
13 March 2025

UNIVERSITÀ POLITECNICA DELLE MARCHE
Repository ISTITUZIONALE

Querying the IoT Using Multiresolution Contexts / Diamantini, C.; Nocera, A.; Potena, D.; Storti, E.; Ursino,
D.. - In: IEEE INTERNET OF THINGS JOURNAL. - ISSN 2327-4662. - 8:7(2021), pp. 6127-6139.
[10.1109/JIOT.2020.3033669]

Original

Querying the IoT Using Multiresolution Contexts

Publisher:

Published
DOI:10.1109/JIOT.2020.3033669

Terms of use:

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of
copyrighted works requires the consent of the rights’ holder (author or publisher). Works made available under a Creative Commons
license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor’s
website for further information and terms and conditions.
This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the
published version.

Availability:
This version is available at: 11566/284563 since: 2024-04-24T11:20:43Z

This is the peer reviewd version of the followng article:

IEEE INTERNET OF THINGS JOURNAL 1

Querying the IoT Using Multi-Resolution Contexts
Claudia Diamantini, Antonino Nocera, Domenico Potena, Emanuele Storti and Domenico Ursino

Abstract—People’s daily life is increasingly intertwined with
smart devices, which are more and more used in dynamic
contexts. Therefore, searching and exploiting the wealth of
information produced by the Internet of Things (IoT) requires
novel models including a representation of the actual context
of use. The definition of context is inherently difficult, due
to the variety of application scenarios and user needs. In
this paper, we propose a general model for devices’ contexts
representing context components at different resolutions (or levels
of granularity). This enables the definition of a multi-resolution
context-based algorithm for querying the IoT, according to given
preferences and contexts that can be tightened or relaxed de-
pending on the given application goal. Experimental results show
how the proposed approach outperforms traditional solutions by
increasing the retrieval of relevant results while keeping precision
under control.

Index Terms—Query processing, Context modeling, Semantics,
Multidimensional systems, Internet of Things

I. INTRODUCTION

SEarching the Internet of Things (IoT) [1] or its Multi-IoT
(MIoT) extension [2]–[4], has recently received consider-

able interest. The number of devices endowed with connection
capabilities is increasing. This opens the doors to a variety
of disruptive applications, but also raises the need for more
effective mechanisms to discover devices and resolve queries
for their content. In particular, [5] distinguishes a discovery
activity, a sort of crawling that is able to identify various
collections of IoT resources, and a searching activity, devoted
to identifying a subset of discovered IoT content as search
results of a given query. In this paper we focus on the
latter, assuming a given device’s network (i.e. the contact
list of a device in the IoT) as the collection of resources. A
characteristic that differentiates IoT resources from others like
the web, is that the former are far more mobile and dynamic.
Mobile devices, changing their position continuously, also
rapidly change their neighborhood and the environment they
are immersed in. A number of criteria for network building
has been devised with the aim to make the IoT more and
more autonomous [6]: (i) proximity, (ii) homogeneity, (iii)
ownership, (iv) co-working in a given application and (v)

Claudia Diamantini, Domenico Potena, Emanuele Storti and Domenico
Ursino are with the Department of Information Engineering, Polytechnic Uni-
versity of Marche, 60131 Ancona, Italy (email: c.diamantini@univpm.it,
d.potena@univpm.it, e.storti@univpm.it, d.ursino@univpm.it)

Antonino Nocera is with the Department of Electrical, Computer and
Biomedical Engineering, University of Pavia, 27100 Pavia, Italy, (email:
a.nocera@unipv.it)

Copyright (c) 2020 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribu-
tion to servers or lists, or reuse of any copyrighted component of this work in
other works. Published version: https://ieeexplore.ieee.org/document/9239316

sociality (users’ devices are connected to each other in some
social networks).

As for this last criterion, nowadays a lot of applications for
smart devices exploit information coming from their owners’
online social networks, e.g. to retrieve their contact lists.
Moreover, since devices become more and more autonomous,
the way they interact with each other is changing as well. This
gives the IoT a more social connotation [7], but results in more
complex scenarios in which heterogeneous peers can interact,
contexts can rapidly change, as well as the meaning and the
relevance of the information exchanged. In these dynamic
environments, existing content-based search strategies can be
of limited use. To better illustrate the issue, a motivating
scenario is reported hereby: Laura likes to keep fit and make
outdoor workout, in particular running in the countryside. She
also needs to check outdoor conditions (temperature, humidity,
cloud coverage or raining) before going to her preferred sites
in the neighborhood, because her health status requires specific
weather conditions. She may obtain coarse-grained weather
information from weather services, however she could also
obtain more timely and localized information by asking for
the values of position, temperature, and brightness measured
by her network of devices (more specifically, by the network
of the device she uses for querying). Let us assume that
one day Laura enters a bus where other 50 persons have
a smart device. Traditional proximity criteria would lead to
connect Laura’s devices to other devices nearby. However, it
turns out that most people on the bus are children coming
back from school, who spend most of their time at home
or doing indoor workout. It is then clear that when Laura
wants to know about weather conditions, information about
temperature or brightness obtained at query time from these
new contacts will probably be of little use. Indeed, they would
have been acquired in a context (studying at home or running
in the gym) different from Laura’s desired one (running in the
countryside).

The availability of a search mechanism for scoring devices
on the basis of their context would thus help to reduce the
number of queries and/or filter out irrelevant answers. It be-
comes immediately apparent, however, that the way in which
context similarity is established is critical, as it possibly leads
to loose potentially useful information. For instance, a query
asking for devices located at a very specific longitude and
latitude is likely to have no answer, but such a geographical
precision is obviously unnecessary to query brightness or
temperature. Furthermore, even slightly changing a user’s goal,
the relevance of the information provided by a given device
can greatly change: referring again to the previous scenario,
discriminating between indoor and outdoor location may be
sufficient in some situations, but a more precise location of
a device, discriminating between city and country areas, or

IEEE INTERNET OF THINGS JOURNAL 2

among different cities, can be better for Laura’s goal.
In this paper, we address these issues by proposing a

general model for devices’ contexts whose main feature is
the representation of context components at different levels
of granularity, or resolution, which enables the definition of a
multi-resolution context-based algorithm for querying the IoT.
The search is performed according to given preferences and
contexts that can be tightened or relaxed depending on the
given application goal. The novel contributions of this paper
are summarized as follows:
‚ (1) the context model enabling the search mechanism is

represented by a set of dimensions described through
different granularity levels.

‚ (2) On the top of the model, we define the notions of
similarity and compatibility among contexts at different
levels of precision, that underpin the multi-resolution
querying mechanisms.

‚ (3) The abstract query model is discussed in the per-
spective of modern IoT networks, often characterized by
highly heterogeneous devices and network characteristics.
Different query execution models are analyzed and their
pros and cons discussed.

Finally, a comprehensive assessment of the efficiency and
the effectiveness of the multi-resolution approach is provided,
by means of both analytical and experimental evaluations. The
ideas reported in the present paper have been preliminarily
presented in [8], [9]. With respect to previous work, the
present paper considerably extends and formalizes the context
model and the context-based querying algorithm, introduces
the discussion on the query execution models, and provides a
comprehensive analytical and experimental evaluation.

The rest of the paper is structured as follows: Section II
organizes and discusses related literature. Section III intro-
duces the context model. An algorithm for query answering is
illustrated in Section IV. Section V provides an analysis of the
characteristics and performances of different execution mod-
els, also comparing them with baseline approaches. Finally,
Section VI draws conclusions, enlightening also future work.

II. RELATED WORK

A. Query answering in IoT networks

Query answering over an IoT network and discovery of IoT
devices and their content are relatively new areas of investi-
gation that are increasingly gaining interest. In a recent work
[5], the term “Internet-of-Things Search Engines” (IoTSE) has
been proposed to collectively account for all the approaches
aiming at information discovery over an IoT network. In
the last years, some effort has been put by researchers and
practitioners to develop several approaches mostly differing
in the type of content retrieved (e.g., device metadata, device
functions, data streams) and objective, e.g. device selection
or scoring to retrieve a ranked list of devices satisfying some
criteria, as we do in our work.

Search approaches start from a query on metadata/content
(R), sensing data streams (D), functionalities (F), static infor-
mation of IoT content (S) or a mix of them. The first class

(R) is the most frequent one and includes, among others, ap-
proaches to query devices starting from their identificators (re-
turning their description) [10], or from textual data (returning
relevant things), practically implementing a distributed low-
powered text-retrieval system [11]. To extend the expressive
capabilities of queries, [5] proposes a representation of devices
and their content based on a heterogeneous graph, where each
edge stands for a correlation relation between two nodes (e.g.,
a device and its content, or two devices). A meta-path is
then defined as a path in the graph connecting nodes, which
can be returned as an answer to a query on the graph. Our
approach shares some aspects with the described work, such
as the capability to specify queries on both metadata (i.e.,
device properties) and content (i.e. in terms of the context),
although the reference to a multidimensional representation is
novel with respect to the mentioned literature. Another family
of approaches (D) are focused on querying low-level sensing
data, instead of device metadata or content (e.g., [12]) Finally,
other examples include querying specific metadata properties,
such as the set of functions or capabilities provided by devices.
This functionality, which is also enabled by our approach, is
provided for instance by [13], which uses an ontology to model
all high-level functionalities.

B. Context models and languages

Context modeling and context-aware systems spread in
the research literature as soon as mobile devices have been
introduced. One of the first characterizations of context is
given in [14] where authors mention three important aspects,
namely where you are, with whom you are, and what resources
are nearby. Location has been the first modeled and exploited
element in applications dealing with smart spaces and tourism
[15]. Considering the limited features associated with the
location element (basically, positioning), context models were
developed at a very low level, and mainly coded into the
application logic as taxonomies [16]. The need for a more
general and comprehensive definition of the notion of context
has been recognized e.g. in [17], where a context is defined
as any information about an entity relevant to the interaction
between a user and an application.

Research effort has been put also on models and languages
to design contexts. Knowledge representation approaches try
to decouple context representation from applications, develop-
ing proper models and languages to design and characterize
richer context models as first-class citizens. Models for context
representation have been extensively investigated in the liter-
ature (see surveys in [12], [18]), and can be simply defined
as sets of attribute-value pairs [19]–[21], also using mark-up
languages [22] and possibly formalized as context ontologies.
The elective languages for the specification of ontologies are
logic-based, e.g. RDF and OWL, which allow context-related
entities to be modeled as a conceptualization of a domain,
providing a rich semantic representation and reasoning ca-
pabilities, support to sharing and reuse among applications
(e.g., [23]–[26]). Another example is [27] where the Context
Aware Sensor Configuration Model (CASCOM) is proposed to
simplify the process of configuring IoT middleware platforms,

IEEE INTERNET OF THINGS JOURNAL 3

easing the retrieval process for data consumers, especially non-
technical personnel. The richness of ontologies has complexity
as a shortcoming, which can be critical for many applications
like in the IoT scenario, where computing abilities are limited,
as also recognized in [28], [29]. Geometrical spaces are also
considered to model contexts, e.g. Context Spaces [30].

Most of these models do not consider context values at
different granularity levels. Ontologies considers hierarchical
structures (e.g. specialization) only for the definition of sub-
concepts, while an exception can be found in [31], where
an ontology has been adopted for richer models of spatial
information with levels of granularity. In Context Spaces, a
context is represented as a point or region in a multidimen-
sional space. Dimensions are flat sets of admissible values. In
fact, a model taken as an abstraction is the relational database
model. In contrast, in this paper we take as abstraction the
multidimensional model typical of data warehouses, where
dimension values are organized into a lattice defined by a roll-
up partial order, representing increasing aggregation levels. As
a consequence, reasoning with a multi-resolution perspective
is enabled. The Context Dimension Tree hierarchical model is
proposed in [32] for wireless sensor network applications. In
the model, leaf nodes represent simple values of the dimen-
sion, while structured values can be represented by nesting one
more level of the dimension, thus defining a tree structure.
The hierarchy in this proposal is thus devoted to represent
complex context elements, whereas in our proposal we deal
with values at different granularity. As will be clear later, by
managing granularity of context dimensions we overcome the
need to define in advance which information is part of context
and which is not, as this can be decided by the application
at run time, hence contributing to overcome limitations of
knowledge-based context representation techniques.

.

C. Social Networks and Social Internet of Things

In the past literature, the task of defining contexts in IoT
has been often intertwined with that of empowering the IoT of
social features. Indeed, the idea of studying device contexts has
risen from the need of improving the quality of the interactions
among them.

The idea of bringing social network concepts into the
Internet of Things is something that finds its roots back in
2001. In fact, in [33], the authors describe the idea of filtering
contacts based on context proximity. An important aspect of
the proposal is that the authors actually suggest two forms
of proximity that can be used to trigger the creation of new
relationships, namely spatial proximity and context proximity.
The former is the classical notion of proximity considering
the coexistence of objects in the same location and a distance
metric, whereas the latter combines both physical location with
other metrics, such as the movement patterns. The idea is
mainly to allow the establishment of connections for devices
worn by the same person. A more complex idea is presented
in [34], in which objects are designed as social entities and are
referred with the name of blogjects, i.e. object that can blog.
Still on this context, the paper presented in [35] puts emphasis

on the possibility of using social networks as an easy-access
channel to improve communication among objects and among
humans and objects.

Of course, the evolution of the IoT towards social networks
can also lead to consider objects as a mean to find new
powerful ways to share contents and update human status in
those systems. This is exactly the idea described in [36], in
which a new design is proposed to support elder citizens to
maintain their content in social sites up-to-date by leveraging
smart devices. As a natural consequence of these research
efforts, more recently, several authors have started to propose
unified frameworks considering virtual profiles of both humans
and smart devices as entities collaborating to reach goals and
produce results [37]–[39].

The concept of Social Internet of Things (SIoT) has been
introduced in [6]. The paper discusses both architectural issues
to enable smooth integration of objects in existing social
networks and policies to manage the (social) interaction among
objects. A discussion on how social features may impact
optimization and control of direct IoT communications is
reported in [40]. Other work, instead, seeks to exploit this
new social nature of objects for disparate application scenarios.
One of the first attempts in this direction is the work described
in [41], in which a new strategy for exploiting the SIoT for
recommendation services is obtained by leveraging the SIoT
as a mean to share data cross-application.

All the approaches described in this section are, in principle,
related to ours. Indeed, our approach belongs to the last set
of works, trying to leverage the social nature of objects to
improve their interoperability bringing advantages to their
owners. However, in our paper, we seek to define a strategy
to improve the quality of connections among objects by using
social information and the semantic nature of the interaction
between humans and objects. To the best of our knowledge
this is the first solution proposed in this setting.

III. A MODEL FOR DEVICES IN AN IOT NETWORK

This section is devoted to introducing the model for devices
and their contexts. First of all, let us notice that modern devices
are composed of a bundle of sensors. Each device as a whole
has a set of properties, e.g. a brand and an owner. Also, a
device and each component sensor inherit some properties
from other sensors. For instance, the position measured by a
GPS sensor is by direct extension the position of each sensor
of the device it belongs to and of the device itself.

Definition 1: Device Model. A device is a triple ∆ “

pS, P, cq. S “ tS1, . . . , Snu is a set of simple sensors respond-
ing to a single physical stimulus. P “ tpp1, v1q, . . . , ppk, vkqu,
is a set of device’s properties, where pi P Σ is a signature of
property names, and vi P Domppiq is one of the possible
values in the domain associated with pi. c “ pι1, ι2, . . . , ιmq
is a tuple of sensor values organized according to the context
model defined in the following.

We hasten to notice that, for reasons that will be clear later,
the dimension m of the vector c does not need to be equal to
the number of sensors n.

As a possible definition of Σ we consider Σ “ {owner,
brand, model, measure}. The first three properties in the list

IEEE INTERNET OF THINGS JOURNAL 4

describe non-exhaustive, self-explaining characteristics of a
device. The measure property is introduced to list the kind
of measures a device can provide, thus describing device’s
capabilities. For example, the pairs pmeasure, Positionq, and
pmeasure, T imeq express the capability of a device to give
information about current location and time. We also like to
introduce a further kind of capability, expressed by the pair
pmeasure,Goalq. It declares the ability of a device to provide
information about the current activity the device is used for
(e.g. “running”, “sleeping”, or “reading”). Typical values of
Goal are not raw data coming from sensors, like a time,
hence Goal is not a measure in a strict sense. However, those
values derive from a classification of the activity performed
by processing sensor data. For instance, step counters can
distinguish between “running” or “walking” by considering
the pace at which steps are recorded, or sleep trackers can be
able to classify the different sleep stages.

Properties in P are basically fixed. On the other hand,
device’s sensors produce data whose values vary over time,
and can be exploited to define the device’s context c, according
to the model introduced in the next subsection.

A. Context of a device

The proposed context model is based on a set of dimensions
D “ tD1, . . . , Dmu, where each dimension is defined by a
lattice of admissible values. This structure is borrowed from
the notion of dimension typical of data warehouses. At the
best of our knowledge, its adoption as a model for contexts
has never been proposed before. We provide the following
definitions of dimension and roll-up, elaborated from [42]:

Definition 2: Dimension. A dimension D consists of:
‚ a scheme ScpDq, made of:

– a finite, non-empty set of levels L “ tl1, . . . , lw,Ju,
– a partial order ĺL: LˆL. If li ĺL li we say that li

rolls-up to lj ,
‚ an instance IpDq, defined by:

– a set of instances, or members, Mi “ tιi1, . . . , ι
i
ku

for each level li,
– a family of roll-up functions ρliÑlj : Mi Ñ Mj for

each pair of levels li ĺL lj .
The partial order ĺL defines a lattice, where the level J is
the top: @li, li ĺL J. Its instance consists of a unique special
element, denoted by all. Similarly, one of the levels li is
the bottom: @lj , li ĺL lj , and includes raw sensor values
as its instances. In the following, we will use the symbol
ĺL to denote the direct order relation, and the notation
ĺ
psq
L to explicit transitivity when needed, i.e. li ĺ

psq
L lj if

Dtl11, . . . l
1
su Ď L : li ĺL l

1
1 . . . ĺL l

1
s ĺL lj , for s ě 1. On the

other hand, li ĺ
p0q
L lj means that li ĺL lj . Furthermore, with

some abuse of notation, we will see the family of roll-up
functions as a unique relation denoted by ρpιip, ι

j
qq. Finally,

let us introduce the following notion of distance.

Definition 3: Roll-up distance between members. Given
a dimension D P D, let ιip, ι

j
q P D be two instances of levels

li, lj , with li ĺ
psq
L lj . The roll-up distance between ιip and

Fig. 1: Schema and instance of the Position dimension

ιjq , denoted by distpιip, ι
j
qq, is defined as the number of steps

over the roll-up relation necessary to move from li to lj :
distpιip, ι

j
qq “ s ` 1. Of course, distpιip, ι

j
qq “ 0 if li “ lj ,

distpιip, ι
j
qq “ 8 if li łL lj .

Each level of a dimension represents a level of detail or
granularity at which it is sensible to consider data for a given
application. In the definition of a device’s context, dimensions
are built upon data coming from sensors, i.e. each Di is one
of the values of the measure type property (e.g. Position and
Time). Figure 1 shows an example of the Position dimension.

Besides roll-up, the following relations are defined:
Definition 4: Identity and compatibility of instances.

Given a dimension D P D, let ιip, ι
i
q P D be two instances

of level li of D,
‚ idpιip, ι

i
qq: if ιip and ιiq are the same value or synonyms,

e.g. id(Montecitorio square, Montecitorio Sq.);
‚ cptpιip, ι

i
qq: if ιip, ιiq P Mi and Dιjr P Mj : ρpιip, ι

j
rq ^

ρpιiq, ι
j
rq, li ĺL lj . In practice, cptpιip, ι

i
qq if ιip and ιiq

roll-up to the same higher-level member.
The identity relation is introduced to account for possible

heterogeneities in the representation of members by different
devices. Compatibility accounts for a sort of similarity be-
tween members that are mapped to the same member at the
higher (i.e. coarser) level. For instance, for the dimension in
Figure 1, cpt(Rione Colonna, Rione Monti), cpt(Italy, France),
whereas it does not hold cpt(Rome, Paris).

Note that relations actually depend on the given dimension
schemas. For instance, if we substituted the two levels coun-
try and area with a unique level continent in the Position
dimension schema, then Rome and Paris would turn out to
be compatible. Different dimension schemas can be suitably
defined for different applications and must thus be agreed
among devices. In this sense, dimension hierarchies, together
with identity relation, define a knowledge base for the network
and the given application. Aspects related to mechanisms for
dimension schema management and integration are out of the
scope of the present paper. We refer to work in data warehouse
integration dealing with these issues (see e.g. [42], [43]).

IEEE INTERNET OF THINGS JOURNAL 5

We are now ready to define the notion of context.
Definition 5: Context. The context C of a device consists

of:
‚ a schema ScpCq, defined by a set of dimensions DC Ď D;
‚ an instance IpCq (or c for short) defined as a tuple
c “ pι˚1 , ι

˚
2 , ¨ ¨ ¨ , ι

˚
c q Ď

Ś

DPDC
M˚D , where M˚D “

ŤwD

i“1MiD, is the union of the members of each level li
of the dimension D. In the following we will refer to ιj
as any instance of any level of dimension D, dropping
superscript to simplify notation.

To make an example, considering the context schema
tPosition, Time, Goalu, a possible instance is: ιPosition=
Montecitorio square, ιTime= July 22nd 2020 [11:00-12:00],
ιGoal = Running. A second example is ιPosition= Rome,
ιTime= July 2020, ιGoal = Running. We can also consider
ιPosition= all, ιTime= all, ιGoal = all as a context instance.
We will denote such a context by call. In other terms, a context
can be specified at any level of detail for each dimension: the
higher the level, the coarser its specification, with the call
instance meaning somewhere, sometime, some goal.

With this observation in mind, it is simple to see that,
although in principle the number of dimensions forming a
device’s context cannot exceed the number of measures the
device is able to produce, the context schema of any device can
be generalized to D assuming ιk “ all for any Dk P DzDC ,
meaning that the device is not able to provide a specific
value for the missing measures. Hence, we can consider
homogeneous context schemas for any device equal to D, that
is the set of measures provided by existing sensors.

The specification of the device’s context at different levels
of detail is suitably exploited by query answering techniques
discussed in the next section. In particular, these techniques
will make use of the following relations between context
instances, which are based on the relations between dimension
instances defined before.

Definition 6: Identity, roll-up, and compatibility of con-
texts. Given two context instances c “ pι1, ι2, ¨ ¨ ¨ , ιmq and
c1 “ pι11, ι

1
2, ¨ ¨ ¨ , ι

1
mq:

‚ idCpc, c
1q, if idpιi, ι

1
iq, 1 ď i ď m; for in-

stance c=(Montecitorio square, [10:00-11:00], Running)
c1=(Montecitorio sq., [10:00-11:00], Running).

‚ ρCpc, c
1q, if idpιi, ι

1
iq or ρpιi, ι

1
iq, 1 ď i ď m and

idCpc, c
1q does not hold; for instance c=(Montecitorio

square, [10:00-11:00], Running), c1=(Montecitorio sq.,
Morning, Running). We define the distance distpc, c1q
between c and c1, as distpc, c1q “

řm
i“1 distpιi, ι

1
iq, where

distpιi, ι
1
iq “ 0 if idpιi, ι1iq. We will also say that c is a

context finer than c1 or, viceversa, that c1 is a context
coarser than c.

‚ cptCpc, c
1q, if either idpιi, ι1iq or ρpιi, ι1iq or cptpιi, ι1iq,

1 ď i ď m and neither idCpc, c1q nor ρCpc, c1q holds;
for instance, c=(Rione Colonna, [09:00-10:00], Running)
c=(Rione Monti, [09:00-10:00], all).

We like to end the section noting that, besides Time and
Position, the model is suited to represent as context dimen-
sions any factor that can be measured or, generally speaking,
exposed by a device and typically taken into account in the IoT

literature (e.g., [12]). For instance, one may want to know the
temperature measured by devices located in a clear sky area.
In this case the context is represented by the cloud coverage
dimension, whose values can easily be organized in a hierarchy
of ranges. Goals, as well as other more abstract context factors
or situations, can also be part of the context provided that a
classification exists, and a lattice of classes can be defined.

IV. QUERY ANSWERING OVER AN IOT NETWORK

In this section, we discuss a Context-Based Query An-
swering (CBQA) algorithm, aimed at retrieving the subset of
devices in a user network N “ t∆1, . . . ,∆Nu that satisfy
the requirements expressed by a user query, sorting results
by relevance. We refer to a disjunctive query in the form
q “ xpx1 _ x2 _ . . ._ xtq, Zy, where each xi is a context of
interest and Z “ tpp1, v1q, pp2, v2q, ¨ ¨ ¨ , ppp, vpqu represents
the set of properties that must be satisfied by the devices.
Referring to our example scenario, Laura’s device may ask
a query to check outdoor conditions: q=xpVia Cassia 1081
Roma, [8:00-9:00])_pVia della Marcigliana Roma, [8:00-
9:00]),t(measure, Position), (measure, Temperature),(measure,
Brightness)uy.

The query is satisfied by a device if its context matches (at
least) one of the query contexts x1, . . . , xt

1. Without loss of
generality, we discuss hereby only the case t=1, i.e. a query
specifying one context. The discussion can be generalized
by considering the disjunction of contexts as disjunction of
queries, i.e. q “ xx1 _ . . . _ xt, Zy “ q1 _ . . . _ qt, with
qi “ xxi, Zy. Indeed, by referring to Apqq as the answer set
of a query q, the following holds: Apqq “

Ťn
i“1Apqiq.

The algorithm returns a ranked list of devices satisfying
the query ∆O “ tp∆i, riq : ∆i P N , ri P r0, 1su , where
ri represents the relevance of the device with respect to the
query. As reported in Figure 2, the steps of CBQA are the
following:
‚ Context & properties evaluation. For each device ∆i P

N , the algorithm evaluates whether its properties and
context match the user query q. If so, the device is added
to the output list (lines 3-8).

‚ Query relaxation. If no device is retrieved in the previous
step, the query q is rewritten as q1 “ px1, Zq, where x1 is
a context coarser than x: ρCpx, x1q (lines 9-16).

Context and properties evaluation will be discussed in detail
in Subsection IV-A. Query relaxation is a key feature of the ap-
proach enabled by the proposed hierarchical context definition.
It allows to reduce the precision of the specified context (e.g., a
square), thus accepting in principle less precise measures (e.g.,
the square’s district), in order to increase answering capability.
For many applications, measures provided by these devices are
still acceptable, although not as precise as initially wanted. As
a matter of fact, moving from a given context to a coarser
context, the loss of precision depends on the variability of
a measure with respect to dimensions. For instance, Time is

1A device can be in only one context at a time; thus, it can match more
than one query context only if the contexts are identical or there is a roll-up
relation between them. We consider this situation for the sake of generality,
being the practical interest of this kind of query limited.

IEEE INTERNET OF THINGS JOURNAL 6

1. CBQA(N , q, θr, k):
2. ∆O Ð r s

3. for all ∆i P N do
4. ri=k*EVALUATE(∆i,q)
5. if ri ě θr then
6. ∆O Ð x∆i, riy
7. end if
8. end for
9. if ∆O ‰ H or q.x “ call then

10. return ∆O

11. else
12. q

1

=REWRITE(q)
13. k

1

=k ˚ γ1

14. θ
1

r=θr ˚ γ2

15. return CBQA(N , q
1

, θ
1

r, k
1)

16. end if

Fig. 2: CBQA

constant inside each time zone. Thus, if an application seeks
the value of time, e.g. at street level, moving to upper levels
like city, region or state does not reduce measure precision
and device relevance for that query. Similarly, Brightness
varies smoothly with respect to Position, while measures like
Temperature or Humidity show a complex pattern with respect
to Position, as they are affected also by environmental factors
like the presence of artificial heating systems. For lack of
space, here we simply reduce the relevance of a device by
a constant factor γ1 P p0, 1s at each relaxation (line 13), as-
suming in practice the same amount of precision loss for each
measure and each context dimension. Under this assumption,
the relaxation strategy in the REWRITE function (line 12)
simply needs to randomly choose one dimension, moving one
level up in the dimension lattice (while in the general case it is
sensible to start relaxing dimensions with a smaller impact on
measure precision). Other more complex relaxation strategies
can be put in place, managing statistical information in order to
improve answer probability or device recall. Besides context,
the algorithm allows to relax the threshold controlling the
degree of relevance by a factor γ2 P p0, 1s (line 14). The
CBQA algorithms is then called again, recursively, with the
new q1, k1, and θ1 (line 15). Recursion ends when either a
solution is found, or a solution does not exist (line 9).

It is easy to see that, if θr “ 0, the algorithm always finds
at least the trivial solution, formed by all devices in the user
network. In fact, eventually, the query context is relaxed to call
for which ρpci, callq always holds for any device ∆i. However,
devices retrieved may not have the necessary capabilities or
other requested properties. At the other extreme, when θr “ 1,
only devices perfectly matching query properties can be re-
trieved. In case no device is retrieved, the algorithm stops when
reaching the maximum context relaxation x “ call. Different
stopping criteria can be defined, for instance by limiting the
number of relaxation steps that should be performed

A. Context & properties evaluation

This subsection discusses the context and property evalu-
ation phase. Given a device ∆i and a query q, context and
properties evaluation is aimed at determining: (i) whether the
device should be returned as output and, in the affirmative
case, (ii) to what extent it is relevant to the query. Evaluation
is first done by comparing the current device’s context ci with
the query context x, and then the device properties Pi with
the query properties Z, as shown in Figure 3:
‚ First, the function checks whether the device context ci

is identical to x (idCpx, ciq) or finer than x (ρCpci, xq).
The rationale under this condition is that if a query asks
for a context specified at a certain level of granularity,
then any device with a context specified at a finer level
is a candidate device. For instance, devices located in
Montecitorio Square should be retrieved when looking
for devices in Rome. If this happens, the set Z of desired
properties is compared to the set of properties Pi of
the device under consideration, to evaluate its relevance.
Among possible suitable metrics, here we consider the
Jaccard metric ri “ JpPi, Zq=

|PiXZ|
|PiYZ| , which measures

the number of property pairs of Pi in common with Z,
divided by the total number of pairs in their union.

‚ Conversely, if the device context is neither identical
or finer than the query context, the function checks if
a compatibility relation holds (cptC). In this case, the
relevance value ri is equal to the Jaccard index weighted
by a factor αcpt P p0, 1q, i.e. ri “ αcpt ˚JpPi, Zq, which
accounts for the precision loss of results.

1: eval(ci, Pi, x, Z)
2: ri Ð 0
3: if idCpci, xq _ ρCpci, xq then
4: ri Ð JpPi, Zq
5: else
6: if cptpci, xq then
7: ri Ð αcpt ˚ JpPi, Zq
8: end if
9: end if

10: return ri

Fig. 3: Context & properties evaluation

B. Query execution models

A reasonable concern may arise regarding how the abstract
model can be actually implemented in modern IoT networks,
more and more characterized by a high heterogeneity of
computation, network and energy capacity of involved entities.
Modern IoTs include devices ranging from simple smart-
sensors (e.g., smart meters, smart temperature sensors) to more
sophisticated devices like smartphones or smart driving cars
[41]. Of course, this can introduce some limitations to the
applicability of our approach: clearly, a low-capacity device
can hardly be used for querying the IoT, even if it can still
be involved in providing information to build answers to
other devices’ queries (see also [12] for a discussion). In the

IEEE INTERNET OF THINGS JOURNAL 7

following, we investigate strategies for coping with this issue,
discussing local and distributed execution models. We hasten
to notice that the discussion will be focused on computation
and storage capacity, and network traffic, which primarily
constraint other factors like power consumption or connection
quality.

Local evaluation: according to this execution model, con-
text and properties of every device are fetched, and context
& properties evaluation is performed at the querying device.
To this aim, both the context ci and the properties Pi of the
device at hand must be available locally. According to the
kind of storage distribution, namely distributed or local, the
querying device needs to retrieve context and properties from
∆i or to look up for the needed information in an internal
repository or cache, respectively. If queried devices have static
contexts (e.g., weather stations that do not change location or
goal and return a value a few times a day) the local storage
model allows to speed up query answering and limit network
traffic. Instead, for devices with highly dynamic contexts
(e.g., wearable devices, such as fitbands or smart watches),
a distributed storage is more efficient as it avoids continuous
updates of the contexts status. Intermediate solutions are also
possible, e.g. storing contexts for a subset of devices only, and
adopting policies for the storage refresh frequency.

The function EVALUATE_L for the local evaluation is de-
scribed in Figure 4. According to the local or distributed stor-
age policy, the function GET_CONTEXT_AND_PROPERTIES
(line 10) is executed by looking up the needed information in
the local storage or directly querying the device by calling
a proper service, respectively. Once information is obtained,
the EVAL function is called (line 11). In the following, we
use the symbol CBQAL (resp., CBQALSq to denote the
variant using local computation without a local storage (resp.,
with local computation and local storage). In this model,
the querying device needs to be provided with considerable
computational (and possibly storage) capacity, but queried
devices need minimal specifications.

1: evaluate(∆i, q)
2: if computation=local then
3: return EVALUATE L(∆i, q)
4: else
5: return EVALUATE D(∆i, q)
6: end if
7:
8: evaluateL(∆i, q)
9: ri Ð 0

10: xci, Piy Ð GET CONTEXT AND PROPERTIES(∆i)
11: ri Ð EVAL(ci, Pi, x, Zq
12: return ri
13:
14: evaluateD(∆i, q)
15: ri Ð REQUEST EVAL∆i

pqq
16: return ri

Fig. 4: Local and distributed policies

Distributed evaluation: in a distributed execution model,
context & properties evaluation is performed at the queried de-

TABLE I: Main features of the baseline algorithms and CBQA

Approach Context Computation Storage
Baseline1 no local no
Baseline2 yesa local no
CBQALS yes local yes
CBQAL yes local no
CBQAD yes distributed no

aWith no knowledge base

vice. As such, there is no need for the querying device to cache
contexts/properties of the other devices in the network. The
function EVALUATE_D is reported in Figure 4 and involves
the call of a REQUEST_EVAL function, which calls a device
service, that we assume to be available, performing the actual
EVAL function with the local context and properties. Only
devices with a relevance greater than zero will be returned as
a result. In the following, we refer to the CBQA variant using
a distributed evaluation model by CBQAD.

A distributed execution model facilitates the execution of
queries by devices with limited capacity. In fact, the burden
of context computation is put on the queried device: this makes
a partial computation to derive its relevance to the query,
according to its properties and current context. In this case,
also a device like a smart watch or simpler, may perform
queries, as the only required functionality is to send query
messages and receive answers. Further analyses are presented
in the next section.

V. EVALUATION

In this section we compare the three implementations of the
supervised algorithm discussed in the previous section, namely
CBQAL, CBQALS and CBQAD with two baseline algo-
rithms capturing the general behavior of existing approaches:

‚ Baseline1. The algorithm has no notion of context:
referring to the case study presented in the Introduction,
it is as if Laura asked for the values of Position, Tem-
perature and Brightness to her whole network of devices.
We implement this algorithm by considering the query
q “ xH, Zy.

‚ Baseline2. In this case, a flat context is considered. This
means that only an identity of contexts can be checked,
while the lack of a proper knowledge base and related
reasoning mechanisms prevents the evaluation of roll-up
or compatibility relations among contexts.

Table I summarizes the main features of the approaches. In
the following, we first propose an analytic evaluation of the
efficiency based on performance indicators measuring traffic
parameters that are recognized important in the literature (e.g.
[1], [21]). Then, we discuss quantitative results enlightening
the efficiency and query answer capability of the proposed
multi-resolution mechanism. Answering capability can be ei-
ther meant as the probability to obtain an answer for a given
query (i.e. at least one device is retrieved), or as device recall
capability, i.e. the number of devices retrieved. In fact, for
some applications, values from just one device may suffice,

IEEE INTERNET OF THINGS JOURNAL 8

while in other cases one may want to retrieve as many values
as possible. In the following, we will take into account both
figures of merit.

A. Analytical evaluation

Let q “ xx, Zy be a context query, and N be the size of
the network in terms of number of devices. We analyze the
performances of the five approaches with respect to (1) number
of devices contacted per query, (2) network traffic, and (3)
execution time. The main outcomes of the analysis are reported
below and summarized in Tables II and III:

‚ Number of devices contacted per query. Each user query
needs to be evaluated. All approaches require to contact
all N devices in the user network in order to answer the
query, with the exception of CBQALS , that manages a
local storage of device contexts and properties; hence, it
does not require any context query to be launched over
the network. On the other hand, all the N devices need
to be contacted at setup time, or whenever a refresh of
the storage content is scheduled.

‚ Network traffic. It is expressed in terms of the overall size
of the responses obtained from the devices contacted by
a context query. As reported in Table II, for Baseline2

and CBQAL, every contacted device returns its context
and properties to the querying device. Hence, the traffic
generated by one response from a device is equivalent
to the size of the context and properties, which we
estimate to be comparable among devices. Therefore,
the overall traffic is proportional to the number N of
devices contacted. On the other hand, as for CBQAD,
the evaluation is performed in a distributed fashion by
each contacted device. As a consequence, only the result
is transferred, hence reducing the total traffic. Finally,
algorithm CBQALS , as already mentioned, generates
traffic only at setup time. Since this analysis focuses
on the traffic generated by the retrieval of contexts,
Baseline1 is not taken into account here, as the notion
of context is not available for this approach.

‚ Execution times, expressed as a sum of different con-
tributions, namely: treq (time for sending out a query),
tretr (time to obtain the response from a device), teval
(time to evaluate whether a device context and properties
satisfy the query). Both Baseline2 and CBQAL share
the same estimation of the execution time, given by
the time necessary to launch N queries and wait for
the responses, plus the time for the evaluation of N
contexts/properties. However, it has to be noted that for
Baseline2 the evaluation time is shorter, as the only
context evaluation enabled by this approach is on the
identity of contexts. Unlike the mentioned approaches, the
query time for CBQALS is only due to the evaluation of
the N contexts, as they are already available in the local
storage. On the other hand, CBQAD is able to grant a
shorter time as the evaluation time is done in parallel by
the contacted devices.

TABLE II: Comparison among the baseline algorithms and
CBQA in terms of number of devices contacted per query
and network traffic

Approach # contacts Network traffic
Setup Query Setup Query

Baseline2 0 N 0 size(c+P)*N
CBQAL 0 N 0 size(c+P)*N

CBQALS N 0 size(c+P)*N 0
CBQAD 0 N 0 size(r)*N

TABLE III: Comparison among the baseline algorithms and
CBQA in terms of execution time

Approach Execution time
Setup Query

Baseline1 0 N ˚ ptreq ` tretrq
Baseline2 0 N ˚ ptreq ` tretrq `N ˚ teval

a

CBQAL 0 N ˚ ptreq ` tretrq `N ˚ teval
CBQALS N ˚ prreq ` tretrq N ˚ teval
CBQAD 0 N ˚ treq ` teval `N ˚ tretr

aEvaluation time considers only checking identity among contexts and
matching properties.

B. Experimental evaluation

The present subsection is devoted to numerically assess
the efficiency and effectiveness of the multi-resolution ap-
proach. Given the goal of the subsection, experiments focus
on the abstract EVAL function in Algorithm 3, since results
are independent from the specific computation and storage
scenario at hand and are valid for all CBQA variants. For
simplicity reasons, experiments do not take into account the
match between query and device properties (which, by the
way, is a step shared by CBQA and baselines).

First, we introduce the dataset, the procedure to generate
arbitrary synthetic knowledge bases with the desired charac-
teristics, and the experimental setting. Then we show results,
discussing how the answering capability of CBQA varies
depending on the size of the network, the knowledge base
and the rewriting mechanism. We will adopt the following
measures for assessing answering capability:

‚ Average device recall. It is defined by
ř

qPQ |∆Oq |

|Q| , where
|∆Oq

| is the number of devices returned by CBQA in
response to a query q, and Q is the set of possible queries;

‚ Query answer probability. It is defined by
|tq:|∆Oq |ą0u|

|Q|
i.e. the fraction of queries for which CBQA returns at
least one device.

We also provide the execution time of a query on a device.
The code is available at the GitHub project page2 and is

released under the GNU General Public Licence v.3, while the
dataset is under the Open Data Commons Attribution (ODC-
BY) License. Experiments were performed on a cluster of 10
servers, each running Linux Ubuntu 18.04 LTS 64 bit, with
4x2198MHz CPU and 8 GB RAM.

Dataset: We refer to a dataset of 10000 devices, each
with a single sensor. Each device belongs to one or more
IoT networks, the largest of which includes 2000 devices.
Given the unavailability of public data of IoT networks, in

2https://github.com/KDMG/MIOT/tree/master/ContextBasedQueryAnswering

IEEE INTERNET OF THINGS JOURNAL 9

our experiments we built a dataset by following the ideas
expressed in [44], according to which one of the main factors
used to build links in IoT is the proximity of nodes. Therefore,
we started from a real-world repository available at http://
www.geolink.pt/ecmlpkdd2015-challenge/dataset.html, which
regards radio taxi routes in the city of Porto from July 1st
2013 to June 30th 2014. Each route contains a sequence of
PoIs (Point of Interests) corresponding to GPS coordinates of
a vehicle. As done in [45], we mapped each route to a smart
device and we used information about proximity (computed
by using PoIs inside available routes) to establish connections
among different devices. Indeed, under the assumption that the
proximity of nodes is the main factor to create links among
smart objects to build an IoT [44], we leveraged the paths
followed by radio taxis to simulate smart object movements
and, hence, to estimate their chance of being in proximity one
with the other. The idea of using radio taxi routes makes sense
in our scenario as among the possible typologies of smart
objects we consider also smart cars, and, in any case, the
most used smart objects typically belong to the personal area
networks of people. Because people often move in a city by
taxi, using a repository of taxi routes can be a good indicator
of the possible movements of smart objects.

Knowledge base: The knowledge base contains the instance
of the context model, i.e. the set of possible values for each
dimension of a context. Such dimensions are defined as hi-
erarchies3 automatically initialized by varying two parameters
for each dimension, namely: (i) the number of levels (lev), and
(ii) the branching factor (br). The former determines the depth
of the tree and the latter its width. To make an example, with
number of levels=3 and branching factor=3, the dimension
hierarchy will include 1 root element at level 1, 3 elements at
level 2 and 9 elements at level 3 (i.e. 13 elements in total).
In the general case, the size of a dimension |Di|, in terms of
number of elements, is given by |Di| “

řlev´1
k“0 brk.

The overall number of possible contexts |C|, when we
consider n dimensions, is given by all the possible com-
binations of elements for each dimension, namely |C| “
|D1| ˆ . . . ˆ |Dn|. In the case of three dimensions of the
same size, |C| “ p

řlev´1
k“0 brkq3. In the above example,

|C| “ 133 “ 2197.
Experimental settings are as follows:
‚ Knowledge base initialization: a specific number of levels

and branching factor is defined, ranging from 3 to 5 for
both parameters.

‚ Device initialization: a device is picked from the dataset,
and the set N of all the devices belonging to its network is
extracted. In our tests, the following procedure is repeated
with 20 devices belonging to the sets N1, . . . ,N20, whose
sizes range from N1 “100 to N20=2000:

– For each device ∆i P Nj , a context c is randomly
assigned to ∆i. The assignment is done according
to a strategy following a power law. Specifically,
we randomly assign a context instance from a small

3This choice does not limit the generality of experiments, since a lattice-
based dimension can always be transformed into a hierarchy-based, and allows
us to consider the worst-case scenario in terms of dimension of the search
space for given experimental parameters.

subset of C (i.e., 20% its size) to the large majority
of devices (i.e., 80% in our tests), which hereafter we
name Cs. In this way, we aim at modeling the most
plausible context similarity of devices belonging to
the same network. The procedure assigns a random
context from the remaining set C ´Cs (correspond-
ing to the remaining 80% of C) to the rest.

– A query qc “ xx, Zy is defined by assigning a
context x from Cs (as discussed, since Z is not the
focus of the experiments, it is set to void).

– The query q is launched on the network.
The procedure is repeated for a number of queries equal to

|C|, in order to perform a comprehensive evaluation. Results
are then averaged over all queries. Experiments are focused
on three different scenarios, according to the relative sizes of
the knowledge base and of the network, namely:

‚ |Cs| « N : the number of contexts is smaller than or
comparable to the network size (from 0.22x up to a 4.4x);
here, we consider 3 dimensions, 3 levels and a branching
factor equal to 3, for a total of 2.197 different contexts
(and, consequently, possible queries) and |Cs| “ 439. In
this scenario the probability that two devices share the
same context is not negligible.

‚ |Cs| ą N : the number of contexts is greater than the
network size (from 3x up to 60x); in this case, we
consider 3 dimensions, 3 levels and a branching factor
5, for a total of different contexts and queries equal to
29.791. |Cs| “ 5.958. In this scenario the probability that
two devices share the same context is low.

‚ |Cs| " N : the number of contexts is much greater than
the network size (from 177x to 3500x). In this case, we
assume 3 dimensions, 5 levels and a branching factor
equal to 3, for a total of different contexts and queries
equal to 1.771.561, with |Cs| “ 354.312. In this scenario
the probability that two devices share the same context
is negligible.

Finally, for each scenario we also evaluated teval, i.e. the
execution time of a query on a device. For this test, we
set up a commodity hardware (2x2198MhZ, 2 GB RAM) to
simulate the computation capabilities of an IoT device. Given
a knowledge base, a query for each context has been launched
and execution times have been averaged.

Results: experimental results in the three scenarios are
shown in Figure 5. For each network size, query answering
probability and average device recall of CBQA are reported
in the top and bottom figures respectively. In the figures,
the id line reports the performance when only devices with
contexts identical to that of the query are considered. It also
corresponds to Baseline2 performance. The ρ line is obtained
by considering devices with both identical and finer contexts.
This corresponds to the first step of the algorithm. Finally, the
cpt line adds the contribution given by compatible devices,
thus providing the overall performance of CBQA with no
rewriting. The overall contribution given by one or more (up
to five) rewritings is also reported. When a rewriting does not
provide further contribution, the corresponding line is omitted.

As a general observation, we can note very low answering

http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html
http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html

IEEE INTERNET OF THINGS JOURNAL 10

0 500 1,000 1,500 2,000

0

0.25

0.5

0.75

1

Net size

Q
ue

ry
A

ns
w

er
Pr

ob
ab

ili
ty

(a)

0 500 1,000 1,500 2,000

0

0.25

0.5

0.75

1

Net size

Q
ue

ry
A

ns
w

er
Pr

ob
ab

ili
ty

(b)

0 500 1,000 1,500 2,000

0

0.25

0.5

0.75

1

Net size

Q
ue

ry
A

ns
w

er
Pr

ob
ab

ili
ty

(c)

0 500 1,000 1,500 2,000

0

3

6

9

12

15

18

Net size

A
ve

ra
ge

D
ev

ic
e

R
ec

al
l

(d)

0 500 1,000 1,500 2,000

0

1

2

3

4

5

Net size

A
ve

ra
ge

D
ev

ic
e

R
ec

al
l

(e)

0 500 1,000 1,500 2,000

0

1

Net size

A
ve

ra
ge

D
ev

ic
e

R
ec

al
l

(f)
id ρ cpt 1 rewriting

2 rewritings 3 rewritings 4 rewritings 5 rewriting

Fig. 5: Query answer probability and average device recall with 3 dimensions: 3 levels and branching factor 3 (a) and (d); 3
levels and branching factor 5 (b) and (e); 5 levels and branching factor 3 (c) and (f)

0 1 2 3 4 5

0

0.25

0.5

0.75

1

Number of rewritings

Pr
ec

is
io

n

branching=3, levels=3
branching=5, levels=3
branching=3, levels=5

Fig. 6: Evaluation of precision against the number of query
rewritings

capability, especially device recall, in each of the three scenar-
ios when only identical contexts are considered. This result is
expected, since the fraction of queries that can be answered in
this way is equal to the number of contexts assigned to devices,
that is a tiny portion of the set of potential queries. This
enlightens the limit of approaches based on a flat definition of
contexts, like Baseline2. In all cases, we can appreciate the
gain provided by CBQA over Baseline2, while it seems that
the advantage of considering compatible contexts is limited.
In detail, for what concerns the three scenarios:

|Cs| « N : as shown in Figure 5d, a good recall is obtained
even without rewriting, since with a small number of contexts
the likelihood to find devices whose contexts roll-up to a
common context increases. Also note that rewritings have a
bigger impact on query answering probability than on recall.
In fact, even a single rewriting increases the query answer
probability by at least 40%, almost doubling the score in the
case of smaller networks (see Figure 5a). After 3 rewritings,
more than 95% of queries are answered.The execution of a
query on a device takes 0.15 ms on average.

|Cs| ą N : figures 5b and 5e show that with the increase
of the number of contexts, both query answering probability
and average device recall are low without rewriting. For what
concerns device recall, the contribution of each rewriting is
greater than in the previous scenario, even for small networks.
When query answering probability is considered, gains ranging
from 82% to 195% are obtained by one rewriting, whereas
at least 98% of queries are answered after 4 rewritings. The
execution time of a query is 2.21 ms on average.

|Cs| " N : as shown in Figure 5f, in this scenario, which
is also the most typical one, only in very few cases devices
with an identical, finer or compatible context can be retrieved,
although the contribution of ρ is the most relevant. It should
be noted that in this scenario the maximum number of possible
rewritings is 12, so less than a half of the possible rewritings
already allows to reach satisfactory query answering proba-

IEEE INTERNET OF THINGS JOURNAL 11

bility (79%) and at least one device retrieved, on average,
for largest networks. In all cases the advantage of rewriting
is striking: the minimum gain in terms of query answering
probability obtained on all networks by using rewritings ranges
from 58%, in the case of 1 rewriting, to 683% in the case of 5
rewritings. Similar trends also occur when recall is considered.
The execution of a query takes 290.65 ms on average.

We can also observe that:
Network size: the increase in the number of devices in a

network has an obvious positive impact, on average, on results.
In particular, in every test, the larger the size, the greater the
percentage of queries with a response and the average number
of devices retrieved.

Size of knowledge base: the number of dimensions, the
number of levels and the branching factor determine the
overall number of contexts that can be defined. Although we
can assume that, in real settings, most contexts are specified
by values at the bottom levels (e.g., at street or square level,
rather than at city or region levels), the larger the knowledge
base, the larger the space of possible contexts. This implies
that: (i) the execution of the algorithm will take longer, and (ii)
a smaller number of devices can be retrieved with identical,
finer or compatible contexts. In other terms, the size of the
network and of the knowledge base have an inverse effect on
the answering capability.

Number of query rewritings: by rewriting a query q to q1,
the likelihood of obtaining an answer increases in all cases,
as for the number of retrieved devices. Indeed, the number of
contexts finer or compatible with that of q1 is obviously larger
than in the case of q. The size of the knowledge base (and,
specifically, the number of levels) clearly has an impact on the
gain. In fact, with smaller knowledge bases, a single rewriting
is enough to significantly increase the chance to find at least
one solution (less steps are needed to reach the root context).

The increase of answer capability comes at the price of a
reduced answer precision. As already noted, evaluating answer
precision is not simple, as it depends both on the similarity of
the retrieved device’s context with respect to the query context,
and on the variability of the requested measures over context
dimensions. Let’s limit the analysis to a simpler notion of
context precision, defined as the ratio between the number
of “correct” contexts (i.e. either identical or finer than the
query context) and the number of contexts considered when
rewriting is applied. Figure 6 shows that in our experimental
setting the decrease of context precision follows a geometric
decay with respect to the number of rewritings, whose slope
depends on the branching factor. Since in general lower levels
of dimension hierarchies typically include more members than
higher levels, this suggests that precision drops faster for
queries asking for very fine-grained contexts. However, even in
this case, the precision of a measure whose values are almost
constant on the set of sibling members is not significantly
affected, like e.g. in the case of time or cloud coverage with
respect to position.

Finally, as to the comparison with Baseline1, the latter
always contacts all the N devices corresponding to running
CBQA with the context set to all for each dimension. Hence
it provides in principle the same query answering capability

and context precision. However, recall that with Baseline1

there is no way to assess the precision of results in practice,
since contexts are not actually taken into account. Conversely,
it is possible to conclude that our approach allows the retrieval
of a much larger number of relevant results (i.e., finer or
compatible) than Baseline2 as it evaluates identical contexts
only. As a consequence, by exploiting the knowledge base,
and specifically roll-up relations, a much higher recall can be
obtained with CBQA with the same precision. Furthermore,
as already noted, by exploiting roll-up relation and the notion
of rewriting, our approach can optionally decide to lower
precision in order to improve query answering capability.

VI. CONCLUSIONS

In this paper we have presented a model for devices’
contexts whose main feature is the representation of context
components at different levels of granularity. On top of this
model, we have introduced multi-resolution querying mecha-
nisms to retrieve a set of devices according to given prefer-
ences and context requirements, that can be flexibly tightened
or relaxed depending on the desired performances and the
given application goal. Results enlighten the advantages of
the approach with respect to existing solutions that either
do not manage contexts at different granularity levels, or do
not consider the notion of context at all, adding reasonable
overheads for computational, storage and network costs.

The pioneering approach proposed in the paper required to
make some simplifying assumptions, opening up a number of
interesting research directions. First, we need to explore the
intriguing issue of the relation between measure precision and
context precision. A preliminary idea is to extend the model
by associating to each measure a set of functions that describe
the variability of the measure with respect to each dimension.
Then, we will have to develop a suitable approach to exploit
this information in CBQA.

Second, a limitation of this study is that here we assume
that objects keep track of all the new contacts that can be
established according to criteria based on proximity, device
homogeneity, and relations among the corresponding owners.
Of course, in many interesting applications, the list of contacts
of an object must be limited, to both control network traffic and
cope with the limited resource capabilities of smart objects.
In this paper, we trivially assume that only timely contacts
are preserved and that old and inactive ones can be safely
discharged. Nevertheless, a more refined strategy for filtering
new contacts to guide the construction and evolution of the IoT
network appears necessary, as well as to identify unreliable
sources. Therefore, future work will be devoted to defining
criteria for network building and maintenance.

Finally, different IoT scenarios like the Multi-IoT, and
specific applications domains, like Smart Building Networks
or Internet of Vehicles, should be studied to tailor the approach
and understand the specific pros and cons.

ACKNOWLEDGMENTS

We thank the Editor-in-Chief and the reviewers for their
comments, which allowed us to significantly improve the

IEEE INTERNET OF THINGS JOURNAL 12

quality of the paper. Experiments have been performed on
an Iaas platform provided by the H2020 project Helix Nebula
Science Cloud.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] G. Baldassarre, P. Lo Giudice, L. Musarella, and D. Ursino, “The MIoT
paradigm: Main features and an “ad-hoc” crawler,” Future Generation
Computer Systems, vol. 92, pp. 29–42, 2019.

[3] P. Lo Giudice, A. Nocera, D. Ursino, and L. Virgili, “Building Topic-
Driven Virtual IoTs in a Multiple IoTs Scenario,” Sensors, vol. 19,
no. 13, p. 2956, 2019, mDPI.

[4] D. Ursino and L. Virgili, “Humanizing IoT: defining the profile and the
reliability of a thing in a Multi-IoT scenario,” Towards Social Internet of
Things: Enabling Technologies, Architectures and Applications. Studies
in Computational Intelligence, vol. 846, pp. 51–76, 2020, springer
Nature.

[5] N. K. Tran, Q. Z. Sheng, M. A. Babar, L. Yao, W. E. Zhang, and
S. Dustdar, “Internet of things search engine,” Commun. ACM, vol. 62,
no. 7, pp. 66–73, Jun. 2019.

[6] L. Atzori, A. Iera, G. Morabito, and M. Nitti, “The Social Internet of
Things (SIoT)–when social networks meet the Internet of Things: Con-
cept, architecture and network characterization,” Computer networks,
vol. 56, no. 16, pp. 3594–3608, 2012.

[7] L. Atzori, A. Iera, and G. Morabito, “SIoT: Giving a social structure to
the Internet of Things,” IEEE Communications Letters, vol. 15, no. 11,
pp. 1193–1195, 2011, iEEE.

[8] C. Diamantini, A. Nocera, D. Potena, E. Storti, and D. Ursino, “Find
the Right Peers: Building and Querying Multi-IoT Networks Based on
Contexts,” in Proc. 13th International Conference on Flexible Query
Answering Systems (FQAS’19), Amantea, Italy, 2019, lecture Notes in
Artificial Intelligence. Springer.

[9] C. Diamantini, A. Nocera, D. Potena, E. Storti, and D. Ursino, “Multi-
dimensional contexts for querying IoT networks,” in Proc. 27th Italian
Symposium on Advanced Database Systems, CEUR Workshop Proceed-
ings Volume 2400, Grosseto, Italy, 2019.

[10] S. Mayer and D. Guinard, “An extensible discovery service for smart
things,” in Proceedings of the Second International Workshop on Web
of Things. ACM, 2011, p. 7.

[11] H. Wang, C. C. Tan, and Q. Li, “Snoogle: A search engine for pervasive
environments,” IEEE Transactions on Parallel and Distributed Systems,
vol. 21, no. 8, pp. 1188–1202, 2009.

[12] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the Internet of Things: A survey,” IEEE Commu-
nications Surveys & Tutorials, vol. 16, no. 1, pp. 414–454, 2014, iEEE.

[13] M. Mrissa, L. Médini, and J. Jamont, “Semantic discovery and invo-
cation of functionalities for the web of things,” in 2014 IEEE 23rd
International WETICE Conference. IEEE, 2014, pp. 281–286.

[14] B. Schilit, N. Adams, and R. Want, “Context-aware computing appli-
cations,” in 1994 First Workshop on Mobile Computing Systems and
Applications, Dec 1994, pp. 85–90.

[15] D. Abowd, A. K. Dey, R. Orr, and J. Brotherton, “Context-awareness in
wearable and ubiquitous computing,” Virtual Reality, vol. 3, no. 3, pp.
200–211, Sep 1998.

[16] B. N. Schilit and M. M. Theimer, “Disseminating active map information
to mobile hosts,” IEEE Network, vol. 8, pp. 22–32, 1994.

[17] A. K. Dey, “Understanding and using context,” Personal Ubiquitous
Computing, vol. 5, no. 1, pp. 4–7, Jan. 2001.

[18] O. Cabrera, X. Franch, and J. Marco, “Ontology-based context mod-
eling in service-oriented computing: A systematic mapping,” Data &
Knowledge Engineering, vol. 110, pp. 24–53, 2017.

[19] S. Ahn and D. Kim, “Proactive context-aware sensor networks,” in
Proceedings of the Third European Conference on Wireless Sensor
Networks, ser. EWSN’06. Berlin, Heidelberg: Springer-Verlag, 2006,
pp. 38–53.

[20] S. Baek, E. Choi, J. Huh, and K. Park, “Sensor information manage-
ment mechanism for context-aware service in ubiquitous home,” IEEE
Transactions on Consumer Electronics, vol. 53, no. 4, pp. 1393–1400,
2007.

[21] C. Hou, H. Hsiao, C. King, and C. Lu, “Context discovery in sensor
networks,” in ITRE 2005. 3rd International Conference on Information
Technology: Research and Education, 2005., June 2005.

[22] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, J. Hjelm, M. H. Butler,
and L. Tran, “Composite capability/preference profiles (cc/pp): Structure
and vocabularies, ver. 1.0,” W3C, Tech. Rep., January 2004.

[23] A. Agostini, C. Bettini, and D. Riboni, “Hybrid reasoning in the
care middleware for context awareness,” International Journal of Web
Engineering and Technology, vol. 5, no. 1, pp. 3–23, 2009.

[24] H. Chen, T. Finin, and A. Joshi, “An ontology for context-aware
pervasive computing environments,” Knowledge Engineering Review,
vol. 18, no. 3, pp. 197–207, 2003.

[25] H. Chen, T. Finin, and A. Joshi, “Soupa: standard ontology for ubiq-
uitous and pervasive applications,” in The First Annual International
Conference on Mobile and Ubiquitous Systems: Networking and Ser-
vices, 2004. MOBIQUITOUS 2004, 2004.

[26] T. Strang, C. Linnhoff-Popien, and K. Frank, “Cool: A context on-
tology language to enable contextual interoperability,” in Distributed
Applications and Interoperable Systems, J. Stefani, I. Demeure, and
D. Hagimont, Eds. Springer Berlin Heidelberg, 2003, pp. 236–247.

[27] C. Perera and A. V. Vasilakos, “A knowledge-based resource discovery
for internet of things,” Knowledge-Based Systems, vol. 109, pp. 122 –
136, 2016.

[28] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ran-
ganathan, and D. Riboni, “A survey of context modelling and reasoning
techniques,” Pervasive and Mobile Computing, vol. 6, no. 2, pp. 161–
180, 2010.

[29] P. Bhargava, S. Krishnamoorthy, and A. Agrawala, “Rocomo: A generic
ontology for context modeling, representation and reasoning in a
context-aware middleware,” in Proceedings of the 2012 ACM Conference
on Ubiquitous Computing, ser. UbiComp ’12. ACM, 2012, pp. 584–
585.

[30] A. Padovitz, S. W. Loke, and A. Zaslavsky, “Towards a theory of context
spaces,” in Proceedings of the Second IEEE Annual Conference on
Pervasive Computing and Communications Workshops, 2004., 2004, pp.
38–42.

[31] I. Millard, D. De Roure, and N. Shadbolt, “The use of ontologies in
contextually aware environments,” in Proceedings of First International
Workshop on Advanced Context Modelling, Reasoning and Management,
2004, pp. 42–47.

[32] F. A. Schreiber, L. Tanca, R. Camplani, and D. Viganò, “Pushing
context-awareness down to the core: more flexibility for the perla
language,” in Electronic Proc. PersDB 2012 Workshop (Co-located with
VLDB 2012), 2012, pp. 1–6.

[33] L. E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta, M. Beigl, and H.-
W. Gellersen, “Smart-its friends: A technique for users to easily establish
connections between smart artefacts,” in international conference on
Ubiquitous Computing. Springer, 2001, pp. 116–122.

[34] J. Bleecker, “A manifesto for networked objects—cohabiting
with pigeons, arphids and aibos in the Internet of Things,”
http://research.techkwondo.com/blog/julian/185, 2006.

[35] M. Kranz, L. Roalter, and F. Michahelles, “Things that twitter: social
networks and the Internet of Things,” in What can the Internet of
Things do for the Citizen (CIoT) Workshop at The Eighth International
Conference on Pervasive Computing (Pervasive 2010), 2010, pp. 1–10.

[36] E. Nazzi and T. Sokoler, “Walky for embodied microblogging: sharing
mundane activities through augmented everyday objects,” in Proceedings
of the 13th International Conference on Human Computer Interaction
with Mobile Devices and Services. ACM, 2011, pp. 563–568.

[37] D. Guinard, M. Fischer, and V. Trifa, “Sharing using social networks in a
composable web of things,” in 2010 8th IEEE International Conference
on Pervasive Computing and Communications Workshops (PERCOM
Workshops). IEEE, 2010, pp. 702–707.

[38] L. Ding, P. Shi, and B. Liu, “The clustering of internet, Internet of
Things and social network,” in 2010 Third International Symposium on
Knowledge Acquisition and Modeling. IEEE, 2010, pp. 417–420.

[39] H. Ning and Z. Wang, “Future Internet of Things architecture: like
mankind neural system or social organization framework?” IEEE Com-
munications Letters, vol. 15, no. 4, pp. 461–463, 2011.

[40] Q. Du, H. Song, and X. Zhu, “Social-feature enabled communications
among devices toward the smart iot community,” IEEE Communications
Magazine, vol. 57, no. 1, pp. 130–137, 2019.

[41] Y. Saleem, N. Crespi, M. H. Rehmani, R. Copeland, D. Hussein, and
E. Bertin, “Exploitation of social iot for recommendation services,” in
2016 IEEE 3rd World Forum on Internet of Things (WF-IoT). IEEE,
2016, pp. 359–364.

[42] R. Torlone, “Two approaches to the integration of heterogeneous data
warehouses,” Distrib. Parallel Databases, vol. 23, no. 1, pp. 69–97, Feb.
2008.

IEEE INTERNET OF THINGS JOURNAL 13

[43] M. Banek, B. Vrdoljak, A. M. Tjoa, and Z. Skocir, “Automated integra-
tion of heterogeneous data warehouse schemas,” International Journal
of Data Warehousing and Mining, vol. 4, no. 4, pp. 1–21, 2008.

[44] I. Guedalia, J. Guedalia, R. P. Chandhok, and S. Glickfield, “Methods
to discover, configure, and leverage relationships in internet of things
(iot) networks,” 2018, uS Patent 9,900,171.

[45] S. Nicolazzo, A. Nocera, D. Ursino, and L. Virgili, “A privacy-
preserving approach to prevent feature disclosure in an IoT scenario,”
Future Generation Computer Systems, vol. 105, pp. 502–519, 2020.

	Introduction
	Related Work
	Query answering in IoT networks
	Context models and languages
	Social Networks and Social Internet of Things

	A model for devices in an IoT network
	Context of a device

	Query answering over an IoT network
	Context & properties evaluation
	Query execution models

	Evaluation
	Analytical evaluation
	Experimental evaluation

	Conclusions
	References

