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CONCENTRATION OF POSITIVE SOLUTIONS FOR A CLASS OF
FRACTIONAL p-KIRCHHOFF TYPE EQUATIONS

VINCENZO AMBROSIO, TERESA ISERNIA, AND VICENTIU D. RADULESCU

ABsTRACT. We study the existence and concentration of positive solutions for the following class
of fractional p-Kirchhoff type problems:
(ESpa + g25p=3p [u}’s’)p) (—A)pu+ V(:r)up_1 = f(u) in R3,

{ ue€WSP(R*), u>0 in R3,
where € is a small positive parameter, a and b are positive constants, s € (0,1) and p € (1,00)
are such that sp € (2,3), (—A); is the fractional p-Laplacian operator, f : R — R is a superlinear
continuous function with subcritical growth and V : R®> — R is a continuous potential having a
local minimum. We also prove a multiplicity result and relate the number of positive solutions with
the topology of the set where the potential V' attains its minimum values. Finally, we obtain an
existence result when f(u) = u?! 4+ ~yu" "', where v > 0 is sufficiently small, and the powers q and
r satisfy 2p < ¢ < p5; < r. The main results are obtained by using some appropriate variational
arguments.

1. INTRODUCTION

In this paper we focus on the following class of fractional p-Kirchhoff problems:

{ (ePa+e*3b[uf,) (—A)Su+ V(z)uP~! = f(u) in R?

u € WSP(R3), u>0 in R3, (F2)

where ¢ > 0 is a small parameter, a,b > 0 are constants, s € (0,1) and p € (1,00) are such that

sp € (%, 3), (—A); is the fractional p-Laplacian operator which, up to normalization factors, may

be defined for every function u € C°(R3) as

CAVula) — 2l ju@) — u()P2w@) —uy) e
( A)p ( )_2}_>0 R\ By () ’x_y’3+sp dy ( €eR )7

and W*P(R3) is the fractional Sobolev space of functions u € LP(R3) such that

|u(@) —u(y)”
dxdy <
7P //]RG ‘m_y‘?)-l-sp ray o0

[ull$, = [ulf, + lulp.

We recall that in these years a tremendous popularity has achieved the investigation of nonlinear
problems involving fractional and nonlocal operators due to their fundamental role in describing
several phenomena such as phase transition, game theory, finance, image processing, Lévy processes
and optimization; see for instance [24] for more details.

When a = e =1, b =0 and p = 2, equation (F.) becomes a fractional Schrédinger equation of
the type

endowed with the natural norm

(—A¥u+V(z)u = f(x,u) inR? (1.1)
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2 V. AMBROSIO, T. ISERNIA, AND V.D. RADULESCU

introduced by Laskin [39] in the study of fractional quantum mechanics; see [18] for more details.
Equation (1.1) has been widely considered in these last years, and several existence and multiplicity
results to (1.1) have been established by applying suitable techniques and assuming different con-
ditions on the potential V' and on the nonlinearity f; see [3,5,7,19,25,27,31] and the references
therein.

On the other hand, when s = ¢ = 1 and p = 2, problem (P-) boils down to a classical Kirchhoff
equation of the type

- <a + b/ |Vu|? d:n) Au+V(z)u= f(z,u) inR3 (1.2)
R3
which is related to the stationary analogue of the well-known Kirchhoff equation
E L
PUt — (2;? + o7 ; |ux|2daz> Upe = 0 (1.3)

proposed by Kirchhoff [38] as an extension of the classical D’Alembert’s wave equation for describing
the transversal oscillations of a stretched string. The parameters appearing in (1.3) have the following
meaning: L is the length of the string, h is the area of the cross-section, E is the young modulus
(elastic modulus) of the material, p is the mass density and pgy is the initial tension. We refer
to [13,50] for the early classical studies dedicated to (1.3). We also note that nonlocal boundary
value problems like (1.2) model several physical and biological systems where u describes a process
which depends on the average of itself, as for example, the population density; see |2,17].

Anyway, only after the Lions’ work [41], where a functional analysis approach was proposed to
attack a general Kirchhoff equation in arbitrary dimension with an external force term, problem (1.2)
began to catch the attention of several mathematicians; see [1,30,35,36,49,56] and the references
therein. Concerning perturbed Kirchhoff problems, He and Zou [36] proved a multiplicity result for
the following Kirchhoff equation

- <a62 + bs/ |Vu|2d:r> Au+V(z)u=g(u) inR3 (1.4)
R3

provided that € > 0 is sufficiently small, under the following condition on V introduced by Rabinowitz
[53]:
Voo = liminf V(x) > inf V(z), where Vi < o0,

|z|—o0 z€R3

and g is a subcritical nonlinearity. Wang et al. [56] extended the results in [36] considering critical
nonlinearities. After that, Figueiredo and Santos Junior [30] applied the generalized Nehari manifold
method and Ljusternik-Schnirelmann theory to deduce a multiplicity result for a class of Kirchhoff
equations requiring that the potential V' fulfills (V1)-(V2). Later, He et al. [35] obtained the existence
and multiplicity of solutions to (1.4), when (V;)-(V2) are in force, and g(u) = f(u)+u®, where f € C!
is a subcritical nonlinearity which does not satisfy the Ambrosetti-Rabinowitz condition [4].

In the nonlocal framework, Fiscella and Valdinoci [33] proposed for the first time a stationary
fractional Kirchhoff variational model in a bounded domain © C R™ with homogeneous Dirichlet
boundary conditions and involving a critical nonlinearity:

{ M (fRN \(—A)%UPdﬂf) (=A)u = Af(z,u) + [u*2u  inQ,

(1.5)
u=20 in RV \ Q,

where M : RT — RT is an increasing continuous positive Kirchhoff function whose typical example
is given by M(t) = a + bt, with @ > 0 and b > 0, f is a superlinear function with subcritical
growth at infinity, and A > 0 is a parameter. Their model takes care of the nonlocal aspect of the
tension arising from nonlocal measurements of the fractional length of the string; see the Appendix
in [33] for more details. After the pioneering work [33], several authors dealt with existence and
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multiplicity of solutions for (1.5); see [8,9,11,29,44,46| and the references therein. We stress that,
in 9], the authors obtained a multiplicity result for a perturbed fractional Kirchhoff problem under
assumptions (V7)-(Va).

On the other hand, a great attention has been devoted to the study of fractional Kirchhoff problems

involving (—A);. For instance, Pucci et al. [51] obtained a multiplicity result for a nonhomogeneous
fractional Kirchhoff-Schrodinger equation assuming that the potential V' satisfies a Bartsch-Wang
type condition. Fiscella and Pucci [32] dealt with stationary fractional Kirchhoff p-Laplacian equa-
tions involving a Hardy potential and different critical nonlinearities. Mingqi et al. [43] proved some
existence result for a class of quasilinear Kirchhoff system involving the fractional p-Laplacian. We
also refer to [40,42,47] for other interesting results.
We note that fractional p-Laplacian problems have received a great attention in these years since
two phenomena are present in (—A);: the nonlinearity of the operator and its nonlocal character;
see [20,23,34,48] and the references therein. Moreover, some useful techniques developed to study
fractional Laplacian problems are not available to attack problems like (F.). Indeed, we can make
use neither of the powerful framework provided by the Caffarelli-Silvestre s-harmonic extension [15]
nor of various tools as, e.g., commutators estimates, strong barriers and density estimates.

Particularly motivated by [3,5,9,10,30] and by the interest shared by the mathematical community
on fractional p-Laplacian problems, the goal of this paper is to study the existence, multiplicity and
concentration of solutions to (P.). In order to state precisely our results, we first introduce the
main assumptions on the potential V' and the nonlinearity f. Along the paper, we suppose that
V € C°(R3,R) satisfies the following assumptions introduced by del Pino and Felmer [22]:

(V1) there exists Vi > 0 such that Vi := inf,cgs V(2),
(V3) there exists an open bounded set A C R? such that

0< Vyp:=infV <minV,
A OA
while we assume that f € C°(R,R), vanishes in (—oc0,0), and fulfills the following conditions:

(f1) f(t) =o(t?P~1) as t — 0%,
(f2) there exists v € (2p,pk), with pf = 33—” such that

f(t)

t—oo tV—1

:O,

t

(f3) there exists ¥ € (2p,p}) such that 0 < IF(¢) := 0/ f(r)dr <tf(t) for all t > 0,
0

f(t)

t+2r—1

We emphasize that under the control on fractional parameter s € (0,1), the condition sp € (%, 3)

(f1) the map t —

is increasing in (0, 00).

forces p € (%, 00). In particular, the restriction sp € (%, 3) implies that 2p < p¥, therefore (f3) makes

sense. A typical example of function which satisfies (f1)-(f1) is given by f(t) = Ele a;t" 1 with

a; > 0 not all null and 2p < r; < pf foralli e {1,...,k}.
Now, we are in the position to state our first main result of this work:

Theorem 1.1. Assume that (V1)-(Va) and (f1)-(f1) are in force. Then, there exists e > 0 such
that, for all € € (0,g¢), (P:) has a positive solution us. Moreover, if n. denotes a global mazimum
point of ue, then lim._,o V(ne) = Vb, and there exists C > 0 such that

C 6?)—i-sp

3
g3+sp HCU _ 77€|3+sp vz € R".

us(x) <

The proof of Theorem 1.1 relies on suitable variational arguments. We first adapt in a suitable
way the penalization argument in [22] which consists in modifying the nonlinearity f outside A,
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considering an auxiliary problem and then we check that, for ¢ > 0 small enough, the solutions of
the modified problem are solutions of the original one. In order to achieve our purpose, we look
for critical points of the corresponding energy functional Z.. The main difficulties that arise in the
study of Z. are related to the presence of the Kirchhoff term [u]%,(—A)5 and the lack of compactness
caused by the unboundedness of the domain R3. Indeed, in general, it is not trivial to prove that the
weak limits of bounded Palais-Smale sequences are critical points of Z. when we consider Kirchhoff
problems. Moreover, the non-Hilbertian structure of the fractional Sobolev spaces W*P(R?) when
p # 2 makes our study rather tough. To circumvent these difficulties, we will develop some clever
arguments which take care of the nonlocal character of the leading operator (—A); and that allow
us to recover the compactness of the functional Z.; see Lemma 2.4. After that, we show that the
solution of the modified problem is also a solution of the original one by combining a Moser iteration
argument [45] with the Holder continuity result established for (—A)7; see [23,37]. We also prove a
decay estimate for the solutions of (P:) exploiting some recent results obtained in [10, 21].

In the second part of this work, we deal with the multiplicity of positive solutions to (P:). In this
case, we replace (V2) by the following assumption:
(V5) Vo=Viand M ={z € A: V(z) =Vo} #0.
We recall that if Y is a given closed set of a topological space X, we denote by caty(X) the
Ljusternik-Schnirelmann category of Y in X, that is the least number of closed and contractible sets
in X which cover Y see [57| for more details.

Now, we state the second result of this paper:

Theorem 1.2. Assume that (V1)- (V) and (f1)-(f4) hold. Then, for any § > 0 such that
Ms = {2z € R® : dist(x, M) < 6} C A,

there exists €5 > 0 such that, for any € € (0,e5), problem (P.) has at least catp; (M) positive
solutions. Furthermore, if u. denotes one of these positive solutions and n. € R3 is a global maximum
point of ue, then

lim V(n:) = W.

e—0

In order to prove Theorem 1.2, we need to use some suitable variational and topological arguments.
More precisely, to obtain multiple solutions, we study the modified functional Z. on the associated
Nehari manifold Nz. Anyway, due to the fact that f is only continuous, the Nehari manifold A is not
differentiable and some well-known arguments for C'-Nehari manifolds do not work in our situation.
To overcome this obstacle, we take inspiration by some results due to Szulkin and Weth [55]. After
that, we use a technique introduced by Benci and Cerami in [12], in which the main ingredient is to
make fine comparisons between the category of some sublevel sets of the modified functional Z. and
the category of the set M.

In the last part of this work, we consider the case when the nonlinearity f has a critical or
supercritical growth. More precisely, we study the following nonlocal problem
(ePa+e*P3bulf,) (=A)ju+ V(z)uP~' = ud™t +yu™1 in R3,
u€ WSP(R3), u>0 in R3,
where €, > 0 and the powers ¢ and r are such that 2p < ¢ < p% < r. Also in this case we are able
to obtain the following result:

(1.6)

Theorem 1.3. Assume that (V1)-(Va) hold. Then, there exists vy > 0 such that, for any v € (0,70),
there exists e > 0 such that, for any € € (0,e,), problem (1.6) has a positive solution u.. Moreover,
if ne denotes a global mazximum point of ue, then lim._,o V(n:) = Vp.

Remark 1.1. If we assume (V1)-(V3), then the conclusion of Theorem 1.2 holds true for e and 7y
sufficiently small.
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Differently from the study of (P:), an additional difficulty arises in the study of (1.6). Indeed, when
r > p%, problem (1.6) becomes supercritical, and we cannot directly apply variational techniques
because the corresponding energy functional is not well-defined on the fractional Sobolev space
W$P(R3). To overcome this hitch, inspired by [16,28,52], we truncate the nonlinearity involving the
critical or supercritical power, and we consider a new subcritical problem for which it is possible to
apply the existence result given by Theorem 1.1. Then, after proving a priori bound (independent
of «y) for the solution of the truncated problem, we use a suitable Moser’s iteration argument [45] to
prove that, if  is small enough, this solution also satisfies the original problem (1.6).

To our knowledge, the results presented here are new also in the case s = 1, and they comple-
ment and improve the once obtained in [9,30] because we are considering the case p € (%, o0) and
nonlinearities with subcritical, critical or supercritical growth.

The paper is organized as follows: in Section 2 we introduce the modified problem and we give the
proof of Theorem 1.1. Section 3 is devoted to the multiplicity of solutions to (P:). In Section 4 we
are interested in critical or supercritical problem.

Notations: If A C R?, we denote by A° = R*\ A. We use the notation |u|z¢(4) to indicate the
L7(A)-norm of a function u : R* — R, and by |ul, its L¢(R3)-norm. We write B, (z) to denote the
ball centered at € R with radius 7 > 0, and, when z = 0, we put B, = B,.(0) and B¢ := B<(0).

2. THE MODIFIED PROBLEM

2.1. Work space stuff. We define D*?(R3?) as the closure of C2°(R3) with respect to

y)[P
—————=dxd
,p //Rb |:c— |3+sp Y.

Let us indicate by W*P(R3) the set of functions u € LP(R?) such that [u]s, < oo, endowed with the
natural norm

[ullfp = ully + [ulp-
We have the following well-known embeddings (see [24]).

Theorem 2.1. [2] Let s € (0,1) and p € [1,00) be such that sp < 3. Then there exists a constant
C. := C.(s,p) > 0 such that, for any u € D>P(R?), we have
|ulpy < Cu[u],.

Moreover, W3P(R3) is continuously embedded in LI(R3) for any q € [p,pt], and compactly in

L?OC(R3) for any q € [1,p%).

We will often use the following vanishing-Lions type result (see Lemma 2.2 in [10]).
Lemma 2.1. [10] Let s € (0,1) and p € (1,00) be such that sp < 3, and r € [p,p%). If {un}nen is
a bounded sequence in W*P(R3) and if

lim sup / |up|"dz =0,
Br(y)

n—o0 yER3
where R > 0, then u, — 0 in L7 (R3) for all o € (p,pt).
We also recall the following useful technical result (see Lemma 2.3 in [10]).

Lemma 2.2. [10] Let u € W*P(R3) and let ¢ € C°(R3) be such that 0 < ¢ < 1, ¢ =1 in By and
¢ =0 in BS. Set ¢p(x) = ¢p(x/r). Then,

[upy —ulsp =0 and |up, —ul, = 0.
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In order to study (P), we use the change of variable x — ¢z and we look for solutions to

(a+b [u]f;p)(—A);u + V(ex)uP~t = f(u) in R3, (]3 )
u€ WsP(R3), u>0 in R3. ¢

Now, we introduce a penalized function in the spirit of [22] which will be fundamental to obtain
our main result. First of all, without loss of generality, we may assume that

0 € A and V(0) = V.

Let K > 2p and ag > 0 be such that

flao) = 7=ag (2.1)

and we define
i F(t) if t < ag,

Wi

— P~ if ¢ > aq,

K HE=a
and

ol )= { @O+ A= FO >

It is easy to check that g satisfies the following properties:
_g(z,t)
(91) t1—1>1(§1+ t2r—1
(92) g(x,t) < f(t) forallx € R3 ¢ >0,
(93) (i) 0 < IG(x,t) < g(z,t)t forall z € Aand t >0,
(73) 0 < pG(x,t) < g(z,t)t < %tp for all x € A°and ¢t > 0,

g(z,1)

t2p—1

=0 uniformly with respect to z € R3,

(g94) for each x € A the function

g9(z,t)

$+2r—1
We point out that if u. is a solution to

(a+0b[ulfp)(—A)u+V(ex)uP ! = g(ez,u) in R3,

u € WP(R3), u>0 in R3.

is increasing in (0, 00), and for each x € A® the function

is increasing in (0, ap).

(2.2)

with us(x) < ag for all # € A, where A, := {z € R® : ex € A}, then g(ex,u.) = f(u:). Therefore
ve(z) = ue(x/ €) is a solution to (Px)
For any € > 0 we consider the following fractional space

H = {u = W“’(R?’) : / V(ex)|ulPde < oo}
R3

endowed with the norm

ull? := a[ult, + /R3 V(e x)|ulP dz.

In order to study (2.2), we look for critical points of the C!'-functional Z; : H. — R defined as

1 b
L(w) = Sl + g lul2— [ Gleww)de
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For any u, ¢ € H. the differential of Z, is given by

w(z) — u(y)|P2(u(z) — u ) —
() = [ 1) MO 0) s ol) =) o,

|z — y[3+sp

bl ] L) = ) s ole) = 0 o,

|z — y[3Fep
+/ V(Ew)]u\p2ug0da?—/ glez,u)pdx.
R3 R3

Next we show that Z. has a mountain pass geometry [4].

Lemma 2.3. The functional Z. satisfies the following conditions:
(7) there exist a, p > 0 such that I.(u) > a with ||ul|c = p;
(7i) there exists e € He with |le|l: > p and Z.(e) < 0.

Proof. (i) Using assumptions (g1), (g2), (f1) and (f2), for any given ¢ > 0 there exists a positive
constant C¢ such that

lg(a, )| < CP~t + Celt”

Thus, using Sobolev embeddings we have

1 b 1 o
Te(u) = Sl + g [l - /Rg Glea,u)d > lullf — CCllull? — Cellulle.

Consequently, we can choose a, p such that I.(u) > « and |ul|e = p.
(ii) Let u € C°(R?) be such that u > 0, u # 0 and supp(u) C Ac. In view of (g3)-(7) and ¥ € (2p, p?),
we can see that, for some constants C7,Co > 0 and for any ¢ > 0

tP b, 9 9
T (tu) < —||u||§+2—[u]5’;—01t u’dr+Cy — —00 ast— oo.
p p ’ .

O

Invoking a variant of the mountain-pass theorem without (PS)-condition (see [57]), we deduce
the existence of a Palais-Smale sequence {uy }nen C He such that

T(up) =cc +op(1)  and  Z.(uy,) = o,(1), (2.3)
where

o= inf max (y(1)) and  Tei= {7 e ([0, 1], H.) : 7(0) = 0, Zo(v(1)) < o}. (2.4)

As in [57], we can use the following equivalent characterization of ¢, more appropriate for our aim:

= e )

Moreover, from the monotonicity of g, it is easy to check that for all u € H. \ {0} there exists a
unique to = to(u) > 0 such that

T (tou) = max . (tu).

Lemma 2.4. 7. fulfills the Palais-Smale condition at any level c € R.
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Proof. Let {un}nen be a sequence satisfying (2.3). Let us prove that {uy}nen is bounded in H..
Using (g3) we obtain that

ce +on(l) =Z(uy) — %(Ié(un), Up)
1 1 1 1 1
_(Z_ = D = 2p - _
= (p 19) lun||® + b <2p 19> [un]3h, + 3 /g[g(ax,un)un VG (e x,uy)| dx

+ 1/ [9(e @, un)un — VG (e x,up)] dv
9/

9

1 1 (9—p) 1
> o n p_ — V npd

> (1 _ 1) |2 + 1/ l9(e z,un)uy — 9G(e 2, up)] dz
Ag

Thanks to ¢ > 2p and K > 2p > 3, we deduce that {u,}nen is bounded in H.. From Theorem 2.1
we may assume that u, — v in H,.
Now, we prove that for any n > 0 there exists R = R(n) > 0 such that

limsup/c (a /R3 [un (@) = wa ()P dy+ V(e :L')]un]p) dx <. (2.5)

n—00 |z — y[3+sp

For any R > 0, let g € C®(R3) be such that ¥g = 0 in Bg, ¥gp = 1 in BSp, 0 < ¢ < 1, and
|Vir| < %, where C'is a constant independent of R. Since {¢)run, }nen is bounded in H., it follows
that (Z.(un), Yrun) = 0n(1), that is

[un(z) — un(y)[P
(a+bluft, //RG ]a: ~ y’3+sp Yr(x) dedy + ” V(e x)|un|Pyr dx

= o,(1) —i—/ g(e x, up)Yruy, d
R3
P=2(yp(x) —u x) —
_ (a—l—b[un]f;p) //R6 |un (1) — un(y) [P~ (un () () (Wr(x) — Yr(Y))

|z —y[3*P

Take R > 0 such that A, C Br. By the definition of 1) and (g3)-(ii) we get

|un (z (y)[? 1
//]Rcs \x—y\3+5p YR dvdy + < K) / V(e x)|unPtpg dx

Un(x) — up(y) [P~ 2 — Uy, ) —
< ouV) (@t ofualz,) [ ] 2 g nte) =99, ) gy
(2.6)

Let us note that, from the boundedness of {u,}nen in He, we can suppose that a + b [u,5, — ¢ €
(0,00). Now, using the Holder inequality and the boundedness of {uy, }nen in He we have

‘// [un () — un (V)P (un(z) — un(y)) (Yr(z) — 1/’R(y))un(y) dxdy
RS

’x _ ’3-&—81?

<o f[ =, >|pda:dy);. 2.7
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On the other hand, by the definition of ¥r, and using polar coordinates and the boundedness of
{tn }nen in 7-[,3, we obtain

Yr(x
I |3+§p s
p
/ / |11Z)R 3+S( )| |un( ’pdl’dy—i-/ / |¢R( ) 3+5(y)‘ |Un($)‘pd$dy
R3 Jy—z|>R |$—y| P ’8 Jjy—aj<r T —y[3tP
dy C dy
<C unxp/ — | dz + — unxp/ —7 | dx
]R3’ @)l (ly—:c|>R Iw—yl3+sp) Rp R3| (@)l <|y—x|<R Ix—y\3+sp‘p>
dz C dz 2.8
SC/unxp/ —— | dx + — unxp/ " dx (2.8)
o (! <|z.>R rzr3+sp> 7 Jy M) (M rz\3+sp—p>
> dp C R dp
<c / (&) P < / psp+1>+Rp / () Pl < /0 s
C

< o [t de R [ e

< RC;p /11&3 |t (z)[Pdx < % —0 as R— oo.

Gathering (2.6), (2.7) and (2.8) we infer that (2.5) is satisfied. In particular, by Fatou’s lemma we

have
/% (a/R3 Md ~|—V(5m)\u|p> dr <. (2.9)

Moreover, from (2.5) and (2.9), we can deduce that
u, — uin L7(R®)  for any o € [p,p}). (2.10)
Indeed, for any n > 0 there exits R = R(n) > 0 such that, for any n large enough, we have
|ty — U|p |y, — u‘lzp(BR) + un — U|I£p(3%)

<n+ \un - u|ip(3%)

<77+— V(sx)|un—u|pdx
|1
_ _ _ p
B, R3 |z — y|3+ep
< K1),

that is u, — w in LP(R3). Then, by interpolation, it follows that (2.10) is verified.
Now, from the boundedness of {uy,}nen and the growth assumptions on g we get

/3(9(5 T, Up Uy — gz, u)u)(uy — u) dz

R
< (Junlp™ + [ulp™) fun = ulp + C (lunly™" + [uly ™) Jun — uly
< Clup — ulp + Cluy, — ul,

which together with (2.10) implies that

lim [ (g(ez,un)un — g(e z,u)u)(u, — u) dz = 0. (2.11)

n—0 R3
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In what follows, we prove that ||u, — ull: — 0 as n — oco. Let ¢ € H. be fixed and denote by
B, : H. — R the linear functional on H. defined as

) — P=2(p(x) — v(z) —v
)= [ 1= o) et 010 o,

|z — y[3+sp

for all v € H.. Moreover, by Hélder’s inequality, it is clear that B, is continuous on H..
It follows from u, — u in H. that

lim ((a+ blunlt ) — (a+ b[u]gp)) B, (up, —u) =0, (2.12)

n—o0

where we used the fact that (a + blu,]%,) — (a + blu]s ) is bounded in R.
On the other hand, by u,, — u in H., Z.(u,) — 0, and (2.10), we know that (Z/(uy) — ZL(u), uy —
u) — 0 as n — oo. Then, by (2.11) and (2.12) we obtain

on(1) = (Zi(un) — Ze(u), tn — v)
= (a+ blun]f ) Bu, (un — u) — (a + blun]f ) Bu(un — u)

+ ((a +blun]?,) — (a+b[u]? ) Bu(un —u) + /RS V(e z)(JunlP?un — [ulP~%u) (u, — u) dz

— /R3 (g(e x,up)un — g(e z,u)u) (uy — u) dz
= (a+ b[un}é),p)(Bun (un, —u) — By(un —u))

—i—/ Ve x)(|un\p_2un — |u|p_2u)(un —u)dz + on(1),
R3
that is

lim <(a + blunlt ) (Bu, (un — u) — Bu(un —u)) + / V(e ) (|tunlP2un — [ulP~2u) (uy — u) dx) =0.

n-so00 R3
Since (|z[P~2z — |w|[P~2w)(z — w) > 0 for all z,w € R, we can see that
(@ + b[un]$ ) (Bu, (un — u) = Bu(un —u)) =0,
and by (V1) we also have
V(e z)(Jun|P%un — |ulP~2u)(uy —u) > 0.
Therefore, we deduce that

lim (a + b[un)t ,)(Bu, (un — u) — Bu(un —u)) =0,

n—0o0

(2.13)
lim V(e x)(Jun|P2un — |uP~*u) (u, —u) dz = 0.
n—oo R3
Now, we recall the following useful Simon inequalities [54]:
(€=l < (g€ =" n) - (€ =m)  forp =2,
(2.14)

1€ — P < Col(I€P2E — InP~2n) - (€ = mIE(E[P + [nP) 2" for 1 <p <2

for all £, € RY, where ¢, and C), are positive constants depending only on p.
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We first suppose that p > 2. Then, by (2.13) and (2.14), it holds
on =2y = [ i) = ) = (o) + )Pl o oy

<o | / [tn () — () P2 11 (2) — 1un () — Ju(2) — ()P (u(z) — u(y))]
% (tn(2) — tn(y) — u(z) + uly))|z — y| "+ ddy
= cp[Bun(un —u) — By(up —u)] = op(1).

In a similar fashion, by (V1) and (2.13), we get

/ V(e 2)un — ulf do < cp/ V(e 2)(Jun[P2un — [ufP~20) (un — u) da: = on (1),
R3 R3

In conclusion, ||u, —ullc — 0 as n — oo.
Now, we consider the case when 1 < p < 2. Since u, — u in H,, there exists x > 0 such that
llunlle < & for all n € N. Hence, by (2.13), (2.14) and Hélder’s inequality we can see that

2-p

[t — ul?,, < Cp (Buy, (un — 1) — Bulup — )2 ([ua]?,, + [u]?,) *

p p(2—p) p(2=p)
< Cp (Bu, (un —u) = Bu(up —u))2 | [unlsp®  + [u]sp’ )
< G (Bu,, (un — u) — By(un —u))
where we used the following inequality
-p

(a+b) <a7+b277p Va,b>0,1<p<2.

In a similar way, we obtain that

[S4S]

Ve un —ulPde < C (| View)(unlP2un — [ulPu) (uy — u)dz ) = 0n(1).
A (L )

Then we can infer that ||u, — u||c — 0 as n — oo. This ends the proof of lemma. O

As a byproduct of Lemma 2.3, Lemma 2.4 and mountain pass theorem [4], we can deduce that
for all € > 0 there exists ue. € H. such that Z.(us) = ¢ and Z.(u.) = 0, that is u. is a weak solution
0 (2.2).

Let u~ := min{w,0}. Using (Z.(u),u~) =0, g(x,t) = 0 for ¢t <0, and

lz—ylP 2z —y)a” —y ) >|z” —y [P Vz,yER,

we can infer

lu i <a f / D)2 ) — ) (@) = @) 4

|z — y|Ntsp

—u(y)[P*(u(z) —u(y))(u(z) —u(y))
v P=200 da + blul? |u(z) — u(y)| dzd
+ » (ex)|ulP™"uu" dx + [U]S,p//RG [z — |V p xdy
=0,
which implies that u~ = 0, that is « > 0 in R3. By a Moser iteration argument [45], we can prove

that u € L>®°(R3) NCO(RY) (see Lemma 2.8 below). From maximum principle [20] we can infer that
u >0 in R3.
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2.2. The limiting problem. Let us consider the following family of autonomous problems, with

p >0,
{ (a+0b[ufsy)

u € WP(R3

()—A);u + puP~t = f(u) in R3,
@

u >0 in R3.
.15) is given by

(2.15)

The energy functional associated with

1 b
() = ~alult, + o [l + ululy ~ [ Plu)da
which is well defined on the space H,, := W*P(R") endowed with the norm
[ullf := alulgy, + plulp.

It is easy to check that &, € C1(H,,, R) and for any u, p € H, its differential is given by

|u(z) = u(y) P> (u(z) — u(y) (=) — ¢(y))
( //}RG dxdy

\x — y[3tsp
y)P 2 (u(x) — uly))(e(z) — o(y))
7P //]Rﬁ |x _y‘3+sp d.%'dy

+ ,u/ JuP~2ugp dx — / f(u)pde.
R3 R3
We denote by N, the Nehari manifold associated with £, that is

N, = {u € H,, \ {0} : (€] (u),u) = o},

and
dy, = 1nf Eulu).

uEN,
Arguing as in Lemma 2.3, it is easy to show that £, has a mountain-pass geometry, and as in [57],
it is standard to verify that

dy = ngrf max Eu((t)) = ue;ﬁ{ 10y 2 Eptu),

where

Fui= {7 € €00, 1], 1) :7(0) = 0, Eu(4(1)) < 0}.

Lemma 2.5. Let {uy, tnen C Hy be a (PS). sequence for &, such that u, — 0. Then we have either
(a) u, — 0 in H,, or
(b) there is a sequence {yn}nen C R and constant R, 3 > 0 such that

liminf/ |un|P dz > .
Br(yn)

n—oo

Proof. Assume that (b) is not true. Then, by Lemma 2.1 we can deduce that
U, — 0 in L7(R?) for all o € (p, pl). (2.16)
From (2.16) and (f1)-(f2) we can infer that

F(uy)dz = / flup)updz = 0,(1)  asn — oc.
R3 R3

On the other hand, arguing as in Lemma 2.4, we know that {u, }»en is bounded in #H,, and we may
assume that u, — u in #H,. Taking into account that (£, (un), un) = 0, we get

e, + b 122 —/ Flun)tn dz = o (1),
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which implies that ||u,||, — 0 as n — oo, that is (a) holds true. O
Now, we prove the following existence result for (2.15):
Theorem 2.2. For all > 0, problem (2.15) admits a positive ground state solution.

Proof. Using a variant of the mountain-pass theorem without (P.S)-condition [57], there exists a
Palais-Smale sequence {uy}nen C H, for £, at the level d,,. Arguing as in Lemma 2.4, we know
that {uy}nen is bounded in H,, so we may assume that

Uy —u  in Hy,
up, —u in LY (R3) for all o € [1,p}).

Moreover, by Lemma 2.5, it follows that u is nontrivial. Now, for any ¢ € C>°(R3) we have

a // Ju(z) — u@)P~(u(z) — u(y))(e(@) — oY)
RG

dxdy + ,u/ |ulP~up dx
R3

|z — y[3Fp
u(2) — uly)P(u(z) — u())(0(@) — #(y) 247
-l-be// Y Y8 Y dxdy—/ fu)pdx =0,
RS |z — y[3+sP R3
where B := lim,,_,oo[uy)%p. By Fatou’s Lemma we have
[ult, < BP. (2.18)

Our aim is to prove that the equality holds in (2.18). Assume by contradiction that [u]}, < BP.
Taking ¢ = u in (2.17) we have that (£],(u),u) < 0. From assumptions (f1) and (f2) we can see that
(&,(t1u), tyu) < 0 for some 0 < ¢1 < 1. Thus, there exists 7 € (t1,1) such that (£, (Tu),7u) = 0.
Now, using 7 € (0, 1), the fact that ¢ — ﬁf(t)t — F(t) is increasing for any ¢ > 0, and Fatou’s
lemma we can infer that

d, <&,(tu) — %(SL(TU),TU)

p
< &, (u) - 21p<g,g(u),u> (2.19)
. L,
< liminf (%(un) - 2p(t‘/’u(un),w) = dy,

which gives a contradiction. Hence [u]§, = BP. Therefore, by (2.17), we deduce that &/, (u) = 0,
that is £, admits a nontrivial critical point v € H,. Arguing as at the end of Section 2.1, we can
deduce that u > 0 in R3. Finally, proceeding as in (2.19) with 7 = 1, we can show that u is a ground
state solution to (2.15). O

Remark 2.1. We suspect that under the assumptions that s € (0,1) and p € (1,00) are such that
sp < 3, f(u) = ui=t with q € (p,pt), it is possible to obtain an existence result to (2.15) for small
b > 0. The idea is to apply the Struwe-Jeanjean monotonicity trick as in [6] by considering the
family of truncated functional Séf/\ cHE (R3) = R, with k € N, X € [\, 1], defined by

rad
ull | b ull
&k :”—“+— RN )~ X\ [ F(u)de,
fa) = 4 o (L5 iz = [ P da
where x s a cut-off function with support in the ball By. Then, once proved that there exists a
sequence {\j}jen C [Ao,1], Aj = 1, and {u;}jen C HE,,(R3) such that each u; is a critical point

of 55,)\]-’ one has to show that for all k > 0 large, there exists by > 0 such that, for all b € (0,bp),
llujll, <k for all j € N. After that, arquing as in [6], the existence result for (2.15) follows.

We conclude this section by proving a very interesting relation between c. and dy;.
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Lemma 2.6. [t holds limsup,_,qc. < dy;.

Proof. Let w be a positive ground state of (2.15) given by Theorem 2.2 with p = Vp. For any € > 0
let . (z) := (e x) where 1 € C2°(R3) is such that

b(z) = if 2 € By,
b(z) = if 2 € BS,
0§1/1§1

and consider the function w.(z) = ¥ (x)w(z). For simplicity, let us assume that supp(¢) C B C A.
By Lemma 2.2 and the Dominated Convergence Theorem we can infer that, as € — 0,

we = w € WP(RY)  and &y (we) — &y, (w) = dyy. (2.20)
Now, for each & > 0 there exists t. > 0 such that

T (tew:) = Tﬁg{ T (twe).
Hence, (Z](t.we),w:) = 0 and we have
tP||we P + bt2P[w.]? 2p —/ f(tewe)tewe dx,

which implies that

a 1
Flwels, + i /R3 V(ex)|we|Pdx +b [wg]zﬁ) = /IR3 ngp dx. (2.21)

By the growth assumptions on f it follows that t. — tg > 0. Our aim is to prove that ty = 1. Taking
the limit as € — 0 in (2.21) and using (2.20) we get

a 1 f(tow) 2
S w]? +/prdx+bw§f’:/ = w P da.
eyt g [ Volol? o +olely = |

th tow)2p—1

From the above relation, w € Ny, and (f4) we deduce that ¢y = 1. On the other hand, we can note
that

tp
ce <maxZ,(twe) = T (tewe ) = Eyp (tewe) + 8/ (V(ez) — Vy)wl dx.
>0 P Jrs
Hence, using (2.20), t. — 1, and that V(ez) is bounded on the support of w., we deduce the
thesis. g

2.3. Proof of Theorem 1.1. For € > 0, let u. be the mountain pass solution to (2.2). For any
en — 01 we denote by

Up = Ue,, Ln:=2I,, Hp:=He, and c,:=cg,.
Then, u,, satisfies
(a+ blun)b ) (=A)pun + V(e 2)uP~! = g(ex,u,) in R3

Lemma 2.7. Let e, — 0 and {up}nen C Hy be such that T, (uy) = c., and I (u,) = 0. Then there
exists {Je, bnen C R such that the translated sequence

ﬂn(x) = Un(x + gan)

has a subsequence which converges in W*P(R3). Moreover, up to a subsequence, {ye, }nen =
{en Ue,, tnen is such that y., — yo for some yo € A such that V(yp) = Vp.
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Proof. Using (Z] (uy),u,) = 0 and assumptions (g;) and (g2), it is easy to see that there is k > 0
such that

lunlle, > x>0 forany n € N.

Taking into account Z, (un) = ¢, (Z,(un), u,) = 0 and Lemma 2.6, we can argue as in the proof of
Lemma 2.4 to deduce that {u,},en is bounded in H,,.

Now, proceeding as in Lemma 2.5, it is easy to prove that there are a sequence {f., }nen C R3
and constants R, 3 > 0 such that

liminf/ |un [Pdx > 5.
n—oo BR(:’;En

Hereafter we denote by {n }nen the sequence {7, }nen. Set Uy (x) := up(x + §n). Then {iy, }pen is
bounded in W*P(R3), and we may assume that

Uy — 4 weakly in WSP(R?). (2.22)

Moreover, @ # 0 in view of
/ |a|Pdx > 3. (2.23)
Br

Now, we set y,, := €, n. Let us begin by proving that {y, }nen is bounded in R. To this end, it is
enough to show the following claim:

Claim 1 lim,,_, dist(y,, A) = 0.

Indeed, if the claim does not hold, there is § > 0 and a subsequence of {y,}nen, still denoted by

itself, such that

dist(yn,A) >0 Vn e N.

Then we can find 7 > 0 such that B,(y,) C A° for all n € N. Since @ > 0 and C°(R?) is dense in
W#P(R3), we can find a sequence {1;}jeny C C2°(R?) such that ¢; > 0 and ¢; — @ in WHP(R3).
Fixed j € N and using ¢ = 1); as test function in (Z},(uy), ) = 0 we get

o [ 2ne) = En i) )W) = 50,
RG

|z — y[3+sp

il ] 1ol =B inle) ) 0D 220

_ y|3+sp

+ /R3 V(gn)yan|p—2an¢j dex = /Rgg(gn,ﬂn)wj dux,

where En = &p @ + €, Yn. Taking into account that u, > 0, ¥»; > 0 and the definition of g, we can

see that
[ oG iyido= [
R3 B

< ﬁ\anyﬂanzpj dr + / f(n); d.
B K Be,

0ty dat [ (G da

(2.25)
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Gathering (2.24) and (2.25) we have

. // () = TPl (3) ~ ) (05@) = 650))
R6

‘x _ y‘3+sp

1, [ ) =B i) i Wste) = 50,
727 RS

|QU _ y|3+sp

+W (1 — K)/ [T P~ unw] dx </ f(tn); de.

From (2.22) and the facts that 1; as compact support in R3 and €,, — 0 we can see that

(2.26)

Un *Un p2un1‘—ﬂn () — s
//RG| y)| <’ ( >|3+sp< W) =) o
) P2(a(x) — a(y) (i (x) — i (y))
—>//RG | y|3+s?i) ’ AU drdy asn — oo

and

f(n)jde —0 asn — oo.
B

&n

The above limits together with (2.26) and [a,]5, — B? imply that

o f[ )= M i) SN0 = 500 o,
RS ‘90 — y|3tep

» )P (a(2) — ay)) (Wi (=) — ¥;(y))
+bB //Rﬁ PpERT J J dxdy

+ Wi (1 — K) /Rs [a|P~2ay; dx < 0.

Taking the limit as j — oo we have
a[u]s,p [u]s,p 1 P( |u‘p — °

This gives a contradiction in view of (2.23). Hence there exists a subsequence {y,}nen such that
Yn — Yo € A.

Claim 2 gy € A.

Using the definition of g and (2.24) we can see that

a// ’ﬁn(.%') - ﬂn(y)\p’Q(ﬂn(x) - ﬂn(?/))(w](x) - %(y)) dzdy
Rﬁ

|z — y|3+sp

+ b[ﬂn]g,p /‘/]R6 ‘ﬂn(w) - ﬁn(y)|p72(ﬁn(x> - ﬁn(y»(%(w) - %(Z/)) dxdy

|z — y|3+sp

+ /1R3 V(gn)’an’pi2anwj dz < /R3 f(ﬂn)% dx.
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Taking the limit as n — oo we get

o [ )= )~ )= 0,
RS |9C —y[3rsp

y)IP 2 () — aly)) (Ws(x) —¥;(y))
+b ’p/\/RG |:Zf—y|3+5p dxdy

+ [ Venlarride < [ @

Passing to the limit as j — oo we obtain

alilt + BV, + Vi)l < [ f(a)ida

Using Fatou’s Lemma we have [a]5, = [u}5, < BP, which combined with the above inequality yields

alilt, + b2, + Vi)l < [ @)ads

Hence, there exists 7 € (0, 1) such that 7o € N; V(yo)- Let dy(y,) be the mountain pass level associated
with €y (y,). By Lemma 2.6 we can see that

Ay (ye) < Ev(yo) (1) < liminf T, (up) = liminf ¢, < dyj,.

n—oQ n—oo

Thereby, dy () < dv,, and this implies that V(yo) < Vo = V(0). This together with the definition
of Vy yields that V' (yo) = V. From assumption (V2) we have that yo ¢ JA, thus yo € A.
Claim 3 4, — @ in Ws’p(R3) as n — oo.

Consider the set An = 2 — ¢, and define the functions
~1 1 ifx € Kn ~9 ~1
= ~ d =1- .
Xn () { 0 ifrehe O Xn () Xn ()

Introduce the following functions:

1 1

e = (5 = 5 ) VEinP T (o),
W)= (3= 5) Vil
) = | (3= 5 ) V@il + ol (o)) (o) ~ Gl (o) | (o)

> |(G-3) - x| v@ImrT@,

In the light of (f3), K > 2p > 5+ p , and (g3), we can see that the above functions are nonnegative.

By (2.22) and Claim 2, we can deduce that @, (z) — @(r) a.e. * € R® and &, §, — yo € A, from
which we can infer that )?%(m) — 1, h () — hY(z), h2(z) — 0 and h3(x) — h3(z) a.e. x € R3.
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Now, using Lemma 2.6, the invariance of R3 by translation and Fatou’s lemma we can deduce
that

1
dy, > Timsup ¢, = lim sup (Inmn) - §<I;<un>,un>>

n—oo n—oo

~ lim sup [(1 _ ;) al@nl?, + <21p _ ;) bliin]22, + /R3(h;(x) 42 (2) + () dm}

n—00 p
> lim inf [(; _ 119) a2, + <21p - ;) b n 27, + AS(h;(x) + 2 () + () daz}
)

(N e (L1
“\p 0 P 2p 0
> dyj.
Therefore,
lim [a,)} , = [a]} (2.27)
and hl — h', h2 — 0, and h3 — A3 in L'(R3). Hence we can infer that

i [ V&l de = [ Vil do
o0 JR3 R3
and thus
nh_)rgo |t |b = |afb. (2.28)
Combining (2.27) with (2.28), and using the Brezis-Lieb lemma [14] we get
|tn, — all%,, =0 asn — oo.

g

Lemma 2.8. Let {i, nen be the sequence given in Lemma 3.4. Then, @, € L®(R3) and there
exists C' > 0 such that

|Unloo < C ¥n eN.
Moreover,
Un(x) = 0 as |z| = oo uniformly in n € N. (2.29)
Proof. For any L > 0, let uy, , := min{d,, L}. Let 0 > 1 and define the function
Ulin) = L1, (itn) = U @5 ") € He

We note that £ is increasing, so for any a,b € R it holds (a — b)(¢(a) — £(b)) > 0. We introduce the
functions

7 ‘o
Q(t) :=— and L(t) ::/ (0'(1))r dr.
p 0
Let us point out that
- 1. .4
> - g
L(ty) > ~unlp,

Hence, from Theorem 2.1 and the above inequality we get

- _ - B U
(LG22 O LGy 2 O — i D (2:30)
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On the other hand, for any a,b € R, it holds
Q'(a —b)(€(a) — (b)) = [L(a) — L(b)]P.

Indeed, when a > b we have

Q'(a—b)(t(a) — £(b)) = (a — by~ (¢(a) = £(b)) = (a — b} /b “vrydr
=(a— b)plfb (L (7)) dr > </b £'(r) dT) = (L(a) — L(b))?,

where in the last inequality we used the Jensen inequality. A similar argument works when a < b.
Therefore we deduce that

L) () — L(7) (y) [P .
< Jiin (@) — @ () [P~ (i (@) — @ () (@ ()T (@) — ()@ (). '

Using (1) as test function in (2.2) we get

- ~plo— ~ ~plo—1
() = i ()P (0 (2) = 0 () (@ ()T 5 @) — )7 )
o g I
o () = () P> i () = () ()57 () = )0 )
b[un]s,p RE |JU— |3+Sp ray
[ VENPET do= [ g ann T s
R3 R3
(2.32)
where En = en T + & Un. Putting together (2.31) and (2.32) we get
p / VI g” | [P, pg Y
_ [ in(@) — y)\p*(un(x)—un<y>><an<x>u;‘; V@) - imwa W)
= R6 |z — y|3TsP e
. () = () P> (i () = () ()25 () = W) )
b[un]s,p Rﬁ |CC— |3+8p €r y
+/ V(gn)]ﬂﬂpﬁzi(z_l) da;:/ g(gn,&n)unuL(U D gz
R3 ' R3
(2.33)
From (2.30) and (2.33) we can infer that
P ~
|’U/nu ‘p < Upc [L( )]g,p S O-Tak /1;3 g(gnaﬂn)ﬂnai(,zil) dﬂ?
< o?C /R 3 9(En, )il Y da. (2.34)

Using the growth assumptions on g we have that for all ¢ > 0 there exists C¢c > 0 such that
lg(x,t)| < C[tP~Y + Celt|P=~1  for all 2 € R and t € R,
which together with (2.34) implies

|[una], |p < Co? </ (]un]puL Yz + /RS C’C\ﬂn\pzﬂi(;_l) dm) .
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Choosing (¢ sufficiently small we deduce that

-~ ~o—1 ~ p*~plo—1
ana] o < Cap/ ]un]psui(n ) da.
b S RB b

.

Now, let o = &

(2.35)
o and fix R > 0. Using the fact that 0 < 4y, < @, and the Holder inequality, we
obtain

« _p(o—1) . pir
[l Ve = [ ai G,
R R

Uptyy )P dx

. pE—p . ph—p
_ / AP (i T, )P da + / WP (i, )P da
{@n>R} {tin<R}

pE—p

p Pi—p 5
< / féfL dx / (&nﬁL fL
{@n>R} R3 ’

Ps
)P dm) + Rp:_p/ P da.
{@n <R}

Since {ii, }nen strongly converges in LPs (R3), we can see that for any R sufficiently large

/ b dx < 1
{tin>R}

p

and thus we deduce

¥ o~ —1 1 ~ ~p:7p * E * ~p*
/Rguﬁsuisz Vdz < 5Cop (/R?,(U"UL; )Ps dx) + RPs7P g abs da.

Putting together (2.35) and (2.36) we have

(2.36)

|an’ELZ_n1 [pz < CoPRPsTP /RS abs dx < oo,

®3)?
and letting L — oo we deduce that 4, € L ¥ (R3).
Now, taking the limit as L — oo in (2.35) we have

gy, < Co [ @Y o
R3
which implies

1 1
X 5(e-1) 1 " p(o—1)
(/ ﬂgps dx) P S (Co') o—1 </ ags""p(a'—l) dz)
R3 R3
For m > 1 we define 0y,,41 inductively so that p} + p(om+1 — 1) = piop, and o1 =

%S. Then we have

1 1
. pi(om41—1) 1 e ps(om—1)
(/ qbsomt1 d:l:) < (Coppyr) om+17t </ absom d:c) .
R3 R3
Set
-1
¥ P;(Umfl)
Dy = abs7m dx .
]R3

Using an iteration argument, we can find Cy > 0 independent of m such that

m 1
Dipg1 < H(Cak+1)”’“+171771 < CoDy.
k=1
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Taking the limit as m — oo we get |tp|0 < C for all n € N.
Now, we note that i, is a solution to

(—A)Zﬂn = [g(gn T + €n Yn, an) - V(En T+ én ?Jn)ﬂﬁfl](a + b[ﬂn]g,p)il =:thy, In R3.

Moreover, h,, € L®(R3) and |h,|e < C for all n € N. Indeed, this last inequality is a consequence
of the growth assumptions on g, |iy|e < C and a < a + blu,)5, < C for all n € N. Then, using
Corollary 5.5 in [37] we can deduce that i, € C*%(R3) for some o > 0. From this fact and (2.22)
we infer that (2.29) holds true. O

Corollary 2.1. There is ng € N such that
un(x) < ag Vn>ng and Vo € AL .
Hence, uy, is a solution to (P.,).
Proof. By Lemma 3.4 we can find {f, }neny C R3 such that @, = un(- + §,) — @ in WP(R3) and
Yn = En Un — Yo for some yy € A such that V(yo) = V.
Now, if we choose r > 0 such that B,(yo) C Bar(y0) C A, then Bé (g—°> C A.,. Hence, there

n

exists n; € N such that for any y € Br (g,) we have

‘ Yo
y— =
&

n

§|y_gn|+ :’jn_*

and consequently
AL C B% (yn) for any n > njy.

In the light of Lemma 2.8 there is R > 0 ;Llch that
Up(z) <ap for |x| > R and Vn € N,
from which
Up(z) = Up(x — Gn) < aog for x € BL(§,) and Vn € N.
On the other hand, there exists ny € N such that
B (Gn) © Bi(a) ¥ 2 na,
Hence, choosing ng = max{ni,n2}, we can infer that
Agn - BZL” (?jn) C Bf%(ign) Vn > ng,
and then
up(x) <ag Vre AL and Vn > ng.
O
Proof of Theorem 1.1. Let ue be a nonnegative solution to (2.2). Then, there is 9 > 0 such that
ue(x) <apg Ve Af and Ve € (0,¢e9),
that is u. is a solution to (P.) for & € (0,p). Consider v, (z) := u.(x/ &) for any € € (0,) and note

that v is a solution to (P:). Let 7. be a global maximum point of v.. It is easy to see that there
exists 79 > 0 such that v.(n;) > 79 for any € > 0. Set z. := %5 — 9. Then z. is a global maximum
point of u.(x) = us(x + ¥-) and . (z:) > 79 for any € > 0. We claim that
lim V =W.
51—I>I(1) (775) 0
If the above limit is not true, then there exist €, — 0 and § > 0 such that

V(n.,)>Vo+3 VYneN. (2.37)
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Using Lemma 2.8 we know that ., (z) — 0 as |x| — oo uniformly in n € N. Therefore {z., }nen is
bounded. Moreover, for some subsequence, there is yo € A such that e, g., — yo and V(yp) = V.
Therefore n., = ey, ze,, + €n Js,, — Yo Which combined with the continuity of V' yields V (7., ) — V.
This contradicts (2.37). Accordingly, V(n:) — Vp as € — 0.

We conclude this section by proving a decay estimate for v.. Using (2.29) and (g1), there exists
Ry > 0 such that

V
g(ez,tic(z)) < éﬂg(x)p U vz B,
Therefore,
N Vi -1
—A)i. 74
AR+ o pan) ™
- %1 1
< (Al + —— P
=t )P“ ool
= ———— |9(ex +eFe, Uc) — V(<€ﬂc~l—zsy)—E Pt
a+b[ ] gy e € 2 €
< ! glex+ey 71)—Eap*1 <0 in Bf (2.38)
= a+b[u] Ye, Ue 9 5 = Ry» .

where Ay > 0 is such that a + b[uc]5, < a + bAY, for any € € (0,£0). Applying Lemma 7.1 in [21],
we can find a continuous positive function w and a positive constant C' such that

C
and
A)S Vi 150 in B 2.4
(— )pw+2(a+bA:‘1))w >0 in Bg,, (2.40)

for some Ry > 0. Thanks to the continuity of %, and w, there exists C7 > 0 such that
Ve := e — Crw <0 for |z| = R,
where R3 := max{R;, Ra}.

Taking ¢ = max{¢.,0} € WP (B%) as test function in (2.38) and using (2.40) with w = Chw, we
can deduce that

e () — e (y)[P~2 (e (2) — e (y)) (¢(2) — d(y)) Vi .
0>//RS PREET dazdy—kM/Rsu’; Lo da

Ge(z,y) i N 1
//R6 |33 _ |3+sp (1") - ¢(y))d$d?/+ m /Rg[u’g —wP ]gf)d.’l)‘, (241)

where

Ge(,y) := |ae(z) — @e(y) P72 (Ue(2) — G@e(y)) — [@(z) — w(y) P72 (@(z) — D(y)).

Therefore, if we prove that

Ge(z,y)
J [ i 0l = o) dady >0, (2.2
it follows from (2.41) that
Vi / 1 1
0> — al™ —wP™ w)dxr >0

which yields that
{z € R?: |z| > R3 and i (z) > @} = 0.
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To achieve our purpose, we first note that for all ¢,d € R it holds
|dP~2d — |¢|P%2c = (p—1)(d — ¢) /01 lc+ t(d — ¢)|P~2dt.
Taking d = 4. (x) — @:(y) and ¢ = w(x) — w(y) we can see that
|dIP2d — [e]P~2e = (p — 1)(d = c)I (2, y),

where I(x,y) > 0 stands for the integral. Now, recalling that

(& — )@ —y) > o —y* P for all o,y € R,
we have

(d = ¢)(6(x) — 6()) = [(5e — B)(x) — (e — ) W) — D) (2) — (@ — D) (3)]
(@ — D)+ (2) — (2 — B)* (),
which gives (|d|P~2d — |¢|P~2¢)(¢(z) — ¢(y)) > 0, that is (2.42) holds true.
Therefore, 1) < 0 in Bg, which implies that 4. < Ciw in By, that is t.(z) < C(1 + |z|3Fsp)~1

in By,. Consequently,
x - X - xr ~
Ua(x) = Ug <*) = Ue (g - ya) < Ciw (g - ya)

g
C C 2,53Jrsp
=1+ % — g€‘3+sp T g3+sp _Hx _ €g6’3+sp
C E3+sp
= g3+sp _Hx _ 778’3-&-519
and this ends the proof of Theorem 1.1. O

3. MULTIPLE SOLUTIONS FOR (F%:)

3.1. The generalized Nehari method. In this section we deal with the multiplicity of positive
solutions to (P:). To achieve our result, we need to introduce some fundamental tools.
Le us denote by

Ne == {u € Hc : (ZL(u),u) = 0}
the Nehari manifold associated with (2.2), and define
HE = {u e H:|supp(uT) N A >0} C He.
Let S¢ be the unit sphere of H. and set S} := S, NH7. By the definition of S} and using the fact
that HZ is open in H,, it follows that S} is a incomplete C!-manifold of codimension 1, modeled on
H. and contained in the open H}. Thus, H. = T,,S} & Ru for each u € S}, where

T.ST := {v €H.:B,(v)+ | V(ex)|uf Puvdr = O}

]R3
and

&MO:/A6mww—mmw4WQ»—mwxww—w@»¢wy

|z — y[3+sp

The next results will be fundamental to overcome the non-differentiability of A and the incomplete-
ness of S7T.

Lemma 3.1. Assume that (V1)-(V3) and (f1)-(f1) hold. Then, we have the following results:
(i) For each uw € HT, let hy : RY — R be defined by hy(t) :== I.(tu). Then there exists a unique
ty > 0 such that hl,(t) > 0 for all t € (0,t,) and h},(t) <0 for all t € (t,,c0).
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(i1) There exists T > 0 independent of u such that t, > T for any uw € ST. Moreover, for each
compact set K C ST there is a constant Cx > 0 such that t,, < Cg for any u € K.

(iii) The map e : HT — Nz given by m.(u) = tyu is continuous and mg = m5|SE+ 18 a homeo-
morphism between ST and Nz. Moreover, mZ1(u) = Tz
1>

(iv) If there is a sequence {un}nen C ST such that dist(un,dST) — 0, then ||me(uy)|le — oo and
Z.(me(uy)) — 00.

Proof. (i) We know that h, € C}(R*,R), and by Lemma 2.3, we have that h,(0) = 0, h,(t) > 0 for
t > 0 small enough and h,(t) < 0 for ¢ > 0 sufficiently large. Then there exists a global maximum
point ¢, > 0 for h,, such that hl (¢,) = 0, that is t,u € N-.

Now, we aim to prove the uniqueness of a such t,. Assume by contradiction that there exist
t1 > ta > 0 such that k! (t1) = hl,(t2) = 0, or equivalently

2l + bt2P l[uﬁ%:/ g(ex, tyu)udz (3.1)
9. ]R3

Bl + b2 ()22, = / g(ea, tyu)u da. (3.2)
R3

Dividing both members of (3.1) by 27! we get

[ op _ [ glextiv) o
?4'17[“]5,;;— s W’UJ dZE,

and similarly, dividing both members of (3.2) by t2p ! we obtain

lull2 > / glex, tau) ,
blu]?, = P,
t127 + [u]s,p R3 (t2u)2p—1 u x

Subtracting the above identities, and taking into account the definition of g we can see that

1 1 glex,tiu)  glex,tou)] ,
- = p_ _ P
(=) e = [ [t~ Gt | v
2/ [g(ex,ztl_ul) g el ] 2P
Aer{tausao) L (B1w)? (tou)?
N / [9(6 9:72t1_u1) G w,ztz_ul)] WP d
Aer{tau<ao<tiu} L (B10)?P (tou)?
t t
/ [ 89621U1) 3 9(690,2 2_“1)] WP d
N{tru<agy L (L1w)?P~1 (tau)?
( — ) VouPdx
Asn{tau>ao}

+/ [VO I f(t22u)_1} W2,
Acn{tau<ao<tiu} K (tiu)P (tau)?P
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Accordingly, in view of t; > to, we have

tptp Ve 1 o

|lull? < K/ VouPdz —|— / [KO - f( 22p)71 WP dx
Agn{tau>ao} —t] Acn{tou<ao<tiu} (t1u) (tau)

1

K Agﬂ{t2u>a0}

th Vi t¥ t
P / e+ ot P/ ! 2u—)lupdm
-4 ACﬂ{t2u<a0<t1u} K ) — 15 Jacn{tsu<ao<tiu} (f20)P

<%/ Vo < 2

VouPdz

Since u # 0 and K > 1, we get a contradiction.
(i1) Let u € ST. By (4) there exists ¢, > 0 such that k! (t,) = 0, or equivalently

a2+ b i = [ gty uda,

From (g1)-(g2) and Theorem 2.1, for all £ > 0 we obtain
th=1 < / glex, tyu) ude < &P71C) + C’gtz_lc’z,
R3

and choosing ¢ sufficiently small, we can find 7 > 0, independent of w, such that ¢, > 7.

Now, let K C ST be a compact set, and assume by contradiction that there exists a sequence
{tn}nen C K such that t, := t,, — oco. Therefore, there exists u € K such that u, — w in H..
From the proof of (i7) in Lemma 2.3 we get

T (thuy) — —o0. (3.3)

On the other hand, fixed v € N, by (Z.(v),v) = 0 and (g3) we can infer

)b[ ]2p + 3 [ (ez,v)v — VG (e x,v)| dx

9—p)\ 1 »

Taking into account that {t,, un}nen C Nz, K > 2p > 3, ¥ > 2p, from the above inequality and
(3.3) we obtain a contradiction.

(iii) Firstly, we note that 7., m. and m_! are well defined. Indeed, by (i), for each u € HZI there
exists a unique m.(u) € Az. On the other hand, if u € A then u € HF. Otherwise, if u ¢ HT, we
get

|supp(u™) N AL =0,
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which together with (¢3)-(i7) yields
||u|]’€’§/ g(sx,u)udazz/ g(sx,u)udaz+/ glex,u)udx
R3 Ag A

= / glex,ut)ut dz
A

c
£

1 1
<, Ve < gl (3.4)
and this leads to a contradiction because K > 1. Consequently, m_*(u) = II;IIe € ST, mot is well

defined and continuous. From u € ST, we can see that

_ _ tuU U
e me(w) = me ) = L = Tl
u € €

which implies that m. is a bijection. Next, we prove that m. is a continuous function. Let {uy }nen C
HE and uw € H such that u, — u in H.. Since 7(tu) = m(u) for all ¢ > 0, we may assume that
llunlle = ||ulle = 1 for all n € N. By (ii) there exists ty > 0 such that ¢, := t,, — to. Since
tht, € N2, we have

2 |lun||? + btip[un]gﬁj = /3 g(ex, tyuy) thuy, dz.
R

Letting n — oo we obtain

2
Bl -+ vl = [ gfeaton) toud.
which implies that tou € M:. By (i), we deduce that t,, = to, and this shows that 7. (u,) — me(u)
in 7-[;“ Therefore, m. and m. are continuous functions.
(iv) Let {un}nen C ST be such that dist(u,,dST) — 0. Observing that for each r € [p,p] and
n € N it holds
lu [ Lrea.) < véﬂﬂ |[un — v|Lr(aL)
< Cp inf |up — ve,
vedST

by (g1), (92), (g3)-(ii), we obtain

/G(ax,tun)dac:/ G(ax,tun)da:—i—/ G(ex,tuy) dx
R3 Ac

tP

tP
< elluallz + ot [ ipyrdn ot [ty da

£ AE

< V(sx)\un\pdx—i—/ F(tuy,) dx

£

tP
<+ C1t?Pdist (uy, 0ST)?P + Cht”dist(uy, OST)”
from which

»
limsup [ G(ex,tuy)dr < — Vit>0. (3.5)
n—00 R3 K
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Taking in mind the definition of m.(u,) and using (3.5), we have
o S T
lﬂg.}f T (me(uy)) > hnIgloI.}f T (tuy)

P bt2p tP
> Tim i v D 2p | _ 2
e

> <M> tP.
=\ K
This implies that for all ¢ > 0

. 1 b .. K—p
it { () 2+ 55 )2 > it o) = (222 ) 2

2p pK

and recalling that K > 2p > p, from the arbitrariness of ¢, we get Z.(m.(uy)) = 0o and ||mg(un )|l —
00 as . — 00. O

Let us define the maps
P i HI =R and . : ST = R,
by 1[’6(“) = Is(ms(u)) and e 1= Tﬂa‘gj'
The next result is a consequence of Lemma 3.1 and Corollary 2.3 in [55].

Proposition 3.1. Assume that (V1)-(Vy) and (f1)-(f1) are satisfied. Then,
(a) ¥ € CL(HT,R) and

(W (u),v) = 7”5<I;(m€(u)),v> Yu € HE Yo € He.

(b) ¥ € CYH(SH,R) and
(W), v) = [me(u)[|(Z(me(u)), v), Vv e T,ST.
(¢) If {untnen is a (PS)q sequence for 1., then {me(up)}tnen is a (PS)q sequence for I.. If

{un}nen C N: is a bounded (PS)q sequence for I., then {me_l(un)}neN is a (PS)q sequence
for ..

(d) w is a critical point of V. if and only if ms(u) is a critical point for I.. Moreover, the corre-
sponding critical values coincide and

inf t:(u) = inf Z.(u).

UES: U€Ng

Remark 3.1. As in [55], we can see that the infimum of Z. over N has the following minimaz
characterization:

Ce = UIEI}\f/'s Z.(u) = uler;f: ?Egglg(tu) = uiensg ngilg(tu).

Now, we prove the following result:
Corollary 3.1. Let d € R. Then 1. satisfies the (PS)q condition on S .

Proof. Let {uy}neny C ST be a (PS) sequence for 9. at the level d. Then
VYe(un) —d and  .(u,) — 0in (T,,ST).

By Proposition 3.1-(c) it follows that {mc(u,)}nen is a (PS)q sequence for Z. in H.. Then, by
Lemma 2.4, we can see that Z. fulfills the (PS), condition in H,., so there exists u € S such that,
up to a subsequence,

me(un) — me(u) in He.
Applying Lemma 3.1-(ii4), we conclude that u, — u in S}. O
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Now, we deal with the autonomous problem (2.15). We denote by HI the open subset of H,
defined as

7-[:[ = {u € H, : |supp(ut)| > 0},
and SZ =S, ﬂ?—[:, where S, is the unit sphere of H,,. We note that SZ is a incomplete C'-manifold
of codimension 1 modeled on H,, and contained in #,\. Thus, H, = T.,S;} ® Ru for each u € S},
where TS} := {u € H, : Bu(v) + pt [gs [ulP~2uv dz = 0}
Arguing as before, we can see that the following results hold.

Lemma 3.2. Assume that (f1)-(f4) hold. Then,
) or each u € et h: — e define w(t) = tu). en there exists a unique

(i) F h Hj,l h : RT — R be defined by hy(t) Eu(tu). Then th ] q
ty > 0 such that hl,(t) > 0 for all t € (0,t,) and hl,(t) <0 for all t € (t,,c0).

0 ere exists T > 0 independent of u such that t, > 7 for any u € . oreover, for eac

(ii) Th ) 0 independ f h th f Yy S:[M L f h
compact set K C Slf there is a constant Cg > 0 such that t, < Cg for any u € K.

114 e map my, : — given by m,(u) = tyu is continuous and m,, := My |«+ s a homeo-

i11) Th Ny Hj Ny gt by my, ' 3 dmy AMS#' h
morphism between S} and N,. Moreover, m " (u) = W

iv) If there is a sequence {untnen C ST such that dist(u,,dST) — 0, then ||m,(un — 00 and

f w w 2

Eu(my(uy)) — .

Let us define the maps
QZJM:H:—)R and @Z}M:Sl‘f—ﬂR,
by Qﬁu(u) = 5u(m0(u)) and @bu = szulspj

Proposition 3.2. Assume that (f1)-(fs4) are satisfied. Then,
(a) Y, € Cl(H:[,R) and

(), (u),v) = W@(mu(u)),m Vu € 1, Vv € H,..

(b) ¥u € CH(S),R) and

(U (u),v) = [[mu(W)[(En(mp(u), v), Yo € TS,

(¢) If {un}nen is a (PS)q sequence for 1, then {m,(un)}nen is a (PS)q sequence for &,. If
{un}tnen C Ny is a bounded (PS)q sequence for &, then {m;l(un)}neN is a (PS)q sequence for
b

(d) w is a critical point of v, if and only if m,(u) is a critical point for €,. Moreover, the corre-
sponding critical values coincide and

inf Y, (u) = il}\f/ Eulu).

u€Sy uENy

Remark 3.2. As in [55], we can see that the infimum of &, over N, has the following minimazx
characterization:

d, = inf &,(u) = inf Eu(tu) = inf max &, (tu).
p= b u(u) o, oy u(tu) Jni, o u(tu)

Next we give a compactness result for the autonomous problem which we will use later.

Lemma 3.3. Let {up}tnen C N, be a sequence such that £,(un) — du. Then, {up}nen has a
convergent subsequence in H,,.
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Proof. Since {up}nen C N, and &,(u,) — d,, we can apply Lemma 3.2-(ii7), Proposition 3.2-(d)
and the definition of d, to infer that

Vp = m T (uy) = ﬁ €Sf vneN
nllp

and
() = Eulun) = dyy = inf 3, (v).

veSﬁ

Let us introduce the map F : g: — R U {00} defined by setting

S
00 if u€dSf.
We note that
. (g;r, du), where d,(u,v) := ||lu — v||,, is a complete metric space;
o Fc C(gj,R U {o0}), by Lemma 3.2-(iv);
e F is bounded below, by Proposition 3.2-(d).

Hence, invoking the Ekeland variational principle [26] to F, we can find {o,}neny C S such that
{On}nen is a (PS)g, sequence for ¢, on S and [[0, — vl = 0n(1). Then, using Proposition 3.2,
Theorem 2.2 and arguing as in the proof of Corollary 3.1, we obtain the thesis. O

Remark 3.3. By Lemma 2.6, (V1) and (V3), we obtain that lim._,¢ c¢. = dy.

3.2. The barycenter map. In this subsection, our main purpose is to apply the Ljusternik-
Schnirelmann category theory to prove a multiplicity result for (2.2). We begin by proving some
technical results.

Lemma 3.4. Let ¢, — 0 and {up}tnen C N, be such that I, (u,) — dv,. Then there exists
{Gn}nen C R? such that the translated sequence

ﬂn(x) = un(l‘ + gn)

has a subsequence which converges in Hy,. Moreover, up to a subsequence, {yn}nen = {€n Un fneN
1s such that vy, — yo € M.

Proof. Since (Z. (un),un) = 0 and I, (u,) — dy, it is easy to see that {uy}nen is bounded. Let us
observe that ||uy||s, = 0 since dy, > 0. Therefore, arguing as in Lemma 2.5, we can find a sequence
{Gn}nen C R? and constants R, a > 0 such that

liminf/ |up|Pdz > a.
Br(in)

n—oo
Set Up () := un(r+Yn). Then, it is clear that {y, }nen is bounded in Hy;, and we may assume that
Up — @ weakly in Hyy,

for some @ # 0. Let {t,}nen C (0,400) be such that v, := t,a, € My, (see Lemma 3.2-(7)), and
set yn 1= €n Yn. Then, from u, € N, and (g2), we can see that

a 1 b
d <S ~n <*~np - V n n and anp_/ FNnd
o < o) < 20lzy + [ Veena il dat ool — [ P do
< %[u 14 +tﬁ/ Vienx)lu \pdx—i—g[u 122 — | Gleyx, thuy,) do
— p n37p p ]RE; n n 2p n37p Rs n y “n+n

=TI, (taun) < Ie, (un) = dy, + on (1),
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which gives
gVo (f)n) — dvo and {T)n}nEN C NV()' (3.6)

In particular, (3.6) implies that {0y }nen is bounded in Hy,, so we may assume that 0, — 0.
Obviously, {t,}nen is bounded and we have ¢, — to > 0. If ty = 0, from the boundedness of
{Un}nen, we get ||Onllvy = tolltnllvy, — 0, that is Ey (0,) — 0 in contrast with the fact dy, > 0.
Then, tg > 0. From the uniqueness of the weak limit we have v = tgut and 4 # 0. By Lemma 3.3,
we deduce that

Up, — 0 in Hyy, (3.7)

U v
which implies that 4, = t—" == @ in Hy,, and
n 0

Ev, (0) = dy, and (&, (0),0) = 0.
Next, we show that {y,}nen has a subsequence such that y, — yo € M. Assume by contradiction
that {yn }nen is not bounded, that is there exists a subsequence, still denoted by {yn }nen, such that
|yn| — +00. Take R > 0 such that A C Br. We may suppose that |y,| > 2R for n large enough, so,
for any x € Bg).,, we get |, T + yn| > |yn| — [enz| > R.
Then, we deduce that

iy < il + Vianl2 = [ 060+ s )i do

< /B » ()i da + / ()i

R/en

Since @, — @ in Hy,, from the Dominated Convergence Theorem we can see that

/ f(tn) Uy, dz = o (1).
?%/sn
Recalling that f (i, )i, < %mnv), we get
1

K )y Voltin |P dx + o, (1),

R/ en

nll, <

which yields

1 -
(1= %) aalt, < ont)

Then we obtain a contradiction thanks to @, — @ # 0. Thus, {y,}nen is bounded and, up to
a subsequence, we may assume that y, — yo. If yo ¢ A, then there exists » > 0 such that
yn € B, /Q(yo) c A° for any n large enough. Reasoning as before, we get a contradiction. Hence,
y € A. Next, we prove that V(yo) = Vo. Assume by contradiction that V(yo) > Vy. Taking into
account (3.7), Fatou’s Lemma and the invariance of R? by translations, we have

1 1 b
vy = &4, (7) < limint | fonlt, + /R Vien e+ yn) B do o+ o [0, - /R F(3y)da|

n—oo p
<liminfZ, (tpuy) < liminfZ. (u,) = dy,
n—oo n—oo
which gives a contradiction. O

Now, we aim to relate the number of positive solutions of (2.2) to the topology of the set M. For
this reason, we take d > 0 such that

Ms = {2z € R? : dist(z, M) < 6} C A,



FRACTIONAL p-KIRCHHOFF EQUATION 31

and we consider n € C°(Ry, [0,1]) such that n(t) =1if 0 <t < % and n(t) =01if t > §.

For any y € M, we define
ex —y
ey (o) = nfl e~ sl (20

where w € Hy;, is a positive ground state solution to the autonomous problem (2.15) (whose existence
is guaranteed by Theorem 2.2). Let ¢, > 0 be the unique number such that

Z(tW =7.(t:V.,).
rgagc <( E,y) e(te E,y)

Finally, we consider ®. : M — N defined by setting
Po(y) =t Vey
Lemma 3.5. The functional ®. satisfies the following limit
iii%la(fba(y)) = dy, uniformly in y € M.

Proof. Assume by contradiction that there exist dg > 0, {yn }neny € M and &,, — 0 such that
|Ze,, (P, (yn)) — dvy,| = do- (3.8)

e T —
Let us observe that, by using the change of variable z = M, if z € Bs , it follows that
En En

en 2z € By and then ¢, z + y,, € Bs(yn) C Ms C A.
Then, recalling that G = F' in A and n(t) = 0 for ¢ > ¢, we have

2p
Isn (@En (yn)) _ €n || EnyynHSn + b p [ En,yn]gg) - 5 G(En Z, tEn\I/€n7yn) da}'
R
tpn
- % <[77(| en 2| Jwlb , + /3 Vienz +yn)(n(|en 2))w(2))? dz>
2p
+bp[<%a /'F%w en 2)w(2)) dz (39)

Now, we verify that the sequence {t., }nen satisfies t., — 1 as &, — 0. By the definition of ¢, , it
follows that (Z. (@, (yn)), ®e, (yn)) = 0, which gives

p 2p __ f(tenﬁ(|€nz‘)w(z)) e 2zNw(z 2p >
el 000, 2 = [ [LEUSERED Tog e, shuoyaz, (30

where we used the fact that g = f on A. Sincenn =1 in Ba C B for all n large enough, from (3.10)
it follows that '

1 f(te,w(z))
— || P4 pV > e P dyz.
t;gn H €n7yann + [ 5n7yn]s,p = Lé [(tanw(z))Qp_l] \w(z)| z
2

Since w is continuous, we can find a vector 2 € R? such that

w(Z) = min w(z) > 0.

ZEB%
Then, by (f1), we deduce that
1 f(te,w(2)) .
P 2p n 2p
W, + (012> [ oo . 3.1)

Now, assume by contradiction that t., — co. Let us observe that Lemma 2.2 yields

e ynllen = lwllvg € (0,00). (3.12)
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From t., — oo and (3.12), it follows that

1
gll‘l’an,yn 2, +b[Pe, )25, — blw],. (3.13)

On the other hand, by (f3), we have
o )
2 (i, w(3) T
Putting together (3.11), (3.13) and (3.14) we get a contradiction. Therefore, {t., }nen is bounded
and, up to a subsequence, we may assume that t., — to for some ¢y > 0. Indeed, from (3.10), (3.12),

(f1)-(f2) we can see that ¢y > 0. Hence, letting n — oo in (3.10), we deduce from (3.12) and the
Dominated Convergence Theorem that

(3.14)

1 f(tow)
Since w € Ny, we can see that
||wH1‘9/O + b[w]gg = /R3 f(w)w dx. (3.16)

In the light of (3.15), (3.16) and (f1), we deduce that ¢y = 1. Accordingly, taking the limit as n — oo
in (3.9), we obtain
hm IEn (®5nyyn) = EVO (w) = dVO’

n—0o0

which contradicts (3.8). O

At this point, we are in the position to define the barycenter map. For any § > 0 given by Lemma
3.5, we take p = p(8) > 0 such that M C B,, and we consider 7" : R® — R3 given by

x if |zl <p
T(z) = { % if |z] > p.

We define the barycenter map S : M. — R? as follows
/ (e 2)u(z) P da
R3

u(x) " da
R3

ﬁs(u) =

Arguing as in Lemma 3.14 in [10] we can prove the following result:
Lemma 3.6. The function B satisfies the following limit
lin% Be(®-(y)) = y uniformly iny € M.
e—

Now, we introduce the following subset of N;:
Nei={ueN. : T.(u) < dy, + ha(e)},

where hy(e) := supyeps |Ze(Pe(y)) — dvy| — 0 as € — 0 by Lemma 3.5. By the definition of hy(g), it

follows that, for all y € M and € > 0, ®.(y) € M. and N. # (). Moreover, as in Lemma 3.15 in [10],
we can see that the following lemma holds true.

Lemma 3.7. For any § > 0 there holds

lim sup dist(8:(u), Ms) = 0.
e—0 Y
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Before proving our multiplicity result for the modified problem (2.2), we recall the following useful
abstract result whose proof can be found in [12].

Lemma 3.8. Let I, I} and Iy be closed sets with Iy C Is, and let w : I — Iy and Y : Iy — 1 be
two continuous maps such that wo1 is homotopically equivalent to the embedding j : Iy — Is. Then
catr(I) > catr,(Ih).

Theorem 3.1. Assume that (V1)-(V3) and (f1)-(fa) hold. Then, given § > O there exists €5 > 0
such that, for any ¢ € (0,&s5), problem (2.2) has at least catpr, (M) positive solutions.

Proof. For any & > 0, we consider the map a. : M — ST defined as a.(y) = m-1(®-(y)).
By Lemma 3.5, we can see that

lim ¢ (ae(y)) = lim Z. (P (y)) = dy; uniformly in y € M. (3.17)
e—0 e—0

Set
Sti={we St pe(w) < dy, + hi(e)},

where hi () 1= supyeps [Ye(@e(y)) — dy,| = 0 as e — 0 by (3.17). Since e (ac(y)) € S+ we deduce

that g’j # () for all € > 0. From Lemma 3.5, Lemma 3.1-(4i7), Lemma 3.7 and Lemma 3.6, we can
find & = &5 > 0 such that the following diagram is well defined for any ¢ € (0, &).

M 0.(M) ™S a.(M)™s S.(M) 55 ;.
In view of Lemma 3.6, and decreasing € if necessary, we can see that f:(®.(y)) =y + 0(e,y) for all
y € M, for some function 0(e,y) such that |0(g,y)| < % uniformly in y € M and for all ¢ € (0,2).
Then, we can see that H(t,y) :=y + (1 —t)8(e,y) with (t,y) € [0,1] x M, is a homotopy between
B.o®. = (B-om.)o(m-to®.) and the inclusion map id : M — M;. This fact together with Lemma
3.8 implies that
cato, (vnyoe(M) > catp; (M). (3.18)

Therefore, by Corollary 3.1 and Corollary 28 in [55], with ¢ = ¢, < dy, +hi(¢) =d and K = a(M),
we can see that W, has at least cat,_(pryae (M) critical points on S, Taking into account Proposition
3.1-(d) and (3.18), we can infer that Z. admits at least catps, (M) critical points in N-. O

Now, we are able to give the proof of our second main result of this work.

Proof of Theorem 1.2. Take ¢ > 0 such that Ms C A. We begin by proving that there exists &5 > 0
such that for any ¢ € (0,&5) and any solution u. € N; of (2.2), it holds

|te| oo (A) < ao- (3.19)

Suppose by contradiction that for some subsequence {e;,},en such that &, — 0, we can find u., €
N, such that Z/ (ue,) =0 and
|U57L\L°<>(Agn) > Q. (3.20)

Since I, (ue,) < dy, + hi(e,) and hi(en) — 0, we can proceed as in the first part of the proof of
Lemma 3.4, to deduce that Z., (u.,) — dy,. Then, by Lemma 3.4, we can find {f, }nen C R? such
that @, = ue, (- + §n) — @ in WP(R3) and &, §, — yo € M.

Now, if we choose r > 0 such that B,(yo) C B2r(yo) C A, we can see that Br () C A,,. In

&n

particular, for any y € B« () it holds

_%

n

1 2
< —(r+op(1) < T forn sufficiently large.

En En

y_; S|y_ﬂn|+ gn

n

‘ Yo
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Therefore, for any n big enough we have AZ C B% (%,). On the other hand, using (2.29), we know
that

&n

Up(x) — 0 as |z| — oo
uniformly in n € N. Hence, there exists R > 0 such that
Up(z) < ag for all x| > R,n € N.

Consequently, u., (z) < ag for any « € B%(9,) and n € N.
Since there exists v € N such that for any n > v it holds

A, € B () © Bi(jn),

we deduce that u., (z) < ag for any € A and n > v, which is in contrast with (3.20).
Let €5 > 0 given by Theorem 3.1 and we fix ¢ € (0,e5), where g5 := min{&s,8s}. In view of

Theorem 3.1, we know that the problem (2.2) admits at least catys, (M) nontrivial solutions. Let us
denote by u. one of these solutions. Since u. € N; satisfies (3.19), by the definition of g it follows

N

that u. is a solution of (P.). Then u(x) := u(z/¢) is a solution to (F-), and we can conclude that
(P:) has at least catpr, (M) solutions.

Finally, we study the behavior of the maximum points of solutions to the problem (pg) Take
£, — 07 and consider a sequence {up}nen C He, of solutions to (P.). Let us observe that (g1)
implies that we can find v > 0 such that

glex,t)t < %tp for any x € R3¢ < ~. (3.21)
Arguing as before, we can find R > 0 such that
|un| Lo (Bg, (5)) < V- (3.22)
Moreover, up to extract a subsequence, we may assume that
[Un|Loo(Br(in)) = V- (3.23)

Indeed, if (3.23) does not hold, in view of (3.22) we can see that |un|oc < 7. Then, thanks to
(ZL (un),upn) = 0 and (3.21), we get

Vo
llun|® §/ g(en T, up)u, de < K/ |t [P d
R3 R3

which yields ||uy||s, = 0, and this is an absurd. Accordingly, (3.23) holds true.

Taking into account (3.22) and (3.23) we can deduce that the maximum points p, € R? of u,
belong to Br(yn). Therefore, p, = 4, + g for some ¢, € Br. Hence, n, := &, Un + n qn is the
maximum point of @, (x) = u,(z/ey,). Since |g,| < R for any n € N and €, §, — yo € M (in view
of Lemma 3.4), by the continuity of V' we can infer that

Jim V(ne,) = V(yo) = W,
which ends the proof of theorem. U

4. CRITICAL AND SUPERCRITICAL FRACTIONAL KIRCHHOFF PROBLEMS

This section is devoted to the existence of positive solutions to
(ePa+e*P3bulf,) (=A)ju+ V(z)uP~l = udt 4 yu™1  in R3,
ue WSP(R?), u>0 in R3.

After rescaling, we study the following Kirchhoff problem

{ (a+bulfy) (—ARu+ V() =ul™t +yu"1  inR?

ue€ WSP(R3), u>0 in R3, (4.1)
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where v > 0 and the powers ¢ and r are such that 2p < ¢ < p% < r. In what follows, we truncate
the nonlinearity ¢(u) := u?~! + yu"~! in a suitable way.
Let K > 0 be a real number, whose value will be fixed later, and we set

0 if t <0,
by(t) =ttt if0<t<K,
(1+~yKr—9t—t  ift > K.

Let us note that ¢, satisfies the following properties:
(1) tim 20 —

t—0 ¢2P—1
(p2) li o = 0 for some v € (q,p});

¢+(1)
(¢3) 0 < qq)((;f) <ty (t) for all t > 0, where @, (t) = [J ¢, (T

(pg) t+— 5p1 15 increasing in (0, 00).

Moreover
o (t) < (1 4+ K"t~ for all t > 0. (4.2)

Therefore, we consider the following truncated problem

{ (a+bulfy) (—A)pu+ V(e )uP~t = ¢ (u) in R3,

u € WSP(R3), u>0 in R3. (4.3)

It is easy to see that weak solutions of (4.3) are critical points of the energy functional Z. , : H. — R
defined by

1 b
T = —ulf + —[]* — [ @, (u)dz.
ey () pIIUHer 2p[u}s,p /RS v (u) dz

We also consider the autonomous functional

1 b
o (1) = Sl + 5oy~ [ @) da

Using Theorem 1.1, we know that for any v > 0 there exists £(y) > 0 such that, for any € € (0,2(y)),
problem (4.3) admits a positive solution u. . Now, we prove that it is possible to estimate the H.-
norm of these solutions uniformly with respect to v. More precisely:

Lemma 4.1. There exists C > 0 such that |ucy|le < C for any € > 0 sufficiently small and
uniformly in .

Proof. A simple inspection of the proof of Theorem 1.1 shows that any solution w. ~ of (4.3) satisfies
the following inequality

Te y(tey) < dyyqy + hy(e),

where dy; ~ is the mountain pass level related to the functional &y, and h,(e) — 0 as € — 0.
Then, decreasing £(vy) if necessary, we may suppose that

Ty (tueyy) < dyyy+1  forany e € (0,8(7)). (4.4)
Using the fact that dy;, < dy; o for any v > 0, we deduce that

ey (e ) < dyyo+1 forany e € (0,8(7)). (4.5)
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From (¢3) and ¢ > 2p we infer that

1. 'y(ua,'y) € ’y(u ) < (ufy’Y) uf,’Y)

( 2% e (_q> / ~ oy (te ) uey — Pr(Uey) da

> (22 ool (16)
Putting together (4.5) and (4.6), we have
1
eyl < qu_qp> (dvyo + 1)] " forany e € (0,2(7))-
g

Now, our claim is to prove that u., is a solution of the original problem (4.1). To do this, we will
show that we can find Ky > 0 such that for any K > K, there exists v9 = 7o(K) > 0 such that

e oo < K for all 4 € [0,7). (4.7)

In order to achieve our purpose, we make use of a variant of the Moser iteration technique [45]. For
simplicity, we set u := u. . For any L > 0, we define uy, := min{u, L} > 0, and wy, = uu%fl, where

p(

o > 1 will be chosen later. Taking u Uy in (4.3), we can see that

P2 (u(z) —u w(@) e (2) = w0
//R w0t ey
p(o—1) p(o—1)
v //RG ) P2 (u() —u(é))_(’l;('iﬁ% () — u(y)u) " (y)) dedy (4.8)

= /]R3 qb,y(u)uigfl)u dx — /R3 Ve x)\u|pui(afl) dx

Using (2.30) and (2.31) with a,, and @L,n replaced by u and wup, respectively, we can note that

-1 p—2 . p(o—1) _ p(o—1)
C it < ol < o // PP () — ulp) @) @) —ul)d” )
oP Ds P RE |33 _ y|3+sp
/ / )P 2(u(x) — u(y) (u)uy” (@) —ulpl” V@)
7P _ |3+sp ray.
RO |z -yl
(4.9)
On the other hand, by (4.2) and (V1) we can see that
/ oy (u (U Y dz —/ V(ex)]u\pug(a_l) de < (1 +7Kr_q)/ uqulz(a_l) dx. (4.10)
R3 R3
Putting together (4.8), (4.9) and (4.10) we get
oP
o < —C’ (1 +7Kr_q)/ uqu‘ﬁz(o*l) dx. (4.11)
R3

Now, by Holder’s inequality, we have

[ e < g
R3 pi—(a—p)
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which together with (4.11) yields

oP _ _
wrlfy < T O+ VK ull? wnl? . (4.12)
ps—(a—p)
Set o .
_ pp
Corgi=—14+~K"% and o :=a*(s,p,q)=—""—
s a ( ) ( ) p: N (q 7 p)
so that (4.12) becomes
|wL|£§ < oPC, klu ng lw|P.. (4.13)
On the other hand, by Theorem 2.1 and Lemma 4.1 we know that
uf?, < Cullull? < C.C7
which together with (4.13) gives
’wﬂg; S Upny,KMl‘wL‘Z* (4.14)

where My = (C*C'p)%. Now, we observe that if u” € L® (R3), by the definition of wy, u;, < u,
and (4.14), it follows that

lwr [y < oPCy ke Mifulhy,. < oco. (4.15)
Passing to the limit as L — +o0 in (4.15) and using Fatou’s Lemma we have
11
ulpzoe < (Cyx M) P 07 [ufgas (4.16)

whenever u7®" € L'(R3).
Now, we set o := Z—% > 1, and we observe that, being u € LPs(R?), the above inequality holds for
this choice of 0. Then, using the fact that o2a* = plo, it follows that (4.16) holds with o replaced
by o2. Therefore, we can see that
L, 2 Lelyly 1,2
|u’]’§¢72 < (C’YvKMl)pU oo |u’0'2a* < (C'y,KMl)p o' o2/go’ o2 ‘u|oa*-

Iterating this process and recalling that ca™* := p}, we can infer that for every m € N

m 1 m P
[ulpsom < (Cyie M) 507 g 25197 [y (4.17)
Taking the limit in (4.17) as m — 400 and using Lemma 4.1, we get
|u|oo < (C’y,KMl)6lo'52M2 (418)
L
where My := CFC and
1ox1 =
51:p220_j<00 and 52:20_]<OO
Jj= Jj=

Next, we will find some suitable values of K and 7 such that the following inequality holds
(Cy kM) 0% My < K,

or equivalently
1 (OMN\Y s
14+ yK™1 < (KM ) (Cl) Py

a

Take K > 0 such that

1 (CM\ T e
(KM < 1) o —1>0,
a
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and fix 79 > 0 such that

a

1 (CM Y L 1
v < < |(KM7 ™ <C 1) &

Therefore, thanks to (4.18), we can infer that

[u|oo < K for all v € [0, 70],

that is u = u.  is a solution of (4.1). This ends the proof of Theorem 1.3.

Remark 4.1. We point out that, by assuming q > 2p (since we aim to use Theorem 1.1), the
combined effect of concave-convex type growth 1 < q < 2p, r > pk has been excluded. Anyway, when
e=1,s5€(0,1) and p € (1,00) are such that sp < 3, the potential V is constant, andp < q < p% <,
we suspect that it is possible to obtain an existence result to (4.1) with b > 0 sufficiently small. Indeed,
one can truncate the nonlinearity ¢p(u) as before, and taking into account Remark 2.1, we can deduce
an existence result for (4.3) provided that b > 0 is small enough. Combining this fact with a Moser
iteration argument, the desired existence result for (4.1) follows.
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