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Abstract Notwithstanding the presence of some books

summarizing specific research bodies on structural sys-

tems, reviews on nonlinear dynamics and chaos in me-

chanical systems and structures are quite few. This pa-

per aims at giving a first contribution in this direction, 30

focusing on chaos in onedimensional structural mechan-

ics, and reviewing fundamental studies and main out-

comes obtained for macromechanical systems and ap-

plications in classical areas of mechanical, aeronautical

and civil engineering. Research material are presented 35

according to a tentatively comprehensive perspective,

by suitably framing the overviewed complex dynamic

phenomena of a given class of structures within the

underlying continuous/reduced modeling context and

the regular phenomena from which they ensue. This 40

is a demanding perspective, which also entails leav-

ing a number of important topics aside. Chaos in ca-

ble, beam/arch, and coupled cable-beam structures, is

reviewed, as highlighted in both engineering-oriented

studies and theoretically-driven ones, paying attention 45

also to some relevant applications.

Keywords Nonlinear dynamics · Chaos · Structural

mechanics · Cables · Beams · Coupled cable-beams

1 Introduction

Dating back to the times of Kepler, Newton and La- 50

grange, the history of nonlinear dynamics in mechanics

is quite long, with the more recent chaotic phenomena

being addressed in about the last century, first within

the dynamical systems community according to a the-

oretical perspective, and then also in the mechanical 55

community, according to a more application-oriented

perspective. The review by Holmes [1], later on com-

plemented with references to specific achievements on
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chaos in about the last fifty years [2], reports on his-

tory and themes of dynamical systems theory, whereas60

the meaningful developments of nonlinear dynamics oc-

curred in the last forty years in mechanics and engi-

neering have been recently summarized by Rega [3].

Reviews on nonlinear dynamics and chaos in mechani-

cal systems and structures are relatively few. Shaw and65

Balachandran [4] provided an overview of studies in

nonlinear dynamics and vibrations of mechanical sys-

tems, covering both traditional topics in structural dy-

namics, rotating systems and machines, vehicle dynam-

ics, machining and manufacturing systems, and newer70

topics in micro- and nano-electromechanical systems

and other specific areas. At least two books specifically

devoted to chaos in structural systems [5, 6] have to be

mentioned, out of the many published by Awrejcewicz

and coauthors in the area of nonlinear dynamics. In-75

deed, they provide literature reviews and extensively

dwell on a variety of issues of theoretical or engineering

interest, which also include nonlinear phenomena and

scenarios of transition from regular to chaotic dynam-

ics. Chaotic behavior in plates and shells has recently80

been addressed also in the wave turbulence perspec-

tive, dwelling, e.g., on the effects of the structure finite

size on the involved nonlinear interaction of a sea of

coupled waves with energy flow through different time

scales [7]. In the area of complex dynamics, control of85

chaos in dynamical systems has been the subject of ex-

tensive theoretical and numerical investigations since

beginning of the 90s, with several review papers, jour-

nal special issues and archival material focusing on the

underlying methodological aspects, illustrated through90

applications to a variety of systems of different nature

(see, e.g., [8]).

This paper does not aim at reviewing the general

and indeed wide literature on chaos in structural me-

chanics, as it is nowadays possible to get a huge amount95

of relevant material and state-of-the-art information by

directly searching them on the web. In contrast, we aim

at overviewing and synthesizing some main complex dy-

namic phenomena as highlighted for a given class of

structures, however suitably framing them within the100

considered modeling context and the regular phenom-

ena from which complex ones ensue, that are generally

of major interest from the engineering viewpoint. Thus,

a first contribution in this direction focuses on chaos in

onedimensional structural mechanics, and reviews fun-105

damental studies and main outcomes on macromechan-

ical systems and applications in classical areas of me-

chanical, aeronautical and civil engineering. Owing just

to the assumed, tentatively comprehensive, perspective,

we had to leave aside a number of important topics,110

whose adequate treatment would have rendered the re-

view nearly unreadable. These include chaos in axially

moving continua or under moving loads, non-smooth

systems involving impact, friction and clearance, delay

systems, all multiphysics problems with particular em- 115

phasis on micro/nano-electromechanical systems. Also

left out of the review are general topics of global dy-

namics (e.g., escape) associated with a wider notion of

chaos, as well as chaos control in the twofold alterna-

tive perspective of suppressing/avoiding it or exploiting 120

it for design.

Systems in structural mechanics are generally in-

finitedimensional, i.e. mathematically described by non-

linear partial differential equations (PDEs). Since de-

scription and in-depth understanding of nonlinear/com- 125

plex dynamic phenomena involve using a combination

of rather sophisticated techniques (analytical, numeri-

cal and geometrical), possibly complemented by proper

experimental investigations, they can be realized on the

actual PDEs with considerable difficulties, even though 130

relevant asymptotic and numerical treatments are also

possible. This generally entails preliminarily formulat-

ing suitable, and of course reliable, reduced order mod-

els (ROMs), obtained via Galerkin discretization and

the assumed mode technique for spatial variables, thus 135

ending up to a set of ordinary differential equations

(ODEs) in the system time-dependent generalized co-

ordinates. In this respect, it is worth distinguishing be-

tween single-mode and multi-mode models, which also

reflects the modeling sequence historically pursued for 140

investigating the nonlinear dynamics of structural sys-

tems, with the former being nearly solely used up to

about the end of the 80s, although representing invalu-

able sources of knowledge and information still nowa-

days. Of course, single-mode (or minimal) models are 145

often quite poor idealizations of actual infinite-dimen-

sional systems, presenting however several advantages.

Indeed, (i) they can be addressed with relative ease

through different approaches to be also compared with

each other; (ii) they allow us to understand a variety 150

of basic features of systems nonlinear dynamics; (iii)

they permit, in particular, to smoothly enter the rather

involved issue of complex dynamics, where local bifur-

cation phenomena leading to chaos, which is a dynam-

ical behaviour of essentially global nature, are indeed 155

complemented just by global bifurcation events whose

description and understanding in a multidimensional

setting is highly demanding, if not even impractical.

Most of these single-mode models of structures can be

referred to archetypal oscillators widely used for the 160

analysis of nonlinear, bifurcation, and chaotic phenom-

ena within the dynamical systems community, yet with

the nontrivial difference that the parameters in the as-

sociated ODEs are now linked with actual geometri-
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cal and mechanical properties of a continuous struc-165

ture in the background. Among the main archetypal

systems, the Duffing and the Helmholtz-Duffing oscil-

lators, along with some relevant modifications, play a

special role because of representing also single-mode ap-

proximations of a number of underlying structures. This170

is one more advantage of referring to archetypal oscilla-

tors, which allow us to highlight features of the dynamic

response common to a meaningful variety of continuous

onedimensional systems, along with the relevant differ-

ences. Transition from single- to multi-mode modeling175

for nonlinear dynamic investigations in structural me-

chanics started occurring at the passage from the 80s

to the 90s. It was progressively driven also by the out-

comes of refined experimental investigations of nonlin-

ear dynamics highlighting limitations associated with180

the use of single-mode models and providing important

hints on the number and mechanical meaning of natu-

ral modes of vibration to be taken into account in the

Galerkin discretization, in order not to miss important

phenomena of nonlinear interaction. Since then, the is-185

sue of dimension reduction has become a major research

topic in the background of structural nonlinear dynam-

ics, in view of selecting proper reduced order models

(ROMs) to refer to for capturing the main response

features of the underlying infinite-dimensional system.190

Within a theoretical framework, establishing system di-

mensionality consists of determining the ‘active’ modes

of the system, whose amplitudes evolution in time pre-

serves all of the main features of the continuous system

[9]. Yet, decisive information may be obtained also from195

experimental investigations, which can provide mean-

ingful hints for the construction of corresponding min-

imal theoretical models able to reproduce the observed

behaviours. In the theoretical/numerical context, active

modes depend on the considered, possibly resonant, ex-200

citation and on the occurrence of specific internal res-

onances between system natural frequencies. In turn,

other non-trivially contributing modes (also possibly

non-resonant) to retain in the discretization procedure

are identified through systematic analysis of their in-205

fluence either on some system parameter (e.g., [10]), to

be evaluated a priori, or on some variable of regular

nonlinear response (e.g., [11]), to be calculated a pos-

teriori also through convergence analyses. In any case,

notably different situations may occur in various fre-210

quency ranges, with participation to the response, and

possible combination, of different prevailing modal com-

ponents. Hints about the minimum number of modes

needed to reproduce the dynamics of actual infinite-

dimensional systems are given also by the compari-215

son of ROM results, generally obtained through ana-

lytical treatments, with numerical outcomes of high-

dimensional (e.g., finite element) models. Using ana-

lytical models with few prescribed modes, properly se-

lected on the base of existing external/internal reso- 220

nances, can furnish comparable results with respect to

high-dimensional numerical models in specific regions

of control space, but in general cannot account for the

highly varied response picture occurring in different re-

gions. Indeed, it is not practicable to build theoretical 225

models working satisfactorily in regions of control space

associated with different resonance conditions, where

there is need of specific reduced models able to repro-

duce the most robust classes of regular motion observed

experimentally. In the complex regime, the situation is 230

even more complicated, and a major interest stands in

investigating whether the nonregular dynamics ensu-

ing from bifurcation scenarios evolving in a potentially

infinite-dimensional phase space, can be actually finite-

dimensional. This entails detecting just minimum num- 235

bers and spatial features of the configuration variables,

i.e. active modes, needed to characterize such dynam-

ics, which has to be done numerically or, more reliably,

based on the outcomes of experimental investigations.

At least two distinct way to address and classify the 240

occurrence of chaos in structural mechanics are possi-

ble, according to whether (i) a chaos-driven or (ii) a

structure-driven criterion is assumed, as more referable

to the dynamical systems- or the engineering-oriented

community, respectively. The former criterion distin- 245

guishes between chaotic phenomena in a substantially

independent manner of the structure for which they are

detected, the latter groups and summarizes those phe-

nomena within classes of structures for which they are

seen to occur, even running the risk of some repetition. 250

In this paper, consistent with the authors’ scientific en-

vironment of reference, outcomes on chaos in structural

mechanics will be reviewed according to the second cri-

terion. Namely, onedimensional systems will be distin-

guished from each other in terms of the inherent struc- 255

tural (i.e. geometrical and mechanical) properties, e.g.

whether exhibiting only axial or also bending, shear

and torsional stiffnesses, whether being isolated or cou-

pled systems, and so on. Within this structure-driven

classification scheme (see Table 1), for each considered 260

onedimensional structure attention will be focused first

on the main chaotic outcomes obtained for correspond-

ing minimal ROMs, and then on results provided by

multi-mode theoretical models, with possible experi-

mental outcomes in the background. Attempts will also 265

be made to relate results obtained for different struc-

tures, in such a way to get tentative guidelines for their

possible occurrence. In all cases, focus will be on fea-

tures of chaotic dynamics, in terms of both mechanisms

of transition to chaos and characterization of the rele- 270
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vant response, this being however a perspective to be

fully grasped only by properly framing complex phe-

nomena within the underlying regular ones. Indeed re-

porting on the chaotic behaviour of whatever kind of

systems, and thus also structural ones, cannot prescind275

from also referring to the relevant regular nonlinear vi-

brations from which chaos is originated via some se-

quence of bifurcation events. Thus, for the various con-

sidered structures, first the modeling framework and

the main features of regular nonlinear dynamics will be280

addressed. Approximate PDEs of motion obtained from

geometrically exact equations by properly discarding

higher-order terms will be referred to, along with their

Galerkin discretization providing the ROMs used for

nonlinear dynamics investigations. Indeed, exact mod-285

els are solely considered in purely numerical treatments

based on using, e.g., space-time finite differences cou-

pled with a predictor-corrector iterative algorithm or

a finite element procedure, with the major advantage

of capturing the spatial richness of structure nonlinear290

response and its time-varying content, and obtaining

information about the possibly significant involvement

of higher order modes which is allowed by the con-

sidered multi-degree-of-freedom (dof) model. However,

if being interested in highlighting features of nonlin-295

ear dynamics in different external/internal resonance

conditions, approximate reduced models turn out to

be much more handable, also because their analysis

can be performed via analytical or mixed analytical-

numerical approaches. The ensuing nonlinear response300

may then be validated against those of underlying ex-

act models via numerical (e.g., finite differences) tech-

niques, thus allowing for a proper selection of approx-

imate continuous models to be used in different tech-

nical situations. Solutions of ROMs are generally ob-305

tained with asymptotic techniques suitable to deal with

weakly nonlinear problems, like the method of mul-

tiple time scales (e.g., [12]) or the averaging method

(e.g., [13, 14]), providing amplitude and phase modula-

tion equations (AMEs), also called averaged equations,310

whose stable steady (equilibrium) solutions correspond

to stable periodic solutions of the underlying reduced

ODEs. Depending on the system/reduced model and

a number of control parameters (primarily linked with

the considered external/parametric excitation, and the315

existing internal resonances), different classes of steady

regular (unimodal or multimodal) responses of different

amplitudes, generally competing with each other, may

occur. Then, nonregular responses mostly characteriz-

ing a system’s strongly nonlinear regime within vari-320

ous ranges of the control parameters space of (techni-

cal) interest will be addressed, shortly dwelling also on

some main numerical techniques mostly used to high-

light them, although suitably complemented with the-

oretical analyses playing a fundamental role for the 325

understanding/interpretation of global phenomena. In-

deed, numerical indications about possible transition

to quasiperiodic and chaotic responses with a varying

control parameter are obtained primarily through the

analysis of the AMEs after the occurrence of a local bi- 330

furcation entailing instability of the underlying steady

solutions at some critical point. Upon detecting a Hopf

bifurcation, AMEs are numerically integrated to find

the limit cycles (dynamic solutions) giving rise to peri-

odic modulations in the solution of the reduced ODEs, 335

which represent quasiperiodic responses. Successive bi-

furcations of the amplitudes may lead to chaotically

modulated motions of the original reduced variables.

Alternatively, in discretized models, transitions from

regular to nonregular motions and features of complex 340

attractors are identified via direct computer simulations

of the reduced ODEs, with the two procedures being

also used combinedly to get complementary informa-

tion.

However, complex responses are usually associated 345

with a marked fractality in phase space and also possi-

bly in control parameter space, with their actual occur-

rence, strength and robustness meaningfully depend-

ing on the values assumed for both the initial condi-

tions of model variables and a remarkable number of 350

system parameters. So, there is need to suitably com-

plement analytical/numerical investigations of possibly

complex responses, based on local bifurcation analyses,

with more theoretical studies providing mathematical

conditions for their actual occurrence, based on global 355

bifurcation analyses. Several global methods may be

used for detecting chaos in systems that possess homo-

clinic or heteroclinic orbits [15–17]. In this respect, it

is worth mentioning that analytical/numerical investi-

gations are mostly aimed at highlighting possible tran- 360

sition to complex response from an underlying regular

one expected to be the ‘normal’ operating condition for

an engineering system, whereas more theoretical analy-

ses pursuing the detection of conditions for existence of

chaos are generally accomplished within more dynam- 365

ical systems-oriented environments. In terms of scien-

tific reliability, the shortage of generality of chaotic out-

comes provided for a given class of systems by a more

engineering-driven approach faces with the definitely

major rigour of well-founded mathematical approaches 370

followed in theoretical analyses. The other side of the

coin consists of the sometime limited engineering sig-

nificance of assumptions possibly made to obtain those

general outcomes, e.g., as regards values assumed for

the coefficients of some nonlinear term which do not 375

actually reflect a physical system in the background;
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this being a feature which occurs not so rarely in more

theoretical-driven studies on bifurcation and chaos in

nominally structural systems.

In general terms, analyzing bifurcation and chaos380

phenomena in a system means: (i) detecting local mech-

anisms of transition (routes) to chaos from regular re-

sponses; (ii) characterizing seemingly chaotic attractors

through different dynamic measures allowing us to con-

sistently support any chaoticity statement; (iii) deter-385

mining regions of nonregular response in control pa-

rameters space; (iv) describing bifurcations and chaos

in terms of global dynamics. One more step of major

importance in the analysis of complex systems consists

of controlling their chaotic responses, with the aim of390

either avoiding/suppressing or exploiting them for a va-

riety of technical purposes. However, as already men-

tioned, control of chaos in models of structural systems

is a major topic in itself, and is not addressed in this

review article. Before to proceed further, it is worth to395

acknowledge the strong influence that some books had

in the development and spread of studies of chaos in me-

chanics, not only for onedimensional structures. Among

those having an engineering perspective, the books by

Thompson and Stewart [18] and by Moon [19] have400

attracted interest toward this topic in the mechanical

community. Also the book by Strogatz [20] had a cer-

tain echo. From a theoretical and applied mathematics

point of view, on the other hand, the books by Guck-

eheimer and Holmes [21] and by Wiggins [15] stand405

as milestones that introduced complex behaviours in a

manner understandable to engineers, also allowing to

fruitful apply analytical methods, like for example the

Melnikov one.

The paper is organized as follows. Section 2 deals410

with chaos in cable structures, focusing on the behaviour

of taut strings and suspended cables in different geo-

metrical configurations, and considering the underlying

continuous/reduced models along with the associated

regimes of regular and, mostly, nonregular response.415

Chaos in models of beams and arches is discussed in

Sect. 3, for a variety of situations of mechanical and

structural interest. Section 4 is devoted to chaos in

cable-beam coupled systems, as also associated with

possible technical applications. The discussion of lit-420

erature studies in the various sections is complemented

by two summary tables which provide a relevant uni-

fied and comparative picture for single-mode (Table 2)

and multimode (Table 3) models, respectively, and are

useful for a though detailed overview. The review ends425

with some concluding remarks.

2 Cable structures

Cable structures are endowed with only extensional rigid-

ity and can sustain sole tensile forces. Early relevant

studies on chaos go back to about the end of the 80s 430

and refer to the single cable with either straight (i.e.,

taut string) or curved (i.e., suspended cable) initial con-

figuration. The symmetric vs asymmetric geometry of

the two systems is associated with the absence or pres-

ence of an initial curvature, respectively, and entails dif- 435

ferent kinds of geometric nonlinearities. In the string,

these are solely odd and owed to the axial stretching,

whereas in the cable they are both odd and even, the

former accounting for axial stretching and the latter

for system initial curvature. Corresponding single-mode 440

archetypal models are the Duffing oscillator with cubic

nonlinearities and the Helmholtz-Duffing oscillator with

quadratic and cubic nonlinearities, to be used for the

analysis of planar oscillations.

However, the different geometrical configuration of 445

the two systems has meaningful consequences already in

linear dynamics. Indeed, the modal spectrum of elastic

suspended cables exhibits clearly distinct frequencies

of the in-plane and out-of-plane modes, with the for-

mer markedly depending on the elastogeometric param- 450

eter which summarizes cable properties [22]. Instead,

the taut string (which corresponds to a vanishing value

of that parameter) has a modal spectrum with iden-

tical frequencies of planar and nonplanar components

of each spatial mode, thus always realizing a condition 455

of 1:1 internal resonance. This entails modal interac-

tion of the two components even though only one of

them is externally excited by a periodic forcing: the

planar directly excited motion possibly described by

a single-mode Duffing oscillator solely exists for quite 460

large damping values entailing exponential vanishing of

all out-of-plane disturbances, and is swiftly destabilized

to a spatial, whirling motion by a damping reduction.

Accordingly, string dynamics turns out to be inher-

ently nonplanar and such to be reliably addressed only 465

via at least a two-mode model, whose averaged equa-

tions indeed highlight how periodic solutions bifurcat-

ing to non-regular motions may exist only in the four-

dimensional system of corresponding first-order differ-

ential equations [23]. 470

In contrast, for a suspended cable vibrating trans-

versely with its first symmetric mode – which is the

first mode of a cable with sag-to-span ratio up to about

1/20 and a technical value of the axial rigidity-to-initial

tension ratio – away from internal resonances, a single- 475

mode model describing the in-plane vibrations under

corresponding in-plane excitation can be reliably con-

sidered to obtain a meaningful amount of results also
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Table 1 Structural models

y

z

x

x

y

x

z

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

(v) (w) (x)

Beams:
(a) Cantilever
[95–100, 123, 132, 133, 136,
138, 139, 141–144, 162, 164–
166, 168, 169]
(b) Simply supported
[102, 104, 106, 108, 124,
131, 170, 171, 173, 177, 178,
180, 201, 202, 204, 205]
(c) Clamped
[94, 110–112, 117, 172]
(d) Rotating
[179, 181, 182]
(e) With stops [101, 176]
(f) Elastic foundation
[125–127]
(g) Sliding [109, 135]
(h) Shanley model
[184, 185, 188–190, 193–
200]
(i) Curved [164]
(j) Elastic support
[137, 174, 175]

Arches:

(k) Shallow clamped
[122, 147, 178]
(l) Shallow hinged/simply
supported
[113–116, 120, 121, 148–
152, 154, 155, 157, 158, 178,
206]
(m) Rigid link [118, 119]
(n) Elastic support [159]
(o) Non-shallow
[156, 160, 161]

Cables:

(p) Shallow horizontal [30–
32, 34, 35, 48, 52–59, 62–
64, 66, 67, 70, 71, 73, 74]
Inclined [61, 68]
(q) Arbitrarily sagged
horizontal [10, 90, 91]
Inclined [84]
(r) String
[23, 38–42, 44–47, 49, 50]
(s) Cable-suspended roof
[215]

Coupled structures:
(t) Suspension bridge
[216, 218, 219]
(u) String-beam [227–231]
(v) Cable-beam
[220, 224, 232, 233]
(w) Guyed mast [235]
(x) Cable-arch [234]
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as regards complex dynamics. As a matter of fact, the

archetypal Helmholtz-Duffing oscillator representing the480

asymmetric single-mode model of a shallow cable has

been widely addressed in the literature, where it played

a kind of paradigmatic role for the analysis of nonlin-

ear, bifurcation and chaotic phenomena occurring in

a large class of elastic monodimensional systems with485

initial curvature. These are often encountered in ap-

plied mechanics and structural engineering, and include

structures provided with bending stiffness, too, such as

arches and buckled beams. Of course, the single-mode

model of cable is also of basic theoretical interest in490

itself for exhibiting a rich variety of local and global

dynamical phenomena associated just with the coexis-

tence of quadratic and cubic nonlinearities. Nonlinear

dynamics of shallow (i.e, parabolic) cables hanging at

supports at the same level and excited by distributed495

loadings and/or support motions has been extensively

analyzed. Shallowness allows to kinematically condense

the cable longitudinal displacement by neglecting iner-

tia and viscous damping in the longitudinal equation

of motion, which corresponds to assuming that the ca-500

ble nonlinearly stretches in a quasi-static manner in

the absence of longitudinal external loading. Solutions

of prestressed cables with values of the elastogeomet-

ric parameter away from internal resonances were first

obtained through perturbation techniques (mostly the505

method of multiple time scales) allowing to study small

but finite oscillations in regular regimes, and then via

extensive numerical simulations also allowing to investi-

gate non-regular responses. Comprehensive review pa-

pers on the nonlinear dynamics of single- and multi-510

mode models of shallow cables, along with experimen-

tal models, appeared at the beginning of the new mil-

lennium, with two parts devoted to the analysis in de-

terministic conditions and a third part concerned with

random excitation and interaction with fluids. Models,515

methods of solution, and tools for nonlinear analysis

were presented in [24], nonlinear and complex phenom-

ena under harmonic excitations were extensively dealt

with in [25], methods of analysis and features of ca-

ble stochastic dynamics were discussed in [26], all of520

them containing a huge amount of references. More-

over, several studies dealing with the nonlinear vibra-

tions of multimode models of shallow cables appeared

in the last two decades, with a number of them also ex-

ploring the occurrence and features of chaotic responses525

in specific conditions. Moving to arbitrarily sagged and

inclined cables, which entail differences in both model-

ing and dynamic phenomena, further updates and new

results provided by both theoretical multi-mode and

experimental models are reported in [27].530

Literature presentation and discussion in the sequel

will start with a summary of the main outcomes in

terms of chaotic dynamics provided already by the archety-

pal single-mode model of shallow cables. Then, atten-

tion will be focused on outcomes from multimode and 535

experimental models of taut strings, shallow cables, and

sagged/inclined cables, respectively, mostly reporting

on phenomenological aspects of the relevant complex re-

sponse, but also dwelling on some modeling and analy-

sis features where this turns out to be suitable for prop- 540

erly framing the highlighted response scenarios. Over-

all, the strong richness and variety of nonlinear inter-

action and complex phenomena which characterize the

dynamics of flexible high-dimensional structures will be

apparent. 545

2.1 Shallow cables: archetypal single-mode model

An approximate route to chaos in an oscillator with

quadratic and cubic nonlinearities subjected to exter-

nal harmonic excitation in the neighbourhood of 1/2-

subharmonic resonance was detected in [28, 29] by ana- 550

lyzing the stability of solutions obtained with the method

of harmonic balance, however without referring to any

specific structural element in the background. Chaos in

the Helmholtz-Duffing oscillator describing a shallow

elastic cable was first investigated through numerical 555

simulations in [30], considering the range of excitation

frequency between primary and 1/2-subharmonic res-

onance. Thereafter, a sequence of studies investigated

in-depth a variety of issues related with the occurrence

of chaos, which is worth to distinguish based on either 560

a local or a global dynamics viewpoint. The former was

concerned with [31, 32]:

(i) Detecting mechanisms of transition from domi-

nant periodic solutions in secondary resonance ranges

through either smooth sequences of period-doubling 565

(PD) bifurcations or sudden changes (jumps), and

showing the capability of simple and properly cho-

sen approximate analytical solutions (obtained with

harmonic balance) to satisfactorily delimitate re-

gions of possibly complex and chaotic motions, to 570

be detected numerically in local (e.g., frequency-

response curves) and/or overall (response charts

in excitation parameter plane) control spaces. The

occurrence of PD bifurcations and chaos at 1/2-

subharmonic resonance [32] was later revisited by 575

[33] in a more general framework, with also qual-

itatively similar results, making reference to the

equivalent pure cubic (Duffing-like) oscillator with

an applied constant force plus the harmonic one.

This is one example of the possibly paradigmatic 580
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role played by the single-mode representation of

the shallow cable via the Helmholtz-Duffing os-

cillator to shed light also onto a wider class of

nonlinear/complex phenomena.

(ii) Characterizing strange chaotic attractors (gener-585

ally topologically connected but also possibly dis-

connected) via qualitative (time histories, phase

portraits and Poincaré maps) and quantitative (fre-

quency power spectra, and global indicators such

as Lyapunov exponents and fractal dimension) dy-590

namic measures, with differences and similarity as

regards chaos strength and robustness in various

resonance zones.

(iii) Showing the meaningful influence of initial con-

ditions on the steady response, with the ensu-595

ing coexistence of basins of periodic and chaotic

attractors, which highlights the need to comple-

ment local bifurcation analyses/predictions with

a deep insight into global nonlinear and chaotic

behaviour.600

This was accomplished through systematic and com-

bined use of numerical (point-by-point computer sim-

ulations, continuation procedures, cell mapping algo-

rithms) and geometrical (direct and inverse saddles cor-

responding to unstable periodic solutions, their invari-605

ant manifolds, homoclinic and heteroclinic tangencies)

tools of analysis allowing [34, 35]:

(iv) To construct bifurcation diagrams, basins of at-

traction in initial conditions space, and attractor-

basin-manifold phase portraits, and to interpret610

their highly involved evolution with a varying con-

trol parameter.

(v) To highlight the occurrence of rich and varied bi-

furcation mechanisms in 1/2- and 1/3-subharmonic

ranges, with either boundary or interior crises (of615

switching- or bursting-type) [36] responsible for

sudden changes of global attractor-basin struc-

ture, and the meaningful roles played by direct

and inverse saddles, along with their manifolds,

in producing intricate bifurcation scenarios.620

(vi) To dwell on a variety of features of system global

dynamics, i.e.: fractal basin boundaries produc-

ing response unpredictability; homoclinic and het-

eroclinic intersections entailing strong intertwin-

ing of basins; high periodicity solutions which,625

although having very small basins of attraction,

play meaningful roles in the mechanisms through

which chaotic attractors are established, modified

in size, or destroyed, and periodic windows created

within chaotic zones; sudden widenings of chaotic630

attractors occurring through incorporation of por-

tions of the chaotic saddle, which is the topolog-

ical set formed by the union of infinitely many

saddles corresponding to periodic orbits become

progressively unstable in the main and secondary 635

evolutions to chaos.

2.2 Taut strings: multimode models

Upon earlier analytical predictions as to the possible oc-

currence of amplitude modulated quasiperiodic whirling

in the resonant nonplanar motion of a stretched string 640

[37], nonregular forced vibrations of multimode mod-

els of taut strings were investigated both numerically

[38, 39] and experimentally [40, 41], with the global bi-

furcation theory being also utilized to explain the exis-

tence of chaotic attractors numerically [23] and analyt- 645

ically [41, 42]. Tufillaro [38] studied a resonantly forced

model of an elastic string undergoing either planar mo-

tion described by a single-mode Duffing equation, if as-

suming, e.g., that the string ends are fastened in such a

way to allow only vibration in a single plane, or circular 650

motion described by a set of two coupled Duffing equa-

tions. In both cases, bifurcation diagrams with vary-

ing forcing amplitude highlighted possible occurrence

of chaos, thereafter observed in [40] in the first exper-

imental investigation on chaotic oscillations of strings, 655

focused on the underlying torus doubling cascade, with

the actual chaotic nature of the observed orbits being

confirmed by the fractal value of the correlation dimen-

sion computed from digitized time series. Bajaj and

Johnson [23, 39] systematically analyzed the nonplanar 660

motions of a two-mode model ensuing from single-mode

truncation of the in-plane and out-of-plane equations

of the string [43], subjected to planar harmonic exci-

tation with frequency near a linear natural frequency,

using the method of averaging and the method of inte- 665

gral manifolds. For small enough damping, the nonpla-

nar constant solutions of the averaged equations, arisen

from the resonantly forced planar response solely oc-

curring for large damping, become unstable by a Hopf

bifurcation, with the resulting limit cycle solutions cor- 670

responding to amplitude modulated whirling (or bal-

looning) motions of the string. Two limit cycle branches

were found – one arising due to Hopf bifurcation and

exhibiting PD bifurcations not directly ending up to

chaos, and an isolated one due to a global saddle-node 675

bifurcation –, merging with each other upon further

damping reduction. With variations in detuning, the

isolated branch exhibits PD bifurcations, chaotic at-

tractors and merging of attractors, with occurrence of

Rössler- and Lorentz-type solutions. Homoclinic orbits 680

to a saddle-focus in the context of the Shilnikov mech-

anism, and chaos quenching through boundary crises

were highlighted. The truncated string equations were
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also directly integrated, showing that nonplanar peri-

odic responses bifurcate into amplitude modulated mo-685

tions on a two-torus, with changes in detuning which

result in torus-doubling, merging of tori, and torus de-

struction leading to chaotic amplitude modulations. Over-

all, asymptotic results were in qualitative agreement

with both outcomes from numerical simulations and690

experimental results in [40]. O’Reilly and Holmes [41]

studied the nonlinear vibrations of a pretensioned string

subject to harmonic transverse excitation of one end,

both experimentally and theoretically. Besides planar

and nonplanar (whirling) periodic motions, the latter695

taking place in a clockwise or anticlockwise direction,

they observed quasiperiodic whirling and irregularly pre-

cessing oscillations when the forcing frequency is near

that of a transverse mode. Analysis of the averaged

equations of the two-mode in-/out-of-plane model also700

considered in [23, 39] showed how the experimental

quasiperiodic and chaotic motions can be partially un-

derstood in terms of the completely integrable Hamil-

tonian system obtained as damping and forcing tend to

zero. O’Reilly [42] examined some global bifurcations705

present in the averaged equations using a Shilnikov-

type model, focusing on those bifurcations which allow

the string to change its direction of whirling (which

corresponds to a mode coupling mechanism) and are

directly related to the structural instability of a ho-710

moclinic connection. From symmetry and stability con-

siderations, this instability was seen to produce glu-

ing bifurcations and homoclinic explosions, and pro-

vide an explanation for some of the observed chaotic

motions. Moving from some discrepancy between theo-715

retical and experimental results noticed in [41], Rubin

and Gottlieb [44] highlighted through numerical solu-

tions of forced vibrations with the theory of a Cosserat

point that the forcing amplitude for the onset of per-

sistent whirling and aperiodic response of a nonlinear720

string is quite smaller than that observed in the ex-

periments, even when the uncertainty in the forcing

function is removed from the analysis, thus suggest-

ing possible occurrence of some non-properly modeled

experimental mechanism. Leamy and Gottlieb [45] en-725

riched past string models solely accounting for (in-/out-

of-plane) transverse motions of the string under trans-

verse excitation with the inclusion of also longitudinal

motion, whose geometrically nonlinear coupling with

the transverse one results in resonant and non-resonant730

interactions, and of a nonlinear material law, both as-

pects being appropriate for the study of rubber-like

strings. In the case of internal resonance between first

longitudinal and third transverse modes, the multiple

scales method directly applied to the PDEs highlighted735

a new class of whirling motions with significant longi-

tudinal content, whose existence, hardening/softening

features, and stability were seen to be highly depen-

dent on the magnitude of the material nonlinearities,

whereas numerical simulations of the evolution equa- 740

tions revealed likely chaotic responses attained through

sequences of PD bifurcations. Instead of focusing on

individual modulated responses of strings subjected to

harmonic boundary excitations, Hu and Pai [46] investi-

gated the interrelation between neighbouring solutions 745

via the construction of bifurcation structures obtained

by connecting the extreme values of modulated vibra-

tion limit cycles. When built at various damping lev-

els, bifurcation structures allowed better understand-

ing of forward and reverse Hopf bifurcations through 750

PD, appearance of isolated solution branch, solution

branch transitions between Hopf and isolated branches,

appearance of chaotic attractors and their transitions

between Rössler and Lorenz types, and attractor disap-

pearance by boundary crisis. 755

Contrary to previous studies considering the string’s

‘natural’1:1 internal resonance, Zhang and coauthors

[47] dealt with the occurrence of chaos in a 1:2 inter-

nally resonant taut string, under principal parametric

resonance of one dof and external primary resonance of 760

the other dof. Following a pattern pursued earlier for

studying chaos in a 1:1 internally resonant shallow ca-

ble at first crossover (see, e.g. [48] in Sect. 2.3), after

transforming the multiple scales modulation equations

into a normal form, the global perturbation method 765

of Kovacic and Wiggins [16] was used to find explicit

sufficient conditions for chaos to occur, identifying the

existence of a Shilnikov-type homoclinic orbit. Actu-

ally, the authors interest was merely in applying con-

cepts/methods of dynamical systems theory to a set 770

of ODEs, without taking care of the mechanical mean-

ing of the considered situation. This is also confirmed

by the parameters values referred to in the numerical

simulation of both the original ODEs and the AMEs

(qualitatively confirming the theoretical occurrence of 775

chaos), selected in a substantially abstract way allow-

ing to detect complex phenomena. Still in a theoreti-

cal, though different, context, the galloping instability

of a non-internally resonant, tightly stretched cable in

an overhead transmission line under flow-induced vi- 780

brations was recently addressed via an analytical ap-

proach to chaos based on the generalized harmonic bal-

ance method [49]. Considering a two-dof Duffing model

accounting for single-mode transverse and torsional vi-

brations due to aerodynamic and external loads, analyt- 785

ical solutions for period-m motions were obtained with

high-numbers of harmonic terms. Frequency-response

curves of transverse and torsional components highlight

bifurcation trees of period-1 motions to chaos, with an-
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alytical trajectories which compare very well with nu-790

merical ones.

The context is quite different for the three-mode

model of inclined cable with only cubic nonlinearities

considered in [50] in the background of application as

a deck-supporting cable excited by the passing traf-795

fic in a cable-stayed bridge. The model included the

second in-plane mode resonantly excited by harmonic

vertical excitation of the lower (deck) support and the

2:1 and 1:1 internally resonant first and second out-

of-plane modes. Averaging was applied to the reduced800

ODEs originally provided by [51], and the solutions and

bifurcations of the resulting averaged equations were

investigated and mapped out with numerical continu-

ation. Upon cataloguing the different kinds of equilib-

ria (corresponding to periodic responses of the reduced805

ODEs) through a comprehensive geometric picture of

the surfaces of existence, attention was focused on bi-

furcating periodic orbits, which correspond to cable dy-

namics with varying-amplitude whirling responses of

the participating second in- and out-of-plane modes.810

The range of excitation amplitude and frequency where

such whirling motion can occur was determined. Fur-

ther bifurcations (PD cascades and a Shilnikov homo-

clinic bifurcation where the periodic orbit approaches

a saddle-focus) were found, leading to a chaotic re-815

sponse in which cable motion changes irregularly be-

tween clockwise and counterclockwise whirling. A simi-

lar Shilnikov homoclinic bifurcation was found in a hor-

izontal vibrating string, with the merging of two reflec-

tionally symmetric orbits into a single symmetric one820

[23]. Whirling and chaotic cable dynamics were con-

firmed by time-step simulations of the full three-mode

model.

2.3 Shallow cables: multimode models

Single-mode models of suspended cables allow us to825

highlight the richness of regular and complex planar dy-

namics ensuing from the presence of quadratic and cu-

bic nonlinearities. However, in practice, such responses

only occur when no further modes are involved in the

system response through some mechanisms of in-plane830

and, mostly, out-of-plane nonlinear coupling, the latter

playing an important role as soon as the excitation am-

plitude overcomes relatively low threshold values due

to the apparent cable flexibility in the out-of-plane di-

rection. Interaction phenomena are strongly enhanced835

by the occurrence of internal resonances, which entail

meaningful contributions of non-directly excited modes

to the overall response. In this respect, the spectrum of

natural frequencies of the parabolic cable is particularly

rich, for it exhibits a variety of 1:1, 1:2, and 1:3 internal840

resonances between in-plane, out-of-plane, and in-/out-

of-plane modes, with a special role played by crossover

points, where equal frequency values of interchanging

symmetric and antisymmetric in-plane modes entailing

1:1 internal resonance repeatedly occur, overall ending 845

up to a condition of multiple internal resonance also

involving other modes.

Since about beginning of the 90s, internally reso-

nant multimode models were formulated and used to

investigate via asymptotic techniques the richness and 850

variety of cable dynamic phenomena produced by non-

linear modal interaction already in regimes of regular

vibrations. When using models with a greater num-

ber of interacting modes – like the four-mode model

with the fundamental planar and nonplanar, symmet- 855

ric and antisymmetric, modes accounting for the mul-

tiple 2:2:1:2 resonance occurring at first crossover, with

the first symmetric in-plane mode excited at primary

resonance, in the discretized asymptotic formulation

[52] –, robustness of also incomplete classes of regu- 860

lar motion was investigated, highlighting the major or

minor strength of the bimodal internal resonances con-

tributing to the multiple one. As regards transition to

nonregular responses at higher excitation amplitudes

or in specific frequency ranges, whose analysis is more 865

involved than that for the single-mode model due to

the system higher dimensionality, first numerical re-

sults were reported in [53] for the mentioned four-mode

discretized model [52], by getting complementary in-

dications from the non-stationary motions of the as- 870

sociated AMEs and outcomes from numerical simula-

tions of the system original ODEs. Alaggio and Rega

[54] provided a response chart aimed at qualitatively

reproducing some complex regimes observed in an ex-

perimental cable-mass system ([55], see Sect. 2.4 for- 875

ward) via a low-order reduced models making use of

continuous proper orthogonal modal functions obtained

from variable sets of experimental results. For the above

mentioned four-mode model at multiple internal reso-

nance addressed with the direct asymptotic formula- 880

tion, Nayfeh and coauthors [56] obtained schematics of

dynamic solutions resulting from subcritical Hopf bi-

furcations on branches of equilibrium solutions of the

AMEs, and of further bifurcations possibly ending in

quasiperiodic and chaotic oscillations. Complex nonlin- 885

ear response and a sequence of PD bifurcations culmi-

nating in chaos were observed, with chaotic attractors

then disappearing through boundary crises, and limit

cycles undergoing cyclic-fold bifurcations.

Complex response in the planar dynamics of a ca- 890

ble with 1:3 internal resonance between the first and

third symmetric modes was investigated based on the

AMEs obtained by the method of multiple scales ap-
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plied either directly to the original PDEs [57] or to

a two-mode sub-model [58] of the reduced four-mode895

model in [52], in the latter case also comparing the

dynamic solutions with results from numerical simu-

lations of the two-mode ODEs. Although not perform-

ing strict comparisons of outcomes from the two (di-

rect vs discretized) approaches, some relevant differ-900

ences seem to occur. Indeed, when considering primary

resonance of the third mode, cascades of PD bifurca-

tions ending up to chaotic attractors finally disappear-

ing through boundary crises were observed with both

approaches. In contrast, when exciting at primary res-905

onance the first mode, a sequence of torus bifurcations

not ending up to chaos occurred with the direct ap-

proach, whereas rich and involved sequences of global

bifurcations to chaos, including direct and reverse PDs,

jumping, cyclic-fold bifurcations, and boundary crises,910

were highlighted with the discretized approach. Period-

doubling cascades to chaos and its disappearance though

boundary crisis also occurred in the nonplanar response

of a cable with 1:1 internal resonance between third

symmetric in- and out-of-plane modes, in addition to915

the 1:3 resonance between first and third symmetric in-

plane modes, when investigating the primary resonance

of the third in-plane mode with the direct approach

[59]. Overall, it appears that possibly non-trivial differ-

ences may occur as to the development, features, and920

robustness of complex response outcomes depending on

whether direct- or dicretized-based AMEs are used for

obtaining dynamic solutions, with also slight discrep-

ancies possibly occurring when comparing discretized

AMEs dynamic solutions with results from simulation925

of the reduced ODEs. The first set of discrepancies is

linked with possibly non-trivial effects of non-resonant

modes, which are neglected (implicitly accounted for) in

the discretized (direct) approach, mostly – even though

not only [60] – in the presence of quadratic nonlineari-930

ties; the second set of though lower effects may be due

to possibly non-trivial contributions to ODEs simula-

tion results from higher order small terms neglected in

the asymptotic approach.

Numerical simulation of a Galerkin reduced model935

for in-plane and out-of-plane vibrations (and nonlin-

ear finite element verifications) highlighted the occur-

rence of complex responses also in a (seemingly non-

internally resonant) inclined cable with small sag-to-

span ratio and sinusoidal vertical displacement of its940

lower (i.e., deck) support, in the framework of applica-

tions to real cable-stayed bridges [61]. Support motion

originated parametric and external excitations as in the

four-mode model of horizontal cable [52]. Considering

multiple sinusoidal in-/out-of-plane shape functions, re-945

gions of chaotic response were seen to occur for higher

frequency (apparently around principal parametric res-

onance) and larger amplitude excitations, mostly when

cable damping levels are low.

In most considered cases, rich and variable bifurca- 950

tion scenarios to nonregular attractors (often coexist-

ing with regular ones) in high-dimensional state spaces

(e.g., the eight-dimensional one entailed by the four-

mode model) generally occur, depending on the as-

sumed initial conditions and the rather large number 955

of control parameters. Of course, seemingly chaotic re-

sponses have to be quantitatively characterized by cal-

culating measures such as the correlation dimension or

the first Lyapunov exponent, either by working directly

on the actual vector field (e.g., the eight first-order 960

equations equivalent to the four-mode system), or re-

constructing an embedding phase-space from the nu-

merical scalar time series of, e.g., one or two dof [62]. It

is anyway apparent that, in view of the richness and va-

riety of bifurcation scenarios and nonregular attractors 965

to be possibly observed through heavy numerical analy-

ses and “brute”computer simulations, there is a strong

need to look at the relevant results against some overall

interpretative framework of regular and, mostly, non-

regular classes of motion. This can be achieved by prop- 970

erly complementing analytical/numerical investigations

of possibly complex responses of continuous systems

based on local bifurcation analyses, with more theoret-

ical studies also providing mathematical conditions for

actual occurrence of the latter based on global bifurca- 975

tion analyses, as already illustrated for the taut string.

Global analysis was used in [63, 64] as a theoretical in-

terpretative framework of bifurcation scenarios to com-

plex responses observed in an experimental cable-mass

system (see Sect. 2.4 forward). However, the first theo- 980

retical study on nonregular dynamics of suspended ca-

bles exploting global bifurcation methods was likely due

to Zhang and Tang [48]. Referring to a two-dof model

[65], yet considering an internal resonance of lower prac-

tical significance, they investigated the global bifurca- 985

tions and chaotic dynamics arising in a 1:1 internally

resonant cable at first crossover due to tangential in-

plane vibration of one support, which causes simultane-

ous principal parametric and 1/2-subharmonic external

resonances of the in-plane symmetric mode and prin- 990

cipal parametric resonance of the out-of-plane mode.

The averaged equations, derived from the original non-

autonomous system with the method of multiple scales,

were first simplified to their normal form associated

with a double zero and a pair of pure imaginary eigen- 995

values. Then, a global bifurcation analysis performed

with the perturbation method [16] indicated the oc-

currence of heteroclinic bifurcations and Shilnikov-type

homoclinic orbit to a saddle-focus, which correspond to
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amplitude modulated chaotic oscillations in the original1000

ODEs. Numerical simulations of the averaged equations

confirmed the analytical predictions about occurrence

of chaos.

Other papers nominally dealing with suspended ca-

bles somehow overlook the full consistence of modeling1005

and physics in the background, while being nearly solely

interested in highlighting bifurcations and chaotic dy-

namics in numerical or theoretical terms. They include

considering, e.g., such low values of the sag-to-span ra-

tio (and associated initial curvature) to actually set the1010

system in the range of nearly taut strings, however with

an extremely low shallowness originating the quadratic

nonlinearities which distinguish them from the perfect

taut strings with only cubic nonlinearities considered in

Sect. 2.2. This is the case of papers focusing on nonpla-1015

nar bifurcations and chaotic dynamics, under different

excitation conditions, of a horizontal [66, 67] and in-

clined [68] cable with sag-to-span ratio of 1/400 and

1/447, respectively, which entitle the sine function as-

sumption for both the nearly coinciding in-plane and1020

out-of-plane modes in the Galerkin reduction of the

underlying PDEs, the former mode being markedly dif-

ferent from the Irvine’s symmetric planar one [22] of

actually suspended (although shallow) cables assumed,

e.g., in [52]. A two-dof model with quadratic and cu-1025

bic nonlinearities describing the nonlinear dynamics of

1:1 internally resonant in-/out-of-plane modes of a hor-

izontal cable was considered in [66, 67]. Although the

model was claimed to be valid also for antisymmetric

modes, it only holds for symmetric ones, as highlighted1030

by a comparison of the considered two ODEs with those

of the discretized four-mode model [52] from which the

two-dof one is derived. The in-/out-of-plane modes were

both subjected to a parametric resonant excitation pre-

sumably ensuing from in-plane longitudinal motion of1035

one support, with the out-of-plane mode being also sub-

jected to an external resonant excitation likely ensuing

from a lateral (i.e., out-of-plane) horizontal load dis-

tributed along the cable. Overall, simultaneous princi-

pal parametric and primary external resonances occur.1040

In [67], amplitude and phase modulation equations were

derived with the method of multiple scales and branches

of equilibrium solutions experiencing pitchfork, saddle-

node, and Hopf bifurcations with varying excitation fre-

quency were obtained with a pseudo arclength scheme.1045

A combination of a two-point boundary value scheme

and a Newton–Raphson procedure was used to calcu-

late limit cycle solutions of the AMEs, and then the

Floquet theory was used to assess their stability. A de-

tailed bifurcation analysis of dynamic solutions high-1050

lighted three branches emerging from two Hopf bifurca-

tions, one primary and one supercritical, and other two

being isolated. Limit cycles showed symmetry-breaking,

cyclic-fold, and PD bifurcations culminating to chaos,

thereafter undergoing attractor-merging and boundary 1055

crises. Simultaneous limit cycles and chaotic attrac-

tors were also observed, along with the occurrence of

homoclinic explosions and hyperchaos. Global bifurca-

tion of the averaged equations (rewritten in a suitable

form through a canonical transformation) was studied 1060

in [66] via the energy-phase method [17, 69], which dif-

fers from other higher-dimensional Melnikov techniques

because of providing a sufficient condition for Shilnikov

type behaviour using a Melnikov type integral in the

presence of resonant fixed points. The method was em- 1065

ployed to prove the transversal intersection of the un-

stable manifold emanating from a fixed point in the

resonance band and the stable manifold of the annulus

around the resonance band, and to show the formation

of a homoclinic focus giving rise to a Smale horseshoe 1070

type of chaos. Occurrence of Shilnikov type multipulse

chaotic attractors was demonstrated theoretically and

verified through numerical simulation of the averaged

equations. In turn, Chen and Xu [68]] considered the

1:1 internally resonant two-dof model with quadratic 1075

and cubic nonlinearities previously developed and used

in [70], for a perturbation analysis of the coupling be-

tween in-plane and resonantly forced out-of-plane vi-

brations of an inclined cable. Averaged equations were

numerically investigated to obtain steady responses and 1080

chaotic solutions, observing cascades of PD bifurca-

tions and 3-period solutions leading to chaos, Rössler

type chaotic attractors, and boundary crises. Global bi-

furcation analysis of averaged equations was also per-

formed via a perturbation technique [16], which pro- 1085

vided analytical results for the critical parameter val-

ues at which the dynamical system, through Shilnikov

type homoclinic orbits to the saddle focus, possesses a

Smale horseshoe type of chaos.

2.4 Experimental cable-mass suspension 1090

Another meaningful interpretative framework of regu-

lar and, mostly, nonregular classes of motion can be

obtained by looking at outcomes in terms of routes to

chaos and ensuing attractors from in-depth investiga-

tions of experimental cable models, that are able to 1095

account for the flexibility, high modal density and vari-

able modal contributions to the response of actual cable

systems more realistically than theoretical models often

assuming constrained modal shapes.

First experimental hints about chaos in suspended 1100

cables were obtained for a system of ‘rigid link’ strings

connecting two hanging heavy masses (like two cou-

pled spherical pendulums), giving rise to a three-dof
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system (and corresponding analytical model) whose an-

tisymmetric in-plane and out-of-plane frequencies are1105

at nearby 1:1 internal resonance [71]. Periodic in-phase

and out-of-phase vertical motions of the hanging points

entail regions of quasiperiodic and chaotic out-of-plane

motion (described by means of Fourier transform, prob-

ability density function, and autocorrelation function)1110

when exciting the system around primary and/or 1/2-

subharmonic resonance of the antisymmetric out-of-plane

mode. The delay embedding technique [72] was used to

reconstruct the global properties of the chaotic attrac-

tor from a scalar time series. The structure of the exper-1115

imental global attractor suggested a Shilnikov model for

the transition to chaotic behaviour. Systematic analyses

of regular and nonregular motions were then conducted

by considering a more refined model of experimental

cable-mass suspension [62], under a variety of excitation1120

conditions [55, 63, 64, 73], which is referred to in the se-

quel. The relevant outcomes also provided hints about

how properly formulating theoretical ROMs capable to

exhibit distinct nonlinear behaviours as experimentally

observed in different regions of control parameters space1125

[54, 74], to be then used for possibly systematic analyt-

ical/numerical investigations.

The experimental model was a small-sag nylon wire

carrying eight equally spaced concentrated masses and

hanging at supports that were given vertical sinusoidal1130

displacements [62]. Results were obtained mostly for

an elastogeometric parameter value slightly higher than

the first crossover one, and closely reproducing the nat-

ural frequencies and mode shapes of a corresponding

theoretical cable-mass suspension [75], whose pattern1135

is in turn very similar to that of the bare continuous

cable. Experimental investigations were performed sys-

tematically with in-phase or out-of-phase support mo-

tions in the neighbourhoods of 1/2-subharmonic, pri-

mary, and 2-superharmonic resonances of first in-plane1140

and out-of-plane antisymmetric modes having nearby

frequencies. They were aimed at obtaining both local

response pictures against variations of excitation am-

plitude/frequency and overall response charts in ex-

citation parameters plane. Reliable interpretation and1145

classification of response of flexible continuous systems

is generally lengthy and hard, due to possibly limited

availability of measurements, system sensitivity to vari-

ations of initial and environmental conditions, and usual

occurrence of long transients due to very light damping.1150

Nonetheless, a rich set of responses were observed in

various ranges of system parameters, with strong modal

interaction due to nearness to or simultaneousness of

conditions of external/internal resonance, also possibly

involving higher or local modes. It was possible to de-1155

tect experimental counterparts of practically all main

theoretical classes of regular motion highlighted by the

four-mode discretized ROM [52], with well-identified

mechanical contributions, although the unconstrained

experimental scenario was overall much richer. Widely 1160

extended zones of quasiperiodic and chaotic motion,

with different levels of chaoticity, were detected at fairly

high values of excitation amplitude in between regions

of clearly dominating low-dimensional regular responses,

mostly primary and 1/2-subharmonic resonances with 1165

in-phase and out-of-phase support motion, respectively.

First characterization of seemingly chaotic responses

was obtained via qualitative tools (plots of different sec-

tions of phase space, Poincaré map projections, power

spectra) furnishing hints about their nature in geomet- 1170

ric or mechanical terms. Indeed, in the first respect,

chaos was much more developed when the 2D phase

space reconstruction of the attractor appeared more

tangled, when the power spectrum was broad-banded

instead of being organized around some main peaks, 1175

and when the Poincaré section of a 3D reconstruction

exhibited no structure instead of looking like a section

of a torus with a fuzzy surface, which corresponds to

a chaotically modulated motion. In the second respect,

identifying in a nonregular motion a prevailing timely 1180

modulated modification of a regular spatial shape or

phase portrait occurring in adjacent regions of the con-

trol parameter space, with dominant modal contribu-

tions, helped in the mechanical interpretation of the

motion. 1185

However, quantitative characterization of global prop-

erties of experimental spatiotemporal dynamics requires:

(i) characterization of attractors in terms of dimension-

ality, strangeness, and possible chaoticity, (ii) identi-

fication of number and shape of space configuration 1190

variables mostly contributing to nonregular response,

(iii) description of bifurcation mechanisms and scenar-

ios from regular to nonregular response with a varying

control parameter, (iv) local and global characteriza-

tion of the flow structure in phase space and of its evo- 1195

lution, which is often necessary for understanding the

bifurcation scenario. All of this information were ob-

tained with rather sophisticated techniques requiring

considerable experimental and computational efforts.

Analysis of the asymptotic motion in a nonregular con- 1200

dition was performed on attractors reconstructed by

means of the delay-embedding technique, which pro-

vides indications on the actual number of dof taking

meaningful part in the response. The embedding di-

mension was evaluated at saturation of an attractor 1205

dimension invariant, with a greater value of the cor-

relation dimension confirming qualitative observations

about higher strangeness – and corresponding major

chaoticity – of the response under in-phase than out-
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of-phase motion. In turn, the analysis of response spa-1210

tial properties was performed by means of the proper

orthogonal decomposition (POD) based on the spatial

coherence analysis of the flow [76]. Proper orthogonal

modes (POMs) were computed starting from simulta-

neous time series data measured at different positions1215

throughout the system, with the corresponding eigen-

values standing for the amount of energy (signal power)

captured by the eigenfunctions. Furnishing the basis for

capturing more power per mode than any other basis,

the POD allowed to identify the mechanical configura-1220

tions most visited, on average, during a temporal evo-

lution of the response, to be also used in a theoretical

context for decomposing the spatial flow via a reduction

method.

Different bifurcation paths from regular to nonreg-1225

ular dynamics were exhibited by the cable-mass system

depending on the kind of support motion and exter-

nal resonance, and on cable dynamic properties. They

were traced back to two canonical scenarios of dynam-

ical systems theory, also possibly competing with each1230

other, namely (i) the quasiperiodic (three-tori break-

down) scenario [63], and (ii) a scenario involving global

bifurcation of a homoclinic invariant set of the sym-

metric flow [64, 73]. The quasiperiodic scenario was

seen to be characterized by various types of bifurca-1235

tions, including Hopf from 2-torus to 3-torus, transition

to chaos through 3-tori breakdown, and phase-locking.

Classes of motion were characterized based on topo-

logical dimension of manifolds where the motion devel-

ops and correlation dimension of attractors. The spa-1240

tial coherence analysis showed successive involvement

in the system dynamics, at subsequent Hopf bifurca-

tions, of different cable-mass configuration variables,

with a meaningful amount (more than 90%) of power of

the chaotic response being captured by the first three1245

POMs, resembling the first in-/out-of-plane symmetric

modes and the first out-of-plane antisymmetric mode.

The quasiperiodic scenario was not seen to occur for

the cable at first crossover, whose nearly perfect multi-

ple (2:2:1:2) internal resonance prevents quasiperiodic1250

couplings and transition to chaos from occurring, while

replacing them in parameter space with wider regular

resonant couplings. The homoclinic bifurcation scenario

was of more general interest because of being concerned

with each frequency zone where ballooning-type classes1255

of motion, involving couples of in/out antisymmetric

(symmetric) modes in case of out-of-phase (in-phase)

support motion, are present. In-depth characterisation

of classes of motion and transition scenario required

working with a proper, thermally conditioned, experi-1260

mental setup, such to guarantee a steady temperature

and stabilize the response of the cable-mass system,

making it mechanically accessible without the cable

loosening possibly entailed by too high values of ex-

citation amplitude. 1265

Bifurcation to homoclinic chaos occurred from a

couple of coexisting (e.g., antisymmetric) ballooning

periodic solutions, differing from each other for the or-

bit clockwise or anticlockwise rotation in the configura-

tion plane ([62]; see also Sect. 2.2 for companion mech- 1270

anisms in taut strings). The ensuing chaotic attractor

showed the lowest observed dimensionality, since tran-

sition from regular to nonregular behaviour happened

without increasing the number of involved modes over

the two of the periodic ballooning already present in ad- 1275

jacent regular zones. Overall, the availability of temper-

ature as a third control parameter allowed: (i) to quali-

tatively refer the experimental unfolding of the dynam-

ics to the theoretical one of the divergence-Hopf (d-H)

bifurcation normal form; (ii) to unfold the dynamics not 1280

only in the strict neighbourhood of the organising d-H

bifurcation but also in the ensuing post-critical regions

where the dependence of material damping on tempera-

ture affects secondary bifurcations to homoclinic chaos;

(iii) to show the variable involvement of a further POM 1285

with respect to the reference two-mode normal form

scenario ending up to homoclinic chaos [73]. Construc-

tion of an experimentally-driven low-dimensional phe-

nomenological model allowed to interpret the experi-

mental response scenario in the framework of the sym- 1290

metry breaking of a highly degenerated bifurcation set

describing an O(2) symmetric Takens-Bogdanov bifur-

cation [27, 74], paving the way towards the indepen-

dent formulation of a refined theoretical ROM with all

necessary pre-requisites (likely including also hysteretic 1295

damping) for reliably reproducing the experimentally
observed phenomena. For the sake of completeness, it is

indeed worth observing that no quasiperiodic or chaotic

response was observed in a detailed experimental study

on regular resonant vibrations of a steel horizontal cable 1300

vertically excited at one end, performed by using a 3D

motion analysis system [77]. This was likely caused by

the relatively high stiffness of the steel cable, because of

which the extension-related nonlinearity did not come

into effective play for nonlinear interactions. 1305

2.5 Arbitrarily sagged and inclined cables: multimode

models

More general models of suspended cable considered an

arbitrarily sagged [78] and possibly inclined [79] system,

based on a refined kinematical description of the cable 1310

element deformation. Both exact and third-order ap-

proximate nonlinear PDEs of 3D coupled, forced, damped
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motion of the cable around static equilibrium were ob-

tained, the latter describing moderately large vibra-

tion amplitudes based on the assumption of small static1315

strain. As for the shallow cable, they exhibit quadratic

and cubic nonlinearities associated with cable initial

curvature and axial stretching, respectively; however,

due to the interaction between longitudinal and trans-

verse dynamics – which ensues from accounting for the1320

overall inertia effects – quadratic nonlinearities occur

even in the absence of initial sag, i.e., in the taut string

case, as also occurring in the motion equations reported

in [45]. Longitudinal and transverse (in- and out-of-

plane) dynamics are nonlinearly coupled, so that the ca-1325

ble model is referred to as kinematically non-condensed

to distinguish it from the condensed model typically

considered in the shallow cable literature [80]. Contrary

to symmetric horizontal cables, inclined ones are in-

herently asymmetric. In the case of moderate sag (i.e.,1330

with sag-to-span values somehow larger than the lim-

iting one for parabolic profile), a closed-form cubic ap-

proximation of cable static equilibrium configuration al-

lows to account for the dynamic effects of system asym-

metry, which entails qualitative modification from the1335

crossover phenomenon occurring in the frequency spec-

trum of symmetric cables to the frequency avoidance

(or veering [81]) occurring in the spectrum of inclined

cables for increasing values of the generalised elastogeo-

metric parameter. Veering entails occurrence of hybrid,1340

i.e. asymmetric, modes [82] resulting from a mixture of

symmetric and antisymmetric shapes, which also affect

the system nonlinear behaviour. Multimode discretiza-

tion of approximate PDEs of the non-condensed model

provided low-dimensional reduced ODEs suitable for1345

analytical solution via the multiple scales method [83],

with ROMs suited to obtain nonlinear normal modes

being identified through convergence analyses and val-

idated by finite difference investigation of the original

PDEs [10]. A major issue was concerned with the eval-1350

uation of variable contributions from resonant and non-

negligible non-resonant modes to the overall response,

with the involvement of the latter strongly depending

on the role played by second-order effects of quadratic

nonlinearities coming into play in second-order pertur-1355

bation analysis [10, 80, 84, 85]. Indeed, in view of de-

veloping reliable ROMs, quadratic nonlinearities high-

light the importance of accounting for also non-resonant

(higher-order) modes in the resonant dynamic solutions

of cables with significant sags and/or remarkable asym-1360

metry features due to inclination, whose effects were

generally overlooked in former studies on modal inter-

actions at crossovers considering only resonant modes.

This confirms how the lowest dimensional discretiza-

tion may yield quantitatively inaccurate or even qual-1365

itatively crude results with respect to the infinite-di-

mensional discretization [10], or the direct application

of the asymptotic method to the original PDEs with no

a priori assumptions of the displacement solution form

[86], whose outcomes are equivalent provided enough 1370

modes are retained in the discretization [87, 88]. Again,

a very rich pattern of nominally activable internal res-

onances involving different in-/out-of-plane modes oc-

curs at both crossover (avoidance) frequencies of hor-

izontal (inclined) cables and away from them. Actu- 1375

ally, not all of them are activated because the involved

modes may be nonlinearly orthogonal with each other,

the vanishing nonlinear orthogonality of modes repre-

senting a necessary and sufficient condition for activa-

tion [89]. Anyway, whether activated, they entail strong 1380

modal interaction and energy exchange between the in-

volved modes, to an extent that depends on the specific

resonance condition and the nature of modes.

In the case of planar forced vibrations under uni-

formly distributed vertical harmonic excitation at pri- 1385

mary resonance with some internally resonant mode,

analysis of the AMEs in 1:1 or 1:2 internal resonance,

with the associated nonlinear interaction coefficients,

allows to get a general description of various possible

resonant solutions occurring for horizontal [80] and in- 1390

clined [84] cables. Depending on the elastogeometric

parameter, the kind of internal resonance, and the pri-

mary resonance of a high- or low-frequency mode, un-

coupled and/or coupled solutions may occur, the for-

mer only involving the directly excited resonant mode, 1395

the latter driving into the response also the non-excited

mode via an internal resonance enhanced mechanism of

energy transfer. In the 1:1 internal resonance of horizon-
tal (inclined) cables at crossovers (avoidances) of differ-

ent order, modification from symmetric/antisymmetric 1400

to hybrid modes entails meaningfully different scenarios

of nonlinear response. Even focusing on the solely pla-

nar dynamics, where second-order analyses allows to re-

fer to minimal ROMs accounting for the sole two inter-

nally resonant modes, the essential features of regular 1405

and non-regular responses are seen to strongly depend

on considering horizontal or inclined cables, crossover

(avoidance) or non-crossover (non-avoidance) frequen-

cies, different internal/external resonances along with

the involved modes, approximate non-condensed/con- 1410

densed continuous models underlying the reduced ones.

Nonlinear interactions and complex phenomena char-

acterising the resonantly forced vibrations of horizon-

tal/inclined cables were investigated [80, 84]. Fixed-

point solutions of the AMEs were evaluated by the 1415

Newton-Raphson procedure, whereas their limit cycle

solutions were obtained by the shooting application.

Overall response paths were traced out via continua-
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tion upon quasi-statically varying an excitation param-

eter. Stability of fixed points, and the ensuing bifurca-1420

tions, were examined based on the eigenvalues of the

relevant Jacobian matrix, whereas those of limit cycles

were based on Floquet multipliers. Depending on initial

conditions, direct numerical simulation of the AMEs via

the fourth-order Runge-Kutta scheme allowed to vali-1425

date continuation results and to characterise the post-

bifurcation dynamics in terms of possibly non-regular

responses, using phase-plane projections, power spec-

tral density and Poincaré maps to characterise responses

after decayed transient states. Depending on control1430

parameter values and initial conditions, a variety of

bifurcations and response amplitudes were observed,

with possibly meaningful differences between horizon-

tal/inclined cables, 1:1/2:1 internal resonances, and con-

densed/non-condensed models as regards steady and1435

dynamic solutions, with the latter jumping back to steady

via cyclic-fold bifurcations or losing stability via PD bi-

furcations paving the way to quasiperiodic or chaotic

oscillations. Direct numerical integration of the AMEs

showed nonregular responses attained through qualita-1440

tively different routes, also including on-off intermit-

tency mechanisms, sudden switching back to steady

solutions via boundary crises, and exhibiting different

features (e.g., funnel shaped chaos) evidenced through

qualitative/quantitative measures. Competing effects of1445

dynamic solutions were also evidenced, along with multi-

harmonic response features mainly due to contributions

from higher-order non-resonant modes. The dynamic

deflections occurring in chaotic resonant vibrations ex-

hibit non-periodic multi-mode features, with time-varying1450

amplitudes that may become significantly large. In the

non-condensed model, the availability of coupled dy-

namic configurations of the cable at second order mul-

tiple scales analysis allows to account for the spatial

corrections, with respect to the reference linearly res-1455

onant modes, due to the quadratic nonlinearity effects

of all non-resonant modes considered in a finite dis-

cretization. This is also of major importance as regards

the evaluation of cable nonlinear dynamic tension. In-

deed, the non-condensed model allows for space-varying1460

distribution of the tension along the cable, against the

spatially-constant tension inherently associated with the

condensed model. The multi-modal asymmetric spa-

tial response of, e.g., the 1:1 resonant inclined cable at

first avoidance is particularly evident when the cable1465

experiences chaos, with comparatively important con-

tributions from the two resonant modes and meaning-

ful second-order spatial corrections from non-resonant

modes, and entails non-trivial effects also on the in-

duced space/time-varying tension, possibly increasing1470

up to unwanted tensile/compressive values to be care-

fully considered in the dynamic design perspective.

Using the non-condensed model, occurrence of chaos

at first and second crossovers of the horizontal cable

was investigated in [90] via a global bifurcation anal- 1475

ysis, within a substantially theoretical context. Upon

transforming the modulation equations in [80] to a form

which can be considered as the perturbation of a Hamil-

tonian system, the energy-phase method [69] was em-

ployed to show the existence of the Shilnikov type mul- 1480

tipulse homoclinic orbits (already highlighted in [66]

for the condensed model) asymptotic to certain invari-

ant sets in the slow manifold, which represent a robust

mechanism for the occurrence of complex dynamics, for

the two cases of Hamiltonian and dissipative perturba- 1485

tion. The system was seen to undergo chaotic dynamics

in the sense of Smale horseshoes, although the somehow

unclear information on the considered cable parame-

ters may raise some doubts about the actual technical

meaning of the obtained outcomes. 1490

The non-condensed model accounting for non-trivial

quadratic contributions of higher-order longitudinal modes

also allowed to investigate the longitudinal/transverse

modal interactions occurring at the “secondary” set

of crossover points of highly extensible, e.g. synthetic, 1495

cables [91], which are of interest in technical applica-

tions requiring long-span structural elements capable

to withstand high dynamic stresses without undergoing

failure. Focusing on the first “elastic mode transitions”

[92], occurring for such cables at low-order planar fre- 1500

quencies [93] with the involvement of, e.g., the third

(first longitudinal, i.e., elastic) mode and the fourth

(transversal symmetric) mode at 1:1 resonance, and

considering primary resonance of the latter, direct time

integration of reduced AMEs highlighted the existence 1505

of also chaotic oscillations involving longitudinal modes,

versus the solely periodic transverse/transverse modal

interactions occurring at first “primary” crossover, sim-

ilar to those of low-extensible cables. This highlights a

crucial role played by the longitudinal inertia for even 1510

small-sagged cables (see also [45] in Sect. 2.2).

3 Beam structures

Beams are one-dimensional models for structures en-

dowed with bending stiffness, besides extensional one,

with one dominant dimension with respect to the oth- 1515

ers. Depending on the mechanical assumptions, several

beam theories have been developed in the literature,

which can be classified in three main groups: shear inde-

formable theories (Euler-Bernoulli (EB) models), shear

deformable theories (Timoshenko, third-order, higher- 1520

order, and layer-wise) and three-dimensional beam mod-
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Table 2 Single-mode models

Model Structure Model/system features; Bifurcation and chaos:
resonant excitation Methods. Phenomena

Duffing Buckled
beam

Symmetric two-well oscillator [94, 95, 100,
102, 105, 107, 117]/experimental cantilever
with two [95–98, 100] or two+two [99] forc-
ing magnets; base transverse harmonic [94–
97, 99, 100, 102, 107, 117] or quasiperiodic
[98, 105]

Averaging [102]; numerical simulation [100,
102, 107, 117]; experiments [94–96, 98, 100];
Melnikov [102, 105]. Homoclinic bifurcations
of stable/unstable manifolds, Smale horse-
shoe strange attractor [96, 97, 102]; criteria
for chaos: topological [102], heuristic semi-
analytical [96], harmonic balance approxima-
tion [94, 107]; attractor dimension [100]; chaos
in 4D phase-space [98, 105]; routes to chaos in
symmetric vs asymmetric system [99]

Sym two-well oscillator/Euler-Bernoulli,
Rayleigh, Timoshenko; transverse harmonic

Melnikov, numerical simulation [106]

Sym two-well oscillator with peculiar dissi-
pative term/simply supported viscoelastic;
transverse harmonic

Melnikov, numerical simulation [202]

Asym two-well oscillator; transverse/axial
harmonic, sym couple forces

Melnikov, numerical simulation. Smale horse-
shoe chaos [180]

One-well, two-well oscillator/pinned elastic-
plastic (Shanley model); periodic pulse
[184, 185, 188], harmonic and square-wave
with/without hardening [189, 190]

Numerics [184, 189, 190]; energy approach
[185]. Bifurcation structure [188]; transient
chaos [189, 190]

Beam One-well oscillator with nonlinear iner-
tia and damping/cantilever; transverse har-
monic

Numerical simulation, energy surfaces.
Strange attractor [123]

One-well, two-well oscillator/ simply sup-
ported; axial and transverse harmonic

Chirikov ((2n-1)th resonant separatrix), Mel-
nikov [124]

One-well, two-well, three-well oscillator/
vertical cantilever on elastic foundation: cu-
bic [125] and quintic [126] Duffing with non-
linear inertia; axial load

Melnikov, numerical simulation.
Homo/heteroclinic bifurcations [125, 126]

One-well softening oscillator/ simply sup-
ported on nonlinear elastic foundation; axial
and transverse harmonic

Lindstedt-Poincaré, Melnikov. V-shaped es-
cape boundary [127]

Two-well slowly varying oscillator/simply
supported rotating; applied torque (indirect
parametric excitation)

Melnikov. Bifurcation structure, homoclinic
Smale horseshoe [179]

Two-well oscillator, integro-differential
Duffing-type/simply supported viscoelastic;
transverse harmonic

Numerics. In-/cross-well chaos [201]

Shallow arch One-well softening oscillator; parametric and
external excitation

Melnikov under different resonances, numer-
ics [120]

Sym two-well oscillator/pinned [121],
clamped [122]; static and dynamic trans-
verse

Numerics (ODE,FEM) [121, 122]; experi-
ments [122]. Snap-through boundaries

One-well softening oscillator/hinged; trans-
verse harmonic, antisym mode

Bifurcation, catastrophe: theory, classifica-
tion; numerical simulation [116]
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Table 2 Single-mode models. Continued

Model Structure Model/system features; Bifurcation and chaos:
resonant excitation Methods. Phenomena

One-well/two-well oscillator; static trans-
verse and periodic [157]/quasiperiodic [158]
slow parametric

Averaging, numerics, Melnikov. Invari-
ant manifolds, hyperbolic chaos, periodic
[157]/quasiperiodic [158] bursters

Two-well oscillator/ discrete pre-stressed
two rigid-link; external harmonic [118, 119]

Harmonic balance [118]; numerics [118, 119];
experiments [119]. Bifurcation structure [118];
in-/cross-well chaos [118, 119]

Cable
suspended-
roof

One-well oscillator/saddle form; vertical Melnikov. Smale horseshoe [215]

Helmholtz-
Duffing

Shallow
cable

Asym one-well oscillator; transverse har-
monic at primary, 1/2-/1/3-subharmonic, 2-
/3-superharmonic

Harmonic balance predictions [28, 29, 31–
33]; numerical simulation: ODE, chaos mea-
sures [30, 32, 34, 35], cell mapping [32, 34,
35]; geometrical: direct/inverse saddles, in-
variant manifolds, homo/ heteroclinic tan-
gencies, crises [34, 35]. Bifurcation struc-
ture, attractor-basin-manifold phase por-
traits, high-period solutions [32, 34, 35]

Pedestrian
footbridge

Asym one-well oscillator/beam supported by
pretensioned cable; non-resonant transverse
distributed

Numerical simulation. Bifurcations, chaos
measures, attractor-basin phase portraits,
stable/unstable manifolds, multistability, ero-
sion [220]

Buckled
beam

Asym softening/simply supp; external and
parametric [108]; /clamped-sliding; para-
metric [109]; /fixed-fixed; transverse har-
monic [110]. Duffing two-well/simply supp;
parametric [108]

Multiple scales, numerics (ODE) [108]; exper-
iments [109, 110]. In-/cross-well [108]; in-well
[109, 110] chaos

Shallow arch Asym softening/pinned; two-frequency
[113], constant and 1/2-sub vertical [114],
principal parametric [115]. Duffing two-
well/pinned; 1/2-sub horizontal and vertical
[115]

Numerics [113–115]; averaging, Melnikov
[114]; perturbation, harmonic balance [115].
In-/cross-well chaos [113–115]; bifurcation
loci, V-shaped region [115]

One-well hardening oscillator/hinged; trans-
verse harmonic, sym mode

Bifurcation, catastrophe: theory, classifica-
tion; numerical simulation [116]

Piecewise
linear
oscillator

Beam, with
nonlinear
boundary
conditions

Nonsmooth asym one-well/experimental
cantilever beam with bilinear stiffness (tip
free in one direction and pinned in the
other); base transverse harmonic

Experiments, numerical simulation [101]

Suspension
bridge

Nonsmooth asym one-well/beam-cable con-
nected by one-sided spring hangers (piece-
wise linear stiffness); external forcing (wind-
induced lateral periodic vortices) at reso-
nances with lowest order transverse mode

Numerical simulation. Interaction of reso-
nances and chaotic motion, multistability, in-
volved basin boundary structure, safe basin
erosion [216, 218, 219]

els, accounting for both in-plane and out-of-plane warp-

ings. The increasing complexity of these theories, re-

flecting in the growing number of dependent variables

and PDEs governing the beam dynamics, has meant1525

that EB theory was first and most widely used to inves-

tigate nonlinear dynamics and chaos of beams, allow-

ing the use of analytical techniques alongside numerical

and experimental analyses. As concerns the nonlinear

terms possibly affecting beam models, they are mostly 1530

related to the adopted constitutive and geometrical as-

sumptions, which can introduce nonlinear damping and

nonlinear stiffness terms. Besides governing the features

of modal interaction in internal resonance conditions,

as in cable structures, geometrical nonlinearities play a 1535

significant role in case of large deflections of the beam,

where they couple extension and bending vibrations,
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and in case of high vibration amplitudes which can orig-

inate nonplanar motions with coupling between bend-

ings in the two principal planes. Geometrical nonlinear-1540

ities are also crucial in analyzing the dynamical stabil-

ity and post-buckling behaviour of straight and curved

beams.

Similarly to cables. archetypal single-mode models

for beams are Duffing and Helmholtz-Duffing oscilla-1545

tors. The first one, with cubic (odd) nonlinearity, can

describe the dynamics of unbuckled as well as buck-

led beams, depending on the sign of the linear stiff-

ness: positive stiffness corresponds to the unbuckled

(straight) configuration characterized by a single-well1550

dynamics around the stable rest position; negative stiff-

ness, conversely, describes the response of a buckled

beam oscillating around the two varied (positive and

negative) equilibria, with a typical symmetric (globally-

hardening, locally-softening) two-well dynamics. The1555

Helmholtz-Duffing model, with additional quadratic non-

linearity and an asymmetric two-well dynamics, is a-

dopted when beams are working in severe buckling lev-

els, or in case of curved beams or arches. In fact, the

quadratic term results from the presence of a curvature,1560

which is inherent in the arch geometry, or can represent

the varied configuration of a buckled beam. In the first

case, the Helmholtz-Duffing equation naturally ensues

from the 1-mode Galerkin formulation. However, when

the parameter setting specializes the two-well dynam-1565

ics to be symmetric, or studies are focused on the sole

symmetric configurations, a proper coordinate transfor-

mation allows to obtain a cubic Duffing equation. Con-

versely, the Duffing oscillator representing the equation

of motion of a buckled beam can be transformed into1570

a Helmholtz-Duffing oscillator when interest is devoted

to study the response around a specific buckled equilib-

rium. This entails a hybrid presence of the two models

in works dedicated to buckled beams and arches, with

alternation or co-presence depending on the objective1575

of the investigation. Single-mode models are diffusely

adopted to investigate nonlinear dynamics and chaos of

beams, as they are able to grasp the main qualitative

features of the model response – like the snap-through

phenomenon associated with buckling, which represents1580

one of the main mechanisms originating chaos in beam

dynamics – while they are handy enough to be treated

with analytical techniques. However, already in the first

published works dedicated to this issue, limitations and

validity range of these reduced models were pointed out,1585

especially when nonplanar vibrations are investigated,

and when other modes are strongly involved in the dy-

namical response due to existing internal resonances.

Before specifically dwelling on studies about chaos

in beam structures, it is worth mentioning two general1590

aspects of the underlying research, as it developed from

the beginning. The first aspect is concerned with the

meaningful role played by the experimental investiga-

tion of beam models, since the end of the 70s, in pro-

viding evidence and understanding of complex/strange 1595

phenomena (indeed, the first ones ever observed in me-

chanics), with the ensuing validation of earlier or paral-

lel fundamental outcomes furnished by abstract/theo-

retical studies of archetypal models. The second aspect

seems somehow to contradict the previous one. Indeed, 1600

a non-trivial number of successive analytical/numerical

investigations of archetypal oscillators representative of

beams single-mode dynamics, conducted in the mechan-

ics environment, were mostly aimed at highlighting/un-

derstanding the variety of nonlinear/complex phenom- 1605

ena obtainable by varying system parameters/coefficients

rather than at verifying their actual practical signifi-

cance. This occurred at least throughout the 1980s for

a meaningful body of indeed valuable researches ac-

complished by the best (and still few) scientific groups 1610

active in nonlinear dynamics and chaos of mechani-

cal/structural systems. Although they also entailed fruit-

ful proposition of different analytical criteria for pre-

diction of chaos (and related global phenomena, like

escape) in archetypal nonlinear oscillators, only stud- 1615

ies explicitly referring to beam/arch systems (though

sometimes only nominally) will be addressed in the

sequel. Moreover, in order to save space, only single

beam/arch elements will be considered. It is anyway

worth noting that, starting with the 90s, a meaningful 1620

body of experimental research on nonlinear/complex

dynamics of beam/arch structures was accomplished,

as it also happened for the already discussed cable sys-

tems, with a fruitful feedback towards proper reduced

order modeling and theoretical/numerical investigations. 1625

3.1 Buckled beam: early theoretical achievements and

experimental evidences

First evidence of nonregular motion in beam models

was presented in 1971 by Tseng and Dugundji [94],

who investigated the nonlinear response of a clamped- 1630

clamped buckled beam under a base harmonic excita-

tion. In addition to periodic oscillations around the two

buckled equilibria, nonperiodic vibrations with jumps

from one equilibrium to the other - described as con-

tinuous, intermittent snap-through - were detected and 1635

experimentally verified, although without further inves-

tigation to ascertain the chaotic nature of these mo-

tions. The reduced order model was derived by account-

ing for the first two modes, leading to a system of two

coupled Duffing equations of motion. The comparison 1640

between analytical and experimental results suggested
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the possibility to adopt a single-mode model as long as

the second mode is not parametrically excited by the

first-mode oscillations. A deeper investigation on the

nature of the snap-through phenomenon was developed1645

by Holmes and Moon at the end of the 70s, within a

combined theoretical/experimental framework, dealing

with a laterally excited cantilevered beam buckled by

two magnetic forces [95–97], which became known as

“the Moon beam”. A dense Poincaré map with Can-1650

tor properties and a continuous power spectrum of the

recorded signal revealed the occurrence of chaotic mo-

tion in the form of a Smale horseshoe strange attractor,

as firstly experimentally obtained from a physical sys-

tem in mechanics. The relevant mathematical model1655

was derived by reducing the PDE continuous model

to a single-dof Duffing oscillator with negative linear

stiffness, able to reproduce the main experimental re-

sults due to the clear decoupling of modes in the se-

lected structural problem. Global dynamics was also1660

addressed by applying the asymptotic Holmes-Melnikov

method allowing to detect the occurrence of homoclinic

bifurcations of the stable and unstable manifolds, which

are shown to represent the lower bound for the arise of

transient chaos in the system. These works firstly es-1665

tablished chaotic dynamics as a new phenomenon in

nonlinear oscillations of beams, and inspired a series

of papers focused on detecting the main characteris-

tics of chaotic motion with experimental and numerical

methods, which were accompanied by theoretical works1670

aimed at analytically characterizing strange attractors

and determining criteria for chaos to appear. As con-

cerns the former, experiments on Moon beam forced by

a quasiperiodic excitation were developed to investigate

chaos in multi-dimensional phase space [98]. Realiza-1675

tion of double Poincaré sections of the four-dimensional

phase space allowed to firstly grasp the fractal nature

of the chaotic attractor in a system with phase space

higher than three-dimensional. Thompson and Mullin

[99] added a pair of beam magnets to the Moon exper-1680

iment, arranging them with opposite poles to the base

magnets to avoid that attractive magnetic fields can

trap the beam outside the latter. The magnets posi-

tion enforces the system to be symmetric or asymmet-

ric, both cases being experimentally realized by the au-1685

thors. The results, obtained for a wide range of forcing

frequency, unveiled an unexpectedly rich dynamics with

Hopf bifurcations, period-2 limit cycles, multistability

and coexistence of chaotic and periodic solutions, and

routes to chaos characterized by PD cascades and inter-1690

mittency. Interestingly, the symmetric system showed

also frequency-locking phenomenon with the frequency

of the second mode, which instead was not activated

in the asymmetric system. The experimental data fur-

nished by the Moon beam were elaborated by Moon 1695

and Li [100] to define a quantitative measure of chaotic

Poincaré maps. Grassberger-Procaccia correlation func-

tion algorithm was used to determine the fractal dimen-

sion of the Duffing-Holmes attractor as a function of the

damping. Results were compared with a numerically 1700

obtained fractal dimension, calculated from a Duffing

model, which confirmed the dimension insensitivity to

the phase of the Poincaré section, and a dimension of

the chaotic attractor between 1 and 2. Still dealing with

chaos in single-mode models, although not ascribable to 1705

the archetypal Duffing equation, forced vibrations of an

elastic beam with nonlinear boundary conditions were

analytically and experimentally investigated by Moon

and Shaw [101]. The system consisted of a cantilever

beam with the tip being free for motion in one direc- 1710

tion and pinned in the other, once the tip displacement

exceeds a critical value. Experiments unveiled the exis-

tence of chaotic motion, which was numerically repro-

duced by referring to a reduced one-dof bi-linear spring

model, characterized by a single-well dynamics. Despite 1715

the somehow drastic single-mode approximation, the

analytical model proved to reproduce the qualitative

features of the observed strange attractor, in terms of

time histories, Poincaré maps and FFT spectra.

Experimental evidences stimulated works oriented 1720

at reproducing and investigating peculiar dynamic and

chaotic phenomena with analytical and perturbative

approaches, also promoting an improvement of the the-

oretical tools aimed at defining thresholds for chaos

appearance. Starting from the Duffing oscillator and 1725

using the Melnikov method, Holmes [102] proposed as

topological criterion for the onset of chaos the relation

between damping and (amplitude, frequency) excita-

tion parameters corresponding to the tangency of sta-

ble and unstable manifolds of the saddle of the per- 1730

turbed system, which entails homoclinic intersections

and horseshoe chaos as the excitation amplitude in-

creases further. In turn, based on experimental obser-

vations, Moon [96] furnished a heuristic semi-analytical

criterion for existence of a strange attractor in terms of 1735

motion critical velocity, which is supposed to be close to

the maximum velocity of the unforced, undamped oscil-

lator. Other approximate predictive criteria for strange

phenomena to occur in a class of softening nonlinear

oscillators were proposed, too, as later summarized in 1740

[103]. Using invariant manifolds, nonlinear semigroup

theory and an extension to infinite dimensions (i.e. PDEs)

of the Melnikov method for ODEs, Holmes and Mars-

den [104] gave sufficient mathematical conditions for

a global bifurcation to occur as the external force in- 1745

creases, which results in the transversal intersection of

stable and unstable manifolds and leads to the com-
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plex dynamics of a horseshoe, with the results being

applied to the equations of a nonlinear, periodically

forced, buckled beam. With the aim to interpret the ex-1750

perimental results of Moon and Holmes [98] about the

chaotic attractor of a buckled beam under quasiperiodic

excitation, Wiggins [105] applied a generalized Mel-

nikov method to the Duffing model with 4-dimensional

state space. The ensuing dynamics corresponds to a1755

generalization of the Smale-Birkhoff homoclinic theo-

rem to the case of orbits homoclinic to normally hyper-

bolic invariant tori, which are responsible for the Smale-

horseshoe-like fractal attractor detected by Moon and

Holmes. This form of chaotic dynamics can occur in1760

systems with at least two angular variables and at least

two dimensions, of which the simplest examples are

quasiperiodically forced one-dof models or two-dof dis-

sipative systems. Melnikov method was also applied by

Baran [106] to compare the behaviour of a buckled1765

beam, modeled, with increasing refinement, as Euler-

Bernoulli beam, Rayleigh beam (including rotatory in-

ertia), and Timoshenko beam (considering also shear

forces effects). The homoclinic bifurcation was numer-

ically detected for the three models considering differ-1770

ent (circular) section dimensions, and chaotic motion

was obtained by means of Poincaré maps and phase

portraits. The outcomes showed a relatively small dif-

ference among the three models as concerns the bifur-

cation occurrence, while the exhibited dynamical be-1775

haviour might be completely different. Generally, more

refined models showed to be more sensitive in catching

chaotic responses, with also a shrinking tendency of the

strange attractor revealing a lower vibration level.

3.2 Beams and shallow arches: archetypal single-mode1780

models

From experiments by Moon and Holmes, the most criti-

cal region for the occurrence of chaotic motion in terms

of forcing frequency turned out to be the primary res-

onance one. Here, periodic and chaotic behaviours of1785

in-well oscillations were investigated by Rudowski and

Szemplinska-Stupnicka [107]. The harmonic balance meth-

od applied to the small orbit periodic solutions of the

Duffing model allowed the authors to analytically define

an approximate V-shaped stability threshold, which was1790

interpreted as a heuristic criterion for existence of chaos,

given the good agreement between analytical and nu-

merical results. To better distinguish between in-well

and cross-well oscillations, a shift of coordinate was ap-

plied to move from the Duffing equation to the Helmholtz-1795

Duffing one. Fundamental and subharmonic resonance

regions were then investigated by Abou-Rayan et al

[108] in a model of simply supported buckled beam

with steady and time-varying parametric excitations.

The model, which accounts for an initial static deflec- 1800

tion, was reduced to a Helmholtz-Duffing equation with

external and parametric excitation. Again, a coordinate

transformation was applied to drop the quadratic term

and derive a parametrically excited two-well Duffing

equation. The first model was analytically investigated 1805

in low and high amplitude regimes by means of the mul-

tiple scales method, while Floquet theory was used to

assess the stability of the small amplitude asymptotic

periodic responses. Numerical simulations carried out

using the Duffing equation confirmed the occurrence of 1810

jumps, PD cascades and coexistence of periodic and

chaotic attractors, and furnished a deeper insight on

the quality of chaotic motion, highlighting in-well chaos,

as well as chaotic snap-through and global chaos. The

experimental investigation of a clamped/sliding post- 1815

buckled beam subjected to harmonic axial load by Ji

and Hansen [109] qualitatively confirmed the numeri-

cal results of Abou-Rayan et al, showing the occurrence

of PD bifurcations, period-three, and chaotic motion,

along with the effect of damping on the system dy- 1820

namic instability. Those numerical results were also re-

ferred to by Kreider and Nayfeh [110] for interpreting a

seemingly incomplete PD route to chaos experimentally

observed at low buckling levels in a fixed-fixed buckled

beam subject to transverse harmonic excitation, while 1825

underlining the limits of a relevant single-mode approx-

imation in the prediction of multi-period and quasiperi-

odic oscillations, the latter being later characterized

by Emam and Nayfeh [111, 112]. Even if the physi-

cal system described in [108–110] was a buckled beam, 1830

the resulting mathematical models had the form of a

Helmholtz-Duffing equation due to the interest being

essentially focused on the post-buckled dynamics.

Since the 80s, a number of papers dealt with the

nonlinear vibrations of single-mode models of shallow 1835

arches, described by the ‘natural’ Helmholtz-Duffing

equation, and also highlighting occurrence of chaos. Plaut

and Hsieh [113] analyzed a pinned shallow arch under

distributed two-frequency load. The subsequent asym-

metric two-well model was numerically investigated to 1840

determine the critical load responsible for the arch snap-

through. Resorting to the Budiansky-Roth criterion,

the proposed critical load was represented by the load

corresponding to the maximum amplitude of the re-

sponse which firstly displays snapping motion as the 1845

forcing amplitude increases. The threshold had minima

in correspondence of the main resonances of the two

forcing frequencies, and their combination, confirming

that resonance regions are the most critical in terms of

stability of periodic solutions. For higher loads, in-well 1850

and cross-well periodic solutions occurred together with
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chaotic motions. Focusing on the subharmonic reso-

nance region, Namachchivaya and Doyle [114] and Szem-

plinska-Stupnicka et al [115] studied dynamics of a shal-

low arch under constant and dynamic vertical loads,1855

and under horizontal and vertical harmonic loads, re-

spectively. The ensuing Helmholtz-Duffing equations were

studied with averaging and asymptotic methods in or-

der to detect stability boundaries of the buckled fixed

points, as well as the bifurcation loci of the 2-period1860

solutions, which dominate the response near the ana-

lyzed resonance. The classical V-shaped curve, as de-

duced from the local bifurcation analysis, was shown

to represent the lower bound for existence of chaotic

regions, which were numerically detected in the forc-1865

ing parameter plane and characterized by distinguish-

ing between in-well and cross-well chaos [115]. Alter-

natively, the Holmes-Melnikov function was defined to

detect the occurrence of global bifurcations of the ho-

moclinic orbit, and interpreted as a tool to ascertain1870

the presence of chaos; numerical simulations confirmed

the existence of (transient) chaotic motions just above

the analytical threshold [114].

Bifurcation characterization for a shallow arch model,

representing a buckled beam, was proposed by Ramu et1875

al [116]. Notwithstanding the starting Galerkin-based

two-mode approximation, analyses were developed by

separately considering the first symmetric and the first

antisymmetric modes, described by Helmholtz-Duffing

and Duffing equation, respectively. Stability analysis,1880

together with perturbation approach, allowed to iden-

tify a supercritical cusp bifurcation for the antisym-

metric mode, while the symmetric one undergoes a fold

bifurcation, which becomes a cusp bifurcation if the

model reduces to a bar with zero axial load and no1885

imperfection. For the latter case, the bifurcation is sub-

critical if the buckling configuration is positive, and in

the subcritical regions snap-through behaviour leading

to chaotic motion via intermittency chaos is observed.

For the antisymmetric mode, PD cascade to chaos is1890

detected. Similarly to Ramu and coauthors, Poon et al

[117] investigated the dynamics of a curved beam by

initially formulating a two-mode model, while the as-

sumption of small amplitude of initial deflection and no

effect associated with initial geometric imperfections al-1895

lowed to perform numerical analyses by referring to the

uncoupled single-mode Duffing equation. The dynamics

of the buckled beam was classified in three regions, cor-

responding to a softening spring behaviour occurring for

low forcing amplitudes, a hardening spring behaviour at1900

high forcing amplitudes, and an intermediate connect-

ing region, characterized by chaotic snap-through mo-

tion between the two equilibria. The onset of dynamic

snap-through was seen to occur significantly before the

static snap-through, and demonstrates to be very sen- 1905

sitive to damping while rather insensitive to variations

of the linear frequency of the flat beam.

Other works dealt with models of shallow arches de-

scribed by the cubic Duffing equation, considering ei-

ther a representative discrete system or a single-mode 1910

representation of the actual continuous system. The dy-

namics of a two rigid-link single-dof arch model un-

der vertical harmonic forcing, whose equation exhibits

nonlinear inertia, stiffness and forcing terms, was in-

vestigated by Blair et al [118] and Wiebe et al [119]. 1915

Combinedly using harmonic balance, continuation and

Floquet theory, different, symmetric and asymmetric,

responses for varying forcing amplitude and frequency

were analyzed in [118], highlighting useful hints pro-

vided by the Fourier coefficients of stable and unstable 1920

trajectories for the qualitative and quantitative charac-

terization of motion. Cross-well chaotic motions origi-

nating from a PD cascade were numerically detected in

medium and high forcing amplitude regimes as the sole

existing stable solutions within periodic responses in- 1925

stability ranges. In turn, a comprehensive experimental

and numerical (with a fourth-order Runge-Kutta time

stepping scheme) investigation of the snap-through phe-

nomenon in a discrete arch model was made in [119],

by also using average kinetic energy evaluations. They 1930

highlighted the occurrence of (though less frequent) cha-

otic motions, mostly cross-well, characterized by the

largest Lyapunov exponent and the peak-count crite-

rion. Significantly, distinction between snap-through and

chaos was underlined, with also a specification of tools 1935

for distinguishing between the two phenomena, mak-

ing clear that there can be non-chaotic snap-through

responses, just as there are in-well chaotic motions (al-

though relatively rare) with no snap-through.

A number of studies dealt with single-mode rep- 1940

resentations of shallow arches by considering Duffing

models, under specific hypotheses. Analyzing the dy-

namics of an arch with parametric and external exci-

tations within a substantially theoretical context, Zhou

et al [120] reduced the natural Helmholtz-Duffing equa- 1945

tion to a single-well softening (i.e., with positive linear

and negative cubic stiffnesses) Duffing equation, un-

der the assumption of a non-resonant quadratic term.

The Melnikov method was applied to the two hetero-

clinic orbits in order to parametrically define the crit- 1950

ical bifurcation thresholds separating chaotic and non-

chaotic regions in different resonance conditions. The

results showed uncontrollable regions in the excitation

parameter plane in which chaos is always present, and a

controllable frequency where the system is not chaotic, 1955

underlining the crucial importance of a proper parame-

ter setting (however with unclear practical significance)
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in determining the system dynamical response. Moving

from their previous work on the snap-through dynamics

of a discrete arch model, Chandra et al [121, 122] con-1960

sidered the two-well Duffing model representative of the

single-mode dynamics of a pinned [121]/clamped [122]

sinusoidal arch under static and dynamic loads, which

holds for the description of the sole symmetric config-

urations. After verifying the effect of the arch rise on1965

the equilibrium position, numerical and finite element

analyses, and experimental tests, were used to inves-

tigate possible snap-through scenarios of arches under

time-dependent sinusoidal loading, which are responsi-

ble for an increase of fatigue. A quite rich behaviour1970

including periodic, quasiperiodic and chaotic responses

was highlighted, with also a specific attention devoted

to the variability of initial conditions. To assess the

fatigue risk, the numerical analysis included also the

study of transient behaviour, investigated by consid-1975

ering the number of snap-through per forcing cycle,

the kinetic energy, and the peak count of the discrete

Fourier transform. As concerns reliability of the selected

ROM, comparison with FEM analysis showed that the

Duffing equation is able to capture the main features1980

of the arch response when its rise is not prominent,

otherwise the asymmetric mode comes into play and

multi-mode models are necessary to correctly grasp the

response.

Considering different possible external resonances,1985

and moving from the numerical outcomes of Berdichevsky

and coauthors about cantilever beam global dynamics

[123], Luo and Han [124] dealt with analytical predic-

tion of chaos in a simply supported, planar nonlinear

rod, whose mth-mode Galerkin dynamics is described1990

by the Duffing equation. All cases obtainable with dif-

ferent sign combinations of linear and cubic stiffnesses

were considered, corresponding to one-well/two-well glob-

al dynamics with heteroclinic/homoclinic orbits. In the

undamped model, chaotic motion in the neighbourhood1995

of the (2n − 1)th resonant separatrix was detected by

means of the Chirikov resonance overlap criterion, while

for the weakly damped system, Melnikov function was

applied to define the subharmonic bifurcation condi-

tion. Analytical predictions were validated by numeri-2000

cal simulations showing the occurrence of steady chaos

near various resonant separatrices, the latter becoming

transient chaos to steady periodic motion when damp-

ing is added to the model.

Single-mode models represented by Duffing-like equa-2005

tions are used also to study the dynamical response of

beams resting on elastic foundations. Lenci and coau-

thors [125, 126] investigated the global dynamics of an

elastic cantilever beam on Winkler-type soil under ax-

ial load and transversal harmonic excitation, by tak-2010

ing into account third-order [125] and fifth-order [126]

terms of the Galerkin one-mode approximation, along

with nonlinear inertia. The first model allowed the au-

thors to study the small amplitude response, while the

latter was used to analyze also the large amplitude 2015

regime. Depending on the soil stiffness, the system equi-

librium can undergo a supercritical or subcritical pitch-

fork bifurcation at the critical buckling load value, and

different unperturbed scenarios can occur, correspond-

ing to single-well, double-well and three-well dynam- 2020

ics. Melnikov method was applied to analytically de-

tect the intersection of homoclinic and/or heteroclinic

orbits, which represent the starting points for successive

route to full chaotic dynamics. Such chaotic boundaries

were described in the excitation parameter plane for 2025

the different cases analyzed, and theoretical predictions

were confirmed by numerical simulations. Santee and

Gonçalves [127] studied a simply supported beam with

axial force and transversal harmonic excitation on non-

linear elastic foundation, modeled with three-parameter 2030

Ramberg-Osgood function, further approximated by a

third-order Taylor expansion. The one-mode reduced

model is a forced damped softening-type Duffing equa-

tion, with one stable equilibrium and two saddles con-

nected by heteroclinic orbits. The influence of the non- 2035

linear elastic foundation on dynamical behaviour and

stability of the slender beam was investigated through

comparison with the system without/with linear foun-

dation. The latter are characterized by stable post-buck-

ling path and hardening frequency-amplitudes curves 2040

with small nonlinear effects, while the presence of a non-

linear softening foundation reflects on a strongly non-

linear softening behaviour and high imperfection sen-

sitivity. Also in this case, Melnikov method was used

to analytically define the lower bound of the dynamic 2045

buckling loads leading to escape and chaotic motions.

3.3 Beams: two-mode models

The limits of one-dof models to comprehensively de-

scribe the nonlinear dynamics of buckled beams and

arches in different possible operating conditions and 2050

for high amplitude and high curvature levels, promoted

the study of multimode models. In particular, interac-

tion between two modes and its effects on the nonlin-

ear response of several structural systems were exten-

sively investigated in the 80s and 90s (see, e.g., [128– 2055

130]), considering models with different nonlinearities,

and various internal and external/parametric resonance

conditions. Coupling and energy exchange among the

system’s modes due to the nonlinear interaction were

found to be responsible for many interesting phenom- 2060

ena, like instability of planar motions and arise of non-
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planar responses, saturation of the system response and

modes energy transfer, and onset of complex responses,

including two-period quasiperiodic motions and chaoti-

cally modulated responses. Parallel to this main stream2065

of mechanically-driven researches on nonlinear vibra-

tions based on asymptotics, numerics and possible ex-

perimental investigations, more dynamical system-ori-

ented studies (e.g., [130] aimed at generally clarifying

the global bifurcation conditions for chaotic dynamics2070

and the ensuing features.

Within the first rich group, several works addressed

the effects of internal resonances in two-mode models

of both beams and arches. In 1986, Maewal [131] pub-

lished one of the first examples of chaos in continuous2075

structural models, by analyzing the effects of the inher-

ent 1:1 internal resonance between the first planar and

nonplanar modes of a simply supported elastic beam

with symmetry in both the cross-section and the bound-

ary conditions. When harmonically forcing the beam2080

in a symmetry plane, with a sufficiently low damping,

the planar directly excited motion in the frequency-

response curve destabilizes to a nonplanar motion near

the resonance peak, as already discussed in Sect. 2.2 for

the taut string [39]. A Hopf bifurcation in the nonpla-2085

nar curve defines a region of instability of both planar

and nonplanar periodic solutions, which corresponds to

a chaotic response numerically confirmed by the eval-

uation of the maximum Lyapunov exponent and the

attractor Lyapunov dimension. 1:1 internal resonance2090

was investigated also by other authors, considering the

generic nth planar and mth nonplanar flexural modes.

In-plane principal parametric [132] and primary exter-

nal [133] resonances of the two interacting modes were

investigated by the method of multiple scales applied to2095

the integro-PDEs equations of a cantilever beam [134],

considering a square or a rectangular cross-section in-

volving the first planar and nonplanar modes. The cru-

cial role played by the competing hardening geometric

vs softening inertia nonlinearities in describing the over-2100

all response was highlighted, the former being essential

for the prediction of nonplanar motions and the cor-

rect evaluation of first and higher modes behaviours.

In resonance conditions, nonplanar solutions undergo

a Hopf bifurcation which causes the arise of steady or2105

unsteady whirling motions, and eventually chaotic re-

sponses. With different boundary conditions, a similar

behaviour was also detected by Restuccio and coauthors

[135] in a two-mode model of clamped-clamped/sliding

beam under principal parametric excitation and 1:1 in-2110

ternal resonance, for which the inertial nonlinearities

are seen to dominate the modal response. A more de-

tailed analysis of the bifurcation scenario characterizing

the dynamics of the beam model proposed in [132] can

be found in [136], where the multiple scales method is 2115

applied to the system Lagrangian. The stability analysis

of the equilibrium solutions allowed to unveil a rich dy-

namical behaviour, characterized by saddle-node, pitch-

fork and Hopf bifurcations, and with periodic solutions

possibly undergoing symmetry breaking, cyclic fold and 2120

PD cascades to chaos. Moreover, numerical investiga-

tion showed the presence of symmetric and asymmet-

ric chaotic solutions which alternate due to attractor-

merging and boundary crises. 1:3 internal resonance be-

tween the first and second planar modes of a hinged- 2125

clamped beam with static axial load and a restrain-

ing spring at one end was addressed in [137], consid-

ering primary excitation of either the first or the sec-

ond mode. Periodically and chaotically modulated mo-

tions of the beam were determined by investigating 2130

the dynamic solutions of the AMEs obtained by di-

rectly attacking the PDEs with the method of multi-

ple scales. Various bifurcation mechanisms were high-

lighted, with complex dynamics including bubble struc-

tures (cascades of direct and reverse PDs), jump re- 2135

sponses driven by cyclic-fold bifurcations, subcritical

PD bifurcations, and boundary crises of the established

chaotic attractors.

Without specifically focusing on a resonance con-

dition, Cusumano and Moon [138, 139] experimentally 2140

and numerically investigated the dynamics of a flex-

ible cantilevered rod (the elastica) with harmonic dis-

placement at the base. The experimental campaign was

developed to assess the effects of possible coupling be-

tween bending and torsional modes. In the forcing pa- 2145

rameter plane, the planar bending response was seen

to become unstable in several V-shaped regions corre-

sponding to all in-plane bending frequencies, and com-

binations. Inside the instability regions, coupled bending-

torsional responses and chaotic motions occur, with also 2150

evidence of an energy cascading phenomenon, in which

lower frequency modes are excited by high frequency

input. A geometrically exact analytical model includ-

ing warping effects in the rod theory was formulated.

Then, based on the experimental evidence for low-di- 2155

mensionality of bending-torsion instability, the ensuing

two PDEs in the in-plane bending and torsion variables

were reduced to a 2-mode Galerkin ODEs system un-

der the hypothesis of slow torsion variation along the

rod, which allows to assume a corresponding ad hoc 2160

functional form. The model demonstrates to catch the

main qualitative features of the experimental system,

being able to reproduce the relevant coupled modes,

which are numerically seen to arise from a pitchfork

bifurcation of the torsional mode, as highlighted by a 2165

perturbation treatment [140]. Clearly, while highlight-

ing that the presence of a low order internal resonance
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is not critical for the loss of planar stability, the 2-mode

reduction allows to describe only the instability region

near the first bending natural frequency, while the other2170

regions experimentally found could be investigated only

by adding other modes into the model.

Zhang and coauthors [141–144] studied local and

global dynamics of a cantilever beam with axial and

transversal harmonic excitations applied at the free end,2175

in condition of 1:2 internal resonance between the first

planar and nonplanar flexural modes. In formulating

the asymptotic system through the multiple scales meth-

od, the axial and transverse excitations are in princi-

pal (fundamental) parametric resonance and 1/2-sub-2180

harmonic (primary) external resonance with the pla-

nar (nonplanar) mode, respectively, with the latter en-

tailing a constant force in the averaged out-of-plane

equation. Several high-period responses of in-plane and

out-of-plane modes are detected, together with chaotic2185

motions. Moreover, the transverse excitation may work

as a controlling force able to move the response from

chaotic to periodic or even to steady-state. After re-

ducing the averaged equations to a normal form, the

global dynamics is also investigated [142] by applying a2190

higher-dimensional Melnikov theory [16] to determine

the existence of Shilnikov-type single-pulse homoclinic

orbit to a saddle-focus. The existence of such an or-

bit implies the occurrence of chaotic motion in the full

4D averaged system. Numerical simulations confirm the2195

presence of several amplitude modulated chaotic re-

sponses of Shilnikov type, with different shapes in the

planar and nonplanar components. If applying one fur-

ther transversal excitation to the model, multi-pulse

Shilnikov homoclinic orbits are then detected by evalu-2200

ating the zeros of the energy difference function [143],

according to the energy-phase method [69], or by apply-

ing the extended Melnikov method [145] [144]. As gen-

eral observation, the analyses highlight that parametric

excitation, transversal excitation and damping have im-2205

portant influence in chaotic motions, and that internal

resonances between planar and nonplanar modes can

produce an involved chaotic scenario.

3.4 Shallow/non-shallow arches: internally resonant

two-mode models2210

Internal resonances are also important in the planar dy-

namics of arch models, as for adequate values of the

arch initial rise the first and second flexural modes

can be in autoparametric resonance (see, e.g., [146]).

A two-mode Helmholtz-Duffing model was formulated2215

by Afaneh and Ibrahim [147] to study the 1:1 internal

resonance between the first and second planar modes of

an initially buckled clamped beam. The ensuing ODEs

are studied with three different approaches, i.e. multiple

scales method, numerical simulations and experimental 2220

testing, which unveil the presence, inside the resonance

region, of unimodal, stationary bimodal and modulated

bimodal responses, together with nonregular motions

including irregular beating responses, snap-through os-

cillations and chaos. A similar model was also investi- 2225

gated by Namachchivaya and coauthors, with the aim

to describe local and global dynamics of a simply sup-

ported shallow arch with lateral harmonic excitation

in primary [148, 149] or 1/2-subharmonic [150, 151]

resonance. In both cases, 1:2 and 1:1 resonances be- 2230

tween first antisymmetric and symmetric modes (the

corresponding 1:2 ratio being not too realistic for shal-

low arches) are examined by means of the averaging

method, in order to determine the asymptotic equations

to be handled for the stability analysis. A pitchfork 2235

bifurcation of the single-mode response is seen to be

responsible for the arise of the coupled-mode solution,

which in turn becomes unstable through a Hopf bifurca-

tion, producing chaotic motion in the averaged model.

This corresponds to a modulated chaotic solution in the 2240

original system. Numerical continuation of the afore-

mentioned bifurcations allows also to define stability

regions of single-mode, coupled-mode and chaotic mo-

tions in the excitation parameter plane [152]. Global

dynamics is addressed for the 1:2 resonance case by the 2245

extended Melnikov method [153] for higher-dimensional

systems, which shows that the shallow arch structure,

in the absence of any dissipation mechanism, can ex-

hibit chaotic dynamics in the sense of Smale horseshoe

[148, 150]. Differently, for the 1:1 resonance case the al- 2250

ternative approach by Kovacic and Wiggins [16] allows

us to consider the dissipation effects and leads to de-

fine the existence of a Shilnikov-type homoclinic orbit

to a saddle-focus in the perturbed system, and conse-

quently of chaotic dynamics [149, 151]. Within a sub- 2255

stantially theoretical context, a more detailed analysis

of the Shilnikov homoclinic orbits was developed by Yu

and Chen [154], who studied the existence of one-pulse

and multi-pulse Shilnikov homoclinic orbits relevant to

the saddle and to the sink of the system. These orbits, 2260

which are composed of alternating slow and fast pieces,

imply the occurrence of complex dynamics, which is

numerically confirmed by detection of 4D chaotic mo-

tions. Moreover, results point out the possible occur-

rence, in certain parameter regions, of several families of 2265

one-pulse and multi-pulse orbits which lead to a rather

complicated dynamical behaviour.

Referring to a shallow arch model similar to that

proposed by Tien and coauthors [148], the effect of a

slow imposed harmonic displacement at one hinged end, 2270

acting as parametric excitation to be added to the ex-



26 Giuseppe Rega et al.

ternal periodic force, was investigated by Lakrad and

coauthors [155]. The dynamics of the two-mode system

under 1:2 internal resonance and near primary exter-

nal resonance was studied through the multiple scales2275

method in order to perform a local dynamical analysis

below the snap-through threshold, and stability charts

with and without the base displacement were obtained

in the external excitation parameter plane. In absence

of base displacement, four different regions were de-2280

tected, corresponding to one-mode, coupled modes, co-

existing one-mode and coupled modes, and chaotic mo-

tions (see also [156] for similar results). The slow para-

metric force was seen to modify the type of stable re-

sponses of the model, which move from periodic to2285

quasiperiodic motions. As the displacement amplitude

increases, transition areas arise and enlarge around sta-

bility thresholds, where the solutions are changing their

nature and stability during one period of the slow time

scale, corresponding to periodic bursters. Moreover, even2290

for small amplitudes the slow base displacement is able

to suppress chaos in the region where coupled and mono-

modal responses are unstable. The same authors have

investigated the presence of periodic and quasiperiodic

bursters also in a one-mode model of shallow arches un-2295

der slow horizontal periodic [157] and quasiperiodic mo-

tion [158], respectively. In both cases, Melnikov method

and Lyapunov exponents are used to describe the sys-

tem response. The presence of slow-fast dynamics im-

plies a delay of the bifurcations of the system and a2300

change in the sequence of visited buckled states during

the slow time period, which depend on the initial condi-

tions and the value of control parameters. The presence

of elastic supports as constraints of a shallow arch was

considered by Yi and coauthors [159] by applying the2305

multiple scales method to the m-mode Galerkin model.

In particular, occurrence of 1:2 internal resonance be-

tween mth and nth mode was imposed, and results were

presented by considering the first and second lower flex-

ural modes and primary resonance with the external2310

harmonic excitation. Frequency-response curves and bi-

furcation diagrams for different values of the constraint

stiffnesses allowed the authors to consider different con-

figurations; when constraints have same stiffness, the

1:2 internal resonance cannot be activated and the sys-2315

tem response reduces to a single-mode motion, behav-

ing like a clamped-clamped shallow arch which can be

seen as a limit case of the arch with elastic supports.

Differently, when different stiffnesses are considered, the

modal interaction between the lowest two modes, with2320

modal shapes neither symmetric nor antisymmetric, is

activated, and complex dynamics arises through Hopf

bifurcation around the resonance frequency with chaotic

motion occurring via PD cascade.

Internal resonances were also investigated in non- 2325

shallow arch models by Thomsen [156], who studied

the dynamics of a non-shallow circular arch with a har-

monic load at its crown, for which the natural fre-

quency of the second (symmetric) mode is nearly twice

the first (antisymmetric) mode natural frequency. The 2330

study of the asymptotic equations, obtained by apply-

ing the multiple scales method in case of external ex-

citation in primary resonance with the second mode,

allows to analytically define stability regions of the two

monomodal responses, together with the occurrence of 2335

bimodal solutions and unstable regions characterized

by quasiperiodic and chaotic motions. The latter are

characterized by a positive Lyapunov exponent and a

broadband frequency spectrum, and arise through a

Ruelle-Takens-Newhouse (or quasiperiodic) route, for 2340

which chaos occurs after three subsequent Hopf bifur-

cations. A numerical chart plotting the value of the

largest Lyapunov exponent in the parameter plane con-

firms the analytically obtained instability region, high-

lighting how it represents a rather accurate criterion 2345

to predict the onset of chaotic and quasiperiodic mo-

tion, with chaos generating mechanisms also including

transient and intermittency routes. Based on Thom-

sen’s results, Schmidt [160] applied the harmonic bal-

ance up to the third order to study the influence of 2350

the higher order approximations in correctly describing

the system response. The significant effect of a more

refined approximation in the behaviour of frequency-

response curves was used to propose a simple criterion

for the onset of chaos. In fact, for this system as for 2355

other models, it corresponds to a sensible reduction

(from 5 to 10 percent) of the response amplitude around

the resonance frequencies, which can be caught compar-

ing the first and third order curves. A Cosserat-based

model of non-shallow arch was studied by Benedettini 2360

and coauthors [161], who numerically and experimen-

tally investigated the response of a planar hinged circu-

lar arch with a sinusoidal forcing applied to the tip. A

two-mode Galerkin reduction was performed, and 1:2

internal resonance between the first antisymmetric and 2365

symmetric modes is considered, with the latter excited

at primary resonance. Continuation techniques were ap-

plied to obtain frequency-response curves and stability

charts in the excitation parameter plane. As for the

previously presented shallow arches, the monomodal 2370

response becomes unstable around the resonance fre-

quency due to a pitchfork bifurcation, which activates

the coupled bimodal solution. The subsequent Hopf bi-

furcation leads to quasiperiodic and eventually chaotic

motions. A good qualitative agreement between numer- 2375

ical and experimental outcomes confirms the ability of

the two-mode reduced model of correctly reproducing
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the dynamic behaviour in both regular and nonregular

regimes.

3.5 Multimode models2380

Despite the increase of computational burden due to

the enlargement of system dimension, and the greater

difficulty in applying analytical techniques, some pa-

pers analyzed the effect of higher modes on the chaotic

response of beams and arches. Tang and Dowell [162]2385

numerically and experimentally investigated the onset

of chaos in the dynamics of a cantilevered pipe-beam,

highlighting the importance of considering at least three

modes to correctly reproduce the chaotic boundaries

in both low and high frequencies ranges. The crucial2390

role played by damping for chaos occurrence was also

stressed, suggesting the importance of its careful mod-

eling. As mentioned in Sect. 3.2, Emam and Nayfeh

dealt with the dynamics of a clamped buckled beam

at primary resonance [111], moving from the experi-2395

mental results by Kreider and Nayfeh [110]. A multi-

mode Galerkin discretization was used to perform nu-

merical analyses, considering up to four flexural modes.

Upon verifying the reliability of the single-mode model

only for limited bucking levels, the outcomes demon-2400

strate the capability of a multi-mode discretization to

provide a more detailed and complete description of

the dynamical responses exhibited by the beam, and

a deeper knowledge of the mechanisms underlying the

onset of chaotic motions. With a four-mode discretiza-2405

tion a sequence of PD bifurcations leading to chaos is

detected, while a supercritical PD bifurcation followed

by a secondary Hopf bifurcation results in a quasiperi-

odic motion, none of these results being captured by the

single-mode model. Similar results were obtained when2410

the beam undergoes a 1/2-subharmonic resonance ex-

citation [112]; in this case, a four-mode Galerkin dis-

cretization was used to carry out dynamical analyses,

confirmed also by experimental tests, with the method

of multiple scales being used to obtain a second-order2415

approximation of the response. The 2-period solutions

existing around subharmonic resonance undergo a Hopf

bifurcation leading to limit cycles, snap-through and

phase-locked motions, up to generating chaotic responses

through PD cascades. Dealing with curved beams, Zulli2420

and coauthors [163, 164] formulated a 3D model of in-

ternally constrained clamped-free beam. The dynamical

analyses were developed by applying a 4-mode reduc-

tion under different initial configurations, which involve

different internal resonance conditions, and by apply-2425

ing a tip shear force of follower type. The numerical

investigation allowed the authors to identify regions of

multimodal responses, with periodic, quasiperiodic and

chaotic motions. As general observation, the outcomes

highlight a great sensitivity to variations of initial con- 2430

figuration, which increases with the number of consid-

ered modes. Moreover, experimental tests on a straight

cantilever beam suggest the involvement, in the multi-

modal responses, of all the considered modes, regard-

less of which are internally resonant. Interestingly, de- 2435

spite a good correspondence between the experimen-

tal natural frequency and that analytically calculated

for a straight beam, the forced dynamics experimen-

tally observed shows some features peculiar of the inter-

nally curved beam, underlining the crucial role played 2440

by imperfections of the initial configuration in signifi-

cantly affecting the beam nonlinear behaviour. A simi-

lar model of 3D cantilever beam was also analyzed by

Carvalho and coauthors [165, 166], considering an ini-

tially straight configuration, and a rectangular [165] or 2445

cruciform [166] beam section. Moving from a nonlin-

ear formulation including geometric and inertial nonlin-

earities [134], and applying a 3-mode reduction, a set

of three coupled nonlinear ODEs allowed the authors

to numerically investigate the beam flexural-flexural- 2450

torsional dynamics. In particular, attention was focused

on verifying the effects of axial (concentrated) static

and harmonic loads, concurrently applied with a har-

monic lateral excitation, on the system stability bound-

aries. Due to the symmetry of the considered cross- 2455

sections, 1:1 flexural-flexural and 1:1:1 flexural-flexural-

torsional internal resonances can occur for the rectangu-

lar and cruciform sections, respectively. At these condi-

tions, an increase of the axial load is seen to strengthen

the importance of inertial nonlinearities, causing a re- 2460

duction of the natural frequency and a lowering of sta-

bility thresholds. The axial static load demonstrates

also to have a significant influence on equilibrium paths

and bifurcation sequences. Moreover, accounting for flex-

ural-flexural-torsional coupling proves crucial to follow 2465

the nonplanar motions arising from pitchfork bifurca-

tions of the monomodal solution; conversely, its neglec-

tion would change the nature of the local bifurcations

from pitchfork to saddle-node, leading to erroneous re-

sults. Bifurcation diagrams and cross-sections of multi- 2470

dimensional basins of attraction are realized to detect

often coexisting periodic, quasiperiodic and chaotic re-

sponses, the latter occurring for high forcing excitation

and characterized by computation of Lyapunov expo-

nents. 2475

Moving from isotropic to composite beams, Pai and

Nayfeh generalized the equations of motion derived by

Crespo da Silva and Glynn [134] taking into account

elastic couplings among extensional, bending, and tor-

sional stiffnesses characterizing composite structures. 2480

The ensuing system of equations contains bending-twist-
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ing, bending-bending, extension-twisting, and extension-

bending coupling terms, together with cubic and quad-

ratic nonlinearities due to curvature, inertia and mid-

plane stretching [167]. Dynamical responses of the model2485

under excitations in flapwise [168] and chordwise [169]

directions were investigated, respectively. In the first

case, condition of primary resonance of the flexural-

torsional mode under 1:2 internal resonance with the

first out-of-plane flexural mode is treated by means of2490

the multiple scales method, while the same asymptotic

technique was applied in the second case under pri-

mary resonance of the in-plane flexural mode in 2:1

internal resonance with the first out-of-plane flexural-

torsional mode. The outcomes highlight the crucial ef-2495

fect of the bending-twisting coupling in inducing non-

planar motions notwithstanding the presence of pla-

nar input force. Symmetry-breaking bifurcations and

Hopf bifurcations were detected, the latter giving rise

to chaotic windows due to PD cascades and cyclic-fold2500

bifurcations.

Looking at the presence of chaos from a global dy-

namics viewpoint, Smelova-Reynolds and Dowell [170,

171] applied the Melnikov method to a n-mode Galerkin

model of a simply supported buckled beam with har-2505

monic excitation. Firstly, a reduced model including

only N hyperbolic modes was investigated, by applying

a semi-analytical method to obtain the N-dimensional

homoclinic manifold. To detect the onset of chaotic mo-

tion, the critical curve for the first component of the2510

Melnikov vector was calculated [170], and then com-

pared with those relevant to the higher components

[171]. The analyses assessed that the lower threshold,

to be considered as escape boundary leading to chaos,

is represented by the first component, corresponding2515

to the energy component, on which the investigation

should focus. Further results show also that accounting

for non-hyperbolic modes does not modify the critical

conditions obtained from the reduced hyperbolic sys-

tem. Based on the results of Wiggins [105], Yagasaki2520

investigated two simpler beam models, replacing the

buckling condition with a quasiperiodic base motion

[172], and analyzing the dynamics of an undamped un-

forced buckled beam [173], respectively. Through the

application of a Melnikov-type technique to the finite-2525

dof (averaged [172]) models, a very complicated be-

haviour was seen to occur also in very simple models,

with chaotic dynamics developing due to the presence

of orbits homoclinic to periodic orbits as well as to nor-

mally hyperbolic invariant tori.2530

A multi-mode Galerkin discretization was used by

Nagai and coauthors [174] to describe the dynamical re-

sponse of a buckled clamped beam with an axial spring

at one end, under harmonic lateral forcing. The ensu-

ing nonlinear quadratic and cubic equations were nu- 2535

merically solved considering the five lower modes, with

the aim to reproduce and characterize chaotic motions

obtained from experimental tests [175]. The set of ex-

perimental parameters led to a softening-hardening be-

haviour of the response curve, where two types of chaotic 2540

regions arise from the subharmonic resonance curves

of 1/2 and 1/3 order. Lyapunov exponents proved the

chaotic nature of the responses, and FFT spectra con-

firmed the subharmonic frequency content. Moreover,

evaluation of Lyapunov dimension suggested that more 2545

than three modes contribute to chaos, and principal

component analysis showed that the lowest mode dom-

inates the chaotic response while higher modes provide

a relatively small contribution.

3.6 Finite difference/finite element approaches 2550

Alongside Galerkin-type space-discretization methods,

other works apply time and space discretization tech-

niques to numerically investigate the chaotic dynamics

of beams and arches. Abyhankar and coauthors [176]

applied the second-order finite difference method to the 2555

buckled beam studied by Holmes [102], and verified

the goodness of the procedure by comparison with the

outcomes of the single-mode Galerkin reduction. When

adding stops of finite length to the beam model, the

Galerkin discretization becomes inapplicable due to the 2560

difficulty in finding a complete set of functions for the

mode shapes of the beam. Conversely, a slight modifi-

cation of the numerical algorithm allows to detect sev-

eral chaotic motions, corresponding to configurations

of non-contacting, touching, and flat stopping between 2565

beam and stops. In the latter case, the resulting motion

is seen to be combination of many modes, thus not be-

ing described by a reduced-order Galerkin model. The

same system was also investigated by Bar-Yoseph and

coauthors [177], who applied the space-time spectral 2570

element formulation (STSE) to discretize the PDEs.

The spatial domain was discretized using cubic Hermi-

tian polynomials while, out of two different temporal

discretizations, the one utilizing Lagrangian polynomi-

als and discontinuous Galerkin mixed formulation was 2575

used to study the first and second mode behaviour of

the beam, showing to grasp the onset of chaos and to

correctly reproduce the phase portrait of the strange

attractor. As important observation, form and size of

the first mode chaotic attractor, as well as the symmet- 2580

ric second mode solutions, are sensitive to spatial and

temporal discretization, in addition to the polynomial

order. Chaotic motions of geometrically exact rods and

shallow arches were investigated by Sansour and coau-

thors [178] by applying the finite element method. Two- 2585
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node elements with linear interpolation of kinematical

functions were utilized, and examples of buckled Eu-

ler beam and shallow arches are presented, for which

robust chaotic motions, localized around one equilib-

rium or encompassing all equilibria, are numerically2590

detected and PD cascades are identified as routes to

chaos. Provided a sufficient number of finite elements

is considered, the method is able to naturally account

for coupling of rotations and to overcome the need to

consider a larger number of modes, if using the stan-2595

dard Galerkin approach, when passive modes furnish a

considerable contribution to the dynamical response.

Spatio-temporal discretization techniques were also

applied by Awrejcewicz and coauthors in a series of pa-

pers, collected in a book [6], concerning several mechan-2600

ical 1D and 2D systems. Monodimensional models in-

clude single-layered/multi-layered Euler-Bernoulli/Tim-

oshenko linear/curvilinear beams with different bound-

ary conditions, whose chaotic dynamics is investigated

by applying finite difference method and finite element2605

method in the form of Bubnov-Galerkin. The two ap-

proaches demonstrate to furnish the same results, with

a time-saving advantage of the former. In order to trace

temporal frequencies localization, the time-frequency

characteristics are detected with use of the continu-2610

ous wavelet transform instead of the classical FFT ap-

proach. For the analyzed models, the 3D Morlet wavelet

result to be the optimal choice, and are used together

with time histories, power spectrum, phase portraits,

Poincaré maps and Lyapunov exponents to detect tran-2615

sition from regular to chaotic dynamics. As general com-

ments, the analyses show that the analyzed mechanical

systems exhibit either standard routes to chaos, such as

Feigenbaum, Ruelle-Takens-Newhouse, Poumeau-Man-

neville scenarios, or simultaneous occurrence of some2620

of them. Lyapunov exponents unveil the existence of

chaotic regimes associated with hyper-chaos, hyper-hyper-

chaos and deep chaos (two, three and four positive Lya-

punov exponents, respectively), which reflect on the

structure of the Poincaré maps. Moreover, the temporal-2625

space chaotic dynamics is studied by analyzing the modal

portraits (in beam bending-tangent rotation-curvature

space), which are analogous to the phase portraits and

allow to represent the system evolution in time. Results

show that transition from regular to chaotic dynamics2630

occurs simultaneously in space and time. Finally, in-

clusion of transverse shears and inertia of rotation into

the mathematical model leads to essential changes in

the character of beam vibrations.

3.7 A few special topics 2635

Chaotic motions of spinning structures are widely stud-

ied in the literature, as it is well known that complex

dynamical phenomena and chaos can occur in beam

type systems subjected to rotations about their longi-

tudinal axes. Most of the studies refer to rotordynamics 2640

of machinery components, or drillistring systems used

in technologically advanced applications such as in off-

shore operation. Yet, in the first systems several pe-

culiar features must be considered into the model for-

mulation, like, e.g., clearances in bearings, squeeze film 2645

dampers, oil films in journal bearings, magnetic forces,

seals, frictions and stiffening effect in elongation of a

shaft center line. The latter, conversely, must include

possible pipe mass imbalance, impact with the borehole

wall inducing stick-slip oscillations, bit–bounce and fluid 2650

forces around the drillstring. Following the same guide-

lines of the previous sections, works referring to single

isolated beams are presented here, leaving out all the

other, albeit interesting, issues.

Shaw [179] firstly investigated the chaotic dynamics 2655

of a slender beam undergoing rotations around its lon-

gitudinal axis, due, e.g., to aerodynamics or magnetic

forces. The dynamic model was approximated by taking

the time derivative of the angular momentum equal to a

prescribed torque, and by applying an n-mode Galerkin 2660

reduction. In the ensuing system of equations, the ap-

plied rotating forcing term has the form of an indirect

parametric excitation, governed by a first-order ODE in

turn coupled with the second-order ODE governing the

modal amplitude dynamics. The reduced single-mode 2665

model, corresponding to a slowly varying oscillator, was

studied in terms of bifurcation analysis, highlighting

the occurrence of a pitchfork bifurcation with arise of a

two-well dynamics separated by homoclinic orbits. On

the latter, Melnikov method was applied and tangency 2670

leading to chaos of the horseshoe type was determined.

Chaos in a buckled beam controlled by disseminated

couple forces was investigated by Oumarou and coau-

thors [180]. Attention was focused on verifying whether

the addition of couple moments, aimed at increasing 2675

the beam stiffness and consequently the buckling load,

can have effects on the appearance of horseshoe chaos.

The analytical model was that of a buckled beam un-

der parametric and external excitation to which cou-

ple forces are applied at selected points along the beam 2680

axis. Under the assumption of two symmetric and iden-

tical couples, the single-mode approximation led to a

parametrically and externally excited Duffing-like equa-

tion, in which the presence of the moments as external

time-constant terms enforces the two-well potential to 2685

be asymmetric. The Melnikov method applied to the
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homoclinic orbit showed an overall reduction of the crit-

ical threshold as the couple moment increases, promot-

ing the appearance of horseshoe chaos in the beam dy-

namical behaviour, despite the displacement and veloc-2690

ity reduction and the enlargement of the basin area. As

a general observation, the work stressed the importance

of considering possible enhancement of chaos when de-

signing control tools for reduction of amplitude vibra-

tions.2695

Considering a more refined model, Reddy and Ghosal

[181] studied a rotating flexible link, possibly represent-

ing a rotating blade of a wind turbine or a flexible link

manipulator, modeled as monodimensional beam, un-

der large deformation regime and with harmonic ro-2700

tating excitation. The PDEs were discretized with the

finite element method in order to obtain four nonlin-

ear non-autonomous coupled ODEs, as function of two

characteristic velocities, i.e. speed of sound and veloc-

ity associated with the transverse bending vibration2705

of the beam. The multiple scale method was then ap-

plied to investigate the dynamics under primary exter-

nal resonance with the third mode and 1:2 internal res-

onance between third and second mode. The outcomes

demonstrated the presence of chaotic motions below2710

certain values of the characteristic velocities, both for

undamped and damped slow flow systems, with chaos

characterization developed through computation of Lya-

punov exponents, phase portraits and Poincaré maps.

Due to the dependence of the bending velocity on the2715

geometric and material properties of the beam, detec-

tion of its critical value can be practically used to de-

sign the flexible link in order to avoid possible appear-

ance of chaos. Moving to a 3D formulation, Chatjige-

orgiou [182] analyzed a long slender beam with circu-2720

lar cross section, rotating about its longitudinal axis

due to equal angular velocities imposed at both ends.

The fully coupled 3D nonlinear system, including a va-

riety of possible dynamic effects, was solved with an

appropriate combination of finite difference schemes.2725

Chaotic responses governed by the 3D lateral motions

of the spinning beam were unveiled by means of dense

Poincaré sections, 3D power spectral densities with in-

determinable number of harmonics, and positive Lya-

punov exponents.2730

Outside the field of beams with purely elastic consti-

tutive relation, attention to the dynamical response of

elastic-plastic beams grew rapidly from 1985 when Sy-

monds and Yu [183] presented interesting results about

the behaviour of a fixed pin-ended, undamped beam2735

subjected to an impulsive transverse load producing

plastic deflection. Due to the permanent axial elonga-

tion caused by plastic deformations, the response be-

comes that of a fixed-ended arch, and dynamic instabil-

ities typical of shallow arches may occur for moderately 2740

small plastic deformations. The authors described the

beam dynamics by means of the Shanley-type model,

composed of two pinned rigid links connected by an

elastic-perfectly plastic element. The main simplifying

hypothesis is separation of elastic and plastic responses, 2745

for which the initial elastic response is followed by a

rigid plastic one yielding maximum deflection, and then

elastic recovery occurs until the motion reaches the

steady configuration with permanent deflection and resid-

ual stresses. Furthermore, equal yield stresses are as- 2750

sumed in tension and compression. With these approx-

imations, Shanley-type model simplifies the continuous

problem, reducing the system to a low-dimensional dis-

crete one. Solving the equations of motion, the authors

unveiled that permanent deflection of the midspan point 2755

of the beam may be located in the direction opposite

to the applied load. Such phenomenon, called “anoma-

lous”or “counter-intuitive”, was also detected by ap-

plying several finite element codes, even if strong dif-

ferences were observed in the time histories after the 2760

first deflection peak, suggesting a strong sensitivity of

the system to physical parameters. Poddar and coau-

thors [184] suggested that in the Symonds’ problem a

chaotic motion may be possible, and studied a damped

Shanley-type model under impulse loading and under 2765

periodic excitation, respectively. In the first case fractal

boundaries in the state plane suggesting extreme sen-

sitivity to initial conditions are detected, while in the

latter case numerical phase portraits and Poincaré dia-

grams show transient chaotic motions similar to those 2770

depicted in the two-well dynamics of shallow arches

[94, 96]. A paper discussion by Symonds and coauthors

[185] demonstrated the incorrectness of the analyses un-

der impulse loading due to the applied numerical pro-

cedure, which allows the change of the damping co- 2775

efficient, absent at the initial stage, during the solu-

tion calculation, thus erroneously assuming that plas-

tic deformations are unaffected by damping and that

its effects do not depend on when it is inserted into

the model. Based on an energy approach, Borino and 2780

coauthors [186] highlighted the combined roles of plas-

tic deformation and damping in determining the final

rest position, showing that for the Shanley beam model

with a single-dof the motion is fully determined. Ab-

sence of any chaotic motion in the case of a short pulse 2785

loading is confirmed by the observation that after the

plastic strains have reached their final constant values,

the model is a standard autonomous Duffing-like dy-

namic system. Moreover, lower and upper bounds on

the load parameters for possible occurrence of anoma- 2790

lous final response were computed for the system under

consideration [186]. High sensitivity to axial constraint
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and compressive stresses, together with load magni-

tude, strain energy, and damping, was also highlighted

[187]. In order to understand the anomalous behaviour2795

of elastic-plastic beams, bifurcation analysis was per-

formed by Xue and Hasebe [188], using a continuous

fourth-order ODE Shanley-type model. A co-dimension

three bifurcation problem of four dimension flow with

a pair of pure imaginary eigenvalues and two simple2800

zero eigenvalues was presented, with a high degener-

ate case of singularities. A co-dimension two bifurca-

tion problem was then derived in the incomplete normal

form; its unfoldings present rich bifurcation phenom-

ena which can explain the counter-intuitive behaviour2805

and its great sensitivity to small parameter changes of

elastic-plastic beam dynamics. Savi and Pacheco [189,

190] revisited the Symonds’ model by removing the hy-

pothesis of small displacements and taking into account

the hardening effect, represented by a combination of2810

kinematic and isotropic hardening. The operator split

technique associated with an iterative numerical pro-

cedure was developed in order to deal with the non-

linearities in the equations of motion. The model re-

sponse under harmonic and square wave excitations was2815

investigated in free and forced vibration regimes, and

comparison between system responses with and with-

out the hardening effect allowed the authors to high-

light the strengthening of dynamical phenomena like

jumps, sensitivity to initial conditions, chaos, and tran-2820

sient chaos due to the hardening effect inclusion into

the model. After being proved by experimental tests

on thin elastic-plastic beams [191, 192], the anomalous

behaviour was investigated by means of two or more de-

grees of freedom models, which thanks to the increased2825

phase dimension allow the occurrence of chaotic be-

haviour and other complexity not shown by the single-

dof model under short pulse loading. Lee and coauthors

[193, 194] derived a two-dof Shanley-type model (two

coupled autonomous Duffing equations) which was nu-2830

merically integrated using central difference algorithm

to assess the response of the undamped and damped

systems under short pulse loading. Quasiperiodic and

chaotic vibrations were observed. Various criteria, in-

cluding phase plane trajectories, wideband frequency2835

content in power spectra, positive Lyapunov exponents,

and Poincaré section plots, confirmed the chaotic na-

ture of the vibrations of the undamped model. Sensitiv-

ity to the load parameter (here playing the role of initial

displacement), a hallmark of chaotic vibration, was il-2840

lustrated also by calculation of a simpler Lyapunov-like

exponent. Three dimensional energy diagrams, consist-

ing of quartic surfaces over the coordinate plane of the

two displacements, were used to determine the system

response, again with a marked sensitivity to variations2845

of plastic strains associated with load and physical pa-

rameters of the model [195].

Apart from the Shanley-type beam model, Lepik

[196, 197] and Qian and Symonds [198] applied Galerkin

method to models of fixed and pinned-end beams un- 2850

der impulse loading [196, 198] and harmonic excitation

[197], also comparing with finite element solutions. De-

spite its limitation as a general approach to elastic-

plastic problems, Galerkin method can be a valid ap-

proximation procedure under the hypothesis of full elas- 2855

tic recovery, in which after the rigid plastic phase the

plastic strains are fixed and the dynamical behaviour is

that of a shallow elastic arch. The ensuing, also multi-

dof, Duffing-like equations in the transversal displace-

ment were numerically solved, and counter-intuitive be- 2860

haviour and chaotic response of the beams were estab-

lished and characterized by computation of Lyapunov

exponents and power density spectra.

The previous works considered symmetric constraints

and loading so that only symmetrical displacements 2865

of the beam were unveiled. Moving from experimen-

tal hints of Li and coauthors [191] which suggested oc-

currence of possible asymmetrical final displacements

of thin clamped beams, Liu and coauthors [199, 200]

proposed a 3-dof Shanley-type model which is able to 2870

show symmetrical and asymmetrical chaotic responses.

The 2-dof Shanley model of Lee and coauthors [194]

is used as benchmark for assess the validity of the 3-

dof model, of which it can be seen as special reduced

case. Different kinds of geometrical and loading im- 2875

perfections are introduced to activate the asymmet-

ric dynamics, and the modal decomposition allows to

clearly illustrate the chaotic behaviour of both sym-

metric and asymmetric responses. According to the au-

thors, the chaotic asymmetrical motion is associated 2880

with the second-order instability of the elastic–plastic

beam, whereas the anomalous behaviour is the first or-

der chaos for elastic–plastic thin beam subject to im-

pulsive load.

When dealing with materials such as polymers, vis- 2885

coelasticity must be taken into account in describing

the dynamical behaviour of beams and arches. Suire

and Cederbaum [201] investigated the response of a sim-

ply supported viscoelastic beam under harmonic exci-

tation by applying Boltzmann stress-strain relationship 2890

and a single-mode Galerkin approximation. By means

of phase portraits, Poincaré maps, Fourier spectra and

Lyapunov exponents, the authors detected periodic and

chaotic motions, and identified different routes to chaos

associated with the variation of some model parame- 2895

ters, corresponding to PD cascades for increasing forc-

ing amplitude, quasiperiodic route to chaos for varying

viscoelasticity coefficient, and sharp route to chaos in
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some ranges of middle plane strain. Argyris and coau-

thors [202] modeled a simply supported axially com-2900

pressed viscoelastic beam under transversal harmonic

load by applying a constitutive model by Ambartsum-

ian and Minassian [203], able to incorporate the char-

acteristic features revealed by experimental tests. A

single-mode Galerkin reduction leads to a Duffing-like2905

equation of motion with peculiar dissipative term. Mel-

nikov method was applied to define analytically the

critical threshold for occurrence of homoclinic orbit tan-

gency, while numerical results highlighted the possible

coexistence of chaotic and periodic motions, detected2910

and characterized by means of Poincaré maps, Lya-

punov exponents and basins of attraction.

Chen and Cheng [204, 205] resorted to the Lead-

erman constitutive relation to describe the nonlinear

viscoelasticity of a simply supported column under pe-2915

riodic axial loading [204] and of a simply supported

beam subjected to transverse load [205]. In both cases,

a 2-mode Galerkin reduction and a successive differen-

tiation via Leibnitz rule, under the hypothesis of relax-

ation function equal to that of a standard linear solid,2920

lead to a system of 4 ODEs in terms of also auxil-

iary variables. Comparison between 1-mode and 2-mode

models was carried out highlighting qualitatively sim-

ilar results even if with some quantitative differences.

Material coefficient and excitation amplitude have sig-2925

nificant effect on the system dynamics, moving the re-

sponse from equilibrium state, to periodic motion and

eventually chaos. Similarly to Chen and Cheng, Yi and

coauthors [206] studied the dynamics of a viscoelastic

shallow arch with applied distributed load by employing2930

Leaderman constitutive relation and a 2-mode Galerkin

discretization. Numerical analyses of the ODEs system

point out the significant role played by the rise of the

shallow arch and by the arch material in modifying

the motion stability and conditioning the appearance2935

of chaotic responses, as originated through a quasiperi-

odic route.

It should be noted that the existing literature boasts

the presence of other works dedicated to the chaotic re-

sponse of viscoelastic beams and arches, which include2940

also the presence of an axial acceleration/velocity. In-

deed, axially moving materials dissipative mechanisms

play an important role in determining the dynamical

response, and their modeling represents an important

research topic, which however is beyond the interest of2945

this review.

3.8 Spatial chaos

Chaos is usually associated with dynamics, i.e. with ini-

tial value problems defined on the infinite domain of

the time variable, and is called temporal chaos. How- 2950

ever, since the end of the 80s, the phenomenon of spa-

tial chaos occurring in boundary value problems de-

fined on the finite domain of a physical system has

been highlighted, too, based on the Kirchhoff static-

dynamic analogy between the large spatial deforma- 2955

tions of long elastic structures and the global dynamics

of rigid pendular bodies, with the arclength along the

rod axis playing the role of the time coordinate in an

equivalent dynamical system. An analogy which turns

out to be invaluable in numerous deformation problems 2960

of elastic lines associated, e.g., with molecular chains,

biological hairs and filaments, textiles, optical fibres,

magnetic tapes, wires and oil pipelines, and undersea

cables.

Within a theoretical context, Mielke and Holmes 2965

[207] investigated spatial aspects of equilibrium states

exhibited by infinitely or arbitrarily long rods buck-

led by loads applied at their ends, by exploiting the

Hamiltonian structure of the static equilibrium equa-

tions and using the Melnikov theory. Considering a re- 2970

duced two-dof Hamiltonian system in canonical coor-

dinates for the analysis of typical global structures of

perturbed orbits, they obtained a qualitative descrip-

tion of classes of solutions close to limiting (i.e., com-

pletely integrable) cases corresponding to geometrical 2975

symmetries and vanishing of certain stress components,

highlighting the existence of chaotic equilibrium states,

characterized by irregular spatial shapes of the rods,

under appropriate load conditions. In turn, within a

structural engineering framework, Thompson and Vir- 2980

gin [208] presented an example of spatial chaos and

localization in the planar deformations of an elastic

rod, pointing out the correspondence between chaotic

motion of a pendulum undergoing random sequences

of oscillation and tumbling and the chaotic spatial se- 2985

quence of random looping in the deflected form of an

axially loaded elastic strut, and making some general

speculations about the role of homoclinic events in the

localization of structural buckling modes. Later works

confirmed that localized buckling modes correspond to 2990

homoclinic orbits to the trivial solution representing a

straight rod, showing that a localized form is the pre-

ferred mode of buckling for sufficiently long rods with

circular cross section under a variety of loading configu-

rations [209], and highlighting how the buckling process 2995

can be explained by the bifurcation of a homoclinic so-

lution as a single load parameter is varied [210]. For rods

with non-circular cross section, subject to end moment

and tension, extensive numerical investigations revealed

a vast complexity of localized buckling modes corre- 3000

sponding to N-pulse homoclinic orbits [211], as already

conjectured in [210] on the basis of an analogy with the
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problem of a strut resting on a nonlinear elastic founda-

tion. Breaking the circular symmetry causes a splitting

of the primary single-loop localized buckling solution3005

for the isotropic rod into physically distinct solutions.

Spatial behaviour becomes even more complex in con-

strained anisotropic (i.e., non-circular) rods, as numer-

ically highlighted for a rod constrained to lie in a plane

[212] or a rod constrained to a cylinder [213], as in the3010

buckling of drill strings inside a hole, with the bifur-

cation behaviour of localised solutions in constrained

configurations being far richer than in free-rod ones.

Torsion and flexure are coupled, with the trivial state

becoming a periodic orbit (instead of a fixed point) and,3015

consistent with hints from dynamical systems theory

[207], the loss of integrability is accompanied by the

emergence of spatial chaos, which implies the existence

of infinitely many (i.e. multi-pulse) homoclinic orbits

corresponding to multi-looping localised solutions.3020

Within the dynamic context, spatial chaos occurs in

the framework of nonlinear wave motion, whose wave-

phase can be identified as an independent variable re-

placing the time in an equivalent dynamical system,

with the chaotic property of the perturbed nonlinear3025

wave equation being studied through the relevant meth-

ods. Wave propagation in onedimensional structures is

not in the scope of this review, yet it is worth mention-

ing the occurrence of spatiotemporal chaos in a Tim-

oshenko beam, as theoretically detected by analyzing3030

the propagation properties of nonlinear flexural waves

[214]. The nonlinear source generating a steady travel-

ing wave in the analytical model comes from the mid-

plane elongation of the finite-deflection beam, whose

flexural deformation, rotary inertia, and shear deforma-3035

tion are taken into account. The traveling wave method

was applied to move from PDEs to ODEs, ending up to

a Duffing-like equation in the wave-phase independent

variable. The undamped, unforced system was solved

by the Jacobi elliptic function method and heteroclinic3040

orbits were qualitatively detected. Application of the

Melnikov method to the perturbed system provided the

threshold condition for the occurrence of transversal

heteroclinic points, showing that the wave motion in the

finite-deflection Timoshenko beam has chaotic proper-3045

ties in the Smale horseshoe sense, however without go-

ing into the relevant details or performing numerical

calculations.

4 Cable-beam coupled structures

The coupling between strings/cables and beams/arches3050

is fruitfully employed in a variety of engineering struc-

tures (cable-stayed bridges, suspended bridges, guyed

masts, tower cranes, suspended roofs, among others),

with different geometrical configurations and mechan-

ical features. The involved interaction between neigh- 3055

bouring structural components is rather complicated,

with reliable modeling and investigations in a nonlinear

dynamics environment requiring considerable efforts.

Traditionally, they were focused on some relevant sub-

structure, i.e. the string/cable (see [50, 61] discussed in 3060

Sect. 2) or the beam/arch. Research on nonlinear dy-

namics of actually coupled structures has been indeed

quite extensive in about the last twenty years, but it has

been mostly focused on modeling and analysis of regular

response, with special attention paid to the features of 3065

nonlinear modal interaction entailed by the occurrence

of some internal resonance involving global and/or lo-

cal modes. In this respect, meaningful results have been

obtained mostly for multimode models of cable-stayed

bridges in different geometrical and dynamical config- 3070

urations, as well as excitation conditions, by various

research groups (from, among others, Bristol, L’Aquila

and mostly, in the last decade, Hunan Universities),

by using multiple scales (discretized or direct) treat-

ments, numerical simulation of possibly reduced ODEs, 3075

and also experimental investigations. As for the uncou-

pled structures, clear understanding of regular nonlin-

ear phenomena is a necessary prerequisite for further,

reliable, investigation on the existence of also nonregu-

lar responses. Continuation of equilibrium solutions of 3080

averaged equations highlighting Hopf bifurcations with

the onset of dynamic solutions likely undergoing further

bifurcations to nonregular responses has provided hints

about the occurrence of quasiperiodicity and chaos for

several models of cable-stayed bridges. However, to the 3085

best of our knowledge, quite few specific in-depth anal-

yses of complex outcomes in cable-beam coupled struc-

tures have been accomplished up to now, so that no

actually meaningful information about their robustness

and strength are available, yet. Accordingly, in the se- 3090

quel, only studies explicitly reporting on bifurcation

and chaos phenomena in string/cable-beam/arch cou-

pled systems, or somehow including them within a more

general analysis, will be addressed and discussed. In this

respect it is worth noting that, if being interested in 3095

grasping the main aspects of the dynamic response to

a given excitation, which certainly include ascertaining

the possible occurrence of complex behaviour, recourse

can still be made to (even strongly) simplified models,

whose nonlinear analysis may provide already signifi- 3100

cant information. Accordingly, in the sequel, quasiperi-

odicity and chaos as highlighted in selected single-dof

models of some cable suspension structures are pre-

sented, first.
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Table 3 Multimode models

Internal Structure Modes (dof); resonant excitation(s). Bifurcation and chaos:

Resonance Structure/model features Methods; phenomena

1:1 String 1st in/out-of-plane; Asymptotics [23, 38, 39, 41], numerics
primary external in-plane (ODEs) [23, 38, 39, 44], experiments

[40, 41], global perturbation [41, 42];
whirling [23, 41, 42, 44], bifurcation
structure [23], Shilnikov [23, 42]

1st longitudinal/3rd transverse; Asymptotics;
primary external 3rd. Nonlinear material whirling [45]

6th in/out-of-plane; Numerics (AMEs);
boundary primary external bifurcation structure [46]

Shallow 1st antisym in/out; Experiments: delay embedding; hints
cable in/out-of-phase supports motion at primary, 1/2-

sub of antisymm out. Horizontal system of ‘rigid
link’ strings with two masses

for Shilnikov [71]

1st in/out-of-plane; Asymptotics, global perturbation;
principal parametric in/out, 1/2-subharmonic exter-
nal in. Horizontal

Shilnikov single-pulse [48]

1st sym-in/sym-out-of-plane; Asymptotics, global perturbation;
principal parametric in/out,primary external out.
Horizontal

hyperchaos, Shilnikov multi-pulse [66,
67]

1st in/out-of-plane; Asymptotics, global perturbation;
primary external out-of-plane. Inclined Shilnikov [68]

Arbitrarily 4th sym-in/3rd antisym-in (2nd crossover); Asymptotics [10]
sagged
cable

primary external 4th. Horizontal/non-condensed vs
condensed

In-hybrid/hybrid at veering points; Asymptotics [84]
primary external high-frequency mode.
Inclined/non-condensed

In-sym/antisym at crossover point; Global perturbation;
primary external sym. Horizontal/non-condensed Shilnikov multi-pulse [90]

Longitudinal/transverse at ‘elastic’ crossover point; Numerics (AMEs) [91]
primary external. Horizontal/non-condensed

Beam 1st in/out-of-plane; Asymptotics [131]
primary external. Simply supported

1st in/1st or 2nd out-of-plane; Asymptotics [132, 133, 136];
Principal parametric in [132, 136], primary external
in [133]. Cantilever

whirling [132, 133], bifurcation struc-
ture [136]

1st in/out-of-plane; Asymptotics, numerics (ODEs);
principal parametric. Clamped-clamped sliding whirling [135]

1st in/out flex (3-mode flex/flex/tors); Numerics (ODEs);
principal and fundamental parametric, primary ex-
ternal in. Cantilever

bifurcation structure [165]

3rd(1st in)/4th(2nd out) flex (4-mode); primary Asymptotics, numerics (ODEs),
external 1st in (follower). Thin-walled cantilever experiments [164]

Shallow 1st in-sym/antisym; Asymptotics, experiments [147]
arch primary external sym. Clamped

1st in-sym/antisym; Asymptotics [149, 154],
primary [149], 1/2-sub [151] external sym. global perturbation [149, 151, 154];
Simply supported Shilnikov one/multi-pulse
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Table 3 Multimode models. Continued

Internal Structure Modes (dof); resonant excitation(s). Bifurcation and chaos:

Resonance Structure/model features Methods; phenomena

Coupled Beam at primary and combination external/string. Asymptotics,
string-beam Two-end coupling numerics (ODEs) [230]

Coupled 10th cable at primary external/4th arch. Asymptotics [234]
cable-arch Cable-stayed arch

1:2 String 1-dof at principal parametric/ Asymptotics, global perturbation;
1-dof at primary external Shilnikov single-pulse [47]

Beam 1st in/out-of-plane; Asymptotics, global perturbation;
principal/fundamental parametric in/out + 1/2-
sub/primary external in/out. Cantilever

Shilnikov single/multi-pulse [141–144]

1st in-flex-tors/1st out-flex at primary of in-flex-tors
[168]; 1st out-flex-tors/1st in-flex at primary in-flex
[169]. Cantilever composite

Asymptotics; whirling [168, 169]

3rd/2nd, flex-torsional coupling (4 modes); Asymptotics [181]
primary external 3rd mode. Rotating

Shallow 1st in-antisym/sym; primary [148], 1/2-sub [150] Asymptotics [148, 152, 155], numerics
arch external sym, primary external sym + slow para-

metric [155]. Simply supported
(ODEs) [155], global perturbation
[148, 150]; bursters [155]

1st (sym)/2nd (antisym) in-plane; Asymptotics [159]
primary external sym. Elastic supports

Non-shallow 1st in-antisym/sym; Asymptotics [156], harmonic balance
arch Primary external sym. Hinged circular [160], numerics (ODEs), experiments

[161]

Coupled String at primary external/ Asymptotics, global perturbation;
string-beam beam at principal parametric. Two-end coupling Shilnikov single/multi-pulse [227, 228]

Beam at principal parametric/string at Asymptotics,
1/2-subharmonic external. Two-end coupling numerics (ODEs) [231]

Coupled 1st (global)/ 1st (local); Numerics (ODEs) [224]
cable-beam primary external of global. Cable-stayed beam

1st beam/ 1st cable; external: 1/2-sub on beam; si-
multaneous primary or 1/2-sub on beam + 2-super
or primary on cable. Cable-stayed beam

Numerics (ODEs) [232, 233]

1:3 Shallow 1st/3rd in-plane sym; Asymptotics,
cable either one at primary external. Horizontal numerics (ODEs) [57, 58]

Beam 1st/2nd in-plane; either one at primary external. Asymptotics [137]
Hinged-clamped with one-end spring

Coupled Beam at principal parametric/string. Asymptotics,
string-beam Two-end coupling numerics (ODEs) [229]

1:1+1:2 String 2nd in/2nd out + 1st out/2nd in; Asymptotics, numerics (ODEs);
primary external 2nd in-plane. Inclined bifurcation structure, Shilnikov [50]

1:1+1:3 Shallow 3rd sym-in/out + 1st/3rd sym-in; Asymptotics [59]
cable primary external 3rd in-plane. Horizontal

1:1:1 Beam 1st flex/flex/torsional; Numerics (ODEs);
Primary external in/out lateral. Cantilever bifurcation structure [166]

1:2+2:3 Beam 2nd/4th+2nd/3rd, flex-torsional coupling; primary Asymptotics,
external 2nd mode (follower). Curved cantilever numerics (ODEs) [164]
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Table 3 Multimode models. Continued

Internal Structure Modes (dof); resonant excitation(s). Bifurcation and chaos:

Resonance Structure/model features Methods; phenomena

2:2:1:2 Shallow 1st in-sym/antisym/1st out-sym/antisym Asymptotics [52, 56],
cable (1st crossover); primary in-sym. Horizontal numerics (AMEs,ODEs) [53]

1st in-sym/antisym/1st out-sym/antisym Experiments [55, 62–64, 73], numerics
(1st crossover); in/out-of-phase supports motion at
1/2-sub, primary, 2-super of 1st in/out-antisym.
Horizontal cable-mass suspension

(ODEs) [54]; spatiotemporal dynam-
ics, bifurcation structure, response di-
mensionality, homoclinic chaos [27,
63, 64, 73, 74]

None String 1-dof transverse/1-dof torsional; Harmonic balance;
aerodynamic and external loads galloping [49]

Shallow Multi-dof in/out. Numerics (ODEs,FEM) [61]
cable Inclined with vertical displacement of lower support

Beam 1st transverse/1st torsional; Experiments [138], numerics (ODEs)
parametric excitation. Cantilever [139]; response dimensionality [138]

3-mode transverse; Experiments,
external concentrated. ‘Moon beam’ numerics (ODEs) [162]

Multimode transverse; primary [111], 1/2-sub [112] Asymptotics [112], numerics (ODEs)
external 1st mode. Clamped buckled [111, 112], experiments [112]

Multi-dof transverse; Numerics (FDM) [176] (STSE) [177]
external distributed. Simply supported buckled
[170, 171, 177, 178], with stops [176]

(FEM) [178], global perturbation; ho-
moclinic chaos [170, 171]

Multimode transverse; Asymptotics, global perturbation;
quasiperiodic base motion. Clamped homoclinic chaos [172]

Multimode transverse; Global perturbation;
undamped unforced. Hinged buckled homoclinic chaos [173]

Infinite-dof transverse; Semigroup theory and Melnikov for
boundary transverse harmonic. Hinged buckled PDE; transversal intersection of sta-

ble/unstable manifolds, Smale horse-
shoe [104]

Multimode transverse; external load. Numerics (ODEs) [174],
Clamped buckled, axial spring at one end experiments [175]

Multi-dof; Numerics (FDM) [182],
angular velocity at both ends. Rotating

2-dof/mode transverse (Shanley model [193–
195]/Galerkin [196–198]); impulsive load (harmonic
load [197]). Clamped elastic-plastic

Numerics (ODEs) [193–198]

3-dof transverse; (Shanley model) Numerics (ODEs, FEM) [199, 200]
impulsive load. Clamped elastic-plastic

2-mode transverse; Numerics (ODEs) [204, 205]
Axial [204]/lateral [205] harmonic. Simply sup-
ported viscoelastic

Multi-dof; external distributed harmonic. Numerics (FDM, FEM), Kolmogorov-
Simply supported, clamped, simply supported-
clamped, linear, curvilinear, elasto-plastic, multi-
layer/Euler-Bernoulli, Timoshenko, Sheremetev-
Pelek

Sinai entropy, Kaplan-Yorke dimen-
sion, 2D/3D wavelets; hyperchaos,
hyper-hyperchaos, Lyapunov expo-
nents charts, intermittency [6]
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Table 3 Multimode models. Continued

Internal Structure Modes (dof); resonant excitation(s). Bifurcation and chaos:

Resonance Structure/model features Methods; phenomena

Shallow Multi-dof transverse; Numerics (FEM) [178]
arch external concentrated. Simply supported, clamped

2-mode transverse; Numerics (ODEs) [206]
external distributed. Hinged viscoelastic

Coupled 80 dof; Numerics (FEM) [235]
string-beam external distributed. 3D guyed mast

4.1 Single-dof models3105

Within a substantially theoretical context, Fan and coau-

thors [215] dwelled on the possible occurrence of chaos

in a saddle form cable-suspended roof subjected to ver-

tical excitation. Based on a spectral representation of

the vertical displacement, the governing PDEs were re-3110

duced to a forced Duffing equation whose Hamiltonian’s

heteroclinic saddle connection may become a transverse

heteroclinic cycle (revealed by the zeroing of the Mel-

nikov function), thus giving rise to chaotic motion in the

sense of Smale horseshoe. De Freitas et al [216] stud-3115

ied the dynamics of a suspension bridge with a single-

mode model in which the bridge deck is assumed to

be an elastic beam connected to the main suspended

cable by a large number of hangers, treated as one-

sided springs responding only to stretching and giving3120

rise to a piecewise linear stiffness of the combined sys-

tem [217]. The external forcing is due to time-periodic

vortices collinear with the beam deflection, produced

by impinging lateral wind on the bridge structure, and

has different resonances with the lowest order trans-3125

verse mode. Numerical simulation highlighted periodic,

quasiperiodic and chaotic responses in both conserva-

tive and weakly dissipative forced regimes, with the res-

onances of the former becoming attractors of stable foci

type in the latter, the quasiperiodic tori around them3130

disappearing to give way to the basins of corresponding

attractors, and the chaotic trajectories of the conserva-

tive system being replaced by chaotic transients which

asymptote to the attractors of the dissipative one. Over-

all, the dynamics is found to be mainly multistable,3135

with a variety of periodic and chaotic attractors chang-

ing abruptly due to boundary crises, and a highly in-

volved basin boundary structure. From a practical point

of view, the coexistence of a large number of predomi-

nantly periodic attractors with a complicated (although3140

non necessarily fractal) basin boundary structure turns

out to be already important, since external noise may

drive the system off a given basin, with sudden jumps

possibly causing partial or total damage of the struc-

ture. The general issue of safe basin erosion was ad-3145

dressed in [218], focusing on the effect of model pa-

rameters on the set of initial conditions which would

lead to the ultimate collapse of the bridge, yet choos-

ing parameter values in an ad hoc way to investigate

the wide variety of dynamical features present in the 3150

model. More proper parameter values taking into ac-

count physical, structural, and aerodynamical factors of

a number of real bridges were considered in [219], where

the matter of multistability and basins of attraction

structure was revisited, with the number of coexisting 3155

attractors meaningfully decreasing as the damping coef-

ficient is augmented, and chaotic attractors being found

only very rarely for their basins are extremely small,

even though trajectories near fractal basin boundaries

still exhibit long chaotic transients. Thinking of applica- 3160

tion as a real pedestrian footbridge, the simplest model

dealing with chaos in a cable-supported beam is the

Helmholtz-Duffing oscillator, with quadratic terms due

to the cable pretension, representative of the single-

mode dynamics of the system excited away from res- 3165

onance [220]. Its extensive numerical simulations and

the combined use of bifurcation diagrams, attractor-

basin phase portraits, Lyapunov exponents, fractal di-

mension, and stable/unstable manifolds highlighted the

occurrence of a variety of complex phenomena, which 3170

include isola bifurcation, transition to chaos by PD cas-

cade and reverse boundary crisis, multistability with

coexistence of chaotic and periodic attractors, fractal

basins boundaries, erosion of immediate basins, and in-

terrupted sequence of PD bifurcations. Also the effects 3175

of secondary attractors were analyzed, showing that in

general they cannot be neglected even if their range of

existence is very small.

4.2 Multi-dof models

Large amplitude vibrations and cable-beam interaction 3180

in cable-stayed bridges were addressed since the 90s,

with analytical and experimental models being used

combinedly [51, 221] to investigate global and local modes,

respectively dominated by the beam and cable eigen-
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functions, also possibly undergoing localization and fre-3185

quency veering phenomena [222]. Considering techni-

cally relevant values of mechanical properties, chaotic

responses were documented in the forced dynamics of

the reduced two-dof model (with complete quadratic

and cubic nonlinearities) obtained from the coupled3190

PDEs of a linear unshearable cantilever beam and a

nonlinear Irvine cable [223], by projecting the relevant

displacement fields in the space of a global mode and a

local mode in 1:2 internal resonance [224]. Within the

study of the quadratic interactions responsible for the3195

superharmonic transfer of mechanical energy from the

low-frequency small-amplitude oscillations of the global

mode (externally excited) to the double frequency high-

amplitude oscillations of the local mode (internally ex-

cited), the instability of steady solutions in a small fre-3200

quency range around primary resonance was attributed

to the onset of torus bifurcations in the frequency re-

sponse functions obtained with a pseudo-arclength con-

tinuation algorithm. Continuation of the torus-bifur-

cated branches highlighted a series of PD bifurcations,3205

with the ensuing loss of motion periodicity being quali-

tatively appreciated by the analysis of Poincaré sections

and Fourier spectra, and quantitatively confirmed by

the evaluation of Lyapunov exponents. Similar losses

of stability and chaotic behaviours were previously ob-3210

served (analytically, numerically and experimentally) in

structural systems made of two slender nonlinear beams

[225, 226], described by reduced two-dof models in the

modal coordinates of two global modes. The analogies

include identical mathematical structure of the govern-3215

ing equations and very similar conditions of internal

and external resonance, with the major difference of a

nearly unitary mass ratio between the global modes of

the two-beam system versus the very small mass ratio

between the local and global modes of the cable-stayed3220

beam.

More systematic, numerical and theoretical, studies

on the occurrence of chaos in cable-beam systems were

generally less concerned about the underlying technical

significance. Zhang and Cao [227, 228] investigated bi-3225

furcation and chaotic dynamics of a 1:2 internally reso-

nant two-dof model of a string-beam system coupled at

the two ends and subjected to harmonic axial and trans-

verse excitations entailing principal parametric and pri-

mary external resonance of the beam and string, respec-3230

tively. Numerical simulation of the averaged equations

provided by the method of multiple scales highlights

variable shapes of chaotic response, depending on the

variation of a number of system parameters, with ex-

istence of multi-pulse Shilnikov orbit. Theoretical con-3235

ditions for the existence of homoclinic bifurcations and

Shilnikov single-pulse chaos in the perturbed normal

form of the averaged equations were obtained in [228]

by a global perturbation method [16], with the analy-

sis of the perturbed system being accomplished by the 3240

higher-dimensional Melnikov theory. The same model of

coupled string-beam was analyzed also under different

resonance conditions, i.e. 1:3 internal, with only princi-

pal parametric resonance of the beam [229], 1:1 internal,

with primary and combination resonances of the beam 3245

[230], and 1:2 internal, with principal parametric and

1/2-subharmonic external resonance of the beam and

the string, respectively [231]. Numerical simulation of

original ODEs highlighted chaos in the response of both

dof, although the technical meaning of the considered 3250

resonances and parameter variations is not always fully

apparent.

Considering a shallow condensed cable, bifurcation

and chaos of a 1:2 internally resonant two-dof model

of coupled cable-beam, with quadratic and cubic non- 3255

linearities, were investigated in [232] through numerical

simulations. External primary or subharmonic resonant

excitation of either the sole beam or both the beam

and the cable was considered. When exciting only the

beam, mostly chaotic response or exchange between pe- 3260

riodic and chaotic response (the latter also depending

on variations of some key system parameters [233]) is

found in the two resonance cases, respectively, with the

subharmonic one also entailing parametric resonance of

the cable. When exciting both the beam and the cable, 3265

more robust periodic or chaotic response is seen to oc-

cur in the two resonance cases, possibly due also to the

simultaneous superharmonic (primary) resonance of the

cable entailed by the primary (subharmonic) resonance

of the beam. Other authors have recently highlighted 3270

occurrence of chaos in the nonlinear dynamic analy-

sis of cable-beam/arch coupled models aimed at repro-

ducing situations of interest in technical applications.

Lv and Kang [234] considered a planar two-mode re-

duced model of cable-stayed arch representative of the 3275

first construction stage during the erection of an actual

cable-stayed bridge, and investigated the 1:1 nonlinear

resonant interaction between the tenth cable mode (ex-

cited at primary resonance) and the fourth arch mode,

by also finding a PD route to chaos in the numerical 3280

solution of the multiple scales-based amplitude equa-

tions.

Ballaben and Rosales [235] considered a 3D guyed

mast (a beam column with one level of three nonlinear

inclined cables) with real-life parameter values, sub- 3285

jected to a uniformly distributed harmonic load, and

used a nonlinear 3D finite element formulation with 80

dof to show the occurrence of different bifurcation pat-

terns (in terms of top displacements of the mast), turn-

ing from periodic to nonperiodic motions within small 3290
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ranges of variation of the guys initial pretension. Be-

sides state space plots, the periodicity ratio was used

as a quantitative indicator of potentially chaotic dy-

namics. In the more theoretical perspective of the role

played by the homo/heteroclinic intersections of invari-3295

ant manifolds as regards systems’ safety, the influence

of a base harmonic excitation on the escape stability

boundary of a two-dof model of cable-stayed tower was

analyzed in [236], by investigating the erosion and in-

tegrity of basins of attraction of stable solutions.3300

5 Conclusions

Chaos in onedimensional structures has been addressed

in this review dwelling in detail on research outcomes

obtained in about the last forty years for fundamental

models of cables, beams and coupled cable-beam sys-3305

tems, as occurring in the background of applications in

classical mechanics and macro-engineering. The body

of related research is impressive. Yet, as pointed out

in various parts of the text, an important number of

topics, with the underlying systems/applications, have3310

been left out of consideration, mostly due to the gen-

eral mechanically-driven perspective assumed in deal-

ing with the matter, according to which nonlinear dy-

namics methods and phenomena paving the way to

chaos are as much important as chaos results in them-3315

selves, if aiming at a general and possibly comprehen-

sive understanding. Among the untouched topics it is

worth mentioning at least those connected with sys-

tems and applications in multiphysics contexts and at

different space/time scales, where chaos also plays a3320

meaningful role, as progressively highlighted in about

the last twenty years. This might be the subject of fur-

ther, dedicated review papers.

Of course, one might wonder about directions of fur-

ther challenging research and yet unsolved problems3325

of nonlinear and chaotic dynamics in onedimensional

structural mechanics. Irrespective of the topics/systems

considered in this review, various specific directions could

be mentioned. However, only three main general lines

of development are mentioned here. (i) Chaotic phe-3330

nomena in a huge variety of multifield problems, as

typically occurring in macro- and, mostly, micro/nano-

engineering applications involving mixed (solid/fluid/mag-

neto/electric/thermal) physical environments and dif-

ferent time scales, deserve investigations to be still ac-3335

complished via proper low-order coupled models, which

allow in-depth understanding and systematic descrip-

tion of the main effects entailed by the multiphysics

interaction context on the system nonlinear and com-

plex dynamics. To this aim, the issue of an effective, yet3340

controllable, dimension reduction in the background re-

mains fundamental. (ii) To reliably describe the dynam-

ics of infinite-dimensional structural elements/systems

in macro- up to nano-mechanics, it is certainly neces-

sary to pursue forward the ongoing challenging transi- 3345

tion from single/few- to multi-dof models, also driven

by experimental investigation outcomes, suitable to ac-

count for possibly important interaction effects with

higher-order modes. This being a passage to be accom-

plished not only via multidimensional- (e.g., finite ele- 3350

ment/finite difference-) based spatiotemporal discretiza-

tions but also through theories (e.g., the weak turbu-

lence approach) mostly applied to infinite-dimensional

problems of non-structural nature and capable to de-

scribe slow transfers of energy from one mode to an- 3355

other. (iii) It is by now widely recognized that chaos de-

notes not only a system response outcome to be avoided

in many circumstances but also a cross-disciplinary class

of complex phenomena to be exploited for specific or

general purposes. Yet, although successful use of chaos 3360

has been highlighted also in the structural mechan-

ics/engineering framework (as regards, e.g., nonlinear

identification, structural health monitoring, or energy

harvesting), a lot has still to be done to get a full aware-

ness of the great potential of nonlinear and chaotic dy- 3365

namics for enhanced and innovative modeling, analy-

sis, design, and control of engineering systems, to be

assessed by also referring to the uncertainty quantifica-

tion issue.

Anyway, in this respect, one more general, and fi- 3370

nal, consideration seems to be in order. As the hallmark

of unpredictable dynamic outcomes, chaos is certainly

the most important phenomenon to be considered, and

properly characterized in both theoretical and practi-

cal terms, for the analysis and safe design of engineering 3375

systems and, specifically, of mechanical/structural ones.

Yet, the goal of a reliable and successful engineering de-

sign stands somehow beyond the precise characteriza-

tion and understanding of chaos phenomena in dynam-

ical systems terms. Indeed, it consists of more generally 3380

and knowingly accounting for the whole basket of in-

triguing aspects and phenomena of nonlinear dynamics

– in both local and, mostly, global terms – in order

to guarantee the occurrence of some desired operating

conditions, with a special view to possibly improve and 3385

refine them for novel and more advanced technological

applications, this being the challenging new frontier of

nonlinear and chaotic dynamics in mechanics.
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166. Carvalho EC, Gonçalves PB, Rega G, Multiple

internal resonances and nonplanar dynamics of a

cruciform beam with low torsional stiffness. Int J

Solids Struct 121:117–134 (2017) 3970

167. Pai PF, Nayfeh AH, Three-dimensional nonlin-

ear vibrations of composite beams. I. Equations

of motion. Nonlinear Dyn 1(6):477–502 (1990)

168. Pai PF, Nayfeh AH, Three-dimensional nonlinear

vibrations of composite beams. II. Flapwise exci- 3975

tations. Nonlinear Dyn 2(1):1–34 (1991)

169. Pai PF, Nayfeh AH, Three-dimensional nonlinear

vibrations of composite beams. III. Chordwise ex-

citations. Nonlinear Dyn 2(2):137–156 (1991)

170. Smelova-Reynolds T, Dowell EH, The role of 3980

higher modes in the chaotic motion of the buck-

led beam. I. Int J Non-linear Mech 31(6):931–939

(1996)

171. Smelova-Reynolds T, Dowell EH, The role of

higher modes in the chaotic motion of the buck- 3985

led beam. II. Int J Non-linear Mech 31(6):941–950

(1996)

172. Yagasaki K, Chaotic dynamics of a quasi-

periodically forced beam. J Appl Mech 59:161–167

(1992) 3990

173. Yagasaki K, Homoclinic and heteroclinic behav-

ior in an infinite-degree-of-freedom Hamiltonian

system: chaotic free vibrations of an undamped,

buckled beam. Phys Lett A 285(1-2):55–62 (2001)

174. Maruyama S, Nagai KI, Yamaguchi T, Hoshi 3995

K, Contribution of multiple vibration modes to

chaotic vibrations of a post-buckled beam with an

axial elastic constraint. J Syst Des Dyn 2(3):738–

749 (2008)

175. Nagai K, Maruyama S, Sakaimoto K, Yamaguchi 4000

T, Experiments on chaotic vibrations of a post-

buckled beam with an axial elastic constraint. J

Sound Vib 304(3-5):541–555 (2007)

176. Abhyankar NS, Hall EK, Hanagud SV, Chaotic

vibrations of beams: numerical solution of partial 4005

differential equations. J Appl Mech 60(1):167–174

(1993)

177. Bar-Yoseph PZ, Fisher D, Gottlieb O, Spectral el-

ement methods for nonlinear spatio-temporal dy-

namics of an Euler-Bernoulli beam. Comput Mech 4010

19(1):136–151 (1996)

178. Sansour C, Sansour J, Wriggers P, A finite ele-

ment approach to the chaotic motion of geometri-

cally exact rods undergoing in-plane deformations.

Nonlinear Dyn 11(2):189–212 (1996) 4015

179. Shaw SW, Chaotic dynamics of a slender beam

rotating about its longitudinal axis. J Sound Vib

124(2):329–343 (1988)



46 Giuseppe Rega et al.

180. Oumarou AS, Nbendjo BN, Woafo P, Appearance

of horseshoes chaos on a buckled beam controlled4020

by disseminated couple forces. Commun Nonlinear

Sci Numer Simul 16(8):3212–3218 (2011)

181. Sandeep Reddy B, Ghosal A, Nonlinear dynamics

of a rotating flexible link. J Comput Nonlinear

Dyn 10(6):061014 (2015)4025

182. Chatjigeorgiou IK, Numerical simulation of the

chaotic lateral vibrations of long rotating beams.

Appl Mech Comput 219(10):5592–5612 (2013)

183. Symonds PS, Yu TX, Counterintuitive behavior

in a problem of elastic-plastic beam dynamics. J4030

Appl Mech 52:517–522 (1985)

184. Poddar B, Moon FC, Mukherjee S, Chaotic mo-

tion of an elastic-plastic beam. J Appl Mech

55:185–189 (1988)

185. Symonds PS, Borino G, Perego U, Discussion on4035

chaotic motion of an elastic-plastic beam. J Appl

Mech 55:745–746 (1988)

186. Borino G, Perego U, Symonds PS, An energy

approach to anomalous damped elastic-plastic

response to short pulse loading. J Appl Mech4040

56:430–438 (1989)

187. Genna F, Symonds PS, Dynamic plastic instabil-

ities in response to short-pulse excitation: effects

of slenderness ratio and damping. Proc Roy Soc

London A 417(1852):31–44 (1988)4045

188. Xu JX, Hasebe N, The problem of an elastic-

plastic beam dynamics and an incomplete co-

dimension two bifurcation. Int J Non-linear Mech

32(1):127–143 (1997)

189. Savi MA, Pacheco PM, Chaos and unpredictabil-4050

ity in the vibration of an elasto-plastic beam. J

Braz Soc Mech Sci Eng 23(3):253–267 (2001)

190. Savi MA, Pacheco PM, Transient chaos in an

elasto-plastic beam with hardening. J Braz Soc

Mech Sci Eng 25(2):189–193 (2003)4055

191. Li QM, Zhao LM, Yang GT, Experimental results

on the counter-intuitive behaviour of thin clamped

beams subjected to projectile impact. Int J Impact

Eng 11(3):341–348 (1991)

192. Kolsky H, Rush P, Symonds PS, Some experimen-4060

tal observations of anomalous response of fully

clamped beams. Int J Impact Eng 11(4):445–456

(1991)

193. Lee JY, Symonds PS, Extended energy approach

to chaotic elastic-plastic response to impulsive4065

loading. Int J Mech Sci 34(2):139–157 (1992)

194. Lee JY, Symonds PS, Borino G, Chaotic responses

of a two-degree-of-freedom elastic-plastic beam

model to short pulse loading. J Appl Mech 59:711–

721 (1992)4070

195. Symonds PS, Lee JY, Fractal dimensions in

elastic-plastic beam dynamics. J Appl Mech

62:523–526 (1995)

196. Lepik U, Dynamic response of elastic-plastic pin-

ended beams by Galerkin’s method. Int J Solids 4075

Struct 31(23):3249–3260 (1994)

197. Lepik U, Elastic-plastic vibrations of a buckled

beam. Int J Non-linear Mech 30(2):129–139 (1995)

198. Qian Y, Symonds PS, Anomalous dynamic elastic-

plastic response of a Galerkin beam model. Int J 4080

Mech Sci 38(7):687–708 (1996)

199. Liu YM, Ma GW, Li QM, Chaotic and asymmet-

rical beam response to impulsive load. Int J Solids

Struct 41(3–4):765–784 (2004)

200. Ma GW, Liu YM, Zhao J, Li QM, Dynamic asym- 4085

metrical instability of elastic-plastic beams. Int J

Mech Sci 47(1):43–62 (2005)

201. Suire G, Cederbaum G, Periodic and chaotic be-

havior of viscoelastic nonlinear (elastica) bars

under harmonic excitations. Int J Mech Sci 4090

37(7):753–772 (1995)

202. Argyris J, Belubekian V, Ovakimyan N, Minasyan

M, Chaotic vibrations of a nonlinear viscoelas-

tic beam. Chaos Solitons Fractals 7(2):151–163

(1996) 4095

203. Ambartsumian SA, Minassian MM, On the model

of bodies with their mechanical properties depend-

ing on the strain rate. Int J Non-linear Mech

21(1):27–36 (1986)

204. Chen LQ, Cheng CJ, Dynamical behavior of 4100

nonlinear viscoelastic columns based on 2-

order Galerkin truncation. Mech Res Commun

27(4):413–419 (2000)

205. Chen LQ, Cheng CJ, Dynamical behavior of

nonlinear viscoelastic beams. Appl Math Mech 4105

21(9):995–1001 (2000)

206. Yi ZP, Wang LH, Zhao YY, Nonlinear dynamic

behaviors of viscoelastic shallow arches. Appl

Math Mech 30(6):771–777 (2009)

207. Mielke A, Holmes PJ, Spatially complex equilibria 4110

of buckled rods. Arch Rat Mech Anal 101:319–348

(1988)

208. Thompson JMT, Virgin LN, : Spatial chaos and

localization phenomena in nonlinear elasticity.

Physics Lett A 126(8–9):491–49 (1988) 4115

209. Thompson JMT, Champneys AR, From helix to

localized writhing in the torsional post-buckling of

elastic rods. Proc Roy Soc London A 452:117–138

(1996)

210. Champneys AR, Thompson JMT, A multiplic- 4120

ity of localized buckling modes for twisted rod

equations. Proc Roy Soc London A 452:2467–2491

(1996)



Chaos in Onedimensional Structural Mechanics 47

211. van der Heijden GHM, Champneys AR, Thomp-

son JMT, The spatial complexity of localised4125

buckling in rods with noncircular cross-section.

SIAM J Appl Math 59:198–221 (1999)

212. van der Heijden GHM, Champneys AR, Thomp-

son JMT, Spatially complex localisation in twisted

elastic rods constrained to lie in the plane. J Mech4130

Phys Solids 47:59–79 (1999)

213. van der Heijden GHM, Champneys AR, Thomp-

son JMT, Spatially complex localisation in twisted

elastic rods constrained to a cylinder. Int J Solids

Struct 39:1863–1883 (2002)4135

214. Zhang SY, Liu ZF, Nonlinear flexural waves and

chaos behavior in finite-deflection Timoshenko

beam. Appl Math Mech 31(11):1347–1358 (2010)

215. Fan J, He F, Liu Z, Chaotic oscillation of saddle

form cable-suspended roofs under vertical excita-4140

tion action. Nonlinear Dyn 12:57–68 (1997)

216. de Freitas MST, Viana RL, Grebogi C, Multista-

bility basin boundary structure, and chaotic be-

havior in a suspension bridge. Int J Bifurcat Chaos

14:927–950 (2004)4145

217. Lazer AC, McKenna PJ, Large amplitude peri-

odic oscillations in suspension bridges: Some new

connections with nonlinear analysis. SIAM Review

58:537–578 (1990)

218. de Freitas MST, Viana RL, Grebogi C, Erosion4150

of the safe basin for the transversal oscillations

of a suspension bridge. Chaos, Solitons Fractals

18:829–841 (2003)

219. de Freitas MST, Viana RL, Grebogi C, Basins

of attraction of periodic oscillations in suspension4155

bridges. Nonlinear Dyn 37:207–226 (2004)

220. Lenci S, Ruzziconi L, Nonlinear phenomena in the

single-mode dynamics of a cable-supported beam.

Int J Bifurcat Chaos 19(3):923–945 (2009)

221. Fujino Y, Warnitchai P, Pacheco BM, An exper-4160

imental and analytical study of autoparametric

resonance in a 3dof model of cable-stayed-beam.

Nonlinear Dyn 4:111–138 (1993)

222. Gattulli V, Lepidi M, Localization and veering

in the dynamics of cable-stayed bridges. Comp4165

Struct 85(21–22):1661–1678 (2007)

223. Gattulli V, Morandini M, Paolone A, A para-

metric analytical model for non-linear dynam-

ics in cable-stayed beam. Earth Eng Struct Dyn

31(6):1281–1300 (2002)4170

224. Gattulli V, Lepidi M, Nonlinear interactions in the

planar dynamics of cable-stayed beam. Int J Solids

Struct 40:4729–4748 (2003)

225. Haddow AG, Barr ADS, Mook DT, Theoretical

and experimental study of modal interaction in4175

a two-degree-of-freedom structure. J Sound Vib

97(3):451–473 (1984)

226. Nayfeh AH, Balachandran B, Experimental in-

vestigation of resonantly forced oscillations of a

two-degree-of-freedom structure. Int J Non-Linear 4180

Mech 25(2–3):199–209 (1990)

227. Zhang W, Cao DX, Studies on bifurcation and

chaos of a string-beam coupled system with

two degrees-of-freedom. Nonlinear Dyn 45:131–

147 (2006) 4185

228. Cao DX, Zhang W, Global bifurcations and

chaotic dynamics for a string-beam coupled sys-

tem. Chaos Solitons Fractals 37:858–875 (2008)

229. Hegazy UH, 1:3 internal resonance of a string-

beam coupled system with cubic nonlinearities. 4190

Comm Nonlin Sci Num Simulat 15:4219–4229

(2010)

230. Hamed YS, Sayed M, Cao DX, Zhang W, Non-

linear study of the dynamic behavior of a string-

beam coupled system under combined excitations. 4195

Acta Mech Sin 27(6):1034–1051 (2011)

231. Amer YA, Hegazy UH, Chaotic vibration and res-

onance phenomena in a parametrically excited

string-beam coupled system. Meccanica 47:969–

984 (2012) 4200

232. Wei MH, Xiao YQ, Liu HT, Bifurcation and chaos

of a cable-beam coupled system under simultane-

ous internal and external resonances. Nonlinear

Dyn 67(3):1969–1984 (2012)

233. Wei MH, Lin K, Jin L, Zou D, Nonlinear dynamics 4205

of a cable-stayed beam driven by sub-harmonic

and principal parametric resonance. Int J Mech

Sci 110:78–93 (2016)

234. Lv J, Kang H, Nonlinear dynamic analysis of

cable-stayed arches under primary resonance of 4210

cables. Arch Appl Mech 88:573–86 (2018)

235. Ballaben JS, Rosales MB, Nonlinear dynamic

analysis of a 3D guyed mast. Nonlinear Dyn

93:1395–1405 (2018)
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