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ABSTRACT 

Introduction: Malignant pleural mesothelioma (MPM) is an aggressive disease, with few 

available treatment options. Identification of novel prognostic and predictive biomarkers 

is a priority. In MPM patients, BRCA-associated protein 1 (BAP1) alterations are 

detected in about 60% of cases and its prognostic role has been amply investigated in the 

last 10 years. However, the clinic relevance of BAP1 in MPM is still a matter of debate. 

In this study we aimed to clarify the prognostic role of BAP1 in MPM. Moreover, since 

miR-31 seems to be involved in BAP1 regulation at post-transcriptional level, we 

combined BAP1 status with the tissue expression levels of miR-31 in order to improve 

its prognostic performance. 

Methods: A systematic literature search was conducted. The inclusion criteria were: 

immunohistochemical (nuclear positivity) investigation of BAP1 expression on tumor 

tissue; hazard ratio (HR) values for the overall survival (OS) obtained through 

multivariate analysis (or adjusted for histotype). 

The expression of BAP1 and miR-31 was analyzed in tissues of 60 MPM patients treated 

with first-line chemotherapy. OS and progression-free Survival (PFS) were assessed by 

Kaplan-Meier method and Log-rank test was used to investigate differences among 

subgroups. Multivariate Cox regression analysis was used to evaluate independent 

predictors of survival.  

Results: In our cohort, BAP1 was positive/retained (≥1%) in 23 samples (38%) and 

negative/loss in 37 samples (62%). BAP1 loss was significantly associated with 

epithelioid histotype (p=0.01). At univariate analysis, there were no significant difference 

in terms of OS between BAP1 retained group (median OS=18.1 months, 95% CI 11.2-
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25.8) and BAP1 loss group (median OS=14.8 months, 95% CI: 10.7-29.3, p=0.17). 

Multivariate analysis showed that non-epithelioid histology was the only independent 

prognostic factor (HR 3.58, 95 % CI: 1.58–8.14, p=0.002). Even, from meta-analysis 

consisting of 698 patients, no differences were observed in term of OS according to BAP1 

status (HR 1.11; 95% CI, 0·76-1·61; p=0.60). 

Lower miR-31 levels were detected in epithelioid MPM (e-MPM) compared to the non-

epithelioid subtypes, which was associated with BAP1 loss. By looking at the e-MPM 

subgroup, loss of BAP1 was not able to predict clinical outcome. Conversely, miR-31 

levels were significantly associated with PFS (p=0.028), but not with OS (p=0.059). By 

combining the two biomarkers, e-MPM patients with BAP1 loss/low miR-31 levels 

showed a better prognosis compared to the ones with BAP1 retained/high miR-31 levels 

(median OS 22.6 months, 95% CI: 12.0-33.2 vs 17.0 months, 95% CI: 11.5-22.5, p=0.017 

and median PFS 8.7 months, 95% CI: 3.3-14.1 vs 5.1 months, 95% CI: 2.5-7.6, p=0.020). 

The BAP1 and miR-31 combination was confirmed at multivariate analysis as an 

independent prognostic factor for e-MPM patients. 

Conclusion: BAP1 alone was unable to stratify MPM patients based on its status when 

histotype was considered. However, in e-MPM patients, prognostic stratification may be 

improved by simultaneously assessing BAP1 status and miR-31 levels. The two-

biomarker score is useful to identify a subgroup of e-MPM tumors characterized by BAP1 

retained and high miR-31 levels with worse clinical outcome. 
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ABBREVIATIONS 

AP-1   activator protein 1 

AST  atypical Spitz tumor 

ASXL  putative polycomb group protein  

BAP1  BRCA-associated protein 1 

BARD1 BRCA1-associated RING domain protein 1 

Bcl-2  B-cell lymphoma 2 

BRCA2 breast cancer type 2 susceptibility protein 

CD  cluster of differentiation 

CDKN2 cyclin-dependent kinase inhibitor 2A 

CM   cutaneous melanoma 

COX7C cytochrome c oxidase subunit 7C 

CT  computed tomography 

CTD  C-terminal domain 

CTLA-4 cytotoxic T-lymphocyte–associated protein 4 

DAMP  damage associated molecular pattern 

DUB  deubiquitinating enzyme 

EPD   extended pleurectomy/decortication 

EPP   extrapleural pneumonectomy  

ER  endoplasmic reticulum 

FFPE  Formalin-Fixed Paraffin-Embedded 

FISH   fluorescence in situ hybridization 

FoxK  Forkhead Box K 
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HBM  host cell factor 1 binding domain 

HCF1  host cell factor 1 

HMGB1 high mobility group box 1 

HGF  hepatocyte growth factor 

HR   hazard ratio 

IGF  insulin-like growth factor  

IHC  immunohistochemistry  

IL  interleukin 

IP3R3  inositol 1,4,5-trisphosphate receptor type 3 

LATS2 large tumor suppressor kinase 2  

LDH   lactate dehydrogenase 

MAM  mitochondrial-associated membranes 

MAPK  mitogen activated protein kinases  

MBAIT melanocytic BAP1-mutated Atypical Intradermal Tumor 

MCP-1 monocyte chemoattractant protein-1 

MCU  mitochondrial uniporter channel 

miRNA microRNA 

MLH1  mutL homolog 1 

MLH3  mutL homolog 3 

MM  malignant mesothelioma 

MPM  malignant pleural mesothelioma 

MRI  magnetic resonance imaging 

mTOR  mammalian target of rapamycin 

NF2  neurofibromin 2 
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NF-kB  nuclear factor kappa-light-chain-enhancer of activated B cells 

NGS  next-generation sequencing 

NLS  nuclear localization signal 

OGT  O-linked N-acetylglucosamine transferase 

OS   overall survival 

PDGF  platelet-derived growth factor 

PD-L1  programmed death-ligand 1 

PET  positron emission tomography  

PFS  progression-free survival 

PMT  pemetrexed maintenance therapy 

PRC  polycomb-repressive complexes 

PR-DUB polycomb group repressive deubiquitinase complex 

qRT-PCR real-time PCR 

RAGE  receptor for advanced glycation endproducts 

RCC  renal cell carcinoma 

RNS   reactive nitrogen species 

ROS  reactive oxygen species 

SETD2 SET domain containing 2 

SMRP  soluble mesothelin-related peptides 

TGF-β  transforming growth factor β 

TNF-α  tumor necrosis factor α 

TP53  tumor protein 53 

UCH  ubiquitin carboxyl hydrolase domain 

ULK  Unc-51 like autophagy activating kinase 

https://en.wikipedia.org/wiki/Receptor_(biochemistry)
https://en.wikipedia.org/wiki/Advanced_glycation_end-product
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UM  uveal melanoma 

VDAC  voltage-dependent anion channel 

VEGF  vascular endothelial growth factor  

WT1  wilms' tumor protein 

YY1  Ying Yang 1 
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1. INTRODUCTION 

1.1 Malignant Pleural Mesothelioma 

Malignant pleural mesothelioma (MPM) is an aggressive treatment resistant tumor that 

arises from the neoplastic transformation of the pleural mesothelium, a thin membrane 

that covers and protects the lung (1). MPM represents up to 80% of all cases of malignant 

mesothelioma (MM). The other form of mesothelioma originates from other serous 

membranes coated with mesothelium and are peritoneal mesothelioma (other 20% of 

mesothelioma), pericardial mesothelioma and mesothelioma of vaginal tunic that are both 

very rare (2). Seventy per cent of MPM cases are associated with documented exposure 

to asbestos and develop after a latency period of 30-40 years (4). MPM develops 

insidiously in patients and is difficult to be diagnosed in the early stages because it does 

not show specific symptoms until advanced stages. Even diagnostic tools are not helpful 

for early detections of MPM and there is a lack of serum biomarkers that have not yet 

been determined. The body cavities where MPM initially develops, present anatomical 

location and characteristics that also causes malignant cells to easily spread and invade 

the adjacent cavities. Due to late diagnosis, only a few patients undergo surgery and 

current therapy is not very effective so life expectancy ranges from 9 to 18 months from 

diagnosis (5). 

1.1.1 Epidemiology 

Until the second half of the 20th century MPM was extremely rare, but its incidence and 

mortality rates began to rise in the 1960s after the massive use of asbestos, a mineral fiber, 
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during World War II and thereafter (6). The first studies that confirmed the link between 

asbestos and MPM were two epidemiological studies conducted by Doll et al and Wagner 

et al in 1955 and 1960, respectively (7, 8). 

There are approximately 400 different types of asbestos fibers present in nature, but those 

used commercially are six (amphiboles fibers [crocidolite, actinolite, tremolite, 

anthophyllite, and amosite] and serpentine fibers [chrysotile]) and were collectively 

called “asbestos” (Figure 1) (9).  

 

Figure 1 .  Presence of asbestos fiber in a lung alveoli’s  biopsy from a patient with 

mesothelioma who worked for “Eternit,”  

The use of these six fibers were regulated in high-resource countries between 1970 and 

late 1980, but not the remaining approximately 400 mineral fibers, although many of them 

are carcinogenic and have been associated with mesothelioma (9, 10).  

Asbestos is characterized by high resistance to heat, as well as chemical and biological 

agents, abrasion, and wear; therefore, it was widely used in the shipbuilding and 

construction industries, especially between the 1940s and 1979 in the United States and 
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Europe (11). MPM is a disease characterized by a long latency interval between the onset 

of exposure and the appearance of the disease (from 20 to 40 years and over) (12). Thus, 

despite controls on the use of asbestos introduced over the years, the incidence and the 

annual number of deaths from mesothelioma has continued to rise worldwide with a 

deaths peak expected between 2015-2025 and, according to some experts, even in 2040 

(13–18).  

According to WHO estimates, more than 100,000 deaths are due to the consequences of 

occupational exposure to asbestos (mesothelioma, lung cancer, and asbestosis) and it has 

been estimated that, between 1994 and 2008, age-adjusted mesothelioma mortality rates 

increased by 5.37% per year worldwide (19). In Western Europe, due to asbestos 

exposure, are expected 500,000 deaths in the first thirty years of 2000 (20-22) and the 

underlying level of the mortality rate from mesothelioma is about 1–2 per million/year 

(23-25). Currently there are about 2,000 to 3,000 cases per year in the United States, but 

the incidence rate varies between states with or without asbestos industry (from less than 

one case to 2-3 cases per 100.000 inhabitants). In the U.S. there are 3000 deaths per year 

and projections estimates 100.000 deaths over the next 40 years (9,10,19, 26-28). 

According to the Surveillance, Epidemiology, and End Results (SEER) database, the 

MPM in the USA reached the peak in the 1980s to 1990s with an incidence in men of 2.5 

cases per 100.000 and now is stable to 1.8 cases per 100.000. In women the rate has been 

0.4 cases per 100.000 and has not changed over time. Women have also threefold better 

survival than men (29). In the US the mean age of death for MPM was 72.8 years, with a 

male-to-female (M:F) mortality ratio of 4.2:1, since men were traditionally more likely 

to be employed in works involving asbestos exposure. But, with equivalent asbestos 

exposure, men and women have a similar incidence of MPM (30). 
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The highest age-standardized incidence rates in 2018 were observed in the US, Western 

Europe, Australia, Russia, Turkey, South Africa, and Argentina (31). The incidence 

varies between 7 per million in Japan and 40 per million in Australia (32, 33). In the last 

twenty years, the incidence has steadily increased in Europe in the industrialized 

countries, with an average incidence of 20 per million inhabitants/year and its peak is 

expected to be around 2020–2025 (15, 34). In addition, a temporal decline in 

mesothelioma mortality rates in males has been observed in Sweden and in the United 

Kingdom, probably thanks to the introduction of regulatory laws during 1970s (35). 

Instead, rates in those countries among women are still rising as of 2018 (19, 36, 37). 

Europe incidence data for the year 2000-2007 are available on RARECARE, which 

estimates the frequency of rare cancers in Europe. (38) (Table 1).  

Tumor 
Crude 

Incidence Rate 

Per 100.000 

95% Confidence 

Interval 

Number of Cases 

Collected in the 

RARECAREnet 

Database from 2000-

2007 

Estimated 

New Cases 

EU 2013 

Malignant 

Mesothelioma 
2.14 2.12 2.16 33.552 12.526 

Mesothelioma of 

pleura and 

pericardium 
1.83 1.80 1.85 28.627 10.703 

Mesothelioma of 

peritoneum and 

tunica vaginalis 
0.13 0.12 0.13 2.065 746 

 

Table 1.  RARECARE incidence of malignant mesothelioma (MM) 2000-2007. Source: 

http://www.rarecarenet.eu/analysys.php, Updated 10 June 2019. 

Russia, China, Thailand, Brazil, India, Kazakhstan, Iran, and Ukraine were the highest 

worldwide consumption of asbestos from 1995 to 2003, but the World Health 

Organization include mesothelioma incidence and mortality data only for Kazakhstan, 

http://www.rarecarenet.eu/analysys
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where incidence rates increased from approximately 0 to 0.26 cases per 100,000 persons 

in the past 10 years (31). 

Unfortunately, each country banned and regulated the use of asbestos in different times, 

so, in the next decades, it is expected that mesothelioma rates will follow dissimilar 

patterns. By 1990, in the most industrialized countries, the use of asbestos had been 

reduced by at least 75% from the peak asbestos consumption. In 1999, Iran, Korea, Chile, 

and Egypt reached the same level of reduction, as did Nigeria, Zimbabwe, the United 

Arab Emirates, Ukraine, and Kazakhstan between 2000 and 2005. But, where the asbestos 

is still used, such as the Russian Federation, India, and China, an increase in age-adjusted 

mesothelioma incidence and mortality rates is expected in the coming years (39).  

In the European Union, the directive 2003/18/CE of the European Parliament and of the 

Council of 27 March 2003 provides the obligation to the completely stop of the asbestos 

use by 15 April 2006. In Italy, the law n. 257 of 27 March 1992 declared the "cessation 

of the use of asbestos", and the ban on the extraction, import, export, marketing, and 

production of asbestos products and products containing asbestos, but the law did not 

prohibit the indirect use. Therefore, the Italian territory is disseminated of several million 

tons of compact materials containing asbestos and many tons of friable asbestos are still 

present in many contaminated sites, industrial and nonindustrial, public, and private. In 

Italy, the number of exposed worker is very high because the raw asbestos produced or 

imported has been used in a wide range of industrial activities such as sectors of industrial 

production of asbestos-cement manufactured articles, textile manufactures containing 

asbestos, shipbuilding, repair and demolition of railway rolling stock, construction, and 

in many other sectors of economic activity (2).  
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Moreover, given the presence of numerous asbestos mines, in Italy the production of raw 

asbestos was very high, with 3,748,550 tons of raw asbestos produced up to 1992, and 

with a peak of more than 160,000 tons/year between 1976 and 1980. For these reasons, 

Italy is one of the most involved and sensitive country in asbestos related diseases 

monitoring and control (2). In particular, Piedmont was one of the most affected Italian 

regions, since it hosted the main European chrysotile quarry (Balangero, operating from 

1917 through 1990) and the largest facility for the manufacture of asbestos-cement 

products (Casale Monferrato, operating from 1907 through 1985) (40-43). The asbestos 

cement factory, owned by Eternit, in Casale Monferrato, produced plain and corrugated 

sheets, tubes, and high-pressure pipes. The asbestos cement factory had an average 

workforce of over 1000 workers and was located close to the town center of Casale 

Monferrato, causing also airborne asbestos contamination in the town. Therefore, Casale 

Monferrato is one of the Italian towns with the highest incidence and mortality of 

malignant mesothelioma [44, 45]. The Registry of Malignant Mesothelioma – ReNaM – 

of Piedmont reported that, between 2010-2014, the incidence rates in Casale Monferrato 

was of 90.2/100.000 person years in men and 45.4 in women [Registry of Malignant 

Mesothelioma – ReNaM – of Piedmont, www.cpo.it/it/articles/show/incidenza-e-

sopravvivenza-dei-mesoteliomi-1990-2014/]. The case of Casale Monferrato is even an 

example that mesothelioma does not occur only in people who had work in direct contact 

with asbestos, but even to people that had an environmental exposure to asbestos. 

Between 2001-2006, an analysis of exposure histories of 847 cases of mesothelioma 

demonstrated that only 475 cases (56%) was considered occupationally exposed, 

whereas, 357 (42%) was classified as non-occupationally exposed, mostly due both to 

living in proximity to the asbestos-cement factory (“environmental” exposures: 200 
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cases) or to have a factory workers in family (‘familial’ exposure: 144 cases). These 

evidences make known the how persisting is asbestos contamination in the workplace and 

in the general environment from asbestos-cement production (46). Unlike MPM caused 

by occupational exposure, those caused by the environment tend to occur at a younger 

age (<55 years) with an M:F ratio close to 1:1.6, probably why environmental exposure 

often begins at birth and occurs randomly among sexes (19). 

In Italy, the epidemiological surveillance of mesothelioma cases is assigned by the Decree 

of the President of the Council of Ministers n. 308/2002 to the ReNaM established at the 

National Institute for Insurance against Accidents at Work (INAIL) [47]. For the 

incidence period between 1993 and 2015, ReNaM has collected 27,356 MM and the 

modalities of exposure to asbestos have been investigated for 21,387 (78%) cases (Table 

2).  

Modality of exposure 
Incidence period (1993-2015) 

Male (%) Female (%) Total (%) 

Occupational, define 9.300 (59.3) 987 (17.3) 10.287 (48.1) 

Occupational, probable 1.358 (8.7) 191 (3.3) 1.549 (7.2) 

Occupational, possible 2.246 (14.3) 736 (12.9) 2.982 (13.9) 

Familial 152 (1.0) 895 (15.7) 1.047 (4.9) 

Enviromental 409 (2.6) 530 (9.3) 939 (4.4) 

Other non-occupational 128 (0.8) 194 (3.4) 322 (1.5) 

Unlikely 268 (1.7) 308 (5.4) 576 (2.7) 

Uknown 1.824 (11.6) 1.861 (32.6) 3.685 (17.2) 

Total defined 15.685 (100.0) 5.702 (100.0) 21.387 (100.0) 

Total 19.633 (100.0) 7.723 (100.0) 27.356 (100.0) 

Total defined 15.685 (79.9) 5.702 (73.8) 21.387 (78.2) 

Total undefined 3.948 (20.1) 2.021 (26.2) 5.969 (21.8) 

Table 2 Italian National Mesothelioma Register  (ReNaM) archives.  Collected malignant 

mesothelioma cases by modality of asbestos exposure and gender. ReNaM archives updated 

at December 2016, diagnosis period 1993–2015*, Italy  
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Among them, an occupational exposure has been defined for 14,818 (around 70%) of 

defined cases. Non-occupational exposure has been defined for 9.3% of cases of which 

4.9% due to family exposure and 5% due to environmental exposure. The exposure 

median period was 1959 [1951-1966]. Average age at diagnosis of malignant 

mesothelioma (MM) was 70 years, with no appreciable gender differences (70.8 years in 

woman and 69.5 in men). MM cases younger than 45 years at diagnosis are very rare (less 

than 2%). More than 90% of collected cases are pleural mesotheliomas (93%). Peritoneal 

MM cases are 6.5% (5.3% and 9.4% in men and women respectively) and pericardial and 

tunica vaginalis testis MM cases are very rare (58 and 79 collected cases respectively 

among the entire ReNaM archives). Epithelioid histology represented the 55% of cases. 

Gender ratio is, constantly in time, equal to 2.54 (M/F) and to 2.64, if restricted to pleural 

cases (48). From this analysis it was possible an examination of the geographic 

distribution of mesothelioma cases in Italy which enabled the identification of clusters in 

the municipalities with the highest incidence rates, such as Casale Monferrato, Broni, 

Genoa, La Spezia, Grugliasco-Collegno, Monfalcone, Trieste, Castellamare di Stabia, 

Bari, Taranto, Biancavilla, and Augusta (49-52) (Figure 2).  

 

Figure 2. Italian National Mesothelioma Register (ReNaM) archives. Number of MPM 

cases in men and women (a) and incidence rates of MPM in men (b) and woman (c), by 

municipality of residence at the time of diagnosis,  Italy. ReNaM archives updated to 

December 2016, diagnosis period 1993–2015. Sardinia, Molise and Calabria are excluded 

due to lack of data.  
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1.1.2 Etiopathogenesis 

MPM has been associated with asbestos exposure and over 80% of MPM patients have a 

history of asbestos exposure (53). Although asbestos, in particular crocidolite, is 

considered to be the carcinogenic agent mostly involved in MPM etiology, only the 5% 

of asbestos-exposed subjects develop the disease (54). As MPM is a relatively rare 

malignancy, it is still not clear how much exposure is needed to cause MPM, and what 

mechanisms are triggered during the long latency from the time of exposure to the time 

of tumor development. In vivo experiments have shown that there is a clear dose-

response, thus, MPM does not develop below a certain dose of exposure (about 1 mg) 

(55). However, in human, there is no defined threshold limit for mesothelioma risk, which 

may arise even after short asbestos exposure (24, 56, 57). 

When long and thin asbestos fibers are inhaled deeply into the lung and penetrate the 

pleural space, the interaction between asbestos fibers, mesothelial cells and inflammatory 

cells occur, causing chronic inflammation and atypical mesothelial hyperplasia. The 

single flat layer of mesothelial cells that form the pleura and peritoneum round up and 

forming multicellular layers from which over time mesothelioma may arise (58). Chronic 

inflammation is the primary mechanism of asbestos-related carcinogenesis. The 

continuous generation of highly reactive oxygen species (ROS) promotes DNA mutation, 

and trigger transformation (59). The presence of iron (II) ions (Fe2+) in asbestos fibers 

can also induce hemolysis by sequestering Fe(II) from hemoglobin (60); this lead to a 

particular reaction (Fenton reaction), where free Fe(II) disproportionate H2O2 into 

hydroxyl radicals that oxidize DNA, free nucleic acids, proteins, and lipids (61). Also, 

Macrophage are unable to complete digest asbestos fiber after phagocytosis, and, over 

time, this generates abundant ROS and even reactive nitrogen species (RNS). Asbestos 
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fibers are also engulfed by mesothelial cells where can physically interfere with the 

mitotic process of the cell cycle by disrupting mitotic spindles. This may result in 

chromosomal structural abnormalities and aneuploidy of mesothelial cells. Asbestos 

fibers absorb a variety of proteins and chemicals on their broad surface and may result in 

the accumulation of hazardous molecules including carcinogens. The fibers can also bind 

important cellular proteins necessary for the normal function of mesothelial cells (62, 63). 

All these processes lead to DNA damage in the forms of single-strands breaks, crosslinks, 

and double strand-breaks. Particularly, the oxidation of the 8th carbon on the DNA base 

guanine (8-oxo-2’deoxyguanosine) changes normal 2’deoxyguanosine Watson-Crick 

base pairing preference from 2’deoxycitosine to 2’deoxyadenosine, resulting in G to T 

and C to A transversions (64). 

Paradoxically, human mesothelial cells are very susceptible to this asbestos cytotoxicity, 

which raises an issue of how asbestos causes MPM if human mesothelial cells exposed 

to asbestos die (65). This paradox was addressed by recent findings which demonstrated 

a critical role for TNF-α and NF-kB signaling in mediating human mesothelial cell 

responses to asbestos. TNF-α signaling through NF-kB-dependent mechanisms increases 

the percent of human mesothelial cells that survive to asbestos exposure, and which can 

therefore undergo to malignant transformation. These findings suggest a pathogenic 

model where asbestos causes expression of several cytokines, including MCP-1, which 

in turn cause the accumulation of macrophages in the pleura and lung where they can 

encounter asbestos and release TNF-α. At the same time, in mesothelial cells, asbestos 

directly induces the expression of the TNF-α receptor and the secretion of TNF-α. When 

TNF-α, released by macrophages and by human mesothelial cells, binds its own receptor 

this activates NF-kB signaling which promote survival of human mesothelial cells 
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following asbestos exposure (66). This process allows human mesothelial cells with 

accumulated asbestos-induced DNA damage to survive, divide and propagate genetic 

aberrations in pre-malignant cells. Finally, if sufficient genetic damage accumulates 

occur; these cells could eventually develop into a MPM (Figure 3). 

 

Figure 3. Mechanisms of asbestos-induced carcinogenesis  

Even autophagy has a role in asbestos-induced carcinogenesis via the pro inflammatory 

protein high mobility group box 1 (HMGB1). There are two type of autophagy: 

constitutive (background) autophagy, that recycles cellular components from 

aged/damaged organelles and induced (reactive) autophagy, that occurs in response to 

environmental challenges and protect cells from apoptosis and necrosis (66-69). Yang et 
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al demonstrated that asbestos induced programmed cell necrosis in human mesothelial 

cells and induced necrotic cell to release HMGB1 into extracellular space (70). In addition 

to stimulate inflammation (71-73), HMGB1 triggers the inflammasome pathway (74) and 

sustain the chronic inflammatory process induced by asbestos; HMGB1 modulates even 

autophagy in cells under pro-autophagic stressed (75-77). Finally, in a recent study, Xue 

et al demonstrated the link between autophagy and asbestos-induced HMGB1 

translocation from the nucleus to the cytoplasm and to the extracellular space. They found 

that both cytoplasmic and extracellular HMGB1 mediated asbestos-induced autophagy 

through the RAGE-mTOR-ULK and Beclin 1 pathways (78). Cytoplasmic HMGB1 can 

activate p-Beclin 1 displacing Bcl-2 (77) and extracellular HMGB1, thus contributing to 

p-Beclin 1 activation and autophagy via binding to the cell-surface receptor RAGE, 

which, in turn, initiated a downstream pathways that culminated in increased levels of p-

Beclin 1 (Figure 4) (78). This mechanism allows asbestos-exposed mesothelial cells that 

have sustained DNA damaged to survive. Otherwise, in human mesothelial cells with 

HMGB1 silenced, autophagy is inhibited and cells undergoing to apoptosis or necrosis 

(78). 
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Figure 4 .  Schematic representations of the asbestos-HMGB1-autophagy pathway.  

In addition to TNF-α, other growth factors and cytokines are involved in the 

carcinogenesis process caused by asbestos: transforming growth factor β (TGF-β), which 

may play a role in stimulating the growth of cancer cells; platelet-derived growth factor 

(PDGF), an important mitotic agent, which may act as a regulatory factor in the 

proliferation of MPM cells; the insulin-like growth factor (IGF), which it would promote 

tumor proliferation and cell migration (79). Furthermore, interleukins, such as IL-6 and 

IL-8, could promote tumor cell growth and neo-angiogenesis with the development of 

newly formed capillaries. In particular, IL-8 plays the role of an autocrine factor for cell 

growth (80). Other growth factors involved in the pathogenetic mechanism of 

mesothelioma are the vascular endothelial growth factor (VEGF), that promotes neo-

angiogenesis (81) and the hepatocyte growth factor (HGF) which stimulates cell 

proliferation, as well migration and invasiveness in tissues by the tumor (82). 
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In addition to the production of growth factors, asbestos stimulates and interacts with 

several signaling pathways, such as the mitogen activated protein kinases (MAPK) 

signaling that lead to the activation of the transcription factor AP-1 that stimulates the 

mitosis of mesothelial cells (62). 

Because of the carcinogenic “field effect” caused by asbestos, mesotheliomas are often 

polyclonal (83, 84). Recently, the Cancer Genome Atlas program, published a study 

aimed to investigate the genetic alterations of 74 mesotheliomas using next-generation 

sequencing (NGS). As in the previous comprehensive NGS study by Bueno et al (85), 

Hmeljak et al (86) reported frequent somatic mutations and/or copy-number alterations 

of CDKN2A, NF2, TP53, LATS2, and SETD2 (Figure 5) (85, 86). In addition, the 

authors (85) reported a 57% prevalence of BAP1 mutations, confirming the previous 

comprehensive analysis reporting a 60% prevalence of BAP1 mutations (87). 

Figure 5 .  Mutational hierarchy in mesothelioma subtypes.  
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As previously reported only 5% of asbestos-exposed subjects developed MPM. It has 

been seen that, in addition to the mechanisms described above, gene predisposition is also 

involved in the development of mesothelioma (88). Inherited mutations of DNA repair 

genes and of other genes could accelerate the accumulation of DNA damage and/or the 

percentage of cells carrying DNA damage (89). In addition, inherited mutations may also 

increase susceptibility to environmental carcinogens (GxE interaction) (89). Several 

tumor suppressor genes have recently been found to cause a hereditary predisposition to 

mesothelioma and, overall, at least 12% of mesotheliomas occur in carriers of genetic 

mutations (90-92). Most of these heterozygous germline mutations occur in genes that 

regulate DNA repair, such as MLH1, MLH3, TP53, BRCA2, but the first and the most 

studied gene associated with mesothelioma predispositions is BAP1 (90-92). 

1.1.3 Clinical presentation and diagnosis 

MPM symptoms are non-specific and may mimic other respiratory diseases (93,94). Most 

patients with MPM present dyspnea which is associated with breathlessness, chest pain, 

weight loss and fatigue (95, 96) and is predominantly related to the development of a 

pleural effusion. Thoracic pain is common and multifactorial in MPM and is due by tumor 

invasion of chest wall. When tumor invades neural intercostal, paravertebral or brachial 

plexus structures may cause bone pain and neuropathic pain. At advanced stages, MPM 

symptoms include weight loss, fatigue, fevers, cachexia and nights sweats and are often 

detected hypoalbuminemia, thrombocytosis, elevated erythrocyte sedimentation rate and 

anaemia (32, 97) 

MPM develops initially unilaterally and local invasion of neighboring structures, 

including lymph node involvement, can occur, causing superior vena cava syndrome, 
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pericardial effusion and subsequent cardiac tamponade, spinal cord compression as well 

as a subcutaneous involvement. The affected site becomes fixed and cannot expand. Other 

MPM progression may involve invasion of contralateral pleural cavity and peritoneum. 

Unlike lung cancer, distant metastases rarely occur in MPM since patients die before 

metastases occur (98, 99).  

Standard diagnostic work-up in patients with MPM starts with Chest X-ray and/or 

computed tomography (CT) scan of chest and upper abdomen in order to shows pleural 

effusion at disease site, pleural thickening and involvement of the interlobar fissure and 

invasion of the chest wall (Figure 6). 

 

 

Figure 6 .  Chest radiographs in P-A projection of the chest with left (a) and right (b)  

pleural effusion, respectively.  

Then, by thoracentesis or by fine-needle aspiration biopsy the pleural effusion is drained, 

and the fluid is examined cytologically. Pleural biopsy is often required for a definitive 

diagnosis histological and bio-molecular diagnosis, and pleurodesis with talc poudrage is 

often performed during the same surgical setting. Recognition and rapid investigations of 

the pleural or peritoneal effusion are key for early diagnosis. Delayed diagnosis will 
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inevitably lead to tumor progression, limiting the therapeutic options. Also, by PET and 

MRI, it is possible define the extension of the disease. Additional investigations include 

blood markers and pulmonary function tests (100, 101).  

1.1.4 Histology and staging 

As previously said, a definitive diagnosis of mesothelioma requires histological 

evaluation. Biopsies are mostly obtained by thoracoscopy or laparoscopy.  

According to the 2015 World Health Organization Classification of Tumors of the Pleura, 

malignant mesothelioma is broadly classified as epithelioid, sarcomatoid, or biphasic 

types (102) In the NCDB (National Cancer Database, USA) from 2003 to 2014, MPM 

subtypes were 38.4% epithelioid, 12.3% sarcomatoid, 11% biphasic, and 44.7% not 

otherwise specified (103)  

Epithelioid MPM (Figure 7a) is the most common histotype (60%–70%) of MPM and is 

associated with less severe prognosis than non-epitheliod MPM. (104, 105). The median 

overall survival for the epithelioid mesothelioma is 24.9 month (106). Histologically, the 

tumor cells have an epithelioid morphology with an ample cytoplasm with well-defined 

cell borders. The nuclei are frequently bland and can look like reactive mesothelial cells 

with moderate cytologic atypia. Growth patterns include tubulo-papillary, microglandular 

(adenomatoid), acinar, and solid. Morphologic variants of epithelioid mesothelioma 

include clear cell, small cell, deciduoid, adenoid cystic, lymphangiomatoid, and signet 

ring cell morphology (106). 

Sarcomatoid MPM (Figure 7b) is the most aggressive subtype with a median survival of 

7 months (106) It is characterized by a proliferation of spindle cells infiltrating dense 

fibrous stroma and exhibit a disorganized growth pattern. The spindle cells may show 
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marked nuclear atypia and hyperchromasia. Areas of osseous and cartilaginous 

differentiation have been reported (107). This subtype is non resectable by surgical 

intervention.  

Biphasic MPM is characterized by the simultaneous presence of both epitheliod and 

sarcomatoid cells. This suggest that survival may correlate with the amount of 

sarcomatous component present within the tumor (Figure 7c) (102). This diagnosis is of 

clinical importance, because selecting patients for surgical intervention is dependent on 

the absence of a sarcomatoid component and tumor volume and resectability.  
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Figure 7. Immunohistochemistry  imagines of mesothelioma; (a) epitheliod, (b)  

sarcomatoid and (c) biphasic subtype.  

The staging classifications of MPM is based on the AJCC (The American Joint 

Committee on Cancer)/UICC (International Union Against Cancer) criteria (Figure 8) 

(108, 109). According to this, T classification is determined based on the extent of tumor 

invasion within the pleura and into adjacent thoracic structures so, T1 tumors, are those 

that remain confined to unilateral pleural surfaces. The T2 classification includes 

a 

b 

c 
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extended tumors that involve ipsilateral parietal or visceral pleura with invasion of lung 

parenchyma or diaphragm muscle. T3 tumors are locally advanced and are extended to at 

least one of the following structures: endothoracic fascia, mediastinal adipose tissue, 

nontransmural invasion of the pericardium, or focal resectable soft tissue of chest wall. 

Finally, T4 are unresectable tumors with diffuse or multifocal chest wall soft tissue 

involvement, invasion of brachial plexus, bony components of chest wall or spine, 

mediastinal organs, contralateral pleura, or extension through diaphragm or pericardium. 

Unlike TNM staging of most solid tumors, due to the impracticality of measuring tumors 

with irregular and highly variable morphology, criteria for T classification of MPM do 

not include consideration of tumor size. N classification of MPM follows the lung cancer 

map (110). MPM are classified as N1 when invade pulmonary lymphatics that drain 

predictably and progressively through intraparenchymal and ipsilateral hilar lymph 

nodes; MPM N2 present metastasis in ipsilateral and midline mediastinal nodes; MPM 

N3 present metastasis in contralateral and extrathoracic stations. The lung map does not 

account for some nuances of MPM nodal invasion, however, MPM can even invade 

pulmonary parenchyma from visceral pleura following this metastatic pattern (111) TNM 

grouping criteria do not distinguish N1 from N2, although studies have demonstrated 

worse prognosis for N2 than N1 (112, 113). Nevertheless, evidence-based proposals have 

been made to refine N classification considering combined N1 and N2 involvement 

versus N1-only or N2-only disease (114), the number of involved nodes (112) or nodal 

stations (115), or the specific mediastinal stations involved (113). M classification of 

MPM indicates the absence (M0) or the presence (M1) of distant blood-borne metastasis. 

Usually, the presence in brain, bone, kidney and adrenal glands metastases is a rare 

condition, although it has been documented (116). Probably this is due to the 
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comparatively rapid and fatal progression of local T4 disease involving vital intrathoracic 

organs. (117). 

 

Figure 8. The proposed International TNM Staging System for MPM 

1.1.5 Therapeutic approach  

Only a minority of MPM patients is fit enough to be a surgical candidate and the 

indication for surgery has become stricter in the last years. Complete microscopic surgical 

resection is highly unlikely and MPM almost always recurs after surgery alone (118). 

Therefore, surgery is usually always part of a multimodal treatment strategy and is 
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considered only in patients with stage I/II MPM and only with epithelioid histology. Non-

epithelioid subtypes are “unresectable”.  

The ideal surgical intervention to achieve maximal cytoreduction is still under debated 

(119). There are two types of surgical intervention for MPM, extrapleural 

pneumonectomy (EPP), and lung-sparing extended pleurectomy/decortication (EPD), but 

there is no difference in terms of survival between the two methods (120). Otherwise, 

many experts still prefer EPD, in part because of the preservation of lung parenchyma 

and theoretical postoperative functional improvement and capacity to tolerate further 

pulmonary insults (119 (Figure 9).  

 

Figure 9 .  Demonstration of preservation of the lung parenchyma in epitheliod MPM before 

and after EPD 

Most patients with mesothelioma are not offered surgery because of the extent of disease, 

advanced age, comorbidities, or poor performance status, and are considered for palliative 

chemotherapy instead. For more than fifteen years, the standard first line treatment, both 

for resectable and unresectable MPM, has been cisplatin-pemetrexed and it is currently 

the only regime approved by the Food and Drug Administration (FDA) for MPM. 

Cisplatin is a genotoxic chemoterapy that induces intra-strand DNA cross-linking, 
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causing DNA damage and interfering with DNA replication (121). Pemetrexed is a folate 

antimetabolite that inhibits three enzymes used in purine and pyrimidine synthesis. By 

inhibiting the formation of precursor purine and pyrimidine nucleotides, pemetrexed 

prevents the formation of DNA and RNA, both required for the growth and survival of 

normal and cancer cells. However, MPM is a highly heterogeneous cancer and 

chemotherapy treatment can cause additional selective pressure by eradicating only 

sensitive proliferative cells. Resistant cells remain and can still grow or regrow after 

treatment (122) 

In a randomized study was observed that the median OS in the cisplatin-pemetrexed arm 

was 12.1 vs. 9.3 months in the control arm that received cisplatin mono therapy (P=0.020, 

two-sided log- rank test). The most common non-hematological toxicities, in both groups, 

were nausea, vomiting and fatigue within around 90% of patients experiencing grade-3 

toxicity (123).  

Although platinum-pemetrexed is an active agent in the first line treatment, chemotherapy 

may only alleviate symptoms but is not curative. Several studies have been conducted to 

improve the survival of MPM patients by combining the two classic drugs with drugs 

used for other tumors. VEGF signaling is an important concept in mesothelioma cell 

pathophysiology (124). The addition of anti-angiogenesis agents to chemotherapy has 

been tested in several clinical studies. In the phase III MAPS trial, addition of 

maintenance bevacizumab, an anti-VEGF antibody, to cisplatin-pemetrexed therapy in 

unresectable treatment naïve patients, prolonged median PFS from 7.3 to 9.2 months and 

median OS from 16.1 to 18.8 months. Unfortunately, in the bevacizumab combination 

arm more grade-3 toxicity occurred, like hypertension (23% vs. 0%) and thrombotic 

events (6% vs. 1%) (125). 
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In MPM there is no current evidence for maintenance chemotherapy and there is a lack 

of studies showing a better PFS or survival benefit. In a study with a cohort of 13 patients 

(out of 30 patients who started with platinum-pemetrexed), treatment with pemetrexed 

maintenance therapy (PMT) was associated to a better survival with a median OS of 8.5 

vs. 3.4 months in the cohort without maintenance therapy. Grade-3 toxicity consisted of 

neutropenia, leucopenia and anemia. The only non- hematological grade-3 toxicity during 

PMT was fatigue (15%). The reason to stop PMT was disease progression (69%), toxicity 

(23%) and in patient’s best interest (8%) (126).  

Up today, there is no standard second line treatment in MPM, but if there is a good 

sustaining response at the time of initial chemotherapy interruption, the NCCN guidelines 

recommend the re-challenge of pemetrexed (if not administrated in the first- line). Other 

options like vinorelbine, gemcitabine, and immunotherapy (pembrolizumab and 

nivolumab-ipilimumab) could also be considered (1). 

In MPM, prophylactic radiation therapy to prevent procedure-tract metastasis is not 

recommended on a routine basis (127). Radiotherapy could be considered in a trimodality 

treatment. In the NCDB, improved survival was associated to trimodality treatment 

including radiation therapy compared with surgical intervention and chemotherapy alone 

(103). 

In conclusion, conventional treatments for MPM are ineffective and the prognosis is still 

very poor, with median survival for resectable pleural mesothelioma between 17 to 25 

months and, for unresectable mesothelioma, between 9 to 12 months (128). Therefore, it 

is crucial to identify novel, well defined targets which can be used alone or in 

combinations with classic treatments.  
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In a study, which performed a semi-quantitative assessment of the inflammatory response 

in the tumor and in the stroma of 175 MPM patients, was found that patients who had a 

high-grade chronic inflammatory response in the stroma (n=59) presented improved 

survival compared with those who had a low-grade chronic inflammatory response 

(n=116; median OS, 19.4 months vs 15.0 months; p=0.01) (129). 

Several studies even proposed the prognostic role of lymphocytes and macrophages and 

the presence of immuno-suppression in MPM through analysis of T-cell-inhibitory 

receptors and chemokines (130). In a study by Bueno et al (85), were identified, in 212 

MPM patients, 4 different phenotypic clusters of molecular expression with divergent 

associated survival and mutational characteristics. Programmed death-ligand 1 (PD-L1) 

was expressed in 39% of patients and was associated with a worse survival. PD-L1 

expression was higher in non-epithelial MPMs (85). 

This has led to considering immunotherapy as a possible treatment strategy for MPM. 

Clinical trials using cytotoxic T-lymphocyte–associated protein 4 (CTLA-4) inhibitors 

failed to improve survival in MPM (131), while subsequent trials suggested that PD-L1 

inhibitors may benefit some patients (132).  

Systemic dendritic cell immunotherapy is another immunotherapy treatment that has 

shown promising result. This therapy lead to a significant antitumor immune responses 

in MPM as demonstrated in a pilot study of 10 advanced non-sarcomatoid MPM patients. 

These patients underwent to an 8-10-week course of adjuvant cyclophosphamide and 

autologous dendritic cell immunotherapy which resulted associated with impressively 

prolonged survival, with seven patients survived for at least 24 months and with two 

patients still alive after 50 and 66 months (133). 
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1.1.6 Prognosis 

As discussed above, for most patients, treatment for MPM is palliative. for this reason, 

every intervention must take into account improved life expectancy with quality of life. 

A CT scan, in patients who receive chemotherapy, is often performed mid-cycle to assess 

response. However, MPM is difficult to monitor using conventional CT scanning, so a 

biomarker that could measure response to chemotherapy or predict recurrence would 

offer considerable advantages. Currently, the clinical prognostic scoring systems used for 

MPM patients are established by European Organization for Research and Treatment of 

Cancer (EORTC) and Cancer and Leukemia Group B (CALGB) (134, 135). This scoring 

system define that non-epithelioid histology, male gender, anemia, thrombocytosis, 

leukocytosis, and elevated LDH are associated with poor prognosis. Otherwise, overall 

survival remains dismal and there is still a need for better prognostic biomarkers. 

The research in this field has focused both on circulating blood-based markers and on 

genetic alterations identifiable on tumor tissue that could predict patient’s outcome. 

The soluble mesothelin-related peptides (SMRPs) are found in normal mesothelial cells 

and are overexpressed in various cancers. SMRP has been analyzed in serum and was 

studied as a diagnostic marker, with promising results (136), and even as a prognostic 

factor, but for the latter the results are inconclusive. Indeed, no correlation has been 

shown between serum SMRP level and progression-free or overall survival in several 

study (137-138). However, some study found that the SMRP level was inversely 

associated with overall survival, but, in multivariate analysis limited to epithelial MPM, 

the prognostic value of SMRP on overall survival was lost (139, 140). Thus, suggesting 

that histology remains a critical determinant of prognosis.  
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Osteopontin is a cell adhesion protein that mediates, via interaction with integrin and 

CD44 receptors, cell-matrix interaction and cell-signaling (141). The prognostic value of 

osteopontin has been analyzed in several studies which have shown that low baseline 

plasma levels of the protein were independently associated with favorable progression-

free and overall survival (137).  

HMGB1 is a damage associated molecular pattern (DAMP) and a key mediator of 

inflammation. Studies showed that HMGB1 serum levels were higher in MPM patients 

than in control group with asbestos-exposure (142). Furthermore, another study 

demonstrated a possible prognostic role of HMGB1 given that, at a cutoff value of 9 

ng/mL, there was a significant negative correlation between serum HMGB1 level and 

survival (143).  

In conclusion, SMRP, osteopontin and HMGB1 have been associated with poor prognosis 

and show potential as prognostic markers in MPM. However, none of them are currently 

used routinely in clinic for this purpose, as majority of them have not been validated 

prospectively and their superiority used alone has not been proven over the conventional 

prognostic EORTC or CALGB models (144). 

MicroRNAs (miRNAs) are another group of markers being investigated as diagnostic and 

prognostic biomarkers due to their tissue specificity, to their ability to classify several 

types of tumors and to their stability in circulation (145). Even in the MPM, deregulated 

miRNAs have shown potential as diagnostic and prognostic factors, like miR-29 which 

if it is up regulated predicts longer survival (146). MiRNAs can be combinated each other 

in order to improve their prognostic value. For example, in a subsequent study involving 

MPM patients undergoing surgery, a six-miRNA signature including miR-21-5p, miR-

23a-3p, miR-30e-5p, miR-221-3p, miR-222-3p, and miR-31-5p was found to predict an 
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overall survival of more than 20 months (147). However, the use of miRNAs as a 

biomarker is not yet applicable to clinical practice and larger studies are required to 

validate their diagnostic and prognostic values. 

Taken together, there has been a strong interest in the research of circulating biomarkers 

due to their non-invasiveness, but many of them have varying levels making them 

unsuitable for diagnostic or prognostic use. For this reason, a strong interest has also been 

placed in the search for tumor markers on biopsy sections. Genetic aberrations, 

identifiable by immunoistochemestry (IHC) or FISH analysis on tumor tissue, were 

studied as prognostic factor.  

One of the most common events found in MPM is the 9p21 deletion. The CDKN2A gene 

contained in this region, encodes for p16 protein, a well-established tumor suppressor in 

a variety of tumor types, including MPM. This genetic aberration has been confirmed in 

several studies and has been correlated with poor patient prognosis (148, 149). 

Cedres et al. have been demonstrated that the expression of WT1 gene in tumor section 

of MPM is associated with a better survival, but they don’t find a correlation between 

calretinin expression, another promising prognostic factor in MPM, and survival (150)  

The expression of the Programmed death-ligand 1 (PD-L1) in MPM has been correlated 

with shorter survival, compared to MPMs without this condition (151-153). Tumor cells 

that express PD-L1 on their extracellular surface downregulate the anti-tumor activity of 

infiltrating lymphocytes. Positive PD-L1 expression, determined by IHC (>1% tumor cell 

staining), is reported in 11–72% of MPMs (131-138) and allows patients to be subjected 

to immunotherapy treatments such as Pembrolizumab (an anti-PD-1 monoclonal 

antibody). Instead, nivolumab (another anti-PD-1 agent) is accepted as salvage therapy 

regardless of PD-L1 IHC findings. (154). 
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Finally, interest was placed on the BAP1 gene. BRCA-1-associated protein 1 (BAP1) is 

a deubiquitinase enzyme, involved in the regulation of various cellular pathways (155). 

The prognostic role of BAP1 expression in MPM has been studied, but the results are still 

confusing. 

1.2 BAP1 

1.2.1 Structure and function 

BRCA1-associated protein 1 (BAP1) was identified in 1998 and, from the first studies, it 

was reported that it had a growth suppression activity in breast cancer cells. Moreover, it 

was also observed that this anti-tumor activity was carried out in cooperation with 

BRCA1 in cultured cells. 

BAP1 is a deubiquinating enzyme, with the gene is located on the short arm of 

chromosome 3 (3p21.1) and consists of 17 exons (157). BAP1 protein is a 90 kDA, 

nuclear localized deubiquitinating enzyme (DUB) consisting of 729 amino acids (2). 

BAP1 protein has three main domain: an N-terminal ubiquitin carboxyl hydrolase domain 

(UCH); a host cell factor 1 (HCF1) binding domain (HBM) in the middle portion; a C-

terminal domain (CTD) containing a coiled-coil motif for interaction with ASXL1/2 and 

a nuclear localization signal (NLS). There are also various binding regions to other 

protein interaction partners (Figure 10) (158-160). 
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Figure 10. Schematic structure of BRCA1-associated protein-1 (BAP1) domains and 

locations of reported germline mutations.  

Many cellular processes are regulated by protein ubiquitination and deubiquitination, a 

reversible post-translational modification. BAP1 works as a tumor suppressor by its 

deubiquitinase activity, regulating target genes involved in transcription, cell cycle 

control, DNA repair and cellular differentiation (Figure 11) (161). 

 

Figure 11 .  Schematic rapresentations of BRCA1-associated protein 1 activity. 
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BAP1 interacts with numerous proteins and carries out its anti-tumor activity in various 

ways. BAP1 can activate the transcriptional regulator HCF1 (162). Once activated, HCF1 

modulates chromatin architecture by recruiting histone-modifying complexes and 

activating transcription factors such as the E2F family, which controls G1/S phase 

progression in the cell cycle (158). BAP1 also deubiquitinates O-linked N-

acetylglucosamine transferase (OGT), which in turn modifies and activates HCF1 (163). 

BAP1 has been shown to form a ternary complex with HCF1 and transcription factor 

Ying Yang 1 (YY1), that controls cellular proliferation (164). This complex is recruited 

to the promoter of COX7C which encodes a component of the mitochondrial respiratory 

chain (164). Furthermore, BAP1 is involved in cell proliferation and cell cycle control 

even by forming a ternary complex with HCF1 and the forkhead transcription factors 

FoxK1/K2 (159)  

BAP1 form the polycomb group repressive deubiquitinase complex (PR-DUB) by 

interacting with ASXL1/2 and regulate physiological processes such as stem cell 

pluripotency, embryonic development, self-renewal and differentiation. This group of 

protein contain even a polycomb-repressive complexes (PRCs) that ubiquitinate histones 

and lead to gene silencing (158). There is a transcriptional balance and control due by 

ubiquitination by PRCs and deubiquitination by PR-DUB (158). 

BAP1 is involved even in the DNA damage repair process. BAP1 form a complex with 

several recombination proteins including Breast Cancer type 1 (BRCA1) and BRCA1-

associated RING domain protein 1 (BARD1), which promotes E3 ubiquitin ligase activity 

to regulate DNA damage response (165).  

Initially, it was thought that BAP1, given its NLS domain, was present only in the 

nucleus, where it is involved in several anti-tumor processes such as DNA repair. 
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However, in a recent study conducted by Bonomi et al, the presence of BAP1 was also 

found in the cytoplasm. Here, BAP1 is found in the endoplasmic reticulum (ER) fraction 

where it is involved in the apoptotic process (166, 167). 

In detail, cytoplasmic BAP1 regulates Ca2+ transfer from the ER, where Ca2+ is normally 

stored in the cell, to the cytoplasm by deubiquitinating the IP3R3 receptor channel. Ca2+ 

is released in areas of the ER, called MAMs (mitochondrial-associated membranes), that 

are in close contact with the mitochondrial outer membrane. Here, Ca2+ flows inside the 

mitochondria first through the voltage-dependent anion channel (VDAC) channel 

localized on the outer mitochondrial membrane and then by the mitochondrial uniporter 

channel (MCU) located on the inner mitochondrial membrane. 

This process is finely regulated, because Ca2+ in the mitochondria is necessary for the 

Krebs cycle, but if DNA damage occurred and cannot be repaired, higher amounts of 

Ca2+ is released from the ER through the IP3R3 leading to high mitochondrial Ca2+ 

concentrations. Finally, mitochondria release cytochrome c into the cytosol, thus inducing 

the apoptotic process (167) (Figure 12). In case of BAP1 inactivating mutation, cells 

cannot release enough amounts of Ca2+ to induce the apoptotic process and with low level 

of Ca2+ the Krebs cycle is impaired. This cause the cells to switch into anaerobic 

glycolysis (Warburg effect), a metabolic shift that favors malignant growth (166).  
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Figure 12 .  Representations of BAP1 activity in the cytoplasm. 

Subsequently, Zhang et al showed that cells with reduced BAP1 activity also have 

impaired ferroptosis (168) providing an additional mechanism by which BAP1-mutated 

cells escape cell death (155). Thus, cells with reduced or absent BAP1 activity could 

accumulate more DNA damage (166) since they cannot properly repair the DNA (167, 

169) and, at the same time, they cannot execute apoptosis, which normally eliminates 

cells that contain genetic mutations. This leads to a possible transformation in cancer cells  

1.2.2 BAP1 and MPM 

In a study by Carbone et al it was shown that the high incidence of MPM in some 

Cappadocian and American families was due to the presence of germline mutations of 
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the BAP1 gene. The study demonstrated the existence of a predisposition to MPM which 

was transmitted in an autosomal dominant fashion (88, 170-172). Like other tumors 

suppressors, affected individuals inherited a non-functional BAP1 allele. The remaining 

functional allele was inactivated later in life.  

Since 2011, over 600 articles have confirmed and expanded the pathogenic role of BAP1 

mutations in MPM and in other cancers (10, 172-175).  

This condition was named the “BAP1 cancer syndrome” (BAP1-TPDS) because affected 

family members present an high risk of developing tumors, predominantly MPMs, uveal 

melanomas (UM), cutaneous melanoma (CM) and renal cell carcinomas (RCC). While, 

basal cell carcinoma, breast carcinomas, cholangiocarcinomas, sarcomas, and various 

types of brain tumors were less frequently (10, 164, 173-175). In addition, Wiesner et al. 

recognized that a benign atypical skin melanocytic tumor was associated with germline 

BAP1 mutation (176). This melanocytic lesion was histologically between benign Spitz 

nevus and malignant melanoma, so was named Melanocytic BAP1-mutated Atypical 

Intradermal Tumor (MBAIT), or atypical Spitz tumor (AST) (176). The detection of 

MBAIT, which develop between 20-30 years, allows dermatologists to suspect the 

diagnosis of BAP1-TPDS, which is then verified and confirmed by DNA sequencing 

(173-175, 177). 

The incidence of these tumors in people with BAP1 syndrome is very high and, in most 

cases, they have a positive family history of at least two of the main cancers (including 

UM, MPM, MBAIT, CM, and RCC) among their first- or second-degree relatives (178). 

Moreover, affected individuals may have more than one type of primary cancer (172, 173, 

178). 
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Furthermore, somatically mutated (acquired mutations occurring during tumor cell 

growth) BAP1 has been found in approximately 60% of MPMs, underscoring the critical 

role that BAP1 has in preventing MPM growth (85, 87, 179-181).  

Several different alterations in the BAP1 gene have been described, including large 

deletions of exons leading to loss of the N-terminal region, focal deletions, frameshift 

mutations due to insertions or deletions, splice site mutations, and base substitutions 

leading to non-sense and missense mutations (158, 167). In MPM, the BAP1 gene is 

commonly lost by chromosomal deletion, and more than 70% of reported germline BAP1 

mutations are truncation (167, 178). 

From these studies it was found that BAP1 plays a key role in MPM, therefore it was also 

analyzed as a possible diagnostic and prognosis factor. 

BAP1 status determinations by IHC has improved the ability to diagnose MPM. BAP1 

wild-type (BAP1WT) is found in the nucleus and the cytoplasm, with strong nuclear 

staining and less intense cytoplasmic staining (87), while MPM BAP1 loss are determined 

by the complete absence of staining or by cytoplasmic staining without nuclear staining. 

BAP1 positivity nuclear staining is a specific and reliable marker to distinguish benign 

atypical mesothelial hyperplasia at its earliest stages of development from mesothelioma 

because benign cells always express BAP1 in the nucleus (87, 182-184). Overall, 

approximately 70% of epithelial and 50% of sarcomatoid MPMs contain somatic BAP1 

gene mutations, resulting in an absence of BAP1 nuclear staining (87, 182-186). 

BAP1 loss is highly specific for MPM and this is helpful in the differential diagnosis with 

carcinoma of the lung, breast, and stomach. Only one study showing BAP1 loss in just 

1% of lung cancers (187-189). Furthermore, multiple studies have indicated that BAP1 

loss is highly specific for MPM in the differential diagnosis with ovarian carcinoma (188, 
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190, 191). However, multiple other malignancies (including renal cell carcinoma and 

melanoma) also frequently show BAP1 loss (158, 187, 192). These tumors may 

occasionally metastasize to the serosal surfaces, thus careful consideration of the clinical 

and radiographic data, tumor morphology, and lineage-specific markers is critical when 

interpreting BAP1 IHC (154). 

In addition to its diagnostic role, multiple studies indicate that BAP1 even show a 

prognostic value and the preponderance of them supports a better outcome in MPM with 

BAP1 loss (185, 193-199). Instead, one study found that BAP1 loss was correlated to a 

poorer prognosis and suggests that the improvement in prognosis identified in the other 

studies was likely due to confounding factors (200). Importantly, these studies have not 

generally discriminated between germline and sporadic BAP1 loss.  

Specific studies showed that germline BAP1 mutations were associated to better 

prognosis compared to non-germline-mutated MPM, irrespective of tumor site, with 5-

year overall survival of 47%, and 7%, respectively (90, 201).  

In addition to germline and somatic gene mutations (202), post-transcriptional 

mechanisms are involved in the regulation of BAP1 expression. For instance, 25% of 

MPM with negative nuclear IHC staining of BAP1 are also negative for BAP1 gene 

mutations (158). MiRNA are small noncoding RNAs that control gene expression at post-

transcriptional level binding by 7-8 nucleotides the complementary ones in the 3’- 

untranslated regions of their targets. MiRNA may function as either oncogene or tumor 

suppressors depending on target genes and cancer type (203). It has been demonstrated 

in pre-clinical studies that miR-31 is a post-transcriptional regulator of BAP1 (204-206).  
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2. AIM OF THE THESIS 

BAP1 loss has been detected in about 60% of MPM and its prognostic role has been 

amply investigated in order to find a potential link between BAP1 status and patient 

outcome. However, the clinic relevance of BAP1 loss-of-function in MPM still remain 

under debates, with conflicting reports that it may be associated with epithelioid subtype. 

In order to clarify the prognostic role of BAP1 expression in MPM, we conducted a 

systematic review and meta-analysis for summarize the available evidence in this setting. 

To improve the performance of BAP1 in distinguishing patients with a worse outcome, 

BAP1 status has been combined with the tissue expression of miR-31, a miRNA involved 

in the BAP1 regulation at post-transcriptional level. 

  



47 

3. MATERIAL AND METHODS 

3.1. Cohort study 

3.1.2. Study population 

Between 2003 and 2019, clinical records of 85 patients with a histological diagnosis of 

MPM were retrospectively collected at the Clinical Oncology, Polytechnic University of 

Marche, AOU Ospedali Riuniti.  

Formalin-Fixed Paraffin-Embedded (FFPE) tissues with BAP1 IHC staining (n=60) were 

collected at the Clinic of Pathological Anatomy before any treatment including the first-

line chemotherapy.  

The collected patients characteristics and clinical-pathological features were: BAP1 

expression (BAP1 retained vs BAP1 loss, as assessed by IHC), age, gender, smoking 

status (current/former smokers vs never smokers), asbestos exposure, histotype 

(epithelial, biphasic and sarcomatoid), side of disease, clinical TNM stage (stage IV 

versus others [VIII edition]) (207), treatment modality (chemotherapy plus surgery versus 

only chemotherapy), type of chemotherapy, response to chemotherapy according to 

modified Response Evaluation Criteria in Solid Tumors for assessment of response in 

malignant pleural mesothelioma (mRECIST criteria) (208). 
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3.1.3. Immunohistochemical analysis 

All selected MPM histological samples and relative diagnoses were reviewed by an 

experienced mesothelioma pathologist and divided into epithelioid (e-MPM), 

sarcomatoid (including desmoplastic, s-MPM) and biphasic (b-MPM) MPM according to 

the 2015 World Health Organization (WHO) classification (209). For the inclusion of 

MPM sample in the b-MPM subgroup was required at least the presence of both 

sarcomatoid and epithelioid components in 10% of the tumor. 

All samples were FFPE and, for each patient, a single 4-mm-thick paraffin section was 

cut from the sample with the greatest amount of tumor tissue. All sections were 

deparaffinized and rehydrated in graded concentrations of xylene and ethanol. Sections 

were coated with 1:50 mouse monoclonal BAP1 antibody (clone C4:sc-28383; Santa 

Cruz Biotechnology, USA) and incubated at 4°C overnight. Then, automated IHC was 

performed on Omnis platform (Agilent, USA). 

BAP1 IHC status was considered as “positive/retained” if there was an unambiguous 

positive nuclear staining in any number of tumor cells, and “negative/loss” if the nuclear 

staining was absent in neoplastic cells. Tumor cells with cytoplasmic reactivity without a 

clear nuclear staining were considered negative. Non-neoplastic cells, such as vascular 

endothelium, fibroblasts or inflammatory cells, were considered as internal positive 

control. 
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3.1.4. Mir-31 assay 

Total RNA was extracted from FFPE tissue samples (10–100 μg) using the RecoverAll™ 

Total Nucleic Acid Isolation Kit for FFPE (Thermo Fisher Scientific) according to the 

manufacturer’s protocol. The RNA concentration and purity were determined in the 

Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific). The retro-transcription 

reaction of miR-31 was performed using the High-Capacity cDNA Reverse Transcription 

Kit (Applied Biosystems). The reaction mix was prepared using 20 ng/μl of total RNA 

and incubated in the Biometra thermal cycler. The thermal protocol was the following: 

16 ̊C for 30 minutes, 42 ̊C for 30 minutes and 5 minutes at 85 ̊C. 

Quantitative RT-PCR (qPCR) was performed using the TaqMan Fast Advanced Master 

Mix (Applied Biosystems) with U6 as the housekeeping gene. The qPCR assays were 

carried out using the Mastercycler EP Realplex instruments (Eppendorf) using the 

following thermal protocol: 95°C for 10 minutes for the polymerase activation, then 40 

cycles at 95 °C for 15 seconds and at 60°C for 1 minute. MiR-31 levels were considered 

as percentiles and then divided into quartiles, in order to quantify the miR-31 expression 

for each sample. Because the 25th and 50th percentile showed similar miR-31 expression, 

the respective inter-quartiles were used as reference and results of remaining samples 

were expressed as relative level using the ΔCT method (2-ΔCT). MiR-31 expression was 

considered “high” if miR-31 levels were over the 75th percentile and “low” if miR-31 

levels were below the 75th percentile. 
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3.1.5. Statistical analysis 

Discrete data were expressed either as mean, standard deviation, minimal and maximal 

values (if normally distributed), or as median, quartile and range (if not-normally 

distributed). Categorical variables were reported as either fractions or percentage. 

Differences between groups were analyzed using means of chi-squared method or 

Fisher’s exact test for categorical variables and unpaired Student t test, the Mann-Whitney 

U and one-way analysis of variance (ANOVA) with Tukey post-hoc analysis test for 

continuous variables. OS was defined as the temporal interval between the date of the 

first cycle of first-line chemotherapy and the date of death or censoring at the date of last 

follow-up of alive patients. PFS was considered as the time from the first cycle of first-

line chemotherapy until clinical or instrumental disease progression or last follow-up. 

Survival curves were constructed using the Kaplan–Meier method and log-rank method 

was used to assess difference between subgroups. Patients with missing survival data 

were excluded from the analysis.  

Multivariate Cox regression analysis was used to evaluate independent predictors of 

survival. Nonsignificant prognostic factors were excluded from the model using 

backward elimination. A p value < 0.05 was considered statistically significant.  

Statistical analysis was performed by using SPSS for Windows version 19.0 (SPSS Inc, 

Chicago, IL) and GraphPad PRISM (GraphPad Software, Inc., La Jolla, CA),  

 

 



51 

3.2. Systematic review and meta-analysis 

3.2.1. Literature search 

We conducted a systematic review and meta-analysis following the procedures of the 

Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 

statement and the Meta-analysis of Observational Studies in Epidemiology (MOOSE) 

guidelines. 

Relevant literature was identified by systematic search of PubMed (Medline) and Embase 

datasets until September 28, 2019, considering only English-written publications. Our 

search strategy included the following mesh terminology: (mesothelioma) AND (BAP1 

OR bap1 OR UCHL2 OR hucep-6 OR HUCEP-13 OR “BRCA1 associated protein-1” 

OR “ubiquitin carboxy-terminal hydrolase”) AND (mortality OR mor- talities OR fatality 

OR fatalities OR death OR survival OR prognosis OR “hazard ratio” OR HR OR “relative 

risk” OR RR OR prognosis OR progression OR recurrence OR PFS OR OS).  

3.2.2. Study selection 

The inclusion criteria were as follows: (i) both prospective and retrospective full-text 

observational cohort studies regarding MPM; (ii) immunohistochemical (nuclear 

positivity) investigation of BAP1 expression on tumor tissue (iii) enough data to calculate 

the correlation of BAP1 status with OS. 

Studies conducted on other cancer than MPM (e.g. peritoneal mesothelioma), with no 

report data on patient outcomes or that had investigated BAP1 status by other methods 

than IHC (e.g. DNA sequencing) were excluded. When more than one study from the 
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same institute/authors was reported, only the most recent or the highest quality study 

(reporting a higher number of patients) was included in the analysis. 

Title and abstract of the primary studies identified in the electronic search were 

independently screened by two reviewers. Duplicate studies were excluded. Any 

disagreement or discrepancies was resolved by a third reviewer or contacting the study 

authors when necessary. 

The reference list of all identified documents was scrutinized, with the aim of identifying 

additional potentially eligible studies. 

3.2.3. Data extraction and meta-analysis outcomes  

For each study we extracted author name, year of publication, number of patients, mean 

age, gender, histotype, HR and 95 % CI of BAP1 immunohistochemical expression for 

OS. 

Our primary objective of the meta-analysis was to determine the HR of death in patients 

whose tumor retains BAP1 expression (BAP1 retained) compared to patients whose 

tumor does not express BAP1 (BAP1 loss).  

In the BAP1 retained MPM patients a HR > 1 indicates higher risk of death and a HR < 

1 lower risk. We were considered only HR values obtained through multivariate analysis 

(adjusted for histotype). Finally, if the survival information was only available in Kaplan–

Meier curves, we collected HR only when epithelioid and non-epithelioid subtypes were 

separately analyzed.  
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3.2.4. Data analysis 

DerSimonian-Laird random-effects model was used for calculating pooled HRs with 

correspondent 95% CIs of death between BAP1 retained versus BAP1 loss MPM patients. 

Because of the heterogeneity of the observational studies, this method was chosen a 

priori. To determine inconsistency across the results of the studies was used the Higgins 

I
2 

index and chi-square statistics. Funnel plots were drawn to evaluate the publication bias 

of the included literature. All p values were two sided and p < 0.05 was considered 

significant. Data analyses and generation of forest plots were performed using R 3.6.0 (R 

Foundation for Statistical Computing) and RevMan 5.2 (Copenhagen, Denmark).  
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4. RESULTS 

4.1. Demographic and clinic-pathological characteristics of MPM 

patients 

Our cohort consisted of 85 patients (81% male). Fifty-one patients had progression of 

disease and 41 patients died at a median follow-up time of 41.28 months (interquartile 

range [IQR]: 14.64-not reached). Median age at diagnosis was 71 years (range 52-81 

years). Median OS was 14.76 (95% CI: 7.92–26.52) months and median PFS was 4.56 

(95% CI: 2.88–9.48) months. Asbestos exposure was documented in 55% of patients, and 

57% of patients were current/former smokers. Epithelioid MPM (e-MPM) represented 

66% of cases (n=56), while 15% was represented by sarcomatoid MPM (s-MPM) (n=13) 

and 10% was biphasic MPM (b-MPM) (n=10). Only 18 patients (21%) underwent 

surgical resection. 74% of patients (n=63) received first-line platinum-based 

chemotherapy in association with pemetrexed (83%) and 17% (n=20) pemetrexed in 

monotherapy (17%). Demographic and clinicopathological characteristics are 

summarized in Table 3. 
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Table 3 .  Patient demographics and baseline clinical characteristics.  
a Comparison between epithelioid subtype and non-epithelioid subtype 

(sarcomatoid and biphasic).  
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4.2. Outcomes according to BAP1 status  

Immunohistochemical staining for BAP1 expressions was conduct only for patients that 

had adequate tissue (n=60, 70%). Immunohistochemical BAP1 positive/retained (≥1%) 

was found in 38% of cases (n=23) and BAP1 negative/loss in 62% of cases (37%). BAP1 

loss was mainly associated with the epithelioid subtype (p=0.01; 74% of e-MPM were 

BAP1 negative/loss and 33% of non-epithelioid MPM were BAP1 negative/loss; Table 

3). Among patients with BAP1 loss and BAP1 retained there was no difference in age, 

gender, smoking status, asbestos exposure, clinical stage, and surgery. In table 3 is 

summarized BAP1 expression status according to clinical data. 

At univariate analysis, there were no difference in terms of OS between the two group 

(BAP1 retained vs BAP1 loss), with a median OS of 18.1 months (95% CI: 11.2-25.8) 

for positive BAP1 expression and 14.8 months (95% CI: 10.7-29.3 months) for negative 

BAP1 expression (p=0.17, Figure 13a). At multivariate analysis, after adjusting for age 

and histotype, no significant differences were observed among the two groups for OS 

(HR 1.09, 95% CI: 0.51-2.31, p=0.81). Conversely, non-epithelioid histology held its 

independent negative prognostic value for OS (HR 7.03, 95% CI: 2.48-19.86, p=0.0002) 

Looking at PFS, both groups showed a similar trend, with median PFS of 5.04 months 

(95% CI: 3.00-8.64) for BAP1 retained tumors and 6.36 months (95% CI: 3.24-11.64) for 

BAP1 loss tumor (p=0.14, Figure 13b). Even for PFS, at multivariate analysis, non-

epithelioid histology was the only independent prognostic factor (HR 3.58, 95% CI: 1.58-

8.14, p=0.002). 

Similarly, no differences in response to treatment (BOR) were noted (10% in BAP1 

retained patients versus 19% in BAP1 loss, p 0.58).  
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In the platinum-based chemotherapy subpopulations (n=47) were no differences 

according to BAP1 status (18.1 months vs 14.8 months, p=0.3) 

Finally, for the 12 patients who underwent surgery (before or after chemotherapy), we 

found an improved OS for patients with BAP1 loss (median OS of 25.9 months, 95% CI: 

11.1-not reached, vs 5.5 months 95% CI: 5.0-not reached for BAP1 retained group, 

p=0.02). However, after adjusting for histotype, BAP1 status has lost its prognostic value 

(p 0.14). 

 

Figure 13 .  Kaplan-Meier curves of survival according to BRCA1 associated protein-1 

(BAP1) expression. (a) Overall survival.  (b) Progression-free survival.  
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4.3. Meta-analysis results 

4.3.1. Search results and study population of included studies  

From systematic research was extracted 346 potentially relevant articles and, after the 

exclusion of duplicates, 243 were considered for meta-analysis. After screening of title 

and abstract, 19 articles were selected for full-text review. Among them, 14 articles were 

excluded, since they evaluated BAP1 status with techniques other than IHC (n=5) (85, 

180, 210-212), took into account only germline BAP1 mutations (n=2) (90, 92), did not 

report any survival analysis (n=1) (30), confounding factors were not taken into account 

in a multivariate analysis (n=4) (194, 199, 213, 214) and two because they were redundant 

from the same institution. Finally, five studies for a total of six cohort, (87, 185, 196, 198, 

200) qualified all the selection criteria and were included for the meta-analysis.  

The PRISMA flow chart showed the detailed literature search steps (Figure 14). 
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Figure 14 .  PRISMA flow chart summarizing the process for the identification of eligible 

studies for the meta-analysis.  

All studies were published after 2015 and assessed for BAP1 status by IHC on whole-

sections or tissue microarrays (185, 196). The number of adjustments in the multivariate 

analyses ranged from 1 to 3 and, in particular, histotype was always included.  

We also added our cohort to the meta-analysis, thus, the overall populations consisted of 

690 MPM patients. Seventy-eight per cent (n=543) were male and the proportion of 

epithelioid MPM was 62 % (n=428). Detailed descriptions of the 5 included studies (in 

addition to ours) are summarized in Table 4.  
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Table 4. Characteristics of studies included in the meta-analysis.  

a Continuous variables are reported as mean, minimal and maximal values; categorical 

variables are reported as absolute numbers and percentage; OS is reported as median.  

b OS was calculated from the date of diagnosis in two studies (Forest et al.,  McGregor et 

al.) and from the date of surgery in other two studies (Pulford et al.,  Farzin et al.) .  The 

numeric value of median OS referred to the whole cohort of patients was not reported in 

the studies by McGregor et al.  and Nasu et al.  
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4.3.2. Association with clinical-pathological characteristics and prognostic 

role of BAP1  

Overall, BAP1 loss was the most represented status (388 out of 690, 56%) and was 

strongly associated with the e-MPM subtype (p for difference<0.0001). In the total 

populations, BAP1 loss was found in 70 % of epithelioid MPM and in 34 % of non-

epithelioid MPM. 

The median OS ranged between 6 months (200) and 17.9 months (198) and no association 

between BAP1 expression and gender was found (p for difference 0.94).  

Pooling data from the 7 cohorts, BAP1 loss was not associated with a lower risk of all-

cause mortality. The pooled HR was 1.11 (95 % CI, 0.76–1.61; p 0.60, I2=78 %, p for 

heterogeneity=0.0001, random effect model) (Figure 15a) which indicate that BAP1 

expression had no obvious impact on patient survival when histotype is taken into 

account. The funnel plot showed no evidence of publication bias (Figure 15b).  

 

Figure 15 .  (a) Adjusted risk of death for MPM patients with retained BAP1 expression. 

(b) Funnel plot for the assessment of potential publication bias among included studies.  
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4.4. Prognostic value of BAP1 and miR-31 in epithelioid MPM patients 

Considering the significant prognostic impact of epithelioid histotype on OS, as reported 

both in our cohort and from meta-analysis, we analyzed the role of BAP1 status within 

the e-MPM subgroup (n=40). In this specific subtype, BAP1 was not able to significantly 

predict OS (median OS of 19.8 months, 95% CI: 6.3-33.3 for BAP1 loss vs 18.4 months, 

95% CI: 15.6-21.2 for BAP1 retained, p=0.271) and PFS (median PFS 6.3 months, 95% 

CI: 0.4-12.2 for BAP1 loss vs 8.1 months, 95% CI: 5.0-11.2 for BAP1 retained, p=0.453), 

(Figure 16).  

 

Figure 16. Kaplan-Meier survival curves for MPM epithelioid subtype subdivided by 

BAP1 expression. (a) Overall survival.  (b) Progression-free survival.  Comparisons 

between groups were made using log-rank test and two-sided p values lower than 0.05 were 

considered statistically significant.  

a 

b 
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In order to improve the performance of BAP1, we combined BAP1 status with the tissue 

expression of miR-31. We analyzed the expression level of miR-31 on the whole cohort 

(n=60). As shown in Figure 17, miR-31 was differently expressed between the different 

histotype of MPM as it was poorly expressed in the e-MPM and increased in the b-MPM 

until reaching higher levels in the s-MPM. Furthermore, low miR-31 levels were 

associated with the high percentage of MPM patients with BAP1 loss. 

 

Figure 17. Distribution  of miR-31 and BAP1 loss among the MPM histotypes. MiR-31 

relative expression and the percentage of BAP1 loss in epithelioid  MPM subtype (e-MPM), 

biphasic MPM subtype (b-MPM) and sarcomatoid  MPM subtype (s-MPM). Comparisons 

among groups were determined by one-way ANOVA with Tukey post-hoc analysis.  The 

symbol “*”  indicates significant differences compared with the e-MPM with p<0.05. 

We evaluated the prognostic role of miR-31 alone in e-MPM and we observed that Low 

miR-31 levels were significantly associated with better PFS (median PFS 7.7 months, 

95% CI: 2.95-12.4 for low miR-31 levels vs 5.9 months, 95% CI: 0.0-15.5 for high miR-

31 levels, p=0.028). A trend, but not significant, toward better OS was also detected 

(median OS 18.4 months, 95% CI: 8.3-28.5 for low miR-31 levels vs 17.0 months, 95% 

CI: 10.9-23.1 for high miR-31 levels, p=0.059), (Figure 18).  
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Figure 18 .  Kaplan-Meier survival curves for MPM epithelioid subtype subdivided by miR-

31 level. (a) Overall survival.  (b) Progression-free survival.  Comparisons between groups 

were made using log-rank test and two-sided p values lower than 0.05 were considered 

statistically significant.  

Finally, in order to further improve patient risk stratification, we stratified e-MPM 

patients according to BAP1 status and miR-31 levels taken together, obtaining a 

combined score (Figure 19).  

a 

b 
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Figure 19 .  Kaplan-Meier survival curves for MPM epithelioid subtype subdivided by miR-

31-BAP1 combination (a) Overall  survival.  (b)  Progression-free survival.  Comparisons 

between groups were made using log-rank test and two-sided p values lower than 0.05 were 

considered statistically significant.  

Patients with BAP1 loss/low miR-31 levels (BAP1-miR-31 Low) had significantly better 

OS (median OS 22.6 months, 95% CI: 12.0-33.2 vs 17.0 months, 95% CI 11.5-22.5, 

p=0.017) and PFS (median PFS 8.7 months, 95% CI: 3.3-14.1 vs 5.1, 95% CI: 2.5-7.6, 

p=0.020), compared to the BAP1 retained/high miR-31 (BAP1-miR-31 High) subgroup. 

The multivariate analysis, showed in Table 5, confirmed BAP1 status/miR-31 level 

combination as an independent prognostic factor for e-MPM patients (HR of the BAP1 

retained and high miR-31 level group 2.207, 95% CI: 1.062-4.587, p=0.034 for OS and 

HR 2.146, 95% CI: 1.050-4.388, p=0.036 for PFS). 

a 

b 
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Table 5 .  Multivariate Cox regression analysis associated with OS and PFS. 

Regression model with stepwise Wald-backward adjusted for age, gender, smoking, 

surgery, histotype, and miR-31-BAP1. OS, Overall Survival; PFS, Progression-Free 

Survival; HR, hazard ratio; CI, confidence interval.  
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5. DISCUSSION 

MPM is an aggressive tumor, mostly unresectable, that responds poorly to current 

platinum-based chemotherapy. In daily clinical practice, heterogeneity of treatment 

response, also within the same MPM histotype, remains a hard challenge for clinicians. 

Therefore, identification of novel prognostic biomarkers may be helpful for patient risk 

stratification (215). BAP1 is a deubiquinating enzyme with tumor suppressor and 

apoptotic activity. BAP1 gene alterations, both inherited and somatic, have been detected 

in about 60% of MPM and, in the last 10 years, its prognostic role has been investigated. 

At today, this argument is still under debate and the prognostic role of BAP1 remains 

unclear. The past analyses were conducted in heterogeneous cohorts of patients, in which 

histology, treatment and other patient characteristics were not deeply analyzed (216-218). 

Furthermore, germline mutations could have a different prognostic significance than 

somatic ones, as suggested by Hassan et al. (92), but the analysis of BAP1 through IHC 

does not allow distinguishing between them. 

In our study, conducted on MPM patients who homogenously received first-line 

chemotherapy, we revealed that there no differences in terms of OS according to BAP1 

expression assessed by IHC (BAP1 retained vs BAP1 loss). We also showed that, at 

multivariate analysis, histological subtype mainly affected the patient survival and we 

confirmed that BAP1 loss is more frequent in epithelioid histotype, as previously 

observed (85, 90, 92, 180, 209, 211, 212). We only found a link between BAP1 loss and 

better outcome in patients who underwent surgery, but, after adjusting for histology at 

multivariate analysis, BAP1 status lost its prognostic value.  



68 

In order to definitely clarify the prognostic role of BAP1, we pooled our data with past 

studies in a comprehensive meta-analysis of 690 MPM patients. From this analysis, we 

demonstrated that, when tumor histology is taken into account, BAP1 

immunohistochemical expression does not represent an independent prognostic factor. 

Several reasons might explain the discrepancy of our data with previously meta-analyses 

that had investigated the relationship between BAP1 expression and prognosis (216-218). 

In the meta-analysis conduct by Luchini et al (216), only two studies were included, and 

only one reported the adjusted HR for all-cause mortality (196). This study was also 

included in our meta-analysis (HR for BAP1 loss versus BAP1 retained 0.52, 95 % CI: 

0.36–0.75).  

Wang et al (217), from their meta-analysis, associated worse prognosis with BAP1 

retained tumor (HR for BAP1 retained versus BAP1 loss 2.03, 95 % CI: 1.67–2.47). 

However, not all of the seven studies included in the analysis have conducted a 

multivariate analysis and some potential confounding factors (such as the tumor 

histotype) might have influenced the data. 

The last meta-analysis presents data in agreement with ours but in this case, there was a 

focus on BAP1 gene mutation instead of protein expression (218). 

We demonstrated that BAP1 loss was strongly associated with epithelioid histotype both 

in our cohort (p=0.01) and in meta-analysis (p for difference < 0.0001). E-MPM is 

strongly associated with better prognosis than non-e-MPM tumors.  

This association between BAP1 loss and epithelioid histotype might have affected the 

previous meta-analysis, where the prognostic value of BAP1 is instead due to the e-MPM 

subtype. 
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By looking only at epithelioid cases in our cohort, no association between BAP1 

expression and survival was observed. Despite BAP1 loss has been associated with 

mutations or chromosomal deletions, BAP1 loss assessed by IHC has been found also in 

tumors without BAP1 genetic alterations (158).  

In this context, a post-transcriptional regulation mediated by miRNAs might be involved. 

MiR-31 showed altered levels of expression in different tumors and it has been 

investigated as a potential upstream regulator of BAP1 (204, 219-221). In MPM the role 

of miR-31 is still under investigation and data are conflicting. Ivanov et al. (222) reported 

that miR-31 loss in MPM cell lines was associated with cell cycle progression and its 

restoration inhibited cell proliferation and migration. Conversely, miR-31 over-

expression in miR-31-null NCI-H2452 cells significantly increased resistance to cisplatin 

and carboplatin (223). In the present study, we found that miR-31 was differentially 

expressed accordingly to the histotype: miR-31 was highly expressed in s-MPM 

compared to e-MPM. High miR-31 levels were also associated with BAP1 retained, 

worse PFS and a trend toward a shorter OS. In the cancerous tissue the direct relationship 

between miR-31 levels and BAP1 expression (high miR-31 corresponded to low BAP1 

expression) previously described was lost (204, 205). Most probably, the genetic and 

epigenetic alterations in the malignant tissues contributed to a genetic rearrangement, thus 

affecting gene expression. 

By focusing on the e-MPM subgroup, high miR-31 levels correlated with worse PFS, and 

a trend to worse OS was also detected. Our results are consistent with data described by 

Matsumoto et al. showing a miR-31 upregulation in patients affected by s-MPM, which 

correlated with worse prognosis (224). Notably, the BAP1-miR-31 combination was 

strongly associated with OS and PFS, which was further confirmed in the multivariate 
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model. Accordingly, retained BAP1 and high miR-31 expression was associated with a 

non-epithelioid and a more aggressive phenotype.  

The MPM is a highly heterogeneous cancer characterized by multiple molecular profiles. 

Molecular diversity has been shown to occur between different histotypes, as well as 

within specific histological subtypes. Therefore, we can postulate that the combination of 

BAP1 status with miR-31 levels may help to detect within the e-MPM an aggressive 

subtype with BAP1 retained and high miR-31 associated with a worse outcome. 

Recently the EURACAN/IASLC (pathology) group published a study on “Updating the 

Histologic Classification of Pleural Mesothelioma”, underlining the importance of a 

multidisciplinary approach based on the integration of both histological and molecular 

parameters (225). More detailed diagnosis may lead to improved patients risk 

stratification, which is essential for guiding treatment. Alongside, a better knowledge of 

miRNAs role among different MPM histotypes may lead to a better understanding of the 

complex MPM biology, as well as to the development of new miRNA-based targeted 

therapies. Despite being limited by the small sample size and the retrospective nature, we 

can postulate from our study that the combination of BAP1 status and miR-31 levels is 

helpful in the context of e-MPM subtype for identifying a tumor subgroup (BAP1 

retained-miR-31 high) with a worse outcome. Prospective studies are needed to better 

analyze the role of this combined score in predicting outcome in MPM and explore the 

emerging idea of a molecular model classification complementary to the histological one, 

where miRNAs might play a key role. 
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6. CONCLUSION 

In this study we demonstrated that BAP1 alone was unable to stratify MPM patients based 

on its expression when histotype was considered. We also confirmed that the epithelioid 

histotype was associated with better survival in terms of OS and PFS and that BAP1 loss 

was more represented in this histotype. However, we observed that within the epithelioid 

histotype, the prognostic value of BAP1 improved, but did not reach statistical 

significance. Therefore, in order to improve its prognostic performance, the BAP1 status 

was combined with miR-31 expression levels. We showed that the combination of BAP1 

retained and miR-31-high was significantly associated with a worse prognosis in MPM 

patients. 

In conclusion, BAP1 and miR-31 can be routinely detected in diagnostic biopsies and can 

help to identify epithelioid MPMs with worse prognosis. The combinations of IHC 

method (BAP1) and molecular assay (miR-31) allow to detection prognostic/predictive 

factor in cancer.  
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