in Python [114]. In this environment a commercial variable load heat pump 

is modelled [65] for fan coil units, ceiling panels system and radiant cooling concrete 

ceiling, while for the split ON/OFF system has always been modeled .  

 

 
Figure 6.1 Schematics of the cooling systems in the considered building. 

 

According to the methodology illustrated in Chapter 3, the FPI (Equation (3)) is 

calculated for the presented cooling systems. Since the models are located in Rome, the 

demand response representative summer day is August 18 and the DR starting time is 

12.00 pm, when frequently the Italian electric demand has a peak in summer weekdays 

(sub-section 3.1.1). Table 6.2 summarizes the flexibility parameters and the FPI 

calculation for all the cooling systems. As for the case studies discussed in sub-sections 

3.2.1 and 3.2.3, also in this case, the flexibility classification of the buildings is realized 

with the only FPI (the FPIlim is not formulized, see sub-section 3.2.3).  

 
Table 6.2. Flexibility parameters and labelling in cooling season for case studies considered in 

Paper 10. 

Space cooling system 𝒕𝐫𝐞𝐬
∗  𝑷̇𝐫𝐞𝐬

∗  𝒕𝐫𝐞𝐜
∗  𝛈𝐃𝐑 

Split system 0.07 0.42 0.01 0.76 

Fan coil units with TES 0.08 0.18 0.01 0.78 

Ceiling panels system with dehumidifier 0.07 0.91 0.23 0.19 

Concrete ceiling with dehumidifier 0.05 0.89 0.13 0.18 

 

As showed in Figure 6.2, all of them have low design energy flexibility since the FPI 

remains always between 4.1 and 5.5 (Class C or B).  
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Figure 6.2. Buildings flexibility label for the case studies considered in Paper 10. 

 

Focusing on the split and fan coil unit systems, a very similar behavior can be observed 

between them. The cold-water tank coupled with the fan coil circuit allows to obtain a 

response time 22 minutes longer than the split system. As Figure 6.3 shows, due to the 

cold-water tank discharge, from time 12 hours to 12.7 hours, when the heat pump is off, 

the indoor temperature continues to comply with the initial set-point. However, from the 

electricity consumption point of view, the adoption of a fan coil units with a cold-water 

tank produces less savings in committed power and actual energy use, which negatively 

affect the FPI calculation. 

 

 
Figure 6.3. Inside temperature, comparison between split system and fan coil units with cold-

water tank. 

 

As said before, these space cooling systems do not allow a punctual control of the 

relative humidity, so the phases of the demand response event are determined by the 

indoor temperature only (Figure 6.3). Instead, in CP and CC systems, where an air 

dehumidifier is installed, the response and the recovery period are ruled by both. It can 

be immediately noted that, even if a distribution system with a higher thermal inertial 

(i.e., CP or CC) is adopted, the response time remains rather low (Table 6.1), since the 

relative humidity conditions affect a lot the building behavior. Moreover, the thermal 



108 

 

inertia has an impact on the speed with which the relative humidity increases, and so on 

the comfort limit condition that is reached first. When there is more thermal inertia, 

indeed, the internal temperature tends to rise more slowly, and the relative humidity 

increases faster, as it can be seen in Figure 6.4(b). The CC system provides a higher 

inertia than CP and the relative humidity reaches firstly the limit conditions (i.e., tres is 

30% lower for CC than CP, determining a lower EDR value). However, when the 

response period ends, the indoor temperature in CP system reaches 25.7 °C, while for 

CC about 25 °C. This fact affects the recovery period, which for CP is 2 hours and 12 

minutes higher than for CC.  

 

 

(a) 

 
(b) 

Figure 6.4. Comparison between ceiling panels and concrete ceiling cooling systems: (a) inside 

temperature and (b) inside relative humidity. 

 

This analysis makes possible to conclude that, for the modelled dwellings in summer 

period there is a low overall design energy flexibility performance. The thermal inertia 

seems to affect positively the response duration only if the control system is just 

temperature-based. If a more accurate control of the comfort condition is possible (both 
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temperature and relative humidity), its influence on the response period is mitigated. 

However, this last case allows to obtain a little improvement in flexibility performance.   

  

6.2 Operative flexibility evaluation 
 
The evaluation provided in sub-section 6.1 is mainly focused on the design phase. 

Indeed, the flexibility performance indicator (sub-section 3.1) is calculated under 

standard boundary conditions (sub-section 3.1.2). On the contrary in this sub-section an 

operative evaluation is presented. In particular, the same case studies presented in above 

are modelled in Python with white box RC-network models.  

A building with the same thermal properties (Table 6.1) is modelled as single-family 

houses (all the envelope surfaces are facing outward) for all the investigated space 

cooling technologies. The detailed RC-network is represented in Figure 6.5. It is 

composed of 10 thermal resistances and 7 thermal capacitances [115].  

 

 
Figure 6.5. 10R7C network building model. 

 

Looking at Figures 6.5 it can be noted that each opaque surface of the building envelope 

is modelled with two capacitances (thermal nodes) and three thermal resistances [116].  
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In particular, the two thermal capacities represent all the layers of the surface in the 

positions preceding and following the thermal insulation. Consequently, the two 

temperatures are the surface temperatures of the insulation layer.  

Assuming one-dimensional heat transfer, the system dynamics can be described as a 

classic linear state-space model (Equation (11)). As can be noted in Figure 6.5, the 

contribution of the cooling system (𝑄̇SC) is not shown since the way it is supplied 

depends on the specific space cooling technology. Indeed, when the cooling system is 

composed of an air distribution system (e.g. split systems and fan coil units), 𝑄̇SC is 

directly removed from the internal air node temperature (𝑇air ). Instead, in case of 

addition of a thermal energy storage to the fan coil circuit, the thermal power that is 

supplied to the internal air thermal node (𝑄̇building) is decoupled from that produced by 

the cooling system (𝑄̇SC). Their link is formalized in the thermal energy storage (TES) 

model:  

 

CTES ∙
d𝑇TES 

dt
= 𝑄̇SC + 𝑄̇building + Kl(𝑇env − 𝑇TES) Eq. (31) 

 

Where the TES is assumed to be a perfectly mixed water tank. Its storage capability is 

modelled with a thermal capacitance (CTES) and with a node temperature (𝑇TES). The 

thermal losses with the environment temperature ( 𝑇env ) are modelled with a loss 

coefficient factor (Kl).  

In case of ceiling cooling systems (ceiling panels and cooling concrete ceiling), 𝑄̇SC is 

removed from the inner roof thermal node. For high massive system (CC) this node 

coincides with the node 𝑇ri in Figure 6.5, while for the ceiling panels (CP) system a 

further thermal node for the ceiling is distinguished (𝑇ri,cp, which stands for the position 

immediately after the internal plaster). As described in sub-section 6.1, in these last two 

space cooling systems, also the humidity control is enabled. With reference to the 

effective capacitance humidity model [63], the moisture balance is carried out in parallel 

with the sensible energy balance calculation. For the air node it is expressed as:  

 

Mair 

d𝑥air

dt
=  ṁvent(𝑥amb − 𝑥air) +

𝑄̇DH

hv
 Eq. (32) 

 

where Mair and 𝑥air are the mass and the absolute humidity of the internal air, ṁvent 

and 𝑥amb are the natural ventilation flowrate and its absolute humidity, 𝑄̇DH  is the 

latent contribution of the dehumidifier systems and hv is the heat of evaporation of 

water (by approximation assumed constant in the balance).  
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To provide an operative flexibility evaluation, the capability of a space cooling system 

to respond to a programmed load variation is evaluated by simulating different demand 

response (DR) events and comparing them with a reference case (baseline, BL). The 

baseline represents the demand curve of each cooling system to maintain the comfort 

conditions. It is computed as the solution of a optimization problem that has the objective 

of minimizing the thermal requirement of the building:  

 

minimize ( ∑  𝑄̇SC(𝑘) ∙ ∆k

kend

kstart 

) Eq. (33)  

 

Here, the thermal power of the cooling system (𝑄̇SC) is the decision variable of the 

optimization problem and it is limited at each timestep (∆𝑘) by the maximum power of 

the generating system. However, a distinction has to be made between the optimization 

problem solved for the split system (i.e., ON/OFF regulation) and the other cooling 

systems (i.e., FCU, CP and CC equipped with a variable load heat pump). Instead, if for 

the FCU, CP and CC systems a typical linear programming (LP) optimization problem 

is formulized, for the split a MILP (mixed-integer linear programming) is introduced to 

reproduce the ON/OFF regulation. In this case, the optimization problem formulized in 

Equation (33) can be rewritten as:  

 

minimize ( ∑  Q̇max ∙ 𝐶𝑇𝑅𝐿S(𝑘) ∙ ∆k

kend

kstart 

) Eq. (34)  

 

where 𝐶𝑇𝑅𝐿S is the Boolean decision variable for the split system.    

For all the SC systems, the comfort constraints on the air temperature node must be 

satisfied. They are modelled with a setpoint temperature (𝑇sp) and an allowed comfort 

band defined with a ∆Tmax and a ∆Tmin: 

 

∀ 𝑘       (𝑇sp − ∆Tmin) ≤ 𝑇air(𝑘) ≤ (𝑇sp + ∆Tmax) Eq. (35) 

 

Moreover, if the cooling system is able to control also the internal humidity, the same 

condition expressed in Equation (35), can be written for the relative humidity (𝑅𝐻):  

 

∀ 𝑘   (𝑅𝐻sp − ∆RHmin) ≤  𝑅𝐻(𝑘) ≤ (𝑅𝐻sp + ∆RHmax) Eq. (36) 
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The constraint formulated in Equation (36), is actually mathematically expressed in 

terms of absolute humidity (x). Therefore, the effective constraint is:  

 

∀ 𝑘   xmin ≤  𝑥air(𝑘) ≤ xmax  Eq. (37) 

 

With xmin and xmax calculated as the absolute humidity at allowed upper comfort limit 

for the temperature (𝑇sp + ∆Tmax) and respectively the lower (𝑅𝐻sp − ∆RHmin) and 

the upper (𝑅𝐻sp + ∆RHmax) comfort limit for the relative humidity.   

When the cooling power is not directly provided to the internal air node (𝑇air) (e.g., for 

fan coil units coupled with TES, ceiling panels or cooling concrete ceiling systems), a 

constraint on the temperature of the thermal mass (TMD) of the specific distribution 

system node is required:  

 

∀ 𝑘       TTMD,min ≤ 𝑇TMD(𝑘) ≤ TTMD,max Eq. (38) 

 

In particular, 𝑇TMD coincides with 𝑇TES for the cooling system composed of fan coil 

units and TES, 𝑇ri,cp for radiant ceiling panels and 𝑇ri  for radiant cooling concrete 

ceiling system.   

A demand response event based on a peak shaving strategy is defined. It is modeled by 

imposing at a certain time kstart,DR  and for a period ∆kDR a variation of the electrical 

power peak of the baseline, according to a reduction factor (fPSS). 

 

For kstart,DR ≤ 𝑘 ≤ kend,DR      𝑃̇DR = fPSS ∙ 𝑃̇max,BL Eq. (39) 

 

With:  kend,DR = kstart,DR + ∆kDR 

In order to provide an operative evaluation, the effect of different demand response 

events is tested by varying the characteristics of the event (i.e.,  fPSS or ∆kDR ) and 

observing the response of the analyzed cooling systems. 

This condition is modelled as an additional constraint for the optimization problem:  

 

∀ 𝑘    𝑃̇SC(𝑘) ≤ 𝑃̇DR(𝑘) 

  
Eq. (40) 

where 𝑃̇SC is the electrical absorption of the individual cooling systems.  

To ensure a certain level of flexibility to all the space cooling technologies, the 

exploitation of the energy flexibility provided by thermostatic controlled loads (TCLs) 

is used when the demand response event is applied. It is activated by allowing the air 

node temperature (𝑇air) to drop down to a higher ∆Tmin or to rise to a higher ∆Tmax. 
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The exploitation of the temperature range [𝑇sp − ∆Tmin; 𝑇sp] is always granted, while 

the upper interval (𝑇sp; [𝑇sp + ∆Tmax]) is allowed only during the event (∆kDR). If also 

the humidity can be controlled by the cooling system, a ∆RHmax and a ∆RHmin are 

introduced with the same logic.  

To quantify the ability of each system to be energy flexible, different quantities are used: 

▪ The energy shifted during the demand response event:  

 

Eshift = EBL − EDR = ∫ (𝑃̇BL − 𝑃̇DR

kend,DR

kstart,DR

)dk Eq. (41) 

 

This is a characteristic of the modeled event as it depends on the duration of the 

event (∆kDR) and peak shaving reduction factor (fPSS). 

▪ The use of the energy flexibility of the thermal mass of the distribution system 

(TMD):  

𝐹𝑙𝑒𝑥TMD =
𝑇TMD,DR − 𝑇TMD,BL

𝑇TMD,BL
 Eq. (42) 

 

This quantity can be calculated only in cases in which the cooling power produced 

by the generation system is removed to a thermal node (𝑇TMD) different from the 

internal air node (𝑇air). The strategy that can be implemented is the pre-cooling of 

this thermal mass in the hours preceding the event. To estimate this exploitation, the 

quantity 𝐹𝑙𝑒𝑥TMD (in percentage) is calculated. It represents the temporal variation 

between the demand response and the baseline scenario of the distribution system 

temperature mass (𝑇TMD), referred to the baseline. 

▪ The use of the energy flexibility of thermostatically controlled loads:  

 

𝐹𝑙𝑒𝑥TCL =
𝑇air,DR − 𝑇air,BL

𝑇air,BL
 Eq. (43) 

 

Again, the strategies that can be implemented are the pre-cooling of the internal air 

in the hours preceding the event and the raising of the temperature during the event 

(∆kDR) . To estimate this exploitation, the quantity 𝐹𝑙𝑒𝑥TCL (in percentage) is 

calculated. It represents the temporal variation between the demand response and  

the baseline scenario of the temperature of the internal air thermal node (𝑇air), 

referred to the air temperature of the baseline.  

If a humidity control is possible for the cooling system, the same quantity can be 

calculated for the relative humidity (RH): 
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𝐹𝑙𝑒𝑥RH =
𝑅𝐻DR − 𝑅𝐻BL

𝑅𝐻DR
 Eq. (44) 

 

Furthermore, the pre-cooling time interval (∆kprc) is calculated as the time (before 

the DR event) in which the air temperature in demand response scenario is lower 

than in the baseline.   

▪ The payback loads in the electricity power curve. This effect can derive both from 

the use of flexibility from thermostatically controlled loads (TCLs) and from the 

exploitation of the thermal inertia of the system. It can be detected by the observation 

of the 𝑃̇shift
∗  curve (Ṗrated  represents the rated electricity power of the specific 

space cooling technology): 

 

𝑃̇shift
∗ =

𝑃̇DR − 𝑃̇BL

Ṗrated

 

  

Eq. (45) 

and quantified by means of the energy consumption variation (in percentage terms) 

in the time before and after the demand response event: 

 

Eshift,bDR =
EDR − EBL

EBL
=

∫ (𝑃̇DR − 𝑃̇BL
kstrat,DR

kstrat
)dk

∫ 𝑃̇BL
kstrat,DR

kstrat
dk

 Eq. (46) 

 

Eshift,aDR =
EDR − EBL

EBL
=

∫ (𝑃̇DR − 𝑃̇BL
kend

kend,DR
)dk

∫ 𝑃̇BL
kend

kend.DR
dk

 

 

Eq. (47) 

As mentioned, to model the cooling generation systems, a commercial variable load heat 

pump (HP) is selected (Vitocal B04/A04) [71] for the FCU, CC and CP models. For fan 

coil model, the performances are evaluated with a supply temperature of 7 °C while for 

the radiant distribution systems (CC and CP) it is fixed to 18 °C. For the split system, 

instead, an ON/OFF air-to-air heat pump is used and in particular, the full load 

performance of [71] with a flow temperature of 7 ° C. As concern the air dehumidifier 

(DH) equipped with CP and CC systems, its characteristics are selected with references 

to commercial dehumidified to be combined with radiant systems [117]. In particular, 

the IN+300 model is chosen. It has a dehumidification capacity of 20.8 l day-1 with an 

electricity absorption of 320 W. 
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Passing to the results, a summer representative day is selected to analyze the systems 

operation. It is chosen as in accordance with the data reported in the standard UNI 10349-

1: 2016 [118]. In particular the day in which the average daily outdoor air temperature 

is closer to the value reported in the standard is taken (21 July).  

As mentioned, different demand response events are tested for each cooling system to 

obtain an as complete as possible characterization of the load-shifting capability of the 

technology, the parameters that characterize DR event (kstart,DR, ∆kDR, fPSS, ∆Tmin, 

∆Tmax, ∆RHmin and ∆RHmax) are varied in the analysis.  

Starting from the split system, it can be noted that, with an ON/OFF regulation, the 

temperature of the air node (𝑇air) cannot be maintained at the constant value of the set-

point (𝑇sp equal to 26 °C) but it oscillates within the band allowed by the thermostat 

(Figure 6.6(a)). In Figure 6.6(b) is showed the thermal and electric power consumption 

of the heat pump in case of baseline operation.  

 
(a) 

 
(b) 

Figure 6.6. Daily (21 July) baseline operation for split system with ON/OFF regulation: (a) 

internal air node temperature and (b) thermal and electrical heat pump power. 
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Since no modulation of the heat pump can be exploited, only a demand response event 

with a reduction factor (fPSS) equal to zero can be tested. It is not possible the realization 

of demand response events located at the peak (kstart,DR equal to kpeak,BL) and lasting 

longer than a timestep (∆kDR of 6 minutes) with ∆Tmax equal to 0 °C. Accordingly, a 

higher comfort limit must be guaranteed during the event. In Figure 6.7 it is represented 

the behavior of the split system in term of air temperature (Figure 6.7(a)) and thermal 

and electrical power (Figure 6.7(b)) when an event of 1 hour is tested with a ∆Tmax of 

0.5 °C.  

 
(a) 

 
(b) 

Figure 6.7. Daily (21 July) DR (fPSS equal to 0, ∆Tmin equal to 2 °C, ∆Tmax equal to 0.5 °C and 

kstart,DR equal to kpeak,BL) operation for split system with ON/OFF regulation: (a) internal air node 

temperature e (b) thermal and electrical heat pump power. 

 

As can be seen by comparing Figure 6.6(a) with Figure 6.7(a), the realization of the 

event requires a large activation of the energy flexibility from thermostatically controlled 

loads. Indeed, the calculated pre-cooling time interval (∆kprc) is about 8.7 hours and for 

all the duration of the event (area highlighted in gray in Figure 6.7(a)) all the upper 
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comfort band (∆Tmax) is exploited. Given the cycling of the system, it is difficult to 

graphically appreciate the presence of payback loads [119] by the observation of the 

power curve (Figure 6.7(b) and Figure 6.6(b)). However, a + 27% of Eshift,bDR  is 

calculated.  

The DR parameters that can be varied in case of split system are ∆Tmin, ∆Tmax, ∆kDR and 

kstart,DR. Table 6.3 reports the flexibility evaluation quantities for different demand 

response events and in Figure 6.8 the curves of 𝐹𝑙𝑒𝑥TCL and 𝑃̇shift
∗  are showed. As can 

be noted, results are reported for a fixed value of ∆Tmin (equal to 2 °C) as lower values 

are not feasible in the optimization problem. The split system appears rather inflexible 

in producing load variations. Even by activating the energy flexibility from TCLs, the 

peak cannot be zero neither for an hour nor for less (Table 6.3) with a ∆Tmax equal to 0 

°C. On the contrary, allowing ∆Tmax higher than 0 °C, the DR event can be realized with 

rather long times of pre-cooling of the air temperature. However, looking at the Figure 

6.8, the advance planning of an action strategy by a potential supervisor (aggregator) 

would appear rather difficult.  

 
Table 6.3. Flexibility evaluation quantities as the DR parameters varies (fixed fPSS equal to 0, 

∆Tsp,min equal to 2 °C and  kstart,DR  equal to kpeak,BL). Split system with ON/OFF regulation.    

∆kDR 

(hours) 

∆Tsp,max 

(°C)  
Optimization 

Eshift 

(Wh) 

∆𝐤𝐩𝐫𝐜 

(hours)  

Eshift,bDR 

(%) 

Eshift,aDR 

(%) 

1.0 0.0 infeasible - - - - 

1.0 0.5 feasible 871 8.7 + 27.2 -15.2  

1.0 1.0 feasible 871 3.5 +1.6 +19.4 

0.3  0.0 infeasible - - - - 

0.3 0.5 feasible 261 7.7 +16.0 - 

0.3 1.0 feasible 261 2.7 + 1.5 - 

 

 

(a) 
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(b) 

Figure 6.8. Flexibility evaluation curves for split system with ON/OFF regulation (fPSS equal to 

0, ∆kDR equal to 1 hour, kstart,DR equal to kpeak,BL and ∆Tmin equal to 2 °C): (a) FlexTCL and (b) 

𝑃̇shift
∗ . 

 

Introducing a fan coil unit system coupled with a variable-load heat pump, different 

electricity peak reduction can be obtained allowing a certain margin of flexibility to the 

indoor air temperature (𝑇air). In Figure 6.9(a) a DR event in which a halving of the 

electricity peak (fPSS equal to 0.5) is applied for 1 hour ( ∆kDR) is shown in comparison 

with the baseline. Looking at dotted black curve in Figure 6.9(a) in comparison to Figure 

6.6(a), it can be noted a different behavior in terms of 𝑇air during the baseline. The 

adoption of a variable load heat pump allows to provide to the building the minimum 

cooling power to maintain the comfort setpoint temperature of 26 °C.  

In in Figure 6.9(a) the flexibility range allows a ∆Tmin of 1 °C and a ∆Tmax of 0.5 °C. 

In absence of thermal inertia, the flexibility provided by thermostatically controlled 

loads is realized by means of a precooling of about 3.3 hours and of a temperature rising 

of 0.5 °C during the event. Clearly, the extent of this exploitation of flexibility depends 

on the possible setpoint band granted. If indeed it is admitted a ∆Tmax equal to 1 °C, no 

precooling is required while if ∆Tmin is 2 °C with a ∆Tmax of 0.5 °C the precooling 

becomes only 1.5 hours long.  
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(a) 

 
(b) 

Figure 6.9. Daily (21 July) comparison between BL and DR event (fPSS equal to 0.5, ∆kDR equal 

to 1 hour, ∆Tmax equal to 0.5 °C and kstart,DR equal to kpeak,BL) for fan coil unit system: (a) internal 

air node temperature and (b) thermal and electrical heat pump power. 

 

However, it is important to note that when there is no thermal inertia, the possible 

variation in demand, produced by exploiting the thermostatically load controls, is 

limited. Indeed, the demand response event shown in Figure 6.9 is not possible (not 

feasible optimization problem) with a ∆Tmax of 0 °C. On the contrary, if the TES (i.e., 

cold water tank) is added to the water circuit of the fan coil, its thermal inertia allows to 

realize different types of demand response events even without setpoint temperature 

modifications. In Figure 6.10 it is shown the same peak reduction of Figure 6.9 realized 

in the fan coil system when a cold-water tank of 200 liters (as for the case discussed in 

sub-section 6.1) is added (∆Tmax of 0 °C). In this case the air node temperature is 

maintained at the constant value of 26 °C and the cooling power stored in the TES is 

used during the DR event, leaving unaltered the amount of heat removed into the 

environment (black line in Figure 6.10(b)). However, with a such a relatively small tank 

(i.e., 200 liters) an anticipated peak power occurs (blue curve in Figure 6.10(b)) to cool 

the water in the tank. Introducing a larger tank, for example of 750 liters, as suggested 
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by commercial catalogue [120], the behavior is corrected and no payback loads emerge 

(Figure 6.11).  

 

 
(a) 

 
(b) 

Figure 6.10. Daily (21 July) comparison between BL and DR event event (fPSS equal to 0.5, ∆kDR 

equal to 1 hour, ∆Tmax equal to 0 °C and kstart,DR equal to kpeak,BL) for fan coil unit system with a 

cold-water tank of 200 liters (i.e., TES): (a) TES thermal node and (b) thermal and electrical heat 

pump power. 
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(a) 

 
(b) 

Figure 6.11. Daily (21 July) comparison between BL and DR event (fPSS equal to 0.5, ∆kDR equal 

to 1 hour, ∆Tmax equal to 0 °C and kstart,DR equal to kpeak,BL) for fan coil unit system with a cold-

water tank of 750 liters (i.e., TES): (a) TES thermal node and (b) thermal and electrical heat pump 

power. 

 

However, unlike the split system, the fan coil (without the addition of a TES) allows the 

realization of a larger number of peak reductions. Starting from the analysis of an event 

at kpeak,BL  and lasting 1 hour (∆kDR), Table 6.4 summarizes the calculation of the 

flexibility quantities for different reduction factors (fPSS), ∆Tmax and ∆Tmin. Since the 

distribution system does not have any thermal storage capacity, the events can only be 

realized thanks to the flexibility of thermostatically controlled loads. As mentioned, the 

peak annulment (fPSS  equal to 0) can not be obtained with ∆Tmax  equal to 0 °C. 

However, the value of ∆Tmin plays an important role in the success of the event. Indeed, 

if it is equal to 1 °C, not even variation with a fPSS of 0.25 and 0.50 can be produced. 

While in case of ∆Tmin of 2 °C, even if the optimization is not feasible with  ∆kDR 

equal to 1 hour, the maximum time in which the peak can be annulled is 0.98 hours. 

With a ∆Tmin of 1 °C and ∆Tmax equal to 0 °C, only the case of fPSS equal to 0.75 can 
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be realized with a pre-cooling time of 7.6 hours. In all the other peak reductions, the 

flexibility allowed by the management of TCLs allows the realization of the event with 

different pre-cooling times. In particular, the adoption of higher ∆Tmax (1 °C instead of 

0.5 °C) allows to satisfy the peak constrain in ∆kDR without any involvements of the air 

temperature in the hours before the event (Table 6.4). On the other hand, a ∆Tmax of 0.5 

°C enables all the events but, the use of higher ∆Tmin (2 °C instead of 1 °C) allows in 

all cases at least to halve the precooling time (∆kprc). On the contrary, exception made 

for fPSS equal to 0, a ∆Tmin of 2 °C, involves a stronger payback loads in the power 

curve (Eshift,bDR). As example, Figure 6.12 compares in term of 𝐹𝑙𝑒𝑥TCL and 𝑃̇shift
∗  

curves a DR event (fPSS of 0.25) with ∆Tmax equal to 0.5 and a ∆Tmin of 1 and 2 °C.  

 
 

(a)

 
 

(b) 

Figure 6.12. Flexibility evaluation curves for fan coil unit system without TES (fPSS equal to 

0.25, ∆kDR equal to 1 hour, ∆Tmax equal to 0.5 °C and kstart,DR equal to kpeak,BL): (a) FlexTCL and (b) 

𝑃̇shift
∗ . 
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Table 6.4. Flexibility evaluation quantities as the DR parameters varies (fixed ∆kDR equal to 1 

hour and kstart,DR equal to kpeakt,DR) for fan coil unit system.     

𝐟𝐏𝐒𝐒 
∆𝐓𝐦𝐚𝐱 

(°C)  

∆𝐓𝐦𝐢𝐧 

(°C) 
Optimization 

Eshift 

(Wh) 

∆𝐤𝐩𝐫𝐜 

(hours)  

Eshift,bDR 

(%) 

Eshift,aDR 

(%) 

0.00 0.0 1.0 infeasible - - - - 

0.00 0.0 2.0 infeasible - - - - 

0.00 0.5 1.0 feasible 618 13.0 + 57.1 -34.5 

0.00 0.5 2.0 feasible 618 4.9 + 44.7 -33.5 

0.00 1.0 1.0 feasible 618 0 0 +3.9 

0.00 1.0 2.0 feasible 618 0 0 +3.9 

0.25 0.0 1.0 infeasible - - - - 

0.25 0.0 2.0 feasible 463 10.6 + 69.3 -87.3 

0.25 0.5 1.0 feasible 463 7.5 + 13.5 -20.9 

0.25 0.5 2.0 feasible 463 3.1 + 35.2 -20.6 

0.25 1.0 1.0 feasible 463 0 0 +3.3 

0.25 1.0 2.0 feasible 463 0 0 +3.3 

0.50 0.0 1.0 infeasible - - - - 

0.50 0.0 2.0 feasible 308 7.7 + 53.3 -62.9 

0.50 0.5 1.0 feasible 308 3.3 + 2.9 -9.2 

0.50 0.5 2.0 feasible 308 1.5 + 19.5 -9.1 

0.50 1.0 1.0 feasible 308 0 0 +2.6 

0.50 1.0 2.0 feasible 308 0 0 + 2.6 

0.75 0.0 1.0 feasible 153 7.6 + 13.7 - 24.1 

0.75 0.0 2.0 feasible 153 3.2 + 35.0 - 23.7 

0.75 0.5 1.0 feasible 153 0 0 + 1.1 

0.75 0.5 2.0 feasible 153 0 0 + 1.0 

0.75 1.0 1.0 feasible 153 0 0 + 1.0 

0.75 1.0 1.0 feasible 153 0 0 + 1.0 

 

If the TES is added to the FCU distribution system, its thermal mass contribution (the 

temperature TTES represents the temperature of the TMD) allows to realize all the peaks 

reduction so far discussed without any involvement of the air node set-point temperature. 

In fact, considering in the most extreme case treated (∆kDR of 1 hour, kstart,DR equal to 

kpeak,BL ,  ∆Tmax  equal to 0 °C and  ∆Tmin  equal to 1 °C), a 𝐹𝑙𝑒𝑥TCL  of 0 % is 

calculated throughout the day. However, to charge the TES in the hours before the event 
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(Figure 6.13(a)), an average increase of 18.5 % in the electricity consumption is obtained 

(Eshift,bDRis 19.8 % in case of fPSS equal to 0, 19.2 % for fPSS equal to 0.25, 18.6 % 

fPSS  equal to 0.50 and 16.7% fPSS  equal to 0.75). The increase in the electricity 

consumption can be observed also in Figure 6.13(b) where the 𝑃̇shift
∗  is represented.  

 

(a) 

 

(b) 

Figure 6.13. Flexibility evaluation curves for FCU with cold water tank of 750 liters (i.e., TES) 

(∆kDR equal to 1 hour, ∆Tmax equal to 0 °C, ∆Tmin equal to 1°C and kstart,DR equal to kpeak,BL): (a) 

FlexTMD and (b) 𝑃̇shift
∗ . 

 

Passing to the high massive systems, i.e. ceiling panels (CP) and concrete ceiling (CC) 

coupled with air dehumidifier (DH), a different behavior can be observed in an operative 

scenario. Staring from the system with the lower thermal inertia level (CP), Figure 6.14  

represents the realization of a demand response event with fPSS equal to 0.5  for  ∆kDR 

of 1 hour and with ∆Tmax of 0 °C. Thanks to the decoupling between the air node and 

the node to witch the cooling power is applied, a minimum level of thermal inertia can 

be derived by the envelope mass and the system is able to realize the peak reduction of 
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Figure 6.9 with ∆Tmax  of 0 °C. Actually, with this kind of cooling system even an event 

that produces a fPSS of 0 for 1 hour (∆kDR) can be realized with a ∆Tmax of 0 °C. 

Focusing on a 50 % peak reduction (fPSS of 0.5), the comparison between the demand 

response event and the baseline in term of sensible loads is shown in Figure 6.14(b). 

Thanks to the thermal mass of the roof layer, the CP system allows a lower exploitation 

of thermostatically controlled loads than the case of the FCU system without the TES 

(Figure 6.9(a) in comparison with Figure 6.14(a)). The precooling is about 2.2 hours 

long if a ∆Tmax of 0 °C is imposed while it becomes 1.8 hours if ∆Tmax of 0.5 °C is 

allowed. However, to cool down the roof node temperature instead of 𝑇air, the 

anticipated overconsumption of the heat pump is significantly higher (Figure 6.14(b)). 

The thermal and electrical energy consumption before the DR event vary by +102 % and 

+86% respectively in relation to the consumption in baseline.  

 
(a) 

 
(b) 

Figure 6.14. Daily (21 July) comparison between BL and DR event (fPSS equal to 0.50, ∆kDR 

equal to 1 hour, ∆Tmax equal to 0 °C, ∆Tmin equal to 1 °C and kstart,DR equal to kpeak,BL) for ceiling 

panels with dehumidifier: (a) air and roof node temperatures and (b) thermal and electrical heat 

pump power. 
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In this case, since the cooling system is also equipped with a dehumidifier (DH) for 

control of the indoor relative humidity, the electricity peak time is estimated on the total 

electricity consumption curve (DH and HP). 

In particular, in Figure 6.15(a) it is shown the comparison between the relative humidity 

(RH) curves in case of baseline and DR event (Figure 6.15(a)) and the thermal (latent) 

and electricity consumption of the dehumidifier (DH) (Figure 6.15(c)). Looking at 

Figure 6.15(a), it can be noted that during the demand response event, the relative 

humidity is higher than 50 % albeit the ∆RHmax is equal to 0 %. This is due to the way 

its constraint is formulated. Indeed, the maximum value of 𝑥max in the optimization 

problem is calculated with an air temperature and a relative humidity equal to the upper 

comfort limits (respectively [Tsp + ∆Tmax] and [RHsp+∆RHmax]). However, when the 

energy flexibility is used to precool the internal air (𝑇air), the final value of relative 

humidity is calculated with a lower temperature value.   

Therefore, the radiant ceiling panels allow the realization of peak shaving event with the 

exploitation of both the thermal mass of the system and the thermostatically controlled 

loads. For this reason, there are not configurations in which the optimization problem is 

infeasible. As the storage capacity of the distribution system is used, the variation of the 

comfort limits (e.g., ∆Tmax, ∆Tmin, ∆RHmax and ∆RHmin) has less influence on the 

realization of the event. With reference to Table 6.5, the only parameter that seems to 

improve the performance of the demand response event is ∆Tmax. Regardless of the 

values assumed by other quantities (∆Tmin and ∆RHmax), a 18% decrease in the pre-

cooling duration (∆kprc) can be achieved if at least a ∆Tmax of 0.5 °C is allowed with 

also a consequent decrease of Eshift,bDR.  

 
(a) 
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(b) 

 
(c) 

Figure 6.15. Daily (21 July) comparison between BL and DR event (fPSS equal to 0.50, ∆kDR 

equal to 1 hour, ∆RHmax equal to 0 %, ∆RHmin equal to 5 % and kstart,DR equal to kpeak,BL) for ceiling 

panels and dehumidifier in term of: (a) relative humidity, (b) absolute humidity and (c) thermal 

and electrical power of the dehumidifier. 

 

In Figure 6.16 is showed the comparison, in terms of flexibility performances, between 

the case in which the peak reduction is produced with ∆Tmax equal to 0 °C and 0.5 °C. 

Due to the storage capability of the ceiling panels and its slower speed in following 

precise variations in the internal temperature (heat is not removed directly from 𝑇air), 

even with a ∆Tmax  of 0.5 °C, only in the last moments of the event the setpoint 

temperature exceeds 𝑇sp  (Figure 6.16(a)). For this reason, the same behavior is 

evaluated with higher ∆Tmax. Looking at Figure 6.16(b), a variation of 𝐹𝑙𝑒𝑥RH can be 

appreciated. However, it is only a consequence of the sensitive cooling of the internal 

air in the precooling (∆kprc). In Figure 6.16(c) instead, is represented the utilization of 

the thermal mass of the distribution system (𝐹𝑙𝑒𝑥TMD). Because of the low thermal 
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inertia of the 𝑇ri,cp  node, the latter has the same trend of 𝐹𝑙𝑒𝑥TCL  (∆kprc,TMD  and 

∆kprc have the same order of magnitude: 2.2 hours and 2.3 hours in for ∆Tmax equal to 

0 °C and 1.8 °C and 2.0 °C for ∆Tmax equal to 0.5 °C, Table 6.5). However, 𝐹𝑙𝑒𝑥TMD 

reaches almost the value of - 10%, when 𝐹𝑙𝑒𝑥TCL is - 4 %. This is the reason why high 

overconsumption are evaluated (Figure 6.16(d)). 

 
Table 6.5. Flexibility evaluation quantities as the DR parameters varies (fPSS equal to 0, ∆kDR 

equal to 1 hour, ∆RHmin equal to 5 % and kstart,DR equal to kpeak,BL) for ceiling panels with 

dehumidifier.    

∆𝐑𝐇𝐦𝐚𝐱

(%) 

∆𝐓𝐦𝐚𝐱 

(°C)  

∆𝐓𝐦𝐢𝐧 

(°C) 
Optimization  

Eshift 

(Wh) 

∆𝐤𝐩𝐫𝐜 

(hours)  

∆𝐤𝐩𝐫𝐜,𝐓𝐌𝐃

(hours) 

Eshift,bDR 

(%) 

Eshift,aDR 

(%) 

0 0.0 1.0 feasible 467 2.2 2.3 +92.8 -17.7 

0 0.0 2.0 feasible 467 2.1 2.3 +97.8 -17.2 

0 0.5 1.0 feasible 467 1.8 2.0 +86.8 -15.9 

0 0.5 2.0 feasible 467 1.8 2.0 +86.7 -15.8 

0 1.0 1.0 feasible 468 1.8 2.0 +89.1 -17.5 

0 1.0 2.0 feasible 467 1.8 2.0 +87.4 -16.3 

5 0.0 1.0 feasible 467 2.2 2.3 +92.6 -17.5 

5 0.0 2.0 feasible 467 2.1 2.2 +97.3 -16.9 

5 0.5 1.0 feasible 467 1.8 2.0 +84.3 -14.3 

5 0.5 2.0 feasible 467 1.8 2.0 +86.7 -15.8 

5 1.0 1.0 feasible 468 1.8 2.0 +89.1 -17.3 

5 1.0 2.0 feasible 467 1.8 2.1 +87.3 -16.3 

 

 
 

(a) 
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(b) 

 

(c) 

 
(d) 

Figure 6.16. Flexibility evaluation curves for ceiling panels (fPSS equal to 0, ∆kDR equal to 1 hour, 

∆Tmin equal to 1 °C, ∆RHmin equal to 5 %,∆RHmax equal to 0 % and kstart,DR equal to kpeak,BL): (a)  

FlexTCL, (b) FlexRH, (c) FlexTMD and (d) 𝑃̇shift
∗ . 
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Looking at the results obtained, two important aspects can be highlighted. First of all, 

although with ceiling panels the precooling times are considerably lower than in the 

previous cases (split and fan coil units), there is no configuration that allows to carry out 

the event without a precooling strategy, which instead happens in the fan coil with a high 

exploitation of the flexibility from TCLs (∆Tmax equal to 1 °C). Moreover, especially 

for the more extreme peak reduction (fPSS equal to 0 and 0.25), there is always an 

increase in electricity consumed before the event (Eshift,bDR) greater than 80%, while in 

the case of fan coil it is almost always well below 70% (Table 6.4). In fact, as highlighted 

even more in the following case (CC), this is an aspect to be taken into consideration 

when the inertia of the distribution system consists of a passive thermal mass. In this 

regard, to better introduce this last observation, results about the cooling system with the 

higher inertia level need to be discussed.  

In case of cooling concrete ceiling system, in which the cooling power of the heat pump 

is removed from a high massive node, the demand response event analyzed for the 

previous cases (fPSS of 0.5,  ∆kDR of 1 hour) can be realized almost without using the 

flexibility from TCLs. In fact, the high storage capability of the roof node allows to keep 

the fixed set point of 26 ° C during the event at the expense of a small pre-cooling of the 

thermal mass of the distribution system (Figure 6.17(a)). Although the variation in the 

temperature of the thermal mass node (𝑇ri) is relatively small (Figure 6.17(a)), the large 

thermal inertia of the cooling system involves a not negligible increase in the power 

curve (Figure 6.17(b)). The estimated increase before the demand response event is 29 

% for the thermal energy consumption and 53 % for the electricity absorption of the heat 

pump. As in case of ceiling panels system, also in CC the relative humidity is controlled 

by the cooling system with a dehumidifier. In Figures 6.18(a), (b) and (c) the results of 

the latent energy balances are reported.  

 
(a) 
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(b) 

Figure 6.17. Daily (21 July) comparison between BL and DR event (fPSS equal to 0.50, ∆kDR 

equal to 1 hour, ∆Tmax equal to 0 °C, ∆Tmin equal to 1 °C and kstart,DR equal to kpeak,BL) for concrete 

ceiling with dehumidifier: (a) air and roof temperature and (b) thermal and electrical heat pump 

power. 

 
(a) 

 
(b) 
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(c) 

Figure 6.18. Daily (21 July) comparison between BL and DR event (fPSS equal to 0.50, ∆kDR 

equal to 1 hour, ∆RHmax equal to 0 %, ∆RHmin equal to 5 % and kstart,DR equal to kpeak,BL) for 

concrete ceiling and dehumidifier in term of: (a) relative humidity, (b) absolute humidity and (c) 

thermal and electrical power of the dehumidifier. 

 

It is interesting to notice that, as the thermal inertia level of the node from which the heat 

is removed increases, all the effects that are observed for the ceiling panels (CP) are 

extremized and the realization of different DR events is possible with the minimum 

involvement of the flexibility from TCLs. In particular, it can be noted that the behavior 

of the concrete ceiling plant in producing a certain peak reduction is quite independent 

of the DR parameters. This is due to the fact that the storage capacity of the distribution 

system (TMD) is used almost exclusively. In Figure 6.19 the flexibility curves for a DR 

event with fPSS  equal to 0 are reported (DR parameters:  ∆kDR  of 1 hour, kstart,DR 

equal to kpeak,BL,  ∆Tmx of 0.5 °C,  ∆Tmin of 1 °C,  ∆RHmin of 5 % and  ∆RHmax of 

0 %). Looking at Figure 6.19(a) it can be noted that during the event the upper comfort 

range (form Tsp to [Tsp+ ∆Tmax]) is not exploited and 𝐹𝑙𝑒𝑥TCL does not reach  the 

value -1 % in the time before the event. On the contrary, considering the large thermal 

mass of the CC system, the flexibility of the thermal mass of the distribution system it 

is very much involved (𝐹𝑙𝑒𝑥TMD reaches the value of -2.7 %, Figure 6.19(c)). This is 

also the reason why a higher increase in the electricity power consumption in obtained 

(Figure 6.19(d)). This behavior is confirmed by results showed in Table 6.6, where the 

flexibility quantities are calculated for different peak reductions and highlights what is 

observed for the ceiling panels. Indeed, when unlike a controllable storage system (e.g., 

the TES of 750 liters), heat is accumulated in a high massive layer of the building 

envelope (e.g., the roof) different demand response events can be performed limiting the 

effect perceived by users in terms of temperature to a minimum. On the contrary, large 

over energy consumption must be predicted, especially before the demand reduction. 
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(a) 

 
(b) 

 
(c) 
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(d).  

Figure 6.19. Flexibility evaluation curves for concrete ceiling (fPSS equal to 0, ∆kDR equal to 1 

hour, ∆Tmax equal to 0.5 °C, ∆Tmin equal to 1 °C, ∆RHmax equal to 0 %, ∆RHmin equal to 5 % and 

kstart,DR equal to kpeak,BL): (a) FlexTLC, (b) FlexRH, (c) FlexTMD and (d) 𝑃̇shift
∗ . 

 
Table 6.6. Flexibility evaluation quantities as the DR parameters varies (∆kDR equal to 1 hour, 

kstart,DR equal to kpeak,BL, ∆RHmax equal to 0 %, ∆RHmin equal to 5 %, ∆Tmax equal to 0 °C and ∆Tmin 

equal to 1 °C). Concrete ceiling with dehumidifier.    

𝐟𝐏𝐒𝐒 Optimization 
Eshift 

(Whel) 

∆𝐤𝐩𝐫𝐜 

(hours) 

∆𝐤𝐩𝐫𝐜,𝐓𝐌𝐃

(hours) 

Eshift,bDR 

(%) 

Eshift,aDR 

(%) 

0.00 feasible 1488 1.3 1.4 197.6 -6.7 

0.25 feasible 879 1.0 1.1 146.5 -7.5 

0.50 feasible 557 0.3 0.5 69.1 -6.9 

0.75 feasible 162 0.0 0.1 38.6 -8.9 

 

Based on the presented results about the energy flexibility potential of different space 

cooling technologies a different behavior in the operative scenario can be observed if 

compared to the design evaluation (sub-section 6.1). Although, the analyzed space 

cooling technologies differs from the point of view of the heat pump model (i.e., for the 

FPI calculation it is modelled with an ON/OFF regulation for all the cases, while for the 

operative evaluation it is modelled as variable load heat pump for all the cases except 

for the split system) and of the buildings typology (i.e., in sub-section 6.1 apartments are 

considered, while in the operative evaluation single family houses), which could affect 

the performance comparison, some consideration can be made. 
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For instance, while the design evaluation of the flexibility performance produces similar 

results in term of FPI, the operative evaluation allows to highlight some important 

differences in behaviors. In this sense, the main conclusions can be summarized by the 

following three points: (i) The split system with ON/OFF regulation shows rather 

inflexible behaviors during peak shaving events. Only peak annulment is possible but 

it’s difficult for an hypothetical supervisor (e.g., aggregator) to predict how planning the 

strategy. For all the other plants (with a variable load heat pump and fan coil, radiant 

ceiling panels or a radiant cooling concrete ceiling as distribution system), it easier a 

prediction of the user response in relation to its characteristics. (ii) Fan coil units coupled 

with a variable load heat pump is a more flexible system if the energy flexibility from 

thermostatically controlled loads (TCLs) can be activated. To avoid great payback loads, 

it is advisable to allow the internal air temperature to rise during the event. However, the 

addition of a thermal energy storage (e.g., a cold water tank) to the distribution system 

allows to realize short term peak shaving strategies (lasting also 1 hour) without 

compromising the indoor air temperature with low, drawback effects in terms of 

anticipated electricity overconsumptions (payback loads increase). (iii) As concern 

ceiling cooling systems, the passive storage capability of the distribution system allows 

the realization of different peak reductions events with a combined exploitation of the 

energy flexibility derived by thermostatically controlled load (TCLs) and by its thermal 

mass. Results show that, as the thermal mass of the system increases (e.g., cooling 

concrete ceiling in comparison to ceiling panels) the flexibility of the thermostat is less 

and less exploited. However, increasing anticipated overconsumption due to pre-cooling 

of the thermal mass of the system must be expected. 

Therefore, the analysis shows that the type of emission system used to satisfy the cooling 

demand of a residential building has considerable impact on the on how a peak shaving 

event is handled. Thus, taking this aspect into consideration can be of paramount 

importance to improve the realization of a large-scale strategy (e.g., cluster load 

shifting).  
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Chapter 7  

 

Energy flexibility from aggregate demand  

 
As mentioned in sub-section 2.1.2, evaluating the energy flexibility reserve of a single 

building is essential from a resource planning perspective. However, the energy 

quantities involved (except for large industrial or commercial buildings) are not 

interesting from a market point of view. Therefore, the extension of the energy flexibility 

analysis at the aggregate level (i.e., clusters of buildings) has a paramount role.  

In this section a preliminary evaluation of the energy flexibility potential of clusters of 

buildings is provided. Firstly, the discussion introduce in sub-section 2.1.2 is extended 

in sub-section 7.1, where the most whispered clustering techniques adopted to evaluate 

the energy flexibility potential in buildings are examined. Then, retracing the evaluations 

proposed in Papers 10 and 11, with the introduction of simple case studies, the objective 

is to highlight how the careful planning of the cluster allows to realize different demand 

side management events (e.g., demand response) minimizing the appearance of 

drawback effects (e.g., payback loads) in the aggregated power demand. In other words, 

the analysis aims at showing that aggregated energy flexibility, which can be activated 

by the programmed involvement of different users, allows multiple degrees of freedom 

to apply demand response events in residential building clusters. In particular, in sub 

section 7.2.1, the impact of different cooling systems is evaluated. This case study is 

proposed in Paper 10 and it is based on the space cooling technologies introduced in 

Chapter 6 (sub-section 6.1). Then, in sub-section 7.2.2, the impact of different 

occupancy patterns is discussed (analysis presented in Paper 11). 

 

7.1 Focus on the techniques to model the cluster under DSM 
 
As mentioned in sub-section 2.1.2, according to the definition provided by Vigna et al. 

[28] a building cluster identifies a group of buildings interconnected to the same energy 

infrastructure, such that the change of behavior/energy performance of each building 

affects both the energy infrastructure and the other buildings of the whole cluster. The 
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interconnection of the building is not necessarily physical, but it can be also market 

related (e.g., different buildings belonging to the same owner).  

However, in order to evaluate the energy flexibility potential of a cluster of buildings, it 

is necessary to select a specific methodology to model the cluster. As introduced, a 

detailed literature analysis about how to model the energy dynamic of a group of 

buildings is provided by Goy and Finn [29]. According to them, large-scale building 

modelling can be divided into two approaches: top-down and bottom-up. The first 

category (i.e., the top-down) does not distinguish the contribution of the single building. 

Therefore, the analysis considers the whole residential sector energy consumption. On 

the other hand, the bottom-up approaches are based on knowledge of the energy behavior 

of each single building [121]. As also highlighted by Buttitta et. al. [121], when the 

objective of the cluster analysis is the evaluation of the demand side management 

strategies, the model must be able to trace the behavior of the individual. Therefore, the 

adoption of the bottom-up approach is fundamental.  

Both statistical and engineering techniques can be adopted [122]. The difference 

between the two lies in the fact that, for the first (i.e., statistical techniques) data relating 

to the consumption of the aggregate are required while for the engineering technique 

they are not needed. Between the available engineering techniques, the most whispered 

for the residential sector seems to be the archetype methodology [121].    

Archetypal buildings are typically reference buildings that are statistical composites of 

the features found within a category of buildings in the stock [123] derived from 

available data of the national building stock [30]. Usually, each archetype is defined by 

specific geometrical, thermal and technical characteristics [124]. Analyzing some works 

available in literature, for instance, Mata et al. [30] differentiated the archetypes by: type 

of buildings (e.g., residential or not residential), construction year, climate region and 

the main fuel source for heating purposes. Famuyibo et al. [31] distinguished the 

archetypes by means of characteristics that are significant in establishing how energy 

use might change according to the building regulations (e.g., wall U-value, roof U-value, 

window U-values, floor U-value, air change rate, floor area, heating system efficiency, 

dwelling type and domestic hot water cylinder insulation thickness) and construction 

details or construction types (e.g., wall construction types, roof insulation types, floor 

construction types and window insulation types). It therefore appears clear that, in this 

sense, the Tabula Project [64] can be an important starting point to establish the main 

features of national archetypes of buildings.  

A further aspect that must be considered involves the modelling of the users’ occupancy 

profiles. Indeed, as highlighted by Hu and Xiao [32], the uncertainty in the forecast of 

space occupation by users can compromise the reliability of the energy flexibility 

estimation. In particularly, they evaluated how, by increasing the cluster size, the energy 

flexibility estimation is more and more reliable than the case of a single building 
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(aggregated energy flexibility exponentially decreased from 19.12% for 8 households to 

0.74% for 5120 households).  

To model the effect of the users’ occupancy profile two approaches can be used. The 

generation of random profiles for each user or the definition of reference profiles (i.e., 

archetypes). For the first approach, the open web tool StROBe (Stochastic Residential 

Occupancy Behaviour), developed by the KU Leuven Building Physics Section could 

be used [125]. Indeed, StROBe is built to generate missing boundary conditions in 

integrated district energy assessment simulations related to human behavior, (i.e., the 

use of appliances and lighting, space heating settings and domestic hot water redrawers) 

[126]. On the other hand, archetypes of occupancy patters can be introduced. They can 

be evaluated with different approaches. A first technique can be adopted with the 

analysis of available data for a group of users (e.g., with monitoring or surveys). An 

example is provided by  Buttitta et al. [121]. By means of clustering techniques based 

on available data, they developed a method to generate realistic occupancy patterns that 

can be representative of large numbers of households. Another way could be the 

statistical approach or model based on the experience. For instance, Yao and Steemers 

[127], on the basis of their experience, defined five fixed common occupancy profiles 

for UK households, with the aim of characterizing the archetypes in the operational area.  

However, the definition of the user occupancy patters is a crucial aspect for the 

effectiveness of the cluster model.  

 

7.2 Importance of differentiating users 
 
From a resource planning perspective, the knowledge of the various degrees of freedom 

that can be counted on when involving different users in a DSM scenario is fundamental. 

In the following sub-sections, the effect of users with different cooling systems (sub-

section 7.2.1) and different occupancy patterns (sub-section 7.2.1) is discussed with 

simple case studies. The objective is to present a preliminary assessment to provide food 

for thought about the increasingly discussed topic of the aggregated energy flexibility.  

 
7.2.1 Role of the HVAC  

 
In order to provide a preliminary evaluation on the effect of the combination of users 

which differ from each other for their cooling system on the overall operating energy 

flexibility, the four case studies introduced in sub-section 6.1 are aggregated in a small 

cluster (analysis presented also in Paper 10). In particular, the effect of different 

combinations of cooling systems in a demand side management scenario is presented.  
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A demand response event is modelled. It is a peak shaving strategy starting at 12.00 pm 

in the same reference day founded for the FPI calculation (see sub-section 6.1). In 

particular, at 12.00 pm the cooling system is switched off until the internal comfort 

bound is reached. Two different requests for energy flexibility are modelled for each 

single user:  

(i) High flexibility demand (HFD). 

(ii) Low flexibility demand (LFD).  

Retracing the demand response event tested for the FPI calculation, the evaluation is 

focused on thermostatically controlled loads. Therefore, the HFD (i) exploits the overall 

comfort range available (internal set-point starting from 24°C and 60% of relative 

humidity can reach 26°C and/or 70% of relative humidity). LFD (ii), instead, consists in 

requesting a smallest comfort variation (maximum temperature and humidity 

achievable: 25°C end/or 65% of relative humidity).  

The HFD and LFD strategies are applied in several configurations to the space cooling 

systems in order to achieve different goals, as instantaneous peak reduction, minimum 

user involvement or peak reduction for long periods (all or some of them are involved 

or are called to attend the demand response event one after the other). 

Figure 7.1 shows the overall electricity demand for the four apartments building without 

any demand response event and its breakdown in the different space cooling 

contributions in a time period of 1 hour (from 12.00 to 1.00 pm). Four electric power 

levels can be distinguished: 

(i) A base load of 5 kW. 

(ii) An intermediate load of 7 kW. 

(iii) A first power peak of 10 kW. 

(iv) The higher peak of about 12.5 kW.  

 

 
Figure 7.1. Electricity aggregated demand. Total and single contributions. 
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Since the indoor comfort is still guaranteed for more than 1 hours (Table 6.2), if a high 

flexibility demand (HFD) strategy is applied independently at each cooling system, the 

aggregated demand becomes zero for the whole hour as showed in Figure 7.2. A different 

situation can be noted if, instead, a low flexibility demand (LFD) strategy is applied. 

Looking at the blue dotted line in Figure 7.2., a power demand of about 5 kW is requested 

after 0.1 hours. This is due to the shorter response time that the systems present in case 

of restricted comforts limits. Especially, the apartment with split system reaches the 

indoor temperature of 25 °C in 0.13 hours. In the same way, the fan coil system response 

period is 0.78 hours, while 0.47 and 0.60 hours are respectively the values of the duration 

for the time in which the heat pump is off. for ceiling panels and concrete ceiling radiant 

cooling. However, if a LFD strategy is applied to all the considered space cooling 

systems together, the electricity consumption is also zero, even if for a limited time 

(about 8 minutes). This effect cannot be obtained if only a few space cooling systems 

are involved with a LFD strategy. 

 

 
Figure 7.2. Electricity aggregated demand. High flexibility demand (HFD) and low flexibility 

demand (LFD) activated together for all user. 

 

Table 7.1 reports the percentage of time (in the considered hour between 12.00 pm and 

1.00 pm when the network requires flexibility) in which the aggregated demand remains 

below the power threshold levels described above (7, 10 and 12.5 kW). Since the split 

system electric load is the highest contribution in the aggregated demand (it accounts for 

about 42% of the demanded power when all the cooling systems are on), a possible 

demand response strategy could be the HFD configuration applied only to it (red dotted 

curve in Figure 7.3). In this way for the whole considered hour, the aggregated electricity 

demand stays always below 10 kW. Furthermore, the total power is reduced to the base 

load for about 13.2 minutes (22% of the considered hour), as showed in Table 7.1.  
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Since the split system power demand is of the same order of magnitude of the aggregated 

demand of the other three cooling systems (fan coil, concrete ceiling and ceiling panels), 

in Figure 7.3 the latter strategy is compared to a possible LFD configuration applied to 

them. In this last case a flattening of the highest peaks is not obtained for the whole 

considered hour (Table 7.1) but, the base load is maintained for about 50% of the time. 
 

Table 7.1. Percentage of time (in the 12.00-1.00 pm hour) in which the aggregated demand 

remains below the considered thresholds. 

Strategy 
Below  

7 kW 

Below  

10 kW 

Below  

12.5 kW 

LFD to all systems 63% 70% 85% 

HFD to split system 22% 100% 100% 

LFD to split system 17% 17% 22% 

LFD to fan coil, concrete ceiling, and ceiling panels 50% 70% 90% 

Sequence LFD (Split then fan coil) 12% 17% 100% 

Sequence LFD (Split then ceiling panels) 17% 22% 100% 

 

 
Figure 7.3. Electricity aggregated demand. High flexibility demand (HFD) to split system only 

and low flexibility demand (LFD) to all the others: fan coil with 200 liters tank, ceiling panels 

and concrete ceiling. 

 

In order to request a smaller variation of the temperature comfort bound to the final 

users, the effect of a LFD configuration with subsequent calls of the four cooling systems 

is investigated. The demand response operator, in order to minimize the involvement of 

the individual user, which must be economically incentivized, could evaluate to call 

them one by one in this manner: once the first user has reached its restricted comfort 

limit, another one is called and so on. Figure 7.4 reports the aggregated power in case in 

which fan coil or ceiling panels systems are called after the split system. Split system is 

chosen as first call since its power is high, but its response period is very low (Table 

7.1). 
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Figure 7.4. Electricity aggregated demand. Low flexibility demand (LFD) in sequence. 

Comparison between fan coil unit with 200 liters tank after split system and ceiling panels after 

split system. 

 

In both cases, as shown in Table 7.1, the base load is maintained for a short time (12% 

and 17% of the flexibility hour respectively for split then fan coil and for split then 

ceiling panels). While, for both cases, the aggregated electricity demand always remains 

lower than the maximum power peak threshold (12.5 kW).   

Concluding, the results show that if the aggregated electricity power wants to be 

maintained below the base power threshold for a longer time, the demand response 

strategy should involve all the users with a LFD configuration in order to get a 

compromise among load redaction, comfort variation and duration of the aggregated 

response period. As alternative a LFD configuration with subsequent calls guarantees 

that the power demand on average is higher, but always lower than the maximum 

threshold. Instead a HFD strategy only applied to the most energy demanding space 

cooling system (i.e., split system) allows a peak power reduction more important (always 

below 10 kW). 

However, it is important to notice how differentiating the users involved in the peak 

shaving event (i.e., type and order), different behaviors in term of aggregated electric 

demand trend during and after the event can be noted. Indeed, looking at Figures 7.2 and 

7.3, a late peak (i.e., drawback effect) power larger than the highest in normal operation 

(black line in Figures 7.2 and 7.3) can be observed. Looking instead at the case showed 

in Figures 7.2 (HFD, line red) and 7.4, no drawback effects in the aggregated electric 

power are observed by 1.00 pm.  
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7.2.2 Role of the occupancy pattern 

 
Replacing the analysis presented in Paper 11, in this sub-section is discussed the role of 

the occupancy pattern in the energy flexibility performance on differentiated clusters of 

buildings. By simulating residential buildings with RC-networks in Python, users with 

different occupancy behaviour (i.e., archetypes of pattern) are modelled. To use the 

energy flexibility derived by thermostatically controlled loads, the setpoints are managed 

to activate the thermal mass of the buildings. Also, in this case, a peak shaving event in 

tested. However, thanks to the RC-network representation of the building, not just power 

resets are produced as for the analysis of the previous sub-section (7.1.1), but different 

percentage variations of the peak power can be tested (as for the operative energy 

flexibility evaluation in sub-section 6.2). 

Going into detail, the single building is modelled as third order RC-network (Figure 5.3). 

To identify the parameters of the models, a white box approach is adopted (as explained 

in Section 5.1.1). A single-family house of 100 m2, located in Milan, Italy (45°27’ N, 

9°11’ E) is considered as case study. Its thermal properties are extrapolated from Tabula 

Project [64] for the most updated buildings (Table 4.1). As for the cases introduced in 

Chapter 5, to validate the RC-network, its simulation results are compared to a building 

with the same features modelled with Type 56 in TRNSYS (RMSE equal to 0.31 °C). 

However, Paper 11 reports details about the RC-network model with also the numerical 

values of the parameters of the model. 

As concern the occupancy pattern archetypes, three kinds of behavior are considered: 

user U1 with a fixed set point of 20 °C (reference scenario), user U2 with a setpoint of 20 

°C from 8.00 am 9.00 am, from 12.00 pm to 2.00 pm and from 7.00 pm to 9.00 pm and 

U3 with the setpoint equal to 20 °C from 8.00 am 9.00 am and from 7.00 pm to 9.00 pm 

(in the remaining hours the setpoint is lowered to 18 °C both for U2 and U3). In Figure 

7.5 the daily users’ profiles are showed. 

 

 
(a) 
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(b) 

 
(c) 

Figure 7.5. Users occupancy patterns archetypes: (a) U1, (b) U2 and (c) U3. 

 

To model the heating system, the contribution of the heating system (𝑄̇) is directly 

applied to the indoor air node (Tair), imposing fiq equal to 0 in Figure 5.3. In this way, no 

thermal inertia is assigned to it. An air source heat pump is modelled in order to obtain 

the electricity demand to be managed. In particular, the performance of a commercial 

heat pump is extrapolated by a manufacture catalogue [65]. Since the detailed 

representation of the distribution system is not considered, the COP depends only on the 

outdoor air temperature (Tamb).  

For the state space formulation (Equations (11)), the heating power (𝑄̇ ) has to be 

provided as an input for the building model. However, to test demand side management 

strategies strategy (e.g., demand response), it is necessary that the electricity demand (𝑃̇) 

derived by thermostatically controlled loads becomes an adjustable variable. For this 

reason, an optimization problem is introduced. The optimization has the objective to 

minimize the thermal requirements of the building while comfort conditions are 

maintained. The minimization problem can be written as: 
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min ∑ 𝑄̇(𝑡) ∙ ∆𝑡
duration

𝑡=1
 Eq. (48) 

 

subject to the same constraints introduced in Equation (14) and (15). Therefore, the 

energy behaviour of the building is added to the optimization problem as a set of 

constrains, one for each time step t (Equation (14)). On the contrary, the heating demand, 

𝑄̇(t), becomes the decision variable of the problem and, through the COP, it can be 

connected to the electricity demand of the user (𝑃̇), which represents the TCLs to be 

managed during the DR event.  
 

𝑃̇(𝑡) =
𝑄̇(𝑡)

𝐶𝑂𝑃(𝑡)
 Eq. (49) 

 

As in this case, for its linear characteristics, the optimization problem can be solved for 

the duration of the simulation as a typical linear programming problem.  

The introduced demand response event consists of a peak-shaving strategy to produce a 

controlled hourly reduction of the electricity demand of a group of users. As comparison 

term, a reference scenario is introduced to reveal the time location of the peak. It is 

obtained in case of fixed set-point temperature (referring to Equation (14): Tmin equal to 

Tmax equal to 20 ° C) for all the users involved in the cluster. Then, in the form of an 

additional constraint for the optimization problem, the aggregated electricity demand is 

forced to an established percentage reduction in the reference case peak-hour. The 

additional constraint is formulated in Equation (50) where N is the number of users 

composing the cluster, fr is the peak electricity power (Ṗmax) reduction factor.  
 

∀ 𝑢:   0 ≤  ∑ 𝑃̇
N

𝑢
(𝑡) ≤ fr ∙ Ṗmax Eq. (50) 

 

Since the energy flexibility has to be activated when the DR event is realized, a tolerance 

of 2 °C is allowed for the comfort constraints in the optimization problem (Tmin is 

lowered by 1°C and Tmax is increased of 1°C with reference to the occupancy patterns 

showed in Figure 7.5).  

Taking into account a reference winter day (14 January), Figure 7.6 shows the 

application of the DR event to a single building (occupancy profile U1 in Figure 7.5). 

Looking at the black dotted curve in Figure 7.6(b), an electricity peak can be observed 

at 10.00 am. Therefore, the demand response event imposes a power reduction from 

10.00 am to 11.00, allowing an enhanced exploitation of the comfort band. In particular 
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a half reduction of the power is enforced (fr equal to 50 % in Equation (50)) in the case 

showed in Figure 7.6.  

In order to maintain the comfort a pre-heating strategy is necessary to reduce the power 

consumption during peak time (black continuous line in Figure 7.6(a)). As a 

consequence, an anticipated electricity peak occurs at 9.00 am with even a greater value 

in amplitude to account for thermal losses. The peak value passes, in fact, from 0.97 kW 

in reference operation to 1.33 kW with the demand response event (increase of + 37 %). 

It seems clear that, despite the objective of the event is achieved, a drawback effect 

connected to it occurs in the previous hours.  

 

 
(a) 

 
(b) 

Figure 7.6. Comparison between reference operation and demand response event for a single 

user (U1): (a) indoor air temperature and (b) electricity power demand. 

 

When multiple users are aggregated in a cluster, a careful planning of users’ participation 

can allow the event to take place without unexpected load peaks. No improvement 

compared to case showed in Figure 7.6 can be observed if users with the same behaviour 

are involved, but the electricity demand of the cluster is only scaled compared to the 

number of users participating. Therefore, a great contribution can be made by the 

engagement of users with different occupancy behaviours. In Figure 7.7 a small cluster 
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composed of three users is subject to the peak-shaving event in the same day. Two of 

the three users have the reference scenario occupancy profile (U1), while the third acts 

as U2 (Figure 7.5). In this case the anticipated peak no longer appears, while another one 

appears postponed at 12.00 pm. There is, however, no amplification of the peak value, 

which remains of the same order of magnitude as the reference case (2.76 kW in 

reference scenario and 2.86 kW in case of demand response event). Another increase in 

consumption is also recorded in the evening hours (from 7.00 pm to 9.00 pm). Anyway, 

it is not related to the demand response event but to the setpoint temperature of user U2 

rising. 

 

 
Figure 7.7. Comparison between reference operation and demand response event: cluster of three 

users: 2 users U1 and 1 user U2. 

 

 
Figure 7.8. Comparison between reference operation and demand response event: cluster of three 

users: 2 users U1 and 1 user U3. 
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Figure 7.9. Comparison between reference operation and demand response event: cluster of three 

users: 1 user U1,1 user U2 and 1 user U3. 
 

Further improvements can be observed when also user U3 is involved in the cluster. 

Figures 7.8 and 7.9 show this behaviour. Figure 7.8 presents the same case represented 

in Figure 7.7 in which the user U2 is replaced by U3, while in Figure 7.9 all the users (U1 

U2 and U3) are involved. Both the clusters tested (Figures 7.8 and 7.9) allow to cut the 

peak avoiding drawback effects both in the hours before and after the demand response 

event. Due to the change of the occupancy profile between 7.00 pm to 9.00 pm, also in 

this case an increase in the electricity consumption respect to the reference operation is 

observed.  

Focussing only on the hours before and after the event, the presence of a user U3 appears 

fundamental to avoid new power peaks keeping the demand curve below the reference 

scenario. This behaviour is also confirmed if larger clusters are tested. In this case, it is 

possible to connect the minimum number of users U3 to be involved to avoid such 

unexpected peaks. In particular, when a peak halving is required (fr equal to 50 % in 

Equation (50)), the 8 % of the users should have an occupancy profile as U3.  

 
Figure 7.10. Percentage of the minimum number of users U3 to be involved in a peak-shaving 

event to produce different peak reduction (fr) avoiding drawback effects connected to it in the 

hours before and after the event.  
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Figure 7.10 shows the percentage of user U3 involvement in case of different peak power 

reductions (fr) required by the demand response event. A high participation (minimum 

78 %) is necessary if the peak wants to be reduced by up to 10 %, then the percentage 

decreases as fr increases. From this last consideration it is evidenced even more the role 

of a differentiated cluster of users when the energy flexibility wants to be used for load 

shifting strategies. Thanks to the differentiation of behaviour, the energy flexibility 

acquires more degrees of freedom, allowing to perform demand response events by 

minimizing the presence of undesirable effects connected to it. 
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Chapter 8  

 
Conclusions and future research 

 
The objective of this thesis is to provide an evaluation and a quantitative analysis of the 

energy flexibility reserve contained in residential buildings. Introducing novel 

methodologies of quantification and different case studies, this work aims at evaluating 

the different aspects that characterize the energy flexibility obtainable from the 

management of thermal loads in residential buildings equipped with heat pumps.  

All the results reported are extrapolated from a series of papers that have been published 

in scientific journals (see the list at sub-section 1.3). The evaluation starts from the single 

building level and then gradually the analysis is widened to the aggregate level. 

Furthermore, the assessment is firstly referred to a design evaluation to provide a rating 

of the building itself and, secondly, to an operational scenario with a real time use of the 

flexibility. Table 8.1 summarizes all the case studied.  

 
Table 8.1. Summary of the case studies and the methodologies used divided by type of analysis 

Size of the 

evaluation 

Working 

scenario 

Objective of the 

analysis 
Case studies 

Methodology and 

highlighted aspects 

Single 

residential 

building 

Design 

level 

Quantify the 

building energy 

capability to 

produce flexibility 

services in 

relation to its 

intrinsic features 

(e.g., thermal and 

geometrical 

characteristics and 

HVAC system.) 

Simulation-based 

buildings differentiated 

for the Italian scenario:  

(i) Age of 

construction (i.e., 

insulation level 

and HVAC 

system). 

(ii) Location. 

(iii) Heaviness and 

composition of 

building envelope.   

(iv) Season (i.e., 

heating and 

cooling season).  

(v) Refurbishment 

interventions of 

the building 

envelope. 

Classification of the 

buildings in flexibility 

classes through the 

calculation of a single 

indicator: the Flexibility 

Performance Indicator 

(FPI).  
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Single 

residential 

building 

Design 

level 

Investigate the 

potential of 

district cooling 

networks (DC) to 

be an external 

source of energy 

flexibility in a 

context of fuel 

switching.  

Simulation-based 

district cooling 

residential network, 

case simulated:  

(i) Simple 14 users 

residential DC 

network. 

(ii) A residential 14 

DC users network 

feed with wasted 

cold energy 

derived from the 

vaporizer of a L-

CNG refueling 

station.  

The methodology and the 

highlighted aspects 

concerning the two case 

studies are: 

(i) Flexibility 

additional services 

provided by DC 

network. Two 

quantification 

indicators are 

introduced: the 

wasted cold energy 

and the overheating 

time.  

(ii) Electricity saving in 

relation to the 

adoption of 

traditional cooling 

systems.   

Single 

residential 

building 

Operative 

level 

Role of advanced 

control (model 

predictive control, 

MPC) to unlock 

energy flexibility.  

Real-time MPC 

implemented in a 

simulation 

environment. Case 

study tested:  

(i) Simple MPC 

realized to unlock 

flexibility 

provided by 

thermostatically 

controlled loads 

(TCLs) with a 

data driven and a 

physical based 

building model. 

(ii) Operative MPC 

(realized with 

both data driven 

and a physical 

based building 

model) to manage 

a multi energy 

source (MES) in a 

building with DC.   

The performance of the 

MPC are calculated in 

relation to a ruled based 

control (RBC) in terms of 

energy performance 

according to the tested 

objective function and 

operative RMSE (i.e., 

comparison between the 

actual and the predicted 

indoor temperature).  

The aspects that the two 

case studies aim to 

highlight are:   

(i) The role of the 

building model in an 

operative MPC to 

activate the 

flexibility derived 

by TCLs. 

(ii) Demonstrate the 

importance of 

flexibility provided 

by TCLs to manage 

a MES building.  
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Single 

residential 

building 

Design and 

operative 

level 

Show the 

comparison 

between the 

design and the 

operative 

flexibility 

evaluation  

Simulation-based 

buildings with different 

space cooling 

technologies:  

(i) Split system. 

(ii) Fan coil units 

coupled with air 

to water heat 

pump (with and 

without a thermal 

energy storage). 

(iii) Ceiling panels 

coupled with air 

to water heat 

pump and air 

dehumidifier. 

(iv) Cooling concrete 

ceiling coupled 

with air to water 

heat pump and air 

dehumidifier.   

 

For the design evaluation 

the FPI is calculated 

while, for the operative 

evaluation the capability 

of each system to produce 

different demand 

response events is 

investigated with the 

evaluation of: energy 

shifted during the demand 

response event, the use of 

the energy flexibility of 

the thermal mass of the 

distribution system (time 

and amount of energy 

stored), the use of the 

energy flexibility from 

TCLs (time and 

temperature variation) 

and the presence of 

payback loads in the 

electricity power curve. 

Cluster of 

residential 

buildings 

Preliminary 

operative 

level 

Show the 

importance of 

differentiating 

users in a cluster 

subjected to a 

demand response 

event (DR). 

With simulated case 

studies, two aspects are 

taken into account:  

(i) The role of the 

HVAC system 

(focus on the 

cooling season).  

(ii) The role of the 

occupancy 

patterns.  

The evaluation is realized 

applying the same DR 

event to different clusters 

(i.e., differentiated for 

composition of 

involvement of the users) 

and highlighting the 

configurations in which 

the event is realized with 

or without drawback 

effects (i.e., payback 

loads).  

 

According to Table 8.1, given the diversification of the analyzes and the various case 

studies introduced, the main topics evaluated in this thesis and the related conclusions 

are provided grouped in the following points:  

 

▪ Quantification of the energy flexibility reserve contained in buildings.  

As showed in Table 8.1, firstly, the design operation is taken into account with the 

proposal of a method to quantify the energy flexibility reserve of single buildings 

according to their intrinsic characteristics (i.e. thermal and geometrical properties of 

the envelope and features of the heating/cooling system). This methodology consists 

in the calculation of a single indicator: the Flexibility Performance Indicator (FPI) 



153 

 

which summarizes four flexibility parameters (response time, committed power, 

recovery time and actual energy variation). As for the energy efficiency labelling 

already defined in the energy performance certificate of the building, the FPI allows 

the identification of flexibility classes to label buildings according to their energy 

flexibility potential. Given the dependency of the flexibility quantification on the 

boundary conditions (i.e., the specific demand response event, the outdoor and the 

indoor conditions), a dynamic simulation tool has to be used and standard boundary 

conditions (e.g., the demand response event, the representative day and comfort 

constraints) has to be defined in a unique way for the application of the proposed 

methodology. In order to prove the reliability of the FPI and highlight the main 

aspects with a bigger influence on buildings flexibility behavior, the methodology 

is tested on different case studies for the Italian scenario (Table 8.1) whit the aim of 

highlights the effects of the following aspects:  

- The role of the construction age of the buildings (i.e., thermal losses and heating 

and/or cooling system). In this case, results show that the FPI is able to 

distinguish newer buildings from older ones, labelling them in different 

flexibility classes. In particular, a great influence of the distribution system 

in the evaluation of the flexibility indicators, especially in the heating case 

(the radiant floor distribution system has a good level of thermal energy storage 

and can maintain for long periods the comfort) is observed.  

- The role of geographical position and the thermal inertia introduced by both the 

buildings envelope (construction materials or wall composition) and HVAC 

system. As expected, in this context results show a great influence of external 

weather conditions on the flexibility performance evaluated with the FPI: 

in cold winter periods, the flexibility performance drops as well as in hot 

summer periods. Moreover, the importance of the thermal inertia of the thermal 

distribution system is confirmed. Indeed, high thermal inertia emission systems 

(i.e. underfloor heating and ceiling cooling) are helpful in achieving good energy 

flexibility, in particular in presence of low building structure inertia (i.e. internal 

insulation). Also, the envelope thermal inertia has an important role for 

buildings flexibility performance (external insulation is recommended), 

especially in heating case while, with the same thermal insulation position, the 

FPI does not differ in relation to different heaviness of the construction 

materials. On the other hand, in cooling season, the analysis led to the 

conclusion that increasing the building or the heating/cooling emission 

system thermal inertia increases the flexibility performance but not with 

the same entity as in heating case.  

- the effectiveness of different refurbishment strategies on buildings energy 

demand management ability (focus on the heating season). Starting from a 
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reference old not insulated building, the energy flexibility improvement due to 

different energy efficiency interventions is quantified. In particular the 

insulation thickness of the building envelope (floor, roof, external walls) and the 

windows features are varied, and the heating system size is modified in 

compliance with the reduction of thermal energy demand and with commercial 

systems specifications available. From the results of this analysis, it is possible 

to see a consistent reduction of thermal energy demand by increasing the 

insulation level of the building envelope. However, the same behavior is not 

observed for the energy flexibility according to the FPI calculation. Therefore, 

taking into account refurbishment strategies on the building envelope, the 

positive effect on flexibility due to building thermal mass is evident only if 

the thermal insulation is applied at the same time in the external walls, floor 

and roof. If there is even only one surface with high heat losses, the building is 

not able to maintain in an acceptable band the internal comfort and the flexibility 

performance is low.  

However, testing different case studies, the Flexibility Performance Indicator seems 

to quantify well the building energy flexibility during a demand response event 

highlighting how both the aspect of the thermal inertia and the insulation level are 

fundamental to decouple demand and supply and therefore to design high-flexible 

buildings.  

 

▪ Modeling and performance analysis of innovative solutions for district space 

cooling.  

To enlarge the evaluation context, before moving on to the operational flexibility 

assessment, a focus on the possible sources of energy flexibility outside the building 

is presented (Table 8.1). In particular the additional energy flexibility reserve of 

district cooling systems is assessed. With a simulation-based case study, the effect 

of the different thermal inertia levels available in district cooling network as 

flexibility providers are qualitatively analyzed. They are (i) the network with the 

fluid contained in the pipes, (ii) the thermal inertia of the buildings and (iii) the 

addition of a dedicated devices as thermal energy storage. By calculating two 

indicators, i.e., the wasted cold energy and the overheating time, results shows that 

in district cooling network the pipelines provide a very small contribution (the 

cooling demand can be satisfied for less than 1 hour, when there is no cooling power 

availability), the activation (assuming it is possible to control the inside temperature 

set points of the users with appropriate predictive control strategies) of the thermal 

inertia of the buildings, pre-cooling the buildings’ thermal mass when the cooling 

supply is expected to be wasted, seems to have a great flexibility potential, 

comparable to the installation of a thermal energy storage and the addition of a 
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dedicated thermal inertia device is confirmed as the best means to decouple and 

manage in real-time energy supply and demand in the simplest way. Moreover, 

with the aim of introducing a potential energy sources to activate the energy 

flexibility derived by the fuel switching in the context of multi energy carriers, a 

novel application to feed a residential district cooling network recovering wasted 

energy from the vaporizers of Liquid to Compressed Natural Gas (L-CNG) refueling 

stations is introduced. By simulating a case study, results show that a district 

cooling designed to recovery cold energy from a L-CNG refueling station, is 

able to provide high electricity saving levels in comparison with the adoption 

standard cooling systems installed in every building. Regardless of the supply 

cooling power profile, electricity consumption reductions greater than 50 % are 

obtained (even if it is necessary to highlight that these percentages are strongly 

dependent on the assumptions made to design the network). 

However, it is important to underline that the results obtained, and the considerations 

made proved to be dependent on the hypothesis formulated (design choices such as 

sizing and methods for estimating the energy availability of the network). 

 

▪ Study of advanced controls (model predictive control, MPC) to activate the 

flexibility reserve in buildings.  
Once the context of the flexibility reserves of buildings is investigated and the role 

of external means (i.e., district cooling networks) to activate it is addressed, the 

operational scenario is taken into account. First of all, the role of advanced controls 

is analyzed with a focus on the effectiveness of the model-based predictive control 

(MPC) in comparison to traditional rule-based control (i.e., thermostat controls). As 

MPC requires a model of the system to be controlled, a focus on the role of different 

building modelling techniques are compered in an energy flexibility activation 

scenario. In particular, a data-driven model implemented with an artificial neural 

network (ANN) and a physical-based model realized with a RC-network  are 

compared in an operative model predictive control. In this first analysis (Table 8.1) 

an MPC designed to minimize the total energy cost for the thermal demand 

satisfaction it modelled. For the control has also been provided the possibility of 

unlocking the energy flexibility provided by thermostatically controlled loads. The 

results show that similar cost performances are obtained in the two cases (a 16 

% reduction in the weekly cost respect to the reference case) for the data driven 

and the physical base building model. However, although the data-driven model 

shows a good performance in replicating the building thermal power profile, 

this trend is not confirmed when it works operatively in the controller. This is 

due to the difficulty in identify the useful data to train the ANN to predict thermal 

demand and at the same time to unlock the energy flexibility of thermostatically 
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controlled loads. Moreover, unlike the RC-network that allows a linear formulation 

of the optimization problem, the non-linear nature of the data-driven models requires 

more efforts in formulating the optimization problem in the MPC logic.  
 

▪ Application of MPC controls on buildings with availability of different energy 

carriers (multi-energy systems, MESs) including the connection to a district 

cooling (DC) network. 

In order to test the activation of the energy flexibility reserves both inside (i.e., 

thermostatically controlled loads) and outside (i.e., fuel switching) the building, an 

MPC (with both a data driven and a physical based building model) is implemented 

and operatively applied to a simulation-based case study (Table 8.1). The case study 

consists of a residential building whose cooling demand can be satisfied with a 

connection to a district cooling network feed with wasted cold energy (i.e. from the 

vaporizer of a L-CNG refueling station), electricity produced by on-site photovoltaic 

modules or supplied by the power grid. Moreover, by allowing a certain tolerance 

to the comfort conditions, the energy flexibility contained in thermostatically 

controlled loads (TCLs) can be used as additional virtual reserve by the MPC.   
As mentioned, this case study is evaluated both with a ANN-based and with a RC-

network based MPC. Also in the operative scenario of a MES building, although 

similar energy performance are obtained, the physical based (i.e., RC-network) 

formulation seems to allow an easier formulation of the control even if it 

requires a greater effort in the construction of the model (i.e., the identification 

of the parameters). However, in both the cases, the analysis carried out underline 

the importance of the activation of the building energy flexibility as additional 

energy source in MES. Indeed, its exploitation appears fundamental to allow 

the control to maximize the energy performance.  

 

▪ Comparison between design and operative flexibility evaluation with a focus on 

the residential space cooling (SC) sector.  

In the last part of the thesis, before moving to the analysis of aggregate of buildings 

(i.e., clusters), a comparison between a design flexibility evaluation (i.e., with the 

FPI calculation) and an operative scenario is discussed (Table 8.1). In particular, the 

analysis is applied to the space cooling sector, given its increasing share in the whole 

energy demand. Introducing simulation-based cases studies to model different 

space cooling technologies (i.e., split systems, fan coils, radiant ceiling panels with 

air dehumidifier and cooling concrete ceiling with air dehumidifier), the analysis 

highlights that, even if the FPIs quantify medium flexibility performance (i.e., 

all the buildings are labelled in class C or B), the operative evaluation allows to 
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highlights some important differences in behavior due to the intrinsic features 

of the cooling systems (i.e., thermal inertia of the distribution system and rapidity 

in speed in meeting the building demand). For instance, the operative evaluation 

allows that as the thermal inertia of the distribution system increase, the 

involvement of the users in term of variation of their comfort conditions 

decrees. However, attention must be paid in avoiding high drawback effects 

(i.e., payback loads) in the power curve.  

 

▪ Analysis of flexibility at the aggregate level (cluster of buildings). 

Once the size of the single building has been analyzed in detail, at the end of the 

thesis, a preliminary evaluation on the additional energy flexibility that can be obtain 

in an aggerated scenario is discussed by means of simulated case studies (Table 8.1). 

In particular, the role of the differentiation of the users is discussed in a resource 

planning scenario. Both the role of the HVAC systems (focusing on the cooling 

systems) and the occupancy patterns are assessed imposing simple demand response 

strategies (i.e., peak shaving). The results of this analysis show that evaluating the 

flexibility at a cluster level, often drawback effects (anticipated or participated 

peaks) occur when no thermal inertia is provided by the distribution system 

and the peak shaving strategy is achieved with a pre-heating or pre-cooling 

strategy. However, a careful planning of the residential clusters can have 

positive effects in this regard. The case analyzed highlights that combined 

flexibility allows multiple degrees of freedom to apply demand response events in 

residential building cluster, showing the potential of a planned composition of users 

to be involved to avoid drawback effects (i.e., payback loads) in the demand curve.  

 

The results discussed in this last part of the thesis, although with preliminary evaluations, 

lay the foundations for continuing to investigate the potential at cluster level. For 

example, taking into account the application of the MPC to manage a MES building it 

could be interesting to analyze the effects of the optimization of the single users when 

some energy resources are shared with other users (as for the district cooling). Indeed, it 

is not taken for granted that individual user optimization also entails an optimal 

configuration at the aggregate level. Therefore, it would be interesting to extend the 

analysis to this aspect as well.  

Then, as anticipated, more work should be done on the optimal planning of the cluster 

to produce different demand side management strategies optimizing the performance. 

Indeed, assuming that the potential reserve of flexibility of the individual has been 

established, scaling the evaluation from single buildings to clusters may be fundamental 

to involve high quantities of energy and/or power minimizing the involvement of the 
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individual. Therefore, it would be interesting to deepen this aspect to provide 

instruments to easily plan the exploitation of the energy flexibility of buildings.  

To conclude, the analyses and evaluations showed in this thesis allow to confirm the 

great potential of residential buildings in providing energy flexibility services. However, 

it is emerged a great influence of the intrinsic features of the building (i.e., its thermal 

properties and the thermal inertia of its distribution system) on its design flexibility 

reserve, more in heating than in cooling season. In order to unlock the flexibility, it is 

necessary to implement advanced control (with all the issues discussed). Besides that, 

the building can also optimally exploit external flexibility sources represented by the 

connection to district heating or cooling network or by the fuel switching. Another 

important aspect is related to the involvement of the users (both in case of single and 

clusters) to limit drawback effects connected to the demand side management events. 

The latter aspect can be seen as a reaffirmation of the great potential that, with careful 

management, residential buildings have to produce energy flexibility services.  
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List of Symbols 

 
∆k  Timestep (hours) 

∆kDR Duration of the demand response event (hours) 

∆kprc Duration of the pre-cooling phase (hours) 

∆kprc,TMD 
Duration of the pre-cooling phase referred to thermal mass of 

distribution system (hours) 

∆RHmax Upper relative humidity tolerance (%) 

∆RHmin Lower relative humidity tolerance (%) 

∆Tmax Upper setpoint tolerance (°C) 

∆Tmin Lower setpoint tolerance (°C) 

∆TTMD,max Upper thermal mass tolerance (°C) 

∆TTMD,min Lower thermal mass tolerance (°C) 

A Flexibility class 

A 
Coefficient matrices related to state vector in state space 

formulation  

A+ Flexibility class 

A1 Flexibility class 

A2 Flexibility class 

A3 Flexibility class 

ACH Air changes per hour (h-1) 

ANN Artificial neural network 

ARX Linear auto regressive model with exogenous inputs 

B Flexibility class 

B 
Coefficient matrices related to input vector in state space 

formulation  

b̂ 
Bias vector of the hidden layer  in artificial neural network 

formulation 

BAT Best available technology  

BL Baseline 
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C Flexibility class 

C Thermal capacitance (J K-1) 

c Energy cost (Eur kWh-1) 

C Set of constraints of the optimization problem 

Cair Air node thermal capacitance (J K-1) 

Ce Envelope thermal mass thermal capacitance (J K-1) 

cel,G Energy grid cost (EUR kWh-1) 

cel,PV Energy from photovoltaic cost (EUR kWh-1) 

Cfe Thermal capacitance related to external floor layers (J K-1) 

Cfi Thermal capacitance related to internal floor layers (J K-1) 

Cfin 
Thermal capacitance related to thermal insulation layer in floor (J 

K-1) 

Ci Thermal capacitance of internal mass (J K-1) 

Cre Thermal capacitance related to external roof layers (J K-1) 

Cri Thermal capacitance related to internal roof layers (J K-1) 

Crin 
Thermal capacitance related to thermal insulation layer in roof (J K-

1) 

CTES Thermal capacitance of thermal energy storage node (J K-1) 

cth,DC Energy from district cooling cost (EUR kWh-1) 

Cwe 
Thermal capacitance related to external layers of vertical walls (J K-

1) 

Cwi 
Thermal capacitance related to internal layers of vertical walls (J K-

1) 

Cwin 
Thermal capacitance related to thermal insulation layer in vertical 

walls (J K-1) 

CC Cooling concrete ceiling 

CFDC Conversion factor for district cooling source 

CFe Conversion factor for source e acting as uncontrolled inputs 

CFG Conversion factor for withdrawals from grid 

CFPV Conversion factor for photovoltaic source 

CHP Combined heat and power  

CNG Compressed natural gas  

COP Coefficient of performance 
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𝐶𝑂𝑃̅̅ ̅̅ ̅̅  Average coefficient of performance 

COPexp Expected coefficient of performance  

CP Concrete ceiling panels  

CTRLDC Boolean control for district cooling  

CTRLHP Boolean control for photovoltaic modules 

CTRLS Boolean control for split system 

D Flexibility class 

d Number of inputs in artificial neural network formulation 

D Mathematical domain of the variables in the optimization problem  

D.M. Ministerial decree 

DC District cooling 

DH  Dehumidifier 

DR Demand response 

DSM Demand side management  

e Index for energy sources 

𝐸̇𝑒 Availability profile of source e acting as uncontrolled inputs (W) 

𝐸̇G Power from grid, general term (W) 

EBL Electricity in baseline (Wh) 

EDR Actual energy variation  

EDR Electricity in demand response scenario (Wh) 

EG Electricity from the power grid (Wh) 

Eshift Energy shifted during the demand response (Wh) 

Eshift,aDR Energy shifted after the demand response (Wh) 

Eshift,bDR Energy shifted before the demand response (Wh) 

EBC Energy in buildings and communities 

EPC Energy performance certificate  

EPDB Energy performance of buildings directive  

ES Number of usable energy sources acting as uncontrolled inputs  

EU European Union  

fair Scalar factor for total gains related to air node temperature 

fi 
Scalar factor for total gains related to internal mass node 

temperature 



162 

 

fPSS Reduction power factor during peak shaving strategy 

fr Reduction factor for cluster power  

FCU  Fan coil units 

FlexRH Use of the energy flexibility of latent loads (%) 

FlexTCL 
Use of the energy flexibility from thermostatically controlled loads 

(%) 

FlexTMD  Use of the energy flexibility of the thermal mass (%) 

FPI Flexibility performance indicator 

FPIlimit Limit flexibility performance indicator 

g Nonlinear activation function in artificial neural network 

G Power grid 

𝐺̇ Total gains (solar and internal)  (W) 

𝐺̇𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  Internal gains (W) 

𝐺̇s,r Solar gains thought roof (W) 

𝐺̇s,w Solar gains thought wall (W) 

𝐺̇s,wind Solar gains thought windows (W) 

𝐺̇solar Solar gains (W) 

hv Heat of evaporation of water (J kgvap
-1) 

HFD High flexibility demand  

HP Heat pump 

HVAC Heating, ventilation and air conditioning 

i Index 

IEA International Energy Agency  

j Index 

k Time (hours)  

kend End time (hours) 

kend_DR End time demand response event (hours) 

Kl Loss coefficient factor of TES (W m-2 K-1) 

kstart Starting time (hours) 

kstart_DR Starting time demand response event (hours) 

L-CNG Liquid to compressed natural gas  
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LFD Low flexibility demand  

LNG liquefied natural gas  

LP Linear programming 

m 
Number of neurons in the hidden layer in artificial neural network 

formulation 

ṁdc Flow rate in district cooling network (kg s-1) 

ṁvent Natural ventilation flowrate (kg s-1) 

ṁwater Water flow rate (kg s-1) 

Mair Mass of the internal air (kg) 

MES Multiple energy systems  

MILP Mixed integer linear programming 

MPC Model predictive control 

N Number of users 

OFC Objective function aimed at minimizing cost 

OFG Objective function aimed at minimizing electricity from grid 

OFP Objective function aimed at minimizing primary energy 

p Penalty signal  

Ṗres
∗  Dimensionless committed power 

𝑃̇𝑠ℎ𝑖𝑓𝑡
∗  Shifted power in relation to baseline (%) 

ṖBL Electricity power during baseline (W) 

ṖDR Electricity power in case of demand response event (W) 

𝑃̇G Electricity from the power grid (W) 

ṖHP,BL Electricity consumption heat pump in baseline (W) 

ṖHP,DR 
Electricity consumption heat pump in demand response scenario 

(W) 

Ṗmax Maximum electricity power of the cluster (W) 

Ṗmax,BL Maximum value of electricity in baseline (W) 

𝑃̇PV Electricity producible by the photovoltaic modules (W) 

Ṗrated Rated electricity power (W) 

ṖREF 
Electricity power in reference condition (i.e., without demand 

response events) 

Ṗres Committed power (W) 
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ṖSC Electricity power of the space cooling system (W) 

p1 Average weight of tres
∗  

p2 Average weight of Ṗres
∗  

p3 Average weight of trec
∗  

p4 Average weight of ηDR 

P1 Cooling power recovery profile from L-CNG 

P2 Cooling power recovery profile from L-CNG 

P3 Cooling power recovery profile from L-CNG 

PCM Phase change materials  

PF  Penalty factor for an energy source  

PFDC Penalty factor for district cooling source 

pfDC Primary energy conversion factor for district cooling 

PFe Penalty factor for source e acting as uncontrolled inputs 

PFG Penalty factor for withdrawals from grid 

PFPV Penalty factor for photovoltaic source 

pfPV Primary energy conversion factor for photovoltaic  

PH Prediction horizon (hours) 

PID Proportional–integral–derivative controller 

PSS Peak shaving strategy  

PV Photovoltaic modules 

𝑄̇ Thermal power provided by HVAC (W) 

Q̇building  Cooling power removed in the building (W) 

𝑄̇DC Cold thermal energy provided by district cooling (W) 

Q̇DH Latent cooling power removed by dehumidifier (W) 

Q̇max Maximum power provided by HVAC (W) 

Q̇SC Cooling power removed by space cooling system (W) 

R Thermal resistance (K W-1) 

Ree 
Thermal resistance between external environment and envelope 

thermal node ( K W-1) 

Rei 
Thermal resistance between envelope thermal node and air node 

temperature (K W-1) 
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Rfe 
Thermal resistance between external environment and external floor 

thermal node (K W-1) 

Rfi 
Thermal resistance between air node and internal floor thermal node 

( K W-1) 

Rfin Thermal resistance of thermal insulation of floor layer (K W-1) 

Ri 
Thermal resistance air node temperature and internal mass node ( K 

W-1) 

Rre 
Thermal resistance between external environment and external roof 

thermal node ( K W-1) 

Rri 
Thermal resistance between air node and internal roof thermal node 

(K W-1) 

Rrin Thermal resistance of thermal insulation of roof layer (K W-1) 

Rw Thermal resistance due to windows and natural ventilation (K W-1) 

Rwi 
Thermal resistance between air node and internal layers of vertical 

walls node (K W-1) 

Rwe 
Thermal resistance between external environment and internal 

layers of vertical walls node (K W-1) 

Rwin 
Thermal resistance between of thermal insulation of vertical walls 

(K W-1) 

RBC Rule based control 

RC Resistances and capacitances 

RES  Renewable energy resources  

RH Relative humidity (%) 

RHBL Relative humidity in baseline (%) 

RHDR Relative humidity in demand response scenario (%) 

RHlower,comfortlimit Minimum relative humidity comfort limit (%) 

RHupper,comfortlimit Maximum relative humidity comfort limit (%) 

RMSE Root Mean Square Error 

RSE Root Square Error  

SC Space cooling  

SETIS Strategic energy technologies information system  

SFH Single family house 

SRI Smartness readiness indicator 

S Split system 
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SSM State space model  

StROBe Stochastic residential occupancy behavior 

t Time (hours)  

trec
∗  Dimensionless recovery time 

tres
∗  Dimensionless response time 

Tair Indoor air node temperature (°C) 

Tair,BL Air temperature in baseline (°C) 

Tair,DR Air temperature in demand response scenario (°C) 

Tamb External temperature (°C) 

Tdata Temperature available by measurement data (°C) 

tDR Demand response duration (hours) 

Te Envelope thermal mass node temperature (°C) 

Tenv Environment temperature (related to TES) (°C) 

Tfe 
Temperature related to external floor layers  (from external to 

insulation layer)  (°C) 

Tfi 
Temperature related to internal floor layers (from internal to 

insulation layer) (°C) 

Tg Ground temperature (°C) 

Ti Internal mass node temperature (°C) 

Tlower, comfortlimit Minimum temperature comfort limit (°C) 

Tmax Maximum temperature (°C) 

Tmin Minimum temperature (°C) 

Tmodel Temperature predicted by the building model (°C) 

Tre 
Temperature related to external roof layers  (from external to 

insulation layer)  (°C) 

trec Recovery time (hours) 

tres Response time (hours) 

Tri 
Temperature related to internal roof layers (from internal to 

insulation layer) (°C) 

Tri,cp  Temperature of internal roof layers (ceiling panels) (°C) 

Troof,BL  
Temperature of the roof layer (coinciding with TMD) in baseline 

(°C) 
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Troof,DR  
Temperature of the roof layer (coinciding with TMD) in demand 

response scenario (°C) 

Tsp Setpoint temperature (°C) 

Tsp,minimization Setpoint temperature calculated by minimization (°C) 

Tsup Supply temperature heat pump (°C) 

TTES Temperature of thermal energy storage node (°C) 

TTMD Thermal mass temperature (°C) 

TTMD,BL Thermal mass temperature in baseline (°C) 

TTMD,DR Thermal mass temperature in demand response scenario(°C) 

Tupper,comfortlimit Maximum temperature comfort limit (°C) 

Twe 
Temperature related to external  layers of vertical walls  (from 

external to insulation layer)  (°C) 

Twi 
Temperature related to internal layers of vertical walls (from 

internal to insulation layer) (°C) 

TCL Thermostatically controlled loads  

TCM  Thermo chemical materials  

TES Thermal energy storage 

TMD Thermal mass of distribution system 

U Thermal transmittance (W m-2K-1) 

U Input vector in state space formulation 

u Index for users 

U1 Occupancy pattern 1 (archetype) 

U2 Occupancy pattern 2 (archetype) 

U3 Occupancy pattern 3 (archetype) 

UF Utilization factor for energy source 

UFe Utilization factor for source e acting as uncontrolled inputs 

UK United Kingdom 

𝑤̂𝑗 
Weights matrix of the hidden layer in artificial neural network 

formulation 

wji 
Weights matrix of the inputs  in artificial neural network 

formulation 

X State vector in state space formulation 

x Input in artificial neural network formulation 
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X  Set of variables of the optimization problem  

xair Absolute humidity of internal air (kgvap kgas
-1) 

xamb Absolute humidity of external air (kgvap kgas
-1) 

xmax Maximum absolute humidity (kgvap kgas
-1) 

xmin Minimum absolute humidity (kgvap kgas
-1) 

y Output artificial in artificial neural network formulation 

ηDR Demand response efficiency 

μc Cost signal mean value (Eur kWh-1) 

σc Standard deviation (Eur kWh-1) 
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