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Abstract

The Container Drayage Problem (CDP) aims at routing a fleet of trucks,
based at a common terminal, to serve customers while minimizing the total
travel distance. Each trip starts from and ends at the terminal, and han-
dles a subset of customers. Each customer requires either that a container is
picked up or delivered. We introduce a more realistic variant, i.e., the Multi-
trip Multi-period CDP with Release and Due Dates (MM-CDP-RDD), in
which the planning horizon is composed of several periods (days). On each
day, each truck may perform more than one trip respecting the Release and
Due Dates (RDD) associated with customer services, corresponding to the
first and the last day on which the service can be carried out, respectively.
Drivers’ contracts impose limitations on the maximum driving time allowed
on each day, on two consecutive days and on the whole weekly planning hori-
zon. To model the MM-CDP-RDD, we propose both an Arc-based Integer
Linear Programming (ILP) formulation and a Trip-based ILP formulation
that receives as input all the feasible non-dominated trips. To efficiently
address medium/large-sized instances of the problem, we also design six
Combinatorial Beneders’ Cuts approaches. All the methods are compared
on a rich set of instances generated for this new problem.

Keywords: Routing, Multi-trip Vehicle Routing, Multi-period Vehicle
Routing, Combinatorial Benders’ Cuts

1. Introduction

In the Port Logistics sector, the term Container Drayage refers to the
goods transportation between terminals (e.g., sea ports, intermodal termi-
nals, inland ports, border points) and customers, where containers are used
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as bins. The drayage operating cost contributes significantly to the total
door-to-door container transportation cost (Figure 1). For a 500-mile haul,
it represents about 42% of the total door-to-door cost [44]. This leads to
the need to properly route the trucks used for the drayage operations.

The Container Drayage Problem (CDP) aims at efficiently routing a fleet
of trucks, based at a common terminal, in order to serve geographically dis-
tributed customers, while minimizing the total travel distance. In a trip, a
truck starts from the terminal, serves a subset of customers and returns to
the terminal. The customers are distinguished into two categories: import
customers who require a container delivery and export customers who in-
stead require a container pickup. Therefore, the drayage activities mainly
concern the planning of truck trips to move full/empty containers between
the terminal and the import and the export customers [23].

According to the International Standard Organization, several container
sizes are permitted (e.g., 10 feet (ft), 20 ft, 40 ft, 45 ft, 48 ft, 53 ft), although
the most commonly used ones are TEUs (20 ft equivalent unit) and FEUs
(40 ft equivalent unit) ([21], [46],[50],[37]) and the truck capacity is usually
equal to 40 ft. This means that each truck can transport either one 40 ft
sized container or two 20 ft sized containers, simultaneously. Due to these
loading restrictions, the maximum number of customers that can be served
in a single trip is equal to 4. Figure 2 shows a feasible CDP solution in which
7 trips are performed to serve both export and import customers identified
by a positive and negative demand, respectively. For instance, a −40 ft
demand means that the customer requires receiving a 40 ft sized container.

Since the inland destinations are usually not far from the terminal, short-
duration trips are very frequent. For this reason, in the literature, the multi-
trip variant of the CDP has been introduced, where each truck is assumed
to perform more than one trip during a working day [28, 35, 9].

In this paper, we introduce a new variant of the CDP where, in addi-
tion to the multi-trip assumption, we address the need of both serving the
customers only in specific periods (e.g., days) and respecting the contrac-
tual restrictions imposed on the drivers’ working time. For this purpose,
we divide the whole planning horizon into discrete time periods (e.g., days)
and each customer can be served only in specific consecutive periods e.g.,
Release and Due Dates (RDD). Simultaneously, we address the problem of
assigning containers to the trucks and then designing their routes.

The main contributions of this work are:

• the introduction of the Multi-period Multi-trip (MM) CDP with Re-
lease and Due Dates, i.e., MM-CDP-RDD, a more realistic CDP vari-
ant in which the planning horizon is divided into several discrete pe-
riods (multi-period), a truck is allowed to perform more than one trip
in each period (multi-trip), RDDs are associated with each customer
and finally, restrictions on the trip duration in each period, in two
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Figure 1: Total costs (in $) to move both 20 ft and 40 ft containers from New York (USA)
to other countries (port city). Source: https://moverdb.com/freight-costs-usa/

Figure 2: An example of feasible solution of the CDP.
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consecutive periods and in the whole planning horizon are imposed.
The latter assumptions allow accounting for contractual limitations on
the drivers’ work hours.

• the formulation of an Arc-based Integer Linear Programming (A-ILP)
model;

• the design of an exact two-stage approach together with the definition
of both trip feasibility and dominance rules. In the first stage, all the
feasible non-dominated trips are generated. In the second stage, a
Trip-based ILP (T-ILP) model is solved;

• the design of several Combinatorial Benders’ Cuts (CBC) approaches,
based also on valid inequalities defined ad hoc for the MM-CDP-RDD;

• the generation of a rich set of instances for this new problem, starting
from the traditional benchmark instances proposed for the Vehicle
Routing Problem by both Solomon [45] and Gehring & Homberger
[26];

• the numerical comparisons among A-ILP, T-ILP (also by adding valid
inequalities) and the CBC approaches.

The rest of the paper is organized as follows. Section 2 reviews the
main literature contributions on the CDP and its variants. In Section 3,
the statement of the problem is given together with the notation used. In
Section 4, the A-ILP model for the MM-CDP-RDD is described, while Sec-
tion 5 proposes a two-stage approach. Section 6 describes several variants of
the CBC approach specifically designed for the MM-CDP-RDD. In Section
7, benchmark instances for this new problem are generated and numerical
comparisons among the solution methods are discussed. Finally, Section 8
draws some conclusions and outlines future research directions worthy of
investigation.

2. Literature Review

The CDP and its variants belong to the most general class of Vehicle
Routing Problem (VRP) with Pickups and Deliveries, i.e., the Pickup and
Delivery Problem (PDP), because customers can require either a container
pickup or its delivery ([39], [38]). Moreover, as specified by the recent lit-
erature review [23] on the CDP and its variants, the scientific contributions
can be classified into two main groups, depending on the operation policy
adopted: Stay-with and Drop&Pick. According to the Stay-with policy, a
truck carrying a full container to an import customer waits until the con-
tainer is emptied and then carries away the empty container, which can be
either transported back to the terminal or used to serve an export customer
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within the same trip. Even in this case, the truck has to wait at the customer
location until the container is fully loaded and can be transported to the ter-
minal. This policy has advantages and disadvantages. The main advantage
is that a container used to serve an import customer, once emptied, can be
immediately reused to serve an export customer without coming back to the
depot. On the other hand, this policy has two main disadvantages. Firstly,
trucks, and consequently drivers, spend a large part of the working shift
waiting for containers to be emptied or filled, without having the possibility
of performing other tasks in the meantime, resulting in a strong under-use of
the available resources. Secondly, containers which are immediately reused
after being emptied do not undergo a proper disinfection procedure, with
consequent risks of contamination of goods belonging to different categories
and of propagation of infections. Furthermore, containers that are damaged
during emptying operations, requiring to be repaired before reusing them,
may yield a disruption in the routing planning. The second operation pol-
icy, Drop&Pick, allows trucks to deliver a container, full or empty, to the
customers and immediately restart the journey without waiting for the con-
tainer to be emptied or filled. Compared to the Stay-with policy for which 4
kinds of requests may occur, import of full or empty containers and export
of full and empty containers, with this approach we consider just two groups
of requests, import and export. Indeed, the fact that the container is empty
or full does not impact on the further tasks that can be performed in the
same trip. The main advantage is that resources (i.e. trucks) can be better
exploited, and can perform more routes during the day since they do not
have to wait for containers to be filled or emptied. The disadvantage is that
containers cannot be reused along the same trip and must be picked up later
by another or the same truck. This policy is not convenient when customers
are very far from the terminal, while it is convenient when they are close
enough to the terminal. As one can evince from [23], both policies have been
addressed in the literature and none of them outperforms the other. In this
paper, we study a multi-trip problem, in which customers are close enough
to the terminal and trucks can perform several trips per day. Therefore, we
chose to adopt the Drop&Pick strategy.

In this paper, we introduce the following two new features: Multi-period
(MP), i.e., the planning horizon is divided into discrete time periods (e.g.,
days) and then, the release and due dates at customers are specified in
terms of periods in which they have to be served; Multi-trip (MT), i.e., each
truck can perform more than one trip in each period. The latter exten-
sion is inspired by the increasing interest of the researchers in this topic,
in recent years, mainly motivated by new city logistic distribution systems,
as observed in the survey [12]. In this survey, four, three and two index
mathematical formulations are presented, depending on considering both
the vehicle and the trip index, only the vehicle index, neither of the two,
respectively. Regarding the exact approaches, both branch-and-cut [30] and

5



branch-and-price [36] algorithms have been proposed. Regarding the heuris-
tics, two-stage algorithms (e.g., [48], [40]) and meta-heuristics, e.g., tabu
search [7] and population-based algorithms [13] have been also proposed.
Concerning the multi-period, the survey of [6] shows an increasing interest
of the researchers especially since 2009 (e.g., [24]). Both exact approaches
(e.g., [17]) and meta-heuristics, like Variable Large Neighborhood Search
(e.g., [25]) and Adaptive Large Neighborhood Search (e.g., [42] ), have been
proposed.

We discuss the main literature contributions on CDP and its variants
with regard the aforementioned features.

The Drop&Pick CDP with Time Windows (TW) at customers, with only
one container per truck, has been extensively studied in the literature. In
[29], the CDP with intermediate facilities between terminals and customers
in a metropolitan area is addressed and modeled as a multi-Traveling Sales-
man Problem with TW (m-TSPTW) at both origins and destinations. An
exact solution approach based on dynamic programming is proposed. In
[20], the problem is modeled as a Multi-Resource Routing Problem with
flexible tasks and formulated as a set partitioning problem with a weighted
objective function minimizing both the fleet and the variable distance cost.
Meanwhile, a cluster method together with a reactive Tabu Search (TS) is
proposed in [58]. In [57], the problem is addressed as an m-TSPTW and
solved by a modified version of the method of [51]. In [59], it is modelled as
an m-TSPTW with resource constraints and solved through a reactive TS.

Allowing that a tractor can be assigned to a different trailer to perform
a new task, in [53], a node-arc formulation is modelled coordinating the
empty containers that move between customers. A TS algorithm is also
designed for solving instances with up to 400 customers, while a maxmin
ant colony optimization algorithm is proposed in [52]. In [54], the same
problem has been addressed by a Combinatorial Benders’ Cuts approach
in which the problem is decoupled in a Master Problem involving only arc
variables, contributing to the objective function, while the Slave Problem
involves tractors-to-trailers assignment variables, responsible for feasibility.
A Combinatorial Benders’ Cuts approach has also been adopted to address
the Multi-Trip CDP in [8].

A Drop&Pick CDP without TW at the customers, with only one con-
tainer per truck, is addressed in [5], minimizing simultaneously the number
of vehicles used and the total travel distance. Both a hybrid deterministic
annealing algorithm and a TS are designed.

A Stay-with CDP with more than one container per truck is modelled
as a VRP with multiple visits and heterogeneous trucks in [32] and solved
through a variant of the Clarke-and-Wright algorithm. An Adaptive Guid-
ance meta-heuristic is proposed in [31].

The Stay-with CDP with TW at customers is addressed in [11], where
the problem is solved through a local search, based on three neighborhoods,
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with an initial solution computed by a two-phase insertion heuristic. Several
techniques already proposed in the literature for the VRPs are extended in
order to schedule pre- and end-haulage of containers in [41] and several
versions are studied, i.e., both managing multiple empty container depots
and balancing empty container depot levels.

In the CDP proposed in [43] for taking control of the harmful emissions,
collaboration among truckers is permitted and a mathematical model based
on the m-TSPTW is formulated. Finally, in [23], the authors, after intro-
ducing the possibility to move more than one container per truck in a trip
and by exploiting the limited number of feasible trips, propose a set-covering
formulation tested on real-world case studies.

Recently, further extensions of the CDP have been introduced. In [55],
the authors address the possibility of using a truck platooning operation
mode in which a platoon is formed by a leading truck followed by a set of
trucks using semi-automated technologies, where only the leading truck is
human-driven. To solve the problem, a mathematical formulation and ant
colonies based heuristic are provided. In [19], the authors addressed long-
haul CDP where trips may last for multiple days and driver rest periods
along the trips are considered, for which they propose an ILP formulation. A
bi-objective CDP is addressed in [56], where the number of trucks employed
and the total covered distance are simultaneously minimized. The problem
is solved by a Large Neighborhood Search heuristic. For a more detailed
review and classification of CDP problems, we refer the reader to [23] and
[56]

In particular, multi-trip CDPs are addressed in both [35] and [9], the lat-
ter considers only 20 ft sized containers. However, neither of them considers
multiple periods. Therefore, to the best of our knowledge, no contributions
already exist in which the multi-period is combined with the multi-trip, the
RDDs of the customers, the contractual restrictions on the trip duration,
allowing both moving more than one container per truck and managing two
container sizes (20 ft and 40 ft).

3. Problem statement and notation

The MM-CDP-RDD aims at efficiently routing a fleet of |K| trucks,
based at a common terminal 0, to serve import/export customers (set C),
while minimizing the total travel distance over a given planning horizon.
For this purpose, the planning horizon is divided into ν discrete time pe-
riods, each one representing a working day. Hereafter, we suppose T =
{1, 2, . . . , ν}. Within the same period, each truck can perform more than
one trip. However, due to drivers’ contractual limitations, each truck can
travel no longer than Tmax1 , Tmax2 and Tmax3 , in a period, in two consecutive
periods and in the whole planning horizon (generally, a week), respectively,
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Table 1: Notation of the MM-CDP-RDD
Set Meaning
C Set of customers
K Set of trucks
T Set of periods
Ti Set of periods in which customer i can be served
Tij Set of periods in which both customer i and customer j can be served
Cπ Set of customers served by the trip π

T̃π Set of periods in which the trip π can be performed

Parameter Meaning
0 Terminal
v Average truck speed
Q Loading truck capacity

Tmax1 Maximum travel time per truck per period
Tmax2 Maximum travel time per truck in two consecutive periods
Tmax3 Maximum travel time per truck in the planning horizon
dij Travel distance between i ∈ C ∪ {0} and j ∈ C ∪ {0}
ri Demand of customer i
τi Service time at customer i
dπ Total distance travelled in the trip π
aiπ 1 if customer i ∈ C is served in the trip π; 0 otherwise.

[34]. Each truck, whose average speed is equal to v, also has a limited load-
ing capacity Q equal to 40 ft meaning that it can simultaneously move either
only one container of 40 ft or two containers of 20 ft.

The demand ri of each customer i ∈ C can be either positive (export
customer) or negative (import customer) and of either 40 ft or 20 ft. The
service time at each customer i ∈ C (i.e., the time to pick up or drop off the
container at customer’s site) is indicated by τi. In addition, for each node
i ∈ C ∪ {0}, Ti indicates the set of consecutive periods in which the service
can be performed at node i. In particular, T0 contains all the periods of
the planning horizon, i.e., T0 = T . Moreover, for each pair (i, j) such that
i, j ∈ C ∪ {0}, i 6= j, Tij indicates the subset of T containing the periods in
which both the nodes i and j can be served, i.e., Tij = Ti ∩ Tj . For each
pair (i, j) ∈ C ∪ {0}, the travel distance dij is known. Table 1 summarizes
the notation used in this paper.

A trip π starts from the terminal, serves a sub-set of customers Cπ and
then returns to the terminal. Its total distance is indicated by dπ and the
periods in which it can be performed is denoted by T̃π = ∩i∈CπTi. Finally,
we also introduce a customers’ coverage matrix in which the entry aiπ is 1
if and only if the customer i ∈ C is served in the trip π, i.e., i belongs to
Cπ; 0, otherwise.
Since each truck can move either a 40 ft container or two containers of 20
ft, all possible kinds of feasible trips can be enumerated according to the
following definition.

Definition 1: Type of trips

• 1-customer trip {0, i, 0}, with ri ∈ {40,−40, 20,−20};
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Figure 3: A graph instance of the MM-CDP-RDD.

• 2-customer trip {0, i, j, 0}, with (ri, rj) ∈ {(−20,−20), (20, 20), (20,−20),
(−20, 20), (−40, 20), (−20, 40), (−40, 40)};

• 3-customer trip {0, i, j, k, 0}, where (ri, rj , rk) ∈ {(−20,−20, 20), (−20, 20, 20),
(−20, 20,−20), (20,−20, 20), (−20,−20, 40), (−40, 20, 20)};

• 4-customer trip {0, i, j, k, v, 0}, where (ri, rj , rk, rv) ∈ {(−20, 20,−20, 20),
(−20,−20, 20, 20)}.

4. An Arc-based Mathematical Programming Formulation

Similarly to the traditional VRPs, the MM-CDP-RDD can be formally
represented on a directed graph G = (N,A), where the set of nodes N
contains the set C of customers to be served and the terminal 0, while A is
the set of the arcs.

According to Definition 1, A is not complete because, through a proper
pre-processing, only some arcs are kept. More specifically, A = {(i, j) ∈
C × C : i 6= j∧(ri, rj) ∈ {(-20,-20), (20,20), (20,-20), (-20,20), (-40,20), (-
20,40), (-40,40)}∧ Ti ∩ Tj 6= ∅ ∧ dij/v ≤ Tmax1 } ∪ {(0, j), j ∈ C : d0j/v ≤
Tmax1 } ∪ {(j, 0), j ∈ C : dj0/v ≤ Tmax1 }. Figure 3 shows the graph G
generated for the instance of the problem of Figure 2.

The formulation is based on the following decision variables: xktij , binary
variables equal to 1 if truck k travels from node i to node j in period t and 0
otherwise, ∀(i, j) ∈ A, ∀k ∈ K and ∀t ∈ T ; u+

i , an integer variable denoting
the total quantity of pickup until node i from the last exit from 0, ∀i ∈ N ;
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u−i , an integer variable representing the total quantity of delivery until node
i from the last exit from 0, ∀i ∈ N .

The Arc-based Integer Linear Programming (A-ILP) formulation of the
MM-CDP-RDD is the following:

min
∑

(i,j)∈A

∑
k∈K

∑
t∈Tij

dijx
kt
ij (1)

s.t. ∑
k∈K

∑
j:(i,j)∈A

∑
t∈Tij

xktij = 1 ∀ i ∈ C (2)

∑
j:(i,j)∈A
t∈Tj

xktij −
∑

j:(j,i)∈A
t∈Tj

xktji = 0 ∀ i ∈ N, k ∈ K, t ∈ Ti (3)

∑
(i,j)∈A
t∈Tij

(
dij
v

+ 2τj)x
kt
ij ≤ Tmax1 ∀ k ∈ K, t ∈ T (4)

∑
(i,j)∈A

t∧(t+1)∈Tij

(
dij
v

+2τj)x
kt
ij+

∑
(i,j)∈A

t∧(t+1)∈Tij

(
dij
v

+2τj)x
k(t+1)
ij ≤ Tmax2 ∀ k ∈ K, t = 1, . . . , |T |−1

(5)

∑
(i,j)∈A

∑
t∈Tij

(
dij
v

+ 2τj)x
kt
ij ≤ Tmax3 ∀ k ∈ K (6)

u+
0 = u−0 = 0 (7)

u+
j ≥ u

+
i +max{rj , 0} − (Q+max{rj , 0})(1−

∑
k∈K

∑
t∈Tij

xktij ) ∀ (i, j) ∈ A : j 6= 0 (8)

u−j ≥ u
−
i −min{rj , 0} − (Q−min{rj , 0})(1−

∑
k∈K

∑
t∈Tij

xktij ) ∀ (i, j) ∈ A : j 6= 0 (9)

xktij ≤ u−i − u
+
i ∀ (i, j) ∈ A : i 6= 0, j 6= 0, ri = rj = −20, ∀k ∈ K,∀t ∈ Tij (10)

xktij ≤ Q− u+
i ∀ (i, j) ∈ A : i 6= 0, j 6= 0, ri = 20, rj = −20, ∀k ∈ K,∀t ∈ Tij (11)

u−i ≤ Q ∀ i ∈ C (12)

u+
i ≤ Q ∀ i ∈ C (13)

∑
k∈K

∑
t∈Ti

xkti0 = 1 ∀ i ∈ C : ri = +40 (14)

∑
k∈K

∑
t∈Ti

xkt0i = 1 ∀ i ∈ C : ri = −40 (15)
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xktj0 ≥ xktij ∀ k ∈ K, i ∈ C, j ∈ C : i 6= j, ri = rj = 20, t ∈ Tij (16)

xktij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K, t ∈ Tij (17)

u+
i , u

−
i ≥ 0 integer ∀i ∈ C (18)

The objective function (1) to be minimized represents the total travel
distance. Constraints (2) assure that each customer is served exactly once,
while constraints (3) guarantee the flow conservation for each node of the
graph. Constraints (4)-(6) assure that each truck cannot travel longer than
Tmax1 , Tmax2 and Tmax3 , respectively, in a period, in two consecutive periods
and in the whole planning horizon. It is worth noting that the service time
of each customer is counted twice for taking into account the related service
time also at the terminal.

Constraint (7) fixes to 0 the quantity of both pickup and delivery at the
terminal, while constraints (8)-(9) count the quantity of pickup and delivery
at each node, respectively. Since these constraints are imposed for each arc
except those entering in the terminal, they also ensure that the subtours not
visiting the terminal cannot be feasible.

Constraints (10) ensure that two consecutive deliveries of a 20 ft size
cannot be served after a pickup of 20 ft size, i.e., a trip {0, v, i, j, 0}, where
rv = 20, ri = rj = −20, is not allowed. Similarly, constraints (11) avoid that
a pickup and a delivery, both of 20 ft size, are consecutively served after a
delivery and a pickup, both of 20 ft size, i.e., a trip {0, q, v, i, j, 0}, where
rq = rj = −20, rv = ri = 20, is not permitted.

Constraints (12)-(13) guarantee that the maximum truck loading capac-
ity is never exceeded. In a trip, a customer i ∈ C with ri = 40 ft has to be
served as the last (14), and each customer i ∈ C with ri = −40 ft has to be
served as the first (15). A truck, after consecutively visiting two customers
i and j with ri = rj = 20 ft, has to return to the terminal (16). Finally,
constraints (17)-(18) define the decision variables nature.

5. A two-stage trip-based approach

In this section, the two-stage trip-based approach designed for solving
the MM-CDP-RDD is described, by exploiting the generation rules (Defini-
tion 1). The approach proposed works as in the following. A trip generation
procedure is firstly invoked (Section 5.1). In order to further reduce the
number of trips to manage, both feasibility and dominance rules are also
introduced. This way, the set Π of all feasible non-dominated trips is gener-
ated. Then, a Trip-based Integer Linear Programming formulation (T-ILP)
is solved by receiving Π as input (Section 5.2).
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5.1. Trip generator

From all the possible trips generated according to the rules introduced
in Section 3, only the feasible are kept, according to the following definition:

Definition 2: Feasible trip.
A trip π is feasible if and only if:

• tπ = dπ
v +

∑
i∈Cπ 2τi ≤ Tmax1 ;

• T̃π =
⋂
i∈Cπ Ti 6= ∅;

• The truck capacity Q is never exceeded.

Moreover, in order to reduce the number of trips to manage as far as possi-
ble, among the feasible ones, we maintain only the set Π of non-dominated
ones, according to the following definition:

Definition 3: Dominated trip.
Given two feasible trips π1, π2, the former dominates the latter if and only
if:

• Cπ1=Cπ2 ;

• dπ1 < dπ2 ;

Algorithm 1 outlines the trip generation procedure whose time complex-
ity, in the worst case, is O(|C|4|T |). It is worth noting that |T | is usually
much smaller than |C|. All details on the pseudo-codes of the routines im-
plemented and invoked by Algorithm 1 and on their time complexity are
given in Appendix A.

Algorithm 1 Trips Generator
Input: C, 0, dij∀i, j ∈ C ∪ {0},Ti, ri, τi∀i ∈ C, Tmax1 , Q, v.
Output: Π

1: Π := create()
2: π := create trip()
3: Cπ := ∅
4: totalT ime := ∅
5: dπ := ∅
6: tπ := ∅
7: days := T
8: len := ∅
9: l := 0

10: Π := IncreasedTrip(π,Cπ , dπ , tπ , totalT ime, days, len, l,Π)
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5.2. Trip-based Integer Linear Programming model

The Trip-based ILP model (T-ILP) receives as input the set Π of all fea-
sible non-dominated trips, generated through Algorithm 1. It is formulated
by introducing the following decision variables: zπ equal to 1 if trip π ∈ Π
is selected; 0 otherwise; ytπk equal to 1 if trip π ∈ Π is performed by truck
k ∈ K in period t ∈ T̃π.

The mathematical formulation is given in what follows.

min
∑
π∈Π

dπzπ (19)

∑
π∈Π

aiπzπ = 1 ∀i ∈ C (20)

∑
k∈K

∑
t∈T̃π

ytπk = zπ ∀π ∈ Π (21)

∑
π∈Π:t∈T̃π

tπy
t
πk ≤ Tmax1 ∀k ∈ K, ∀t ∈ T (22)

∑
π∈Π:t∈T̃π

tπy
t
πk +

∑
π∈Π:t∈T̃π

tπy
t+1
πk ≤ T

max
2 ∀k ∈ K, ∀t = 1, . . . , |T | − 1 (23)

∑
t∈T

∑
π∈Π:t∈T̃π

tπy
t
πk ≤ Tmax3 ∀k ∈ K (24)

zπ ∈ {0, 1} ∀π ∈ Π (25)

ytπk ∈ {0, 1} ∀π ∈ Π, ∀k ∈ K,∀t ∈ T (26)

The objective function (19) to be minimized represents the total travel
distance. Customers’ coverage is guaranteed by constraints (20), while con-
straints (21) logically link variables y and z, i.e., a trip π is selected if and
only if it is assigned to a truck in a period. Constraints (22)-(24) assure
that a truck cannot travel longer than Tmax1 , Tmax2 and Tmax3 , respectively,
in a period, in two consecutive periods and in the whole planning horizon.
Finally, constraints (25)-(26) define the variables’ nature.

6. Combinatorial Beneders’ Cuts approaches

Benders’ Decomposition (BD) is a successful and broadly applied exact
approach to solve Mixed Integer Programming (MIP) models introduced in
the pioneering work of Benders [4]. The core idea, which this approach is
based on, consists in fixing a set of variables, which make the MIP hard
to be solved, so that the problem can be strongly simplified. In the BD,
the problem is decomposed into a Master Problem (MP), in which only a
subset of the decision variables is considered and into a Slave Problem (SP),
containing the remaining variables. The MP and the SP are iteratively
solved in sequence.
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At each iteration, the MP is solved first, then, the SP is formulated by
fixing the variables’ values found by the MP, and solved for the remaining
variables. Based on the SP outcome, one or more cuts can be generated and
added to MP, preventing it from exploring specific areas of the search space.
In the classical application of BD to MIPs, the SP is a Linear Programming
(LP) problem, whose dual solution is exploited to derive cuts to be added
to the MP. In [22], BD has been generalized and extended to problems in
which the SP is not required to be an LP problem.

Logic Based Benders’ decomposition, introduced many decades later in
[27], is an extension of the classical BD in which, in the MP only the variables
that contribute directly to the objective function are considered, while the
others are relegated to the SP. This way, the SP becomes a pure feasibility
problem. Each time the SP is infeasible, one or more cuts can be generated
to cut off infeasible solutions from the MP solutions search space. As soon
as a feasible SP is detected, the overall solution obtained is proved to be
optimal.

A specific case of Logic Based Benders’ decomposition, named Combi-
natorial Benders’ decomposition, has been presented in [15]. This approach
is specifically suited for MIP models, involving binary variables and a large
number of logical implications through Big-M constraints. In this scenario,
each time a given combination of the MP variables yields to an infeasible
SP, a Combinatorial Benders’ Cut (CBC) is added, forcing at least one of
the variables equal to 1 in the current MP optimal solution to be 0. If the
number of variables equal to 1 in the MP optimal solution is large, the de-
rived cut may be very weak. Stronger cuts can be obtained by identifying
a subset of variables responsible for the infeasibility through the search of
the Minimum Infeasible Set (MIS), which can be determined through either
an exact or a heuristic approach. Such cuts are stronger since they allow
cutting off from the MP search space several solutions at a time, strongly
speeding up the convergence towards an optimal solution. However, the al-
gorithm convergence is always guaranteed even by adopting only standard
CBC, cutting off one solution at a time as proved in [15].

In the last decade, CBC has been successfully applied to real problems
arising in different contexts. The first application is described in [3], where
a toll facilities location problem is addressed. In [16], an exact CBC-based
approach for the Strip Packing problem is proposed. Several applications
in the field of Port Logistics are reported in the literature, e.g., quayside
operations at container terminals are studied in [10] and [14], and in [49],
the lock scheduling problem is addressed, instead. Other innovative appli-
cations can be found in health care, regarding beam intensity modulation in
radiotherapy [47], in production, where assembly line balancing is studied
[1] and in jobs allocation in computer clusters [33].

All the above cited problems share a common structure where the vari-
ables can be partitioned into two subsets. The first one, involved in the MP,

14



contains all the variables directly contributing to the objective function,
while the second one, containing variables only responsible for the solution
feasibility, is involved in the SP.

In this section, we propose several CBC approaches in which we try to
speed up the standard CBC method both providing stronger cuts and adding
valid inequalities to the MP.

6.1. CBC1

The first developed CBC approach (CBC1) is based on the classical
framework of [15]. The master problem, MP1, aims at finding the optimal
subset of trips covering all the customers at minimum cost and, therefore it
becomes a pure Set Partitioning problem, quickly solved to optimality.

MP1:
min

∑
π∈Π

dπzπ (27)

∑
π∈Π

aiπzπ = 1 ∀i ∈ C (28)

zπ ∈ {0, 1} ∀π ∈ Π (29)

The objective function (27) to be minimized represents the total travel
distance as in the T-ILP model, while constraints (28) and (29) correspond
to constraints (20) and (25), respectively.

The slave problem, SP1, checks if a feasible assignment of those trips
to both periods and trucks exists such that the duration constraints are re-
spected, becoming a pure feasibility problem.

SP1: ∑
k∈K

∑
t∈T̃π

ytπk = z?π ∀π ∈ Π (30)

∑
π∈Π:t∈T̃π

tπy
t
πk ≤ Tmax1 ∀k ∈ K, ∀t ∈ T (31)

∑
π∈Π:t∈T̃π

tπy
t
πk +

∑
π∈Π:t∈T̃π

tπy
t+1
πk ≤ T

max
2 ∀k ∈ K, ∀t = 1, . . . , |T | − 1 (32)

∑
t∈T

∑
π∈Π:t∈T̃π

tπy
t
πk ≤ Tmax3 ∀k ∈ K (33)

ytπk ∈ {0, 1} ∀π ∈ Π, ∀k ∈ K, ∀t ∈ T (34)

where z?π is equal to 1 if trip π has been selected in the MP1 optimal
solution; 0 otherwise. Constraints (30) imply that if a trip has been selected
by MP1, it must be assigned to exactly one period and one truck, while
constraints (31)-(34) correspond to constraints (22)-(24) and (26) of the
T-ILP model.
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MP1 and SP1 are iteratively solved in sequence. If SP1 is infeasible,
then a cut is added to MP1, imposing that at least one of the trips selected
by MP1 would not be selected in the next iterations:∑

π∈Π?

zπ ≤ |Π?| − 1 (35)

where Π? is the set of trips selected by MP1 at the current iteration and
|Π?| indicates the number of trips belonging to the set Π?.

The procedure is repeated until SP1 becomes feasible. As soon as a
feasible solution for SP1 is found, it is proved to be optimal.

The main drawback of CBC1 is that if the number of trips selected
by MP1 is very large, the cuts may become too weak, and, therefore, the
convergence toward an optimal solution may be slow.

6.2. CBC2

In the second CBC approach proposed, (CBC2), we focus our attention
on the identification of a subset of the selected trips which is responsible
for the SP infeasibility. In particular, we focus on the selected trips which
can be performed only in a given subset of consecutive periods S and whose
duration imposes that they cannot be paired among them, thus requiring a
truck each. The number of selected trips of this type cannot be greater than
the number of trucks multiplied by the number of periods in S, in order to
obtain a feasible solution.

Both the MP and the SP, namely MP2 and SP2, respectively, exactly
correspond to MP1 and SP1. Each time SP2 turns out to be infeasible, for
all the periods in S, we check if the number of the selected trips that can be
performed only in those periods and cannot be paired with others, is greater
than |S|·|K|. If this happens, we add to MP2, beyond the traditional cut
(35), the following cut: ∑

π∈Π?
S

zπ ≤ |S|·|K| (36)

where Π?
S represents the set of trips selected by MP2, that can be per-

formed only in periods belonging to S and cannot be paired among them.
The cut (36) becomes very useful when trips are reasonably long with re-
spect to the maximum truck usage duration per period, Tmax1 and when the
set of periods in which a customer can be served is smaller than the total
number of periods, |T |, e.g., when the number of trips π for which |T̃π| = 1
is high. In fact, the smaller |S|, the stronger the related cut is.

6.3. CBC3

The third CBC approach designed, (CBC3), follows the same core idea
of CBC2. However, instead of dynamically adding constraints on the maxi-
mum number of non-combinable trips per period, whenever this restriction
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is violated by the current MP, now, these constraints are directly imposed
in the MP from the beginning, acting as valid inequalities. Therefore, MP3
can be obtained by adding to MP1 the following valid inequalities:∑

π∈ΠS

zπ ≤ |S|·|K| ∀S = {t1, t1 + 1, . . . , t2} ⊆ T (37)

where S is every subset of consecutive periods selected over T and ΠS is the
set of all the trips that can be performed only in periods belonging to S and
cannot be paired among them. SP3 exactly corresponds to SP1.

It is worth noting that the total number of valid inequalities (37) only
increases in a quadratic way in function of |T |, since the total number of
subsets S of consecutive periods, selected over T , is |T |− |S|+ 1 and |S| can
vary from 1 to |T |.

6.4. CBC4

In the fourth CBC approach, (CBC4), we pursue a completely different
philosophy to identify stronger cuts. MP4 and SP4 exactly correspond to
MP1 and SP1, respectively. The main difference is that whenever SP4 turns
out to be infeasible, i.e., no feasible solution exists with all the |Π?| selected
by the MP, we try to compute the smallest integer value α∗ for which a
feasible solution can be obtained containing at most |Π?| − α∗ trips. This
approach is able to find very strong cuts and, consequently, to reduce the
number of iterations needed to reach optimality. However, the computa-
tional time of each iteration may become slightly higher than that required
by the other CBC approaches. It is worth noting that the greater the value
of α∗, the stronger the cut, but the longer the computational time required
to solve the feasibility check problem.

More specifically, MP4 and SP4 are iteratively solved in sequence. When-
ever SP4 turns out to be infeasible, a Feasibility Check Problem, (FCP4),
is formulated. FCP4 corresponds to SP4 except for the fact that the con-
straints (30) are replaced by the following ones:∑

k∈K

∑
t∈T̃π

ytπk = zπ ∀π ∈ Π (38)

∑
π∈Π?

zπ ≤ |Π?| − α (39)

zπ ∈ {0, 1} ∀π ∈ Π (40)

with α initially equal to 2. While FCP4 remains infeasible, we increase
α by 1 and reiterate until FCP4 turns out to be feasible. In this way, we
exactly identify the maximum number of trips, α? = |Π?| − α, among those
selected by MP4, that can be selected in a feasible solution. Therefore, we
can replace the classical CBC (35), to be added to the MP, by the following
stronger cut:
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∑
π∈Π?

zπ ≤ α? (41)

The CBC4 pseudo-code is in Algorithm 2.

Algorithm 2 CBC4
1: Solve MP4
2: Set, in SP4, the z variables to be equal to the optimal values found by MP4
3: Solve SP4
4: while SP4 is infeasible do
5: Set α = 2
6: Solve FCP4
7: while FCP4 is infeasible do
8: Set α = α+ 1
9: Solve FCP4

10: end while
11: Add constraint (41) to MP4
12: Solve MP4
13: Set, in SP4, the z variables to be equal to the optimal values found by MP4
14: Solve SP4
15: end while
16: Return the MP4 optimal solution

6.5. CBC5

The fifth CBC approach, (CBC5), follows a similar idea to that of CBC2.
However, instead of working on the maximum number of non-combinable
trips, that can be performed only in a given period t, which can be selected by
the MP, it deals with the maximum total duration of the selected trips that
can be performed only in a given period t. We then formulate two Feasibility
Check Problems whenever the slave problem is infeasible. The first one,
FCP 1

5 , checks, for each period t, if the total duration of the trips that can
be performed only in t, selected by MP5 (indicated by Π?

t ), does not exceed
Tmax1 , multiplied by the number of trucks, |K|. The same consideration is
applied for each pair of consecutive periods t, t+ 1 in the second Feasibility
Check Problem, (FCP 2

5 ). In fact, the total duration of the trips that can be
performed only in the subset of periods t, t+ 1, selected by MP5 (indicated
by Π?

t,t+1), must not exceed the maximum allowed duration Tmax2 , multiplied

by |K|. If FCP 1
5 turns out to be infeasible, the following cut is added,

together with the classical CBC, (35):∑
π∈Π?t

zπ ≤ |Π?
t | − 1 ∀t ∈ T (42)

if FCP 2
5 turns out to be infeasible, the following cut is added, together

with the classical CBC, (35):
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∑
π∈Π?t,t+1

zπ ≤ |Π?
t,t+1| − 1 ∀t = 1, . . . , |T | − 1 (43)

The CBC5 pseudo-code is in Algorithm 3.

Algorithm 3 CBC5
1: Solve MP5
2: Set, in SP5, the z variables to be equal to the optimal values found by MP5
3: Solve SP5
4: while SP5 is infeasible do
5: Solve FCP 1

5

6: if FCP 1
5 is infeasible then

7: Add constraint (42) to MP5
8: end if
9: Solve FCP 2

5

10: if FCP 2
5 is infeasible then

11: Add constraint (43) to MP5
12: end if
13: Add constraint (35) to MP5
14: Solve MP5
15: Set, in SP5, the z variables to be equal to the optimal values found by MP5
16: Solve SP5
17: end while
18: Return the MP5 optimal solution

6.6. CBC6

Finally, the sixth CBC approach, CBC6, is based on the same idea as
CBC5 but all the cuts (42) and (43) are directly added to the MP, at the
beginning of the search process. According to this, MP6 is equal to MP1
with the additional constraints:∑

π∈Πt

tπzπ ≤ |K| · Tmax1 ∀t ∈ T (44)

∑
π∈Πt,t+1

tπzπ ≤ |K| · Tmax2 ∀t = 1, . . . , |T | − 1 (45)

where Πt,t+1 indicates the set of trips that can be performed only in the
pairs of periods (t,t+1). SP6 exactly corresponds to SP1. Both CBC6 and
CBC5 are particularly useful when |T̃π| is small, but unlike what happens in
CBC2 and CBC3, they are effective even when trips are short with respect
to Tmax1 , i.e., when the number of trips which can be performed by the same
truck in a period is high.

7. Computational results

In this section, we describe the experimental campaign carried out on
several small/medium/large-sized instances, generated ad hoc for the MM-
CDP-RDD. In particular, in Section 7.1, the procedure for generating the
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sets of instances is detailed, while in Section 7.2, numerical comparisons
among the proposed CBC approaches and the two ILP formulations are
discussed. All the proposed approaches were implemented in Java (in the
Eclipse environment) and all the ILP models, including those of the CBC
approaches, were solved by ILOGs CPLEX Concert Technology (version
12.9). It is noteworthy that we employed CPLEX default settings and let
it use all cores/threads available. The experiments were run on a computer
with a 64-bit operating system, 2.39 GHz processor and 32 GB of RAM.

7.1. Problem instances generation and parameter setting

In order to generate significant instances for the MM-CDP-RDD, the
dataset proposed for the VRP, available at https://www.sintef.no/projectweb/
top/vrptw/, was considered. In particular, we used the instance sets with
25 and 100 customers proposed by Solomon and the one with 200 customers
of Gehring & Homberger.

A planning horizon of one week, excluding Sunday, was considered, i.e.,
|T | = 6. The number of trucks available is given as input and may change
instance by instance. It consists in the minimum number of trucks that
makes the instance feasible. It is determined by running the T-ILP with
different fleet sizes, starting from a lower bound and increasing it of one
unit until the instance becomes feasible. The lower bound is computed as
the maximum of two terms. The first one is the ceiling of the ratio between
the duration of all the trips serving pickup or delivery requests of 40 ft
containers whose deadline is the first period and Tmax1 . The second term is
the ceiling of the ratio between the duration of all the trips serving pickup
or delivery requests of 40 ft containers and Tmax3 . The parameters Tmax1 ,
Tmax2 and Tmax3 were set to 11, 16 and 40 hours, respectively. These values
come from a real application involving a transportation company operating
in the North-West of Italy, which was subject of a study developed by one of
the authors of the paper. More details about the company cannot be shared
due to a non disclosure agreement. The same values were used also in [34].
The truck loading capacity and the truck average speed were set to 40 ft
and 60 km/h. The service times for 20 ft and 40 ft sized containers were set
to 15 and 30 minutes, respectively.

For generating the RDDs at customers, the procedure proposed in [2]
was used. Initializing t equal to 1, the release date of a customer was set to
t. The t value was increased by 1 every time a new customer was considered
until it reached |T | (customers are considered sequentially). After which,
t was again set to 1. The procedure ends when all customers have been
considered. The due date of a customer was determined as the release date
plus an integer parameter λ that can vary in [0, 2]. For feasibility reasons,
if the release date of customer i is 6, then Ti = {6}, while if the release date
of customer j is 5, with λ = 2, then Tj = {5, 6}. The distance between each
pair of customers and between each customer and the terminal was computed
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using the Euclidean formulas, considering the coordinates indicated in the
original files.

The demand of each customer was set as in the following. We first
fixed the probability β of having a 40 ft sized demand and the probability
γ of having a pickup request. Therefore, for each customer, two integer
numbers, n′ and n′′, were randomly generated with uniform probability,
both in [0, 1]. If, n′ ≤ β, then the request size was set to 40 ft; otherwise, to
20 ft. Moreover, if n′′ ≤ γ, the customer request was a pickup; otherwise, a
delivery.

Finally, for each of the original six sets with 25, 100 and 200 customers,
we randomly took one instance. This way, by varying λ in {0, 1, 2}, β in
{0.25, 0.50, 0.75} and γ in {0.25, 0.50, 0.75}, we generated 162 instances with
25, 100 and 200 customers, for a total number of 486 instances.

7.2. Comparisons among all the solution methods

In this section, we compare the results obtained by the proposed CBC
approaches and the ones detected by both A-ILP and T-ILP. While the
detailed results are reported in Appendix B, in the following subsections,
we summarize them reporting their average values according to the instance
sizes (25, 100 and 200 customers), the instance types (clustered C, random
R and a mix of the two, RC) and different values of the parameters β, γ
and λ.

7.2.1. Results for instances with 25 customers

In this section, we discuss the results obtained by A-ILP and T-ILP on
the instances with 25 customers. We do not report the results obtained
by the CBC approaches since, due to the very small size of the instances,
T-ILP shows the best performance on average. In the following tables,
column |K| indicates the average number of trucks, columns CPU indicate
the computational time required, columns NOS the number of instances
where no optimal solution has been detected in the given CPU time limit
(one hour) and TD denotes the total travel distance.

In particular, Table 2 compares the average values of A-ILP and T-ILP
for each of the three subsets of instances (C, R and RC). In all subsets, both
the approaches find the same average travel distance that increases passing
from a subset to the next one. However, there is a significant difference in the
average computational time, being about 129 seconds for the A-ILP against
about 0.6 seconds required by T-ILP. Moreover, the average computational
time required by T-ILP does not depend on the particular instance subset,
which is always approximately equal to 0.6 seconds. Whereas A-ILP requires
by far longer average CPU time for subsets C and RC compared to subset
R and in two instances of the former it is even not able to detect the optimal
solution. This may be due to the fact that in the instances of C and RC
there may be more feasible trips.
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Table 2: Average values on instances with 25 customers grouped by subset
A-ILP T-ILP

Subset |K| CPU NOS TD CPU NOS
C 1 237.44 2 806.17 0.60 0
R 1 5.95 0 941.95 0.59 0

RC 2 142.44 2 1267.64 0.62 0

Table 3 shows the results after increasing the probability of having a 40
ft sized demand. We observe that, while the average computational time
required by T-ILP does not depend on the value of β, being between about
0.5 and 0.6 seconds, for A-ILP it is significantly larger for β = 0.25 and
in this case there are even 4 instances where it is not possible to find the
optimal solution. This may be due to the fact that in this case the number of
feasible solutions increases since in each trip more customers can be served
compared to the cases where β is larger.

Table 4 shows the results after increasing the probability of having a
pickup request. The best performance in terms of average total distance is
reached in the case in which there are half import and half export customers.
This behaviour may be due to the fact that when the import and export
customers are balanced it is possible to save travel distance, serving first the
import customers and then the export customers in the same trip. Concern-
ing the CPU time, it is again possible to observe a more stable behaviour
of T-ILP compared to A-ILP. Indeed, for the latter, the instances with less
pickup requests (γ = 0.25, 0.50) are harder to solve, requiring on average a
CPU time almost triple compared to the one for γ = 0.75. They include
even 4 instances where it is not possible to detect the optimal solution.
Finally, Table 5 shows the results after increasing the number of periods
in which a customer can be served. In particular, it is remarkable that a
significant saving on the average total distance (about 20%) is obtained by
passing from λ = 0 (i.e., due and release dates coincide) to λ = 1 (i.e., due
and release dates differ by one day). With λ = 2 (i.e., due and release dates
differ by two days), the marginal improvement on the average total distance
is only about 6%. This also justifies why it is not significant to increase
the λ parameter by more than 2. Concerning the CPU time, one can again
observe that T-ILP is more stable compared to A-ILP. Indeed, for the latter,
the instances with λ = 2 are harder to solve requiring an average CPU time
that is almost 30 times larger than the one for λ = 1. They include even
4 instances where it is not possible to detect the optimal solution. This
behaviour is due to the fact that the larger λ is, the larger is the number of
feasible solutions. Whereas T-ILP does not suffer of this problem thanks to
the dominance rules applied in the trip generation.

7.2.2. Results for instances with 100 customers

In this section, the results obtained by the two ILP models are com-
pared with those found by the CBC approaches, for the instances with 100
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Table 3: Average values on instances with 25 customers grouped by β parameter
A-ILP T-ILP

β |K| CPU NOS TD CPU NOS
0.25 1 379.56 4 904.91 0.73 0
0.50 1 5.81 0 1011.10 0.60 0
0.75 1 0.45 0 1099.75 0.48 0

Table 4: Average values on instances with 25 customers grouped by γ parameter
A-ILP T-ILP

γ |K| CPU NOS TD CPU NOS
0.25 1 201.67 2 1036.79 0.55 0
0.50 1 139.86 2 945.18 0.62 0
0.75 1 44.29 0 1033.79 0.62 0

customers. In particular, the average number of trips generated is almost
equal to 19, 143 in an average CPU time of about 1.25 seconds, while the
number of cuts added is about 11 in CBC1, CBC2 and CBC3, 1 in CBC4
and CBC6 and 4 in CBC5. In all the CBC approaches, the average percent-
age of the total CPU time necessary to detect the cuts is negligible, being
always lower than 0.023%. Moreover, in the following tables, the average
CPU time (header CPU ), the number of instances where no optimal solu-
tion has been detected (header NOS ) and the average number of cuts added
(header CUT ) are reported, for each CBC approach.

Table 6 compares the results of A-ILP, T-ILP and CBC approaches for
each of the three subsets of instances. For all the instance types, in almost
the same number of cases, A-ILP is not able to find the optimal solution in
the given CPU time, while T-ILP and CBC6 always can and the other CBCs
fail only in very few instances. Concerning the computational times, T-ILP
is more stable since its average computational time varies just between 23
and 26 seconds depending on the subset of instances, while CBCs are by far
faster in the subset RC compared to the other subsets, especially for CBC1
and CBC2 where the improvement is about 90% and it is smaller for CBC6
being about 60% compared to subset C and almost insignificant compared
to R. This behaviour is due to the fact that the average number of cuts
generated is by far lower in the subset RC.

Table 7 shows the results after increasing the probability of having 40
ft sized demand. We observe that, for all methods, both the number of in-
stances where no optimal solution has been detected and the average com-
putational time significantly decrease as β increases. This behaviour is due
to the fact that the larger β is, the larger is the number of 40 ft containers
considered and the smaller is the number of feasible trips that are given as

Table 5: Average values on instances with 25 customers grouped by λ parameter
A-ILP T-ILP

λ |K| CPU NOS TD CPU NOS
0 1 0.21 0 1151.13 0.41 0
1 1 13.98 0 957.47 0.58 0
2 1 371.63 4 907.16 0.81 0
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input in T-ILP and CBCs or evaluated in the A-ILP.
Table 8 shows the results after increasing the probability of having a

pickup request. Similarly to the results for the instances with 25 customers,
the best average total distance is reached in the case where there are half
import and half export customers (i.e., γ = 0.50). Concerning the CPU
time, for A-ILP it is almost constant on the three values of γ, for T-ILP it
is about 15% smaller for γ = 0.5 than for the other two values of γ, whereas
for CBCs it is by far greater for γ = 0.5. Also the indicator NOS varies
accordingly.

Finally, Table 9 shows the results after increasing the number of periods
in which a customer can be served. Like for the instances with 25 customers,
we can observe that the average total distance significantly decreases passing
from λ = 0 to λ = 1 (in this case, by about 11%) and by far less from λ = 1
to λ = 2 (by about 3%). From the CPU time and NOS values, we can
deduce that the instances with λ = 1 and especially those with λ = 2 are
harder to solve for all the methods.

7.2.3. Results for instances with 200 customers

In this section, we discuss a comparison between the results obtained by
T-ILP model and those of CBC6 in the instances with 200 customers, since
the latter has provided the best performances compared to the other CBC
approaches, in the previous set of instances.

Since in this new set of instances, T-ILP and CBC6 are not always able
to detect the optimal solution, we report for each of them the column TD
indicating the average travel distance only in the instances where they can
find the optimal solution. Also, in this case we do not report the average
percentage of the total CPU time necessary to detect the cuts since it is
again negligible being always lower than 0.0001%.

From Table 10 we can observe that for both T-ILP and CBC6 the subsets
C and R are more challenging than RC, since in each of them the number of
cases where the methods are not able to detect an optimal solution is about
double compared to RC and the average CPU time is about 26% and 72%
larger for T-ILP and CBC6, respectively. Moreover, CBC6 is by far faster
than T-ILP with an average relative percentage improvement of CPU time
equal to about 65%.

From Table 11 we can observe that CBC6 is by far faster than T-ILP
for β = 0.25, with a relative percentage improvement of CPU time equal
to about 71%, while the percentage decreases to 67% for β = 0.50. For
β = 0.75, CBC6 becomes slightly slower than T-ILP. This behaviour can be
explained by the fact that in the latter case there are less feasible trips for
the T-ILP making it easier to be solved. Moreover, as already observed for
the instances with 25 and 100 customers, the average total distance increases
as β increases.
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Table 10: Average values on instances with 200 customers grouped by subset
T-ILP CBC6

Subset |K| TD CPU NOS TD CPU NOS CUT
C 9 12217.27 986.57 8 11975.45 344.55 4 4.72
R 10 12671.91 894.42 9 12431.27 358.56 4 4.59

RC 9 12523.97 731.20 5 12347.50 205.13 2 0.17

Table 11: Average values on instances with 200 customers grouped by β parameter
T-ILP CBC6

β |K| TD CPU NOS TD CPU NOS CUT
0.25 8 10698.26 1735.32 18 10502.81 503.69 5 0.91
0.50 10 12374.64 723.40 4 12313.79 239.70 3 3.43
0.75 11 13741.40 153.47 0 13841.64 164.86 2 5.15

From Table 12 we can observe that CBC6 has a large relative percentage
improvement of CPU time compared to T-ILP for γ = 0.25 and γ = 0.75,
being in both cases equal to about 89%, while for γ = 0.50 it decreases to
38%. Unlike the instances with 100 customers, for T-ILP the CPU time is
almost double for γ = 0.5 than for the other two values of γ and for the CBC6
it is even 10 times greater. Also, the indicator NOS varies accordingly.
This behaviour may be due to the fact that in this case the number of
feasible solutions, i.e., feasible trips, is larger compared to when γ = 0.25 or
γ = 0.75. Indeed, according to Definition 1, there are only 2 trips of type 2-
customer that serve either only pickup requests or only delivery requests over
7 possible trips. Furthermore, there are not 3-customer trips or 4-customer
trips with this feature. Moreover, similarly to the results for the instances
with 25 and 100 customers, the best average total distance is reached in the
case where there are half import and half export customers (i.e., γ = 0.50).

Finally, from Table 13 we can observe that CBC6 has a large relative
percentage improvement of CPU time compared to T-ILP for λ = 1 and
λ = 0, being about 90% and 85%, respectively. For λ = 2 it decreases to
55%. Moreover, like for the instances with 25 and 100 customers, the av-
erage total distance decreases passing from λ = 0 to λ = 1, in this case by
about 8%. Whereas the total distance increases by about 2% from λ = 1
to λ = 2 since in this case there are several instances that cannot be solved
to optimality. Indeed, 91% of the instances that cannot be solved to opti-
mality by T-ILP are concentrated to the case λ = 2 and all for CBC6, thus
showing that this case is harder to solve. However, if for λ = 1 we compute
the average total distance only in the instances that are solved to optimality
for λ = 2, than it is equal to 12960.27. Therefore, for λ = 2 we improve the
latter value by about 7%.

7.3. Impact of the valid inequalities on T-ILP and comparison with CBC6

In this section, the performances of both T-ILP and CBC6 are compared
with those of three variants of T-ILP obtained by adding valid inequalities.
In particular, these three variants are obtained by adding constraints (37)
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Table 12: Average values on instances with 200 customers grouped by γ parameter
T-ILP CBC6

γ |K| TD CPU NOS TD CPU NOS CUT
0.25 10 13203.15 699.60 5 12930.95 79.89 0 0.00
0.50 9 10992.04 1218.32 12 10782.15 754.43 10 9.48
0.75 10 13005.82 694.28 5 12772.60 73.92 0 0.00

Table 13: Average values on instances with 200 customers grouped by λ parameter
T-ILP CBC6

λ |K| TD CPU NOS TD CPU NOS CUT
0 10 12792.72 46.05 0 12792.72 7.02 0 0.00
1 9 11953.93 714.27 2 11825.63 69.01 0 0.06
2 9 12749.83 1851.88 20 12113.99 832.21 10 9.43

only, (44)-(45) or (37)-(44)-(45), respectively. The goal of this analysis is
to show that using the same constraints in a CBC framework is much more
efficient than directly adding them to T-ILP as valid inequalities. Since com-
putational times required by T-ILP to solve instances with 25 customers are
already very small, it could be difficult to obtain an improvement adding
valid inequalities. Therefore, we report the results obtained in larger in-
stances with 100 and 200 customers. The results in tables 14-21 are dis-
cussed considering the instance types (R, C and RC ) and by varying the
value of the three parameters (β, γ and λ).

Globally, constraints (37) considerably slow down the model either if
added singularly or in combination with constraints (44)-(45). This be-
haviour is more evident on the instances with 200 customers (Tables 18-21)
for which adding them singularly or in combination with (44)-(45) yields a
very strong negative impact on computational times required to solve the
model to optimality.

In contrast, on the instances with 100 customers (Tables 14-17), adding
constraints (44)-(45) in T-ILP produces a very little speed up (2.32%) against
the very large improvement (66.61%) provided by using them in a CBC
framework (CBC6). On the instances with 200 customers, instead, adding
them in T-ILP fails to provide a speed-up too, yielding slightly higher com-
putational times (0.34%) on average. In contrast, using the same constraints
in a CBC framework (CBC6) reduces the computational times by 65%.

However, on the instances with 200 customers, the improvement pro-
vided by the addition of valid inequalities is not systematic for both the
instance layouts and values of β, γ and λ, differently from what happens in
100 customers instances. Constraints (44)-(45), used as valid inequalities,
are effective in R and C type instances but not for RC ones. Similarly, they
are effective only for β = 0.5 and for γ = 0.75 while they yield larger com-
putational times for the other values of both parameters. For what concerns
the parameter λ, all the tested valid inequalities provide a slight speed-up
when λ = 0. With λ = 1, constraints (37) yield a very strong negative
impact on computational times required to solve the model to optimality,
either if added singularly or in combination with (44)-(45). In contrast, con-
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Table 14: Average values on instances with 100 customers grouped by subset
T-ILP T-ILP+(37) T-ILP+(44)+(45) T-ILP+(37)+(44)+(45) CBC6

Subset |K| CPU CPU CPU CPU CPU
C 4 25.69 35.94 24.72 34.99 13.01
R 4 23.21 32.75 22.10 32.15 6.46

RC 4 24.62 42.18 24.98 42.49 5.06
AVG 4 24.50 36.96 23.93 36.54 8.18

Table 15: Average values on instances with 100 customers grouped by β parameter
T-ILP T-ILP+(37) T-ILP+(44)+(45) T-ILP+(37)+(44)+(45) CBC6

β |K| CPU CPU CPU CPU CPU
0.25 3 55.31 90.26 53.73 89.08 12.06
0.50 4 15.49 17.92 15.26 17.69 10.68
0.75 4 2.71 2.70 2.81 2.86 1.79
AVG 4 24.50 36.96 23.93 36.54 8.18

straints (44)-(45) provide a small speed-up. Finally, in instances with λ = 2,
we report a negative effect of all the tested valid inequalities. This effect is
small for constraints (44)-(45) but it is huge for constraints (37). CBC6 is
instead faster than the model for all the values of the analyzed parameters
except for β = 0.75, for which it is slightly slower (around 7%).

In conclusion, the results in tables 14-21 clearly show the advantage of
adopting the proposed decomposition approach.

8. Conclusions and future work

In this paper, we introduced a new variant of the Container Drayage
Problem (CDP), i.e., the Multi-period Multi-trip CDP with Release and
Due Dates (MM-CDP-RDD), in which the planning horizon is divided into
discrete time periods (days), each truck can perform more than one trip in
a period and customers have to be served in specific periods (Release and
Due Dates, RDDs).

We addressed the MM-CDP-RDD through exact approaches. In particu-
lar, we proposed an Arc-based Integer Linear Programming (A-ILP) model,
representing the problem on a direct graph, properly pre-processed in order
to remove infeasible arcs considering both the truck load capacity and the
RDDs. Due to both the maximum truck load capacity and the RDDs, the
number of feasible trips may be very limited. Therefore, we also designed a
Trip-based solution approach where all the feasible non-dominated trips are
first determined and then, a Trip-based ILP (T-ILP) model is solved. More-
over, because the number of feasible non-dominated trips may become high

Table 16: Average values on instances with 100 customers grouped by γ parameter
T-ILP T-ILP+(37) T-ILP+(44)+(45) T-ILP+(37)+(44)+(45) CBC6

γ |K| CPU CPU CPU CPU CPU
0.25 4 15.59 19.99 15.42 19.83 4.08
0.50 4 34.52 55.96 32.96 54.94 15.33
0.75 4 23.40 34.93 23.42 34.85 5.13
AVG 4 24.50 36.96 23.93 36.54 8.18
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Table 17: Average values on instances with 100 customers grouped by λ parameter
T-ILP T-ILP+(37) T-ILP+(44)+(45) T-ILP+(37)+(44)+(45) CBC6

λ |K| CPU CPU CPU CPU CPU
0 4 2.67 2.57 3.02 2.86 2.36
1 4 13.81 16.40 13.62 16.41 3.88
2 4 57.04 91.91 55.16 90.36 18.29

AVG 4 24.50 36.96 23.93 36.54 8.18

Table 18: Average values on instances with 200 customers grouped by subset
T-ILP T-ILP+(37) T-ILP+(44)+(45) T-ILP+(37)+(44)+(45) CBC6

Subset |K| CPU CPU CPU CPU CPU
C 9 986.57 5722.13 923.29 5104.50 344.55
R 10 894.42 5580.44 871.11 5605.92 358.56

RC 9 731.20 3566.02 826.56 3969.91 205.13
AVG 9 870.73 4956.20 873.65 4893.45 302.75

Table 19: Average values on instances with 200 customers grouped by β parameter
T-ILP T-ILP+(37) T-ILP+(44)+(45) T-ILP+(37)+(44)+(45) CBC6

β |K| CPU CPU CPU CPU CPU
0.25 8 1735.32 13701.76 1801.83 13478.52 503.69
0.50 10 723.40 952.72 624.17 999.04 239.70
0.75 11 153.47 214.11 194.96 202.78 164.86
AVG 10 870.73 4956.20 873.65 4893.45 302.75

Table 20: Average values on instances with 200 customers grouped by γ parameter
T-ILP T-ILP+(37) T-ILP+(44)+(45) T-ILP+(37)+(44)+(45) CBC6

γ |K| CPU CPU CPU CPU CPU
0.25 10 699.60 4000.76 748.65 3519.35 79.89
0.50 9 1218.32 7584.07 1225.35 8299.77 754.43
0.75 10 694.28 3283.76 646.96 2861.22 73.92
AVG 10 870.73 4956.20 873.65 4893.45 302.75

Table 21: Average values on instances with 200 customers grouped by λ parameter
T-ILP T-ILP+(37) T-ILP+(44)+(45) T-ILP+(37)+(44)+(45) CBC6

λ |K| CPU CPU CPU CPU CPU
0 10 46.05 46.33 35.12 41.89 7.02
1 9 714.27 1437.72 656.31 1307.17 69.01
2 9 1851.88 13384.55 1929.53 13331.28 832.21

AVG 9 870.73 4956.20 873.65 4893.45 302.75
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in medium/large-sized instances, we also proposed six different Combinato-
rial Benders’ Cuts (CBC) approaches for efficiently solving the T-ILP model,
by defining, beyond the traditional CBC, ad hoc both valid inequalities and
stronger cuts.

The proposed approaches were tested on 486 instances, with a different
number of customers (25, 100 and 200), derived from those proposed for
the VRP. In 25-customers instances, the T-ILP model outperformed all the
other approaches including the A-ILP model that reached the CPU time
limit in 4 cases. In 100-customers instances, on average, the sixth CBC
method (CBC6) outperformed the others, although it is shown that, instance
by instance, it did not always dominate the others. In the instances with
200 customers, CBC6 strongly outperformed the T-ILP model closing to
optimality almost all the instances in an average CPU time that is about
65% less than that required by the T-ILP model (302.75 vs 870.73 seconds).
Finally, we compared the results of both the T-ILP model and the CBC6
with those of three variants of the T-ILP model obtained by adding valid
inequalities. These three new variants resulted to be strongly outperformed
by the CBC6 and only one of them obtained comparable results with those
of the T-ILP model.

Future developments on this subject could include the extension of the
multi-period multi-trip CDP to the CDP with Time Windows (TWs). This
problem will become much more complex to solve because the T-ILP model
will be not anymore a packing based formulation but a scheduling based one.
In fact, when service time windows are addressed, it becomes significant not
only the assignment of trips to vehicles, but also the order in which the trips
are carried out. From a CBC point of view, the further complexity added
by the introduction of TWs could be managed by the SP problem, letting
unchanged the MP. Another possible extension could address different deliv-
ery strategies, as the stay with policy, in which the driver waits at customer
location until the container is filled/emptied. This will only impact on the
feasible non-dominated trips generation routine, but not on the T-ILP nor
on the CBC approach. From a methodological point of view, the proposed
CBCs can be applied to other combined vehicle routing and scheduling prob-
lems. Furthermore, it is worth noting that our exact approach can be easily
turned into a heuristic method, providing to the model only a subset of the
feasible non-dominated trips.
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Appendix A. Pseudo-codes and their computational complexity

In this Appendix, the pseudo-codes of the routines implemented and
invoked by Algorithm 1 are described. Moreover, details on their compu-
tational complexity are also given. The set of feasible and non-dominated
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trips Π is implemented as a hash table data structure [18] to make the im-
plementation of the Dominated routine more efficient. The key of Π is a
string, i.e., the trip id. In fact, the routine ID (invoked in Algorithm 4)
receives a trip π and returns its id defined as in the following. The ids of
the customers served in π are first converted into a string. The terminal id
0 is then added as the first and the last character of the string. This string
represents the identifier of the trip, generated by following the customer ids
in a lexicographic way. For example, if the trip serves the customers {i, j, k}
then its identifier becomes the string ′0ijk0′. This way, the id of the trip
{k, i, j} coincides with the id of the trip {i, j, k}. Since, in the worst case,
a trip π can serve 4 customers, the time complexity of the ID routine is
constant, being at most 4log4.

The routine create initializes the hash map Π and the routine createTrip
creates a trip without customers π := {0, 0}. Then, the set of customers
served in π, i.e., Cπ is empty and the set of periods (days) in which the
trip can be performed is initially T . The distance and the duration of the
trip are set to zero as well as the parameter totalT ime counting the service
times of the customers served in the trip. The parameter len denotes the
number of customers currently served in the trip and it is initially set to
zero. Finally, the parameter l identifies the last customer served in the trip
and it is initially set to the terminal.

Then, the recursive routine IncreasedTrip is invoked for determining all
the feasible non-dominated trips of increasing length. It is worth remarking
that the length of a trip represents the number of customers served. Given
a feasible non-dominated trip π, with distance dπ, duration tπ, periods days
in which it can be performed, set of its customers Cπ and length len, this
routine tries to generate a new trip π′ obtained from π by adding a new
customer as the last served (routine put). Therefore, the new trip π′ has a
length equal to len+ 1.

In order to check the first two feasibility conditions reported in Definition
2, the routine Feasible (outlined in Algorithm 5) is invoked. For this purpose,
let i be a new customer to add. Then, it computes the intersection between
days and Ti and verifies if the new path π′ satisfies the first two feasibility
rules given in Definition 2. Therefore, the time complexity of the routine
Feasible is equal, in the worst case, to O(|T |), since the periods are stored
in a sorted tree data structure.

If the length of π′ is equal to 1 and π′ is feasible, it is added to the set Π
through the routine insert. The latter uses the id of π′ as a key to add it in
the hash table with its distance. Then, the IncreasedTrip is invoked again to
increase the length of π′. Otherwise, if the length of π′ is greater than 1, the
algorithm firstly verifies if π′ respects one of the types given in Definition
1 (routine Capacity outlined in Algorithm 6), receiving the requests of the
customers served by π′ and its length. The routine Req receives a trip π′ and
returns an array ρ containing the demands of the customers by following the
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order according to which they are served in π′. It also verifies that π′ is not
dominated (routine Dominated outlined in Algorithm 7).

The routine Dominated returns TRUE if the trip π′ is dominated, ac-
cording to the dominance rules given in Definition 3; FALSE, otherwise. In
particular, the routine search looks for a given trip id (key) and returns
null if such a trip does not belong to Π, its total distance, otherwise. Since
we are implementing Π as a hash map data structure, the complexity of the
Dominated routine is constant. If the length of the trip is less than 4, then
the routine IncreasedTrip is invoked again.

Algorithm 4 IncreasedTrip
Input: π, Cπ , dπ ,tπ , totalT ime, days, len, l, Π.
Output: Π

1: for (i ∈ C \ Cπ) do
2: π′ := put(π, i)
3: dπ′ := dπ − dl0 + dli + di0
4: totalT ime := totalT ime+ 2τi
5: tπ′ := totalT ime+ dπ′/v
6: len := len+ 1
7: l := i
8: Cπ′ := Cπ ∪ {i}
9: days := Feasible(tπ′ , T

max
1 , days, Ti)

10: idπ′ := ID(π′)
11: if (days 6= ∅) then
12: if (len = 1) then
13: insert(Π, idπ′ , dπ′ )
14: Π := IncreasedTrip(π′, Cπ′ , dπ′ , tπ′ , totalT ime, days, len, l,Π)
15: else
16: if (Capacity(Req(π′), len)∧!Dominated(idπ′ , dπ′ ,Π)) then
17: insert(Π, idπ′ , dπ′ )
18: if (len < 4) then
19: Π := IncreasedTrip(π′, Cπ′ , dπ′ , tπ′ , totalT ime, days, len, l,Π)
20: end if
21: end if
22: end if
23: end if
24: end for

Algorithm 5 Feasible
Input: τπ , Tmax1 , days, Ti with i ∈ C.
Output: days ∩ Ti or ∅

1: days := days ∩ Ti
2: if (τπ ≤ Tmax1 ∧ days 6= ∅) then
3: return days
4: else
5: return ∅
6: end if

Appendix B. Detailed result comparisons

In the following tables, instance denotes the instance name. We point
out that we keep the original instance name in the root name, adding in-
formation about parameters β, γ and λ, after it. For example, c107 25 25 0
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Algorithm 6 Capacity
Input: ρ, len.
Output: TRUE or FALSE

1: if (len = 4∧ρ[1] = −20∧ρ[4] = +20∧((ρ[2] = +20∧ρ[3] = −20)∨(ρ[2] = −20∧ρ[3] = +20)))
then

2: return TRUE
3: else
4: if (len = 3) then
5: if (ρ[1] = −40 ∧ ρ[2] = +20 ∧ ρ[3] = +20) then
6: return TRUE
7: else
8: if (ρ[1] = +20 ∧ ρ[2] = −20 ∧ ρ[3] = +20) then
9: return TRUE

10: else
11: if (ρ[1] = −20 ∧ ρ[2] = −20 ∧ (ρ[3] = 20 ∨ ρ[3] = +40)) then
12: return TRUE
13: else
14: if (ρ[1] = +20 ∧ ρ[2] = −20 ∧ (ρ[3] = 20 ∨ ρ[3] = −20)) then
15: return TRUE
16: end if
17: end if
18: end if
19: end if
20: else
21: if (len = 2) then
22: if (ρ[1] = −20 ∧ ρ[2]! = −40) then
23: return TRUE
24: else
25: if (ρ[1] = −40 ∧ ρ[2] > 0) then
26: return TRUE
27: else
28: if (ρ[1] = +20 ∧ (ρ[2] = 20 ∨ ρ[2] = −20)) then
29: return TRUE
30: end if
31: end if
32: end if
33: end if
34: end if
35: end if
36: return FALSE

Algorithm 7 Dominated
Input: idπ , dπ , Π.
Output: TRUE or FALSE

1: distance := hash search(Π, idπ)
2: if (distance = null ∨ distance > dπ) then
3: return FALSE
4: end if
5: return TRUE
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means that the instance c107 has been elaborated with β = 0.25, γ = 0.25
and finally, λ = 0. Column |K| indicates the minimum number of trucks to
make the instance feasible. Columns TD and CPU denote the total travel
distance and the CPU time required, respectively. Column GAP (%) reports
the percentage ILP GAP obtained by CPLEX solving the ILP models and
the symbol “ † ” is always used to mark the cases in which the CPU time
limit of one hour is reached. Finally, the row AVG1 reports, for each ap-
proach, the average values computed for the instances that are solved to
optimality by the approach considered. The row AVG2 shows the average
values computed for only the instances that are solved to optimality by all
the approaches compared.
Tables B.22-B.23 show that T-ILP is suitable to close to optimality in all
the instances in an average total CPU time of 0.60 seconds against 1, 005.25
seconds required by A-ILP. It is worth remarking that the total CPU time
required by T-ILP counts also the time for generating all the feasible non-
dominated trips. The number of trips generated is equal to 174 in about 0.11
seconds, on average. Moreover, A-ILP reaches the CPU time limit of 3, 600
seconds in four instances that correspond to cases in which the value of λ
has been set to the maximum one (i.e., 2). Indeed, in these four instances,
although A-ILP finds the optimal solution, the solver is not able to certify
its optimality within the CPU time limit. In fact, those percentage gaps are
high only because the A-ILP bound turns out to be not tight enough, as is
often the case for arc-based mathematical programming formulations.

Tables B.24-B.25 show that on average CBC6 outperforms all the other
approaches and the two ILP models, solving all the instances to optimality
in the smallest average CPU time of 8.13 seconds. The other CBC ap-
proaches do not solve to optimality two instances (i.e., c106 25 50 2 and
r207 25 50 2). For these instances, the values of the objective function
(2, 517.37 and 2, 195.69, respectively) are lower than the optimal ones (2, 521.93
and 2, 199.11, respectively) because they are computed in the last solutions
found by the MP and are infeasible since the CPU time limit of one hour
has been reached. Moreover, CBC4 does not solve to optimality also the
instances c106 50 50 2, r109 50 50 2, r207 50 50 2 and rc108 25 75 2. This
is justified by the fact that, at each iteration, it needs to check not only
the feasibility of the current solution found by MP4 but also needs to find
α∗. However, observing the results instance by instance, we can conclude
that there is not an approach that always dominates the others. Figure
B.4 shows the percentage of instances in which each approach dominates
the others. Instead, the A-ILP model closes to optimality only 12.96% of
instances, while for 28.40% of instances, the solver is not able to certify the
optimality in 1 hour. Finally, in 58.64% of instances, the A-ILP model is
not suitable to find even a feasible solution in 1 hour (cases in which TD
value is indicated by NFS, i.e., No Feasible Solution, in the tables).

Tables B.26-B.27 show that on average CBC6 closes the instances to
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Figure B.4: Percentage of instances in which each approach dominates all the others

optimality in an average CPU time that is about 65% less than that required
by the T-ILP model. In 10% of the instances, the T-ILP model is not able to
find even a feasible solution (cases marked in the tables with the acronym
NFS in the TD column) in the time limit of one hour. Indeed, in these
cases, the average number of trips generated is more than 1 million. In
all instances, the average number of trips is about 242, 688 generated in an
average CPU time of about 13 seconds. Moreover, in 3% of the instances,
the T-ILP model reaches the CPU time limit of one hour and therefore, it
provides only a feasible solution. Concerning CBC6, in the tables, the cases
marked with the symbol ‘∗’ (about 6% of the instances) are those in which
we report the solution found by the MP at the final iteration, i.e., not a
feasible solution for the problem, since the CPU time limit of one hour is
reached. CBC6 is able to solve to optimality all instances except two, for
which it provides only infeasible solutions (while the T-ILP model is able to
solve them to optimality).

41



Table B.22: Results on instances with 25 customers: Part I
A-ILP T-ILP

Instance |K| TD CPU GAP(%) TD CPU GAP(%)
c107 25 25 0 1 768.24 0.14 0.00 768.24 0.56 0.00
c107 25 25 1 1 595.29 32.34 0.00 595.29 0.64 0.00
c107 25 25 2 1 559.47 † 8.80 559.47 0.77 0.00
c107 25 50 0 1 898.05 0.13 0.00 898.05 0.39 0.00
c107 25 50 1 1 659.93 5.50 0.00 659.93 0.56 0.00
c107 25 50 2 1 634.78 14.08 0.00 634.78 0.75 0.00
c107 25 75 0 1 792.76 0.25 0.00 792.76 0.61 0.00
c107 25 75 1 1 603.53 204.35 0.00 603.53 1.41 0.00
c107 25 75 2 1 539.03 1844.99 0.00 539.03 1.48 0.00
c107 50 25 0 1 908.66 0.14 0.00 908.66 0.38 0.00
c107 50 25 1 1 761.44 1.08 0.00 761.44 0.42 0.00
c107 50 25 2 1 725.07 11.51 0.00 725.07 0.59 0.00
c107 50 50 0 1 794.07 0.11 0.00 794.07 0.41 0.00
c107 50 50 1 1 586.36 0.38 0.00 586.36 0.86 0.00
c107 50 50 2 1 557.80 8.92 0.00 557.80 0.77 0.00
c107 50 75 0 1 873.61 0.09 0.00 873.61 0.36 0.00
c107 50 75 1 1 810.24 0.69 0.00 810.24 0.47 0.00
c107 50 75 2 1 794.02 12.22 0.00 794.02 1.13 0.00
c107 75 25 0 1 914.85 0.09 0.00 914.85 0.34 0.00
c107 75 25 1 1 858.66 0.14 0.00 858.66 0.39 0.00
c107 75 25 2 1 788.36 0.50 0.00 788.36 0.59 0.00
c107 75 50 0 1 883.23 0.09 0.00 883.23 0.34 0.00
c107 75 50 1 1 701.40 0.17 0.00 701.40 0.38 0.00
c107 75 50 2 1 661.46 0.27 0.00 661.46 0.45 0.00
c107 75 75 0 2 994.82 0.09 0.00 994.82 0.37 0.00
c107 75 75 1 1 891.64 0.13 0.00 891.64 0.42 0.00
c107 75 75 2 1 831.63 0.17 0.00 831.63 0.44 0.00
c204 25 25 0 1 856.01 0.17 0.00 856.01 0.36 0.00
c204 25 25 1 1 738.82 129.41 0.00 738.82 0.61 0.00
c204 25 25 2 1 682.12 3091.02 0.00 682.12 0.88 0.00
c204 25 50 0 1 883.80 0.13 0.00 883.80 0.61 0.00
c204 25 50 1 1 746.62 109.45 0.00 746.62 1.06 0.00
c204 25 50 2 1 714.51 † 12.55 714.51 1.00 0.00
c204 25 75 0 1 999.95 1.33 0.00 999.95 0.59 0.00
c204 25 75 1 1 814.05 1.22 0.00 814.05 0.55 0.00
c204 25 75 2 1 795.20 19.09 0.00 795.20 1.36 0.00
c204 50 25 0 1 1016.70 0.09 0.00 1016.70 0.34 0.00
c204 50 25 1 1 1014.47 0.33 0.00 1014.47 0.55 0.00
c204 50 25 2 1 982.30 2.70 0.00 982.30 0.44 0.00
c204 50 50 0 1 886.50 0.14 0.00 886.50 0.34 0.00
c204 50 50 1 1 710.02 0.61 0.00 710.02 0.50 0.00
c204 50 50 2 1 648.42 8.08 0.00 648.42 0.89 0.00
c204 50 75 0 1 893.21 0.22 0.00 893.21 0.39 0.00
c204 50 75 1 1 724.24 9.59 0.00 724.24 0.88 0.00
c204 50 75 2 1 686.19 107.57 0.00 686.19 0.69 0.00
c204 75 25 0 1 991.22 0.09 0.00 991.22 0.36 0.00
c204 75 25 1 1 877.94 0.14 0.00 877.94 0.47 0.00
c204 75 25 2 1 853.63 0.58 0.00 853.63 0.55 0.00
c204 75 50 0 1 1026.18 0.11 0.00 1026.18 0.42 0.00
c204 75 50 1 1 876.06 0.16 0.00 876.06 0.38 0.00
c204 75 50 2 1 814.15 0.19 0.00 814.15 0.55 0.00
c204 75 75 0 2 1083.95 0.11 0.00 1083.95 0.41 0.00
c204 75 75 1 1 922.15 0.13 0.00 922.15 0.36 0.00
c204 75 75 2 1 906.29 0.28 0.00 906.29 0.45 0.00
r101 25 25 0 1 989.49 0.13 0.00 989.49 0.41 0.00
r101 25 25 1 1 855.85 2.86 0.00 855.85 0.72 0.00
r101 25 25 2 1 809.65 24.48 0.00 809.65 0.84 0.00
r101 25 50 0 1 942.06 0.16 0.00 942.06 0.39 0.00
r101 25 50 1 1 747.08 5.28 0.00 747.08 0.69 0.00
r101 25 50 2 1 696.45 98.79 0.00 696.45 1.61 0.00
r101 25 75 0 1 1019.41 0.13 0.00 1019.41 0.38 0.00
r101 25 75 1 1 813.72 4.55 0.00 813.72 0.72 0.00
r101 25 75 2 1 766.84 85.82 0.00 766.84 0.94 0.00
r101 50 25 0 1 981.95 0.11 0.00 981.95 0.39 0.00
r101 50 25 1 1 800.29 0.69 0.00 800.29 0.89 0.00
r101 50 25 2 1 789.48 10.81 0.00 789.48 0.84 0.00
r101 50 50 0 1 1038.76 0.13 0.00 1038.76 0.36 0.00
r101 50 50 1 1 864.63 0.34 0.00 864.63 0.55 0.00
r101 50 50 2 1 806.89 1.30 0.00 806.89 0.78 0.00
r101 50 75 0 1 1069.61 0.13 0.00 1069.61 0.37 0.00
r101 50 75 1 1 939.93 0.30 0.00 939.93 0.50 0.00
r101 50 75 2 1 907.59 1.61 0.00 907.59 1.22 0.00
r101 75 25 0 1 1119.24 0.08 0.00 1119.24 0.39 0.00
r101 75 25 1 1 1070.84 0.13 0.00 1070.84 0.64 0.00
r101 75 25 2 1 1034.65 0.30 0.00 1034.65 0.70 0.00
r101 75 50 0 1 1093.76 0.09 0.00 1093.76 0.34 0.00
r101 75 50 1 1 969.64 0.17 0.00 969.64 0.39 0.00
r101 75 50 2 1 909.40 0.30 0.00 909.40 0.70 0.00
r101 75 75 0 2 1064.31 0.17 0.00 1064.31 0.41 0.00
r101 75 75 1 1 951.95 0.19 0.00 951.95 0.48 0.00
r101 75 75 2 1 940.24 0.53 0.00 940.24 0.50 0.00
r202 25 25 0 1 1040.78 0.11 0.00 1040.78 0.39 0.00
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Table B.23: Results on instances with 25 customers: Part II
A-ILP T-ILP

Instance |K| TD CPU GAP(%) TD CPU GAP(%)
r202 25 25 1 1 873.25 5.23 0.00 873.25 0.52 0.00
r202 25 25 2 1 838.37 51.59 0.00 838.37 0.77 0.00
r202 25 50 0 1 988.74 0.14 0.00 988.74 0.39 0.00
r202 25 50 1 1 774.23 1.16 0.00 774.23 0.75 0.00
r202 25 50 2 1 710.15 10.91 0.00 710.15 1.30 0.00
r202 25 75 0 1 1081.92 0.13 0.00 1081.92 0.36 0.00
r202 25 75 1 1 957.27 0.56 0.00 957.27 0.44 0.00
r202 25 75 2 1 929.94 6.42 0.00 929.94 0.84 0.00
r202 50 25 0 1 1119.77 0.11 0.00 1119.77 0.36 0.00
r202 50 25 1 1 978.45 0.17 0.00 978.45 0.52 0.00
r202 50 25 2 1 931.40 0.41 0.00 931.40 0.48 0.00
r202 50 50 0 1 1043.97 0.11 0.00 1043.97 0.41 0.00
r202 50 50 1 1 908.72 0.24 0.00 908.72 0.47 0.00
r202 50 50 2 1 898.57 2.45 0.00 898.57 0.88 0.00
r202 50 75 0 1 1080.52 0.11 0.00 1080.52 0.36 0.00
r202 50 75 1 1 905.68 0.20 0.00 905.68 0.47 0.00
r202 50 75 2 1 882.81 0.47 0.00 882.81 0.83 0.00
r202 75 25 0 2 1124.48 0.09 0.00 1124.48 0.44 0.00
r202 75 25 1 1 959.51 0.13 0.00 959.51 0.39 0.00
r202 75 25 2 1 959.51 0.17 0.00 959.51 0.53 0.00
r202 75 50 0 2 1077.29 0.11 0.00 1077.29 0.41 0.00
r202 75 50 1 1 863.14 0.09 0.00 863.14 0.41 0.00
r202 75 50 2 1 840.97 0.16 0.00 840.97 0.56 0.00
r202 75 75 0 2 1161.85 0.14 0.00 1161.85 0.41 0.00
r202 75 75 1 1 979.63 0.14 0.00 979.63 0.44 0.00
r202 75 75 2 1 960.76 0.17 0.00 960.76 0.47 0.00
rc108 25 25 0 1 1364.73 0.16 0.00 1364.73 0.34 0.00
rc108 25 25 1 1 1104.76 2.22 0.00 1104.76 0.53 0.00
rc108 25 25 2 1 982.27 40.69 0.00 982.27 0.78 0.00
rc108 25 50 0 1 1306.69 0.14 0.00 1306.69 0.38 0.00
rc108 25 50 1 1 1041.13 3.30 0.00 1041.13 0.69 0.00
rc108 25 50 2 1 871.09 16.75 0.00 871.09 0.84 0.00
rc108 25 75 0 1 1334.70 0.17 0.00 1334.70 0.36 0.00
rc108 25 75 1 1 1205.54 4.47 0.00 1205.54 0.81 0.00
rc108 25 75 2 1 1149.82 48.26 0.00 1149.82 0.88 0.00
rc108 50 25 0 2 1493.89 0.13 0.00 1493.89 0.42 0.00
rc108 50 25 1 2 1316.91 3.22 0.00 1316.91 0.56 0.00
rc108 50 25 2 2 1290.27 11.08 0.00 1290.27 0.69 0.00
rc108 50 50 0 2 1401.34 0.23 0.00 1401.34 0.42 0.00
rc108 50 50 1 1 1030.03 0.36 0.00 1030.03 0.45 0.00
rc108 50 50 2 1 994.76 6.06 0.00 994.76 1.38 0.00
rc108 50 75 0 2 1563.45 0.11 0.00 1563.45 0.45 0.00
rc108 50 75 1 2 1246.31 3.63 0.00 1246.31 0.52 0.00
rc108 50 75 2 1 1146.98 4.23 0.00 1146.98 0.78 0.00
rc108 75 25 0 2 1741.50 0.11 0.00 1741.50 0.39 0.00
rc108 75 25 1 2 1586.04 0.49 0.00 1586.04 0.49 0.00
rc108 75 25 2 2 1536.06 6.31 0.00 1536.06 0.55 0.00
rc108 75 50 0 2 1516.28 0.13 0.00 1516.28 0.47 0.00
rc108 75 50 1 2 1343.63 1.05 0.00 1343.63 0.49 0.00
rc108 75 50 2 2 1240.96 0.73 0.00 1240.96 0.61 0.00
rc108 75 75 0 2 1658.87 0.13 0.00 1658.87 0.41 0.00
rc108 75 75 1 2 1383.92 0.59 0.00 1383.92 0.48 0.00
rc108 75 75 2 2 1379.93 3.25 0.00 1379.93 0.75 0.00
rc205 25 25 0 1 1274.65 0.23 0.00 1274.65 0.42 0.00
rc205 25 25 1 1 885.27 182.46 0.00 885.27 0.72 0.00
rc205 25 25 2 1 781.96 † 10.79 781.96 1.19 0.00
rc205 25 50 0 1 1334.79 2.94 0.00 1334.79 0.38 0.00
rc205 25 50 1 1 902.44 23.55 0.00 902.44 0.69 0.00
rc205 25 50 2 1 794.91 † 1.59 794.91 1.50 0.00
rc205 25 75 0 1 1370.37 0.14 0.00 1370.37 0.36 0.00
rc205 25 75 1 1 1072.39 4.45 0.00 1072.39 0.89 0.00
rc205 25 75 2 1 970.22 14.45 0.00 970.22 0.75 0.00
rc205 50 25 0 2 1679.02 0.14 0.00 1679.02 0.48 0.00
rc205 50 25 1 2 1405.13 3.17 0.00 1405.13 0.49 0.00
rc205 50 25 2 2 1359.23 70.79 0.00 1359.23 0.91 0.00
rc205 50 50 0 2 1432.56 0.22 0.00 1432.56 0.42 0.00
rc205 50 50 1 1 1,012.82 1.20 0.00 1,012.82 0.52 0.00
rc205 50 50 2 1 977.86 22.16 0.00 977.86 0.66 0.00
rc205 50 75 0 2 1463.48 0.19 0.00 1463.48 0.44 0.00
rc205 50 75 1 2 1,280.18 1.66 0.00 1,280.18 0.84 0.00
rc205 50 75 2 1 1183.02 0.77 0.00 1183.02 0.83 0.00
rc205 75 25 0 2 1610.07 0.13 0.00 1610.07 0.41 0.00
rc205 75 25 1 2 1248.10 0.44 0.00 1248.10 0.47 0.00
rc205 75 25 2 2 1156.81 0.59 0.00 1156.81 0.61 0.00
rc205 75 50 0 2 1536.81 0.17 0.00 1536.81 0.39 0.00
rc205 75 50 1 2 1273.82 0.41 0.00 1273.82 0.49 0.00
rc205 75 50 2 2 1170.12 2.52 0.00 1170.12 0.86 0.00
rc205 75 75 0 2 1574.34 0.09 0.00 1574.34 0.41 0.00
rc205 75 75 1 2 1258.22 0.22 0.00 1258.22 0.53 0.00
rc205 75 75 2 2 1212.17 0.44 0.00 1212.17 0.69 0.00

AVG1 1 1012.66 128.61 0.21 1005.25 0.60 0.00

AVG2 1 1012.66 40.72 0.00 1012.66 0.59 0.00
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Table B.24: Results on instances with 100 customers: Part I
A-ILP T-ILP CBC1 CBC2 CBC3 CBC4 CBC5 CBC6

Instance |K| TD CPU GAP(%) TD CPU CPU CPU CPU CPU CPU CPU
c106 25 25 0 4 3643.51 † 18.81 3640.19 4.06 3.47 3.16 3.03 5.38 3.28 3.27
c106 25 25 1 3 NFS † - 3127.14 21.41 5.23 5.11 7.75 6.84 5.22 5.17
c106 25 25 2 3 NFS † - 3018.09 89.03 78.96 78.43 128.52 814.40 29.51 12.38
c106 25 50 0 3 NFS † - 3258.41 4.25 5.06 5.33 3.34 3.13 3.59 3.14
c106 25 50 1 3 2846.02 † 31.13 2656.92 31.01 5.77 5.55 14.56 6.83 5.58 7.08
c106 25 50 2 3 NFS † - 2521.93 151.91 † † † † † 82.06
c106 25 75 0 3 NFS † - 3462.39 4.61 3.27 3.45 3.66 5.08 3.41 4.50
c106 25 75 1 3 3059.36 † 26.27 2908.49 36.78 6.84 6.48 13.66 7.56 6.52 7.13
c106 25 75 2 3 NFS † - 2791.04 201.28 49.98 50.62 280.51 442.00 37.61 25.56
c106 50 25 0 4 3946.48 † 7.93 3946.48 3.47 3.56 3.61 3.02 2.92 3.30 3.53
c106 50 25 1 4 3563.41 † 23.34 3541.00 6.27 3.70 4.20 3.67 4.03 3.59 3.17
c106 50 25 2 4 3452.99 † 28.03 3437.90 22.78 5.63 5.50 6.94 5.36 5.53 5.16
c106 50 50 0 4 3528.52 † 4.90 3520.58 5.52 5.09 5.13 3.11 5.08 4.98 3.02
c106 50 50 1 3 NFS † - 2879.79 47.45 4.58 4.78 6.03 5.80 4.37 3.53
c106 50 50 2 3 NFS † - 2626.06 94.40 1012.09 1005.53 1019.07 † 244.17 367.08
c106 50 75 0 4 3949.40 † 4.80 3949.40 1.50 3.11 3.16 3.20 4.88 3.02 4.06
c106 50 75 1 4 3459.67 † 10.99 3424.65 7.53 2.92 2.84 4.77 2.81 2.59 2.72
c106 50 75 2 4 3427.29 † 15.65 3375.71 30.62 6.33 6.39 15.30 8.44 6.23 6.94
c106 75 25 0 5 4528.44 90.50 0.00 4528.44 0.73 0.55 0.56 0.61 0.61 0.52 0.53
c106 75 25 1 4 4045.87 † 2.87 4045.87 2.24 3.69 2.91 4.31 3.25 3.92 4.72
c106 75 25 2 4 3977.54 † 8.06 3971.76 4.28 1.73 1.44 1.67 2.89 2.66 2.64
c106 75 50 0 4 4011.42 43.95 0.00 4011.42 0.81 0.59 0.56 0.66 0.59 0.53 0.58
c106 75 50 1 4 3493.91 † 2.39 3493.91 3.00 0.89 2.16 1.37 2.34 3.52 0.95
c106 75 50 2 4 3298.12 † 5.51 3294.26 3.61 1.44 1.41 1.61 3.11 2.50 2.36
c106 75 75 0 5 4554.96 15.906 0.00 4554.96 0.69 0.56 0.63 0.61 0.66 0.56 0.53
c106 75 75 1 4 4135.05 † 1.20 4135.05 2.92 2.89 3.08 1.20 2.38 1.05 1.99
c106 75 75 2 4 3977.10 † 3.06 3977.10 3.89 1.33 1.20 1.48 2.77 1.09 3.25
c202 25 25 0 4 3854.04 † 21.49 3835.40 3.24 3.16 3.13 3.27 5.42 3.16 3.17
c202 25 25 1 3 NFS † - 3392.28 22.67 4.20 4.56 5.69 4.66 4.80 4.47
c202 25 25 2 3 NFS † - 3249.86 72.39 10.87 11.00 35.47 12.91 11.03 13.28
c202 25 50 0 3 NFS † - 3291.61 8.97 3.39 5.41 3.23 3.25 5.38 4.70
c202 25 50 1 3 2992.99 † 33.51 2707.84 37.45 5.80 5.61 12.20 6.58 5.75 5.34
c202 25 50 2 3 NFS † - 2509.13 119.93 25.28 25.33 127.66 200.78 26.20 15.64
c202 25 75 0 3 NFS † - 3421.68 4.16 3.34 3.58 3.55 3.45 3.36 3.25
c202 25 75 1 3 3147.40 † 29.06 2961.19 43.00 6.83 6.92 17.11 7.92 6.83 8.17
c202 25 75 2 3 NFS † - 2842.55 183.50 24.70 24.70 196.35 28.95 24.92 27.62
c202 50 25 0 4 4214.37 † 7.88 4214.37 2.64 1.44 2.97 3.81 3.23 3.05 4.83
c202 50 25 1 4 3843.97 † 22.71 3804.34 5.23 3.44 3.49 3.56 3.22 3.61 3.45
c202 50 25 2 4 3769.37 † 27.68 3689.85 21.59 5.31 5.12 9.47 6.28 5.14 4.91
c202 50 50 0 4 3795.12 † 1.36 3795.12 2.41 0.86 0.75 0.95 0.86 0.77 0.86
c202 50 50 1 4 3142.52 † 8.31 3123.99 5.66 2.36 3.75 3.50 3.72 3.45 3.37
c202 50 50 2 4 3108.96 † 14.92 2976.90 16.50 4.34 4.41 7.88 4.41 4.45 3.75
c202 50 75 0 4 4008.06 † 0.82 4008.06 1.30 3.44 3.33 3.17 3.16 3.09 3.05
c202 50 75 1 4 3597.99 † 8.54 3595.81 4.45 3.41 2.36 3.17 3.61 3.58 3.20
c202 50 75 2 4 3642.34 † 18.75 3533.13 18.23 4.36 5.11 9.45 5.88 4.36 4.86
c202 75 25 0 5 4736.41 253.58 0.00 4736.41 0.63 0.59 0.55 0.59 0.66 0.56 0.56
c202 75 25 1 5 4496.52 † 6.65 4496.52 3.20 3.80 3.86 1.14 2.42 1.78 3.63
c202 75 25 2 4 NFS † - 4376.46 5.33 2.67 1.63 1.83 2.67 2.56 2.56
c202 75 50 0 4 4121.54 47.33 0.00 4121.54 0.77 0.53 0.55 0.59 0.56 0.55 0.58
c202 75 50 1 4 3521.33 † 0.95 3521.33 5.14 3.45 3.30 3.53 3.48 4.66 3.03
c202 75 50 2 4 3378.33 † 2.73 3378.33 3.28 1.50 1.59 1.59 3.19 1.78 3.28
c202 75 75 0 5 4669.75 10.828 0.00 4669.75 0.64 0.59 0.61 0.66 0.63 0.63 0.55
c202 75 75 1 4 4256.14 † 1.10 4256.14 3.58 1.08 1.13 5.03 5.19 1.05 1.74
c202 75 75 2 4 4157.07 † 3.59 4157.07 5.06 2.56 3.34 2.77 3.44 2.78 1.61
r109 25 25 0 3 3061.91 † 16.83 3055.01 3.31 5.05 3.30 3.30 3.00 3.27 3.17
r109 25 25 1 3 2854.21 † 35.18 2707.94 15.52 4.06 3.91 5.44 4.22 4.33 4.00
r109 25 25 2 3 2862.56 † 42.25 2620.80 72.28 10.64 10.70 49.47 13.23 10.86 11.22
r109 25 50 0 3 2789.39 † 18.57 2785.85 3.34 3.25 3.36 5.16 4.86 3.25 3.08
r109 25 50 1 3 2582.48 † 33.25 2425.50 40.75 8.59 8.72 17.72 9.81 9.13 8.94
r109 25 50 2 3 NFS † - 2305.31 196.32 23.06 23.05 195.17 27.53 22.91 25.70
r109 25 75 0 3 3058.76 † 6.86 3058.76 5.95 2.47 5.33 5.58 5.73 5.67 5.20
r109 25 75 1 3 2882.79 † 24.31 2791.33 16.97 3.56 3.84 6.14 5.75 3.61 3.99
r109 25 75 2 3 3083.84 † 37.61 2714.56 83.95 11.84 12.13 53.09 14.45 12.05 13.73
r109 50 25 0 4 3477.66 † 2.93 3477.66 2.63 4.59 3.09 2.92 3.08 5.19 2.97
r109 50 25 1 4 3196.71 † 16.21 3191.45 5.41 3.75 2.48 3.53 3.56 3.55 2.78
r109 50 25 2 4 3126.26 † 20.06 3100.93 18.62 4.17 4.28 6.16 5.56 4.03 4.31
r109 50 50 0 4 3053.22 † 3.84 3053.22 2.08 2.89 3.23 3.02 2.95 3.08 2.97
r109 50 50 1 4 2653.79 † 9.77 2646.40 5.14 3.56 3.69 3.84 3.70 2.25 2.36
r109 50 50 2 3 NFS † - 2492.81 37.06 518.62 517.51 522.08 † 65.17 4.27
r109 50 75 0 4 3261.69 † 5.99 3244.50 3.17 3.48 3.06 3.28 3.27 3.08 2.95
r109 50 75 1 3 NFS † - 2897.54 11.19 2.98 3.33 4.30 5.03 3.64 3.39
r109 50 75 2 3 NFS † - 2833.67 41.26 6.55 6.56 19.39 8.14 6.41 6.89
r109 75 25 0 4 3876.00 46.83 0.00 3876.00 0.69 0.53 0.52 0.56 0.55 0.53 0.55
r109 75 25 1 4 3694.25 † 0.35 3694.25 2.34 2.03 1.05 1.16 2.36 2.02 2.50
r109 75 25 2 4 3648.58 † 8.03 3648.58 2.84 2.27 1.39 2.05 2.72 1.27 2.39
r109 75 50 0 4 3466.09 4.92 0.00 3466.09 0.69 0.63 0.59 0.58 0.63 0.58 0.56
r109 75 50 1 4 3023.52 † 1.44 3023.52 3.61 2.17 1.31 1.50 6.48 2.31 3.70
r109 75 50 2 4 2922.18 † 3.44 2922.18 4.48 2.53 2.72 2.80 2.69 1.62 3.47
r109 75 75 0 4 3863.58 3.38 0.00 3863.58 0.63 0.47 0.52 0.53 0.58 0.52 0.50
r109 75 75 1 4 3670.58 145.25 0.00 3670.58 1.41 0.75 0.73 0.86 0.80 0.75 0.70
r109 75 75 2 4 3624.69 † 1.02 3624.69 3.11 1.59 2.63 2.73 2.66 2.67 1.24
r207 25 25 0 3 NFS † - 3270.26 3.75 3.61 3.13 3.23 3.56 3.09 3.05

44



Table B.25: Results on instances with 100 customers: Part II
A-ILP T-ILP CBC1 CBC2 CBC3 CBC4 CBC5 CBC6

Instance |K| TD CPU GAP(%) TD CPU CPU CPU CPU CPU CPU CPU
r207 25 25 1 3 3059.99 † 41.02 2988.41 11.50 4.08 3.66 4.23 6.38 4.30 4.36
r207 25 25 2 3 3053.63 † 47.16 2889.33 30.09 5.59 5.48 10.63 6.37 5.44 5.55
r207 25 50 0 3 2734.67 † 13.79 2728.26 4.05 3.31 3.34 5.30 3.33 3.31 3.22
r207 25 50 1 3 2492.90 † 29.00 2344.16 37.83 7.53 7.28 16.16 8.89 7.53 7.64
r207 25 50 2 3 2608.60 † 40.24 2199.11 254.08 † † † † † 114.32
r207 25 75 0 3 3047.58 † 9.46 3022.39 3.67 2.94 3.33 3.28 2.95 3.88 3.16
r207 25 75 1 3 2780.16 † 23.42 2726.13 30.90 5.66 5.84 18.33 7.81 5.72 5.88
r207 25 75 2 3 NFS † - 2640.11 128.76 16.48 17.01 99.56 20.25 16.44 19.36
r207 50 25 0 4 3527.80 † 9.82 3527.80 2.77 3.03 3.31 4.92 3.05 3.09 2.95
r207 50 25 1 4 3190.98 † 25.71 3179.64 5.58 2.77 3.50 3.59 4.16 2.38 3.67
r207 50 25 2 4 3154.99 † 28.32 3131.35 23.01 5.27 5.25 9.03 7.19 5.75 5.41
r207 50 50 0 4 3079.74 † 4.07 3079.74 2.91 3.19 3.41 3.28 3.25 3.17 3.06
r207 50 50 1 3 NFS † - 2642.37 10.03 2.78 3.09 3.81 3.36 2.98 4.42
r207 50 50 2 3 NFS † - 2455.68 58.43 1936.14 1930.89 1939.28 † 251.72 8.00
r207 50 75 0 4 3481.45 † 2.78 3481.45 5.11 4.33 4.83 3.17 2.97 2.97 3.00
r207 50 75 1 4 3265.55 † 9.66 3265.55 4.50 2.83 2.81 2.62 3.03 3.08 2.86
r207 50 75 2 4 3181.16 † 11.75 3178.10 24.19 4.33 4.12 6.00 6.22 4.16 4.05
r207 75 25 0 4 3926.16 748.126 0.00 3926.16 0.64 0.53 0.55 0.58 0.59 0.56 0.56
r207 75 25 1 4 3678.48 † 1.97 3678.48 3.59 0.78 0.89 1.00 1.02 0.84 0.84
r207 75 25 2 4 3615.82 † 7.83 3615.82 4.89 2.55 2.59 2.09 3.20 2.75 2.27
r207 75 50 0 4 3521.76 123.232 0.00 3521.76 2.34 2.69 2.59 2.64 2.36 2.59 2.61
r207 75 50 1 4 2889.62 † 2.02 2889.62 2.14 1.08 1.11 1.08 1.44 1.03 2.33
r207 75 50 2 4 2815.52 † 4.11 2814.72 4.67 3.39 2.45 3.66 3.44 3.58 3.14
r207 75 75 0 4 3691.74 16.695 0.00 3691.74 0.73 0.56 0.59 0.66 0.58 0.58 0.56
r207 75 75 1 4 3399.89 † 1.44 3399.89 3.34 1.73 4.55 4.83 4.78 5.16 1.09
r207 75 75 2 4 3303.45 † 3.24 3303.45 4.83 1.88 1.67 4.34 5.36 3.14 3.88
rc108 25 25 0 4 4006.06 † 19.20 4005.57 3.19 3.23 4.92 5.22 3.09 3.19 3.05
rc108 25 25 1 4 NFS † - 3484.63 11.66 3.83 4.08 6.06 4.23 3.92 4.27
rc108 25 25 2 4 3766.30 † 44.59 3362.70 55.79 9.20 9.16 21.22 11.03 9.20 10.06
rc108 25 50 0 4 3665.40 † 12.69 3660.40 4.70 5.41 5.50 5.23 3.37 5.53 5.20
rc108 25 50 1 3 NFS † - 2947.32 32.83 5.25 5.36 20.67 6.72 5.48 5.94
rc108 25 50 2 3 NFS † - 2812.14 148.29 15.36 14.91 136.12 19.09 15.47 17.20
rc108 25 75 0 4 3782.00 † 11.49 3776.60 3.80 3.30 3.38 5.25 3.44 3.38 3.14
rc108 25 75 1 3 NFS † - 3310.69 49.12 5.77 5.73 12.27 6.95 5.61 6.94
rc108 25 75 2 3 NFS † - 3156.96 160.88 324.23 328.51 552.28 † 75.26 22.41
rc108 50 25 0 4 4334.44 † 6.11 4334.44 3.03 0.94 0.92 1.13 1.17 0.88 0.84
rc108 50 25 1 4 4042.23 † 21.12 4011.33 12.64 3.64 3.95 4.13 4.80 3.88 3.73
rc108 50 25 2 4 3933.99 † 24.85 3885.29 57.36 8.77 8.89 23.73 10.37 8.45 9.30
rc108 50 50 0 4 4165.72 † 5.14 4165.72 2.98 0.75 0.88 1.02 0.92 0.92 0.81
rc108 50 50 1 4 3495.09 † 17.76 3465.60 12.00 4.25 4.03 4.56 4.30 4.02 3.94
rc108 50 50 2 4 3442.89 † 24.29 3292.93 50.29 7.06 7.17 21.92 9.33 7.39 7.73
rc108 50 75 0 4 4770.45 † 0.60 4770.45 1.17 5.42 4.74 4.33 4.48 4.12 3.97
rc108 50 75 1 4 4338.01 † 7.85 4338.01 4.59 3.36 3.09 3.37 3.70 3.48 2.92
rc108 50 75 2 4 4292.27 † 11.97 4292.27 12.81 2.97 3.14 3.80 4.53 2.81 5.72
rc108 75 25 0 5 5336.06 7.819 0.00 5336.06 0.56 0.52 0.52 0.61 0.66 0.53 0.49
rc108 75 25 1 5 5049.05 † 1.93 5049.05 1.34 0.83 0.86 0.97 0.88 0.80 0.81
rc108 75 25 2 5 4967.61 † 5.22 4967.61 4.42 1.36 1.30 1.47 2.77 1.25 2.78
rc108 75 50 0 5 4709.75 10.53 0.00 4709.75 0.84 1.64 0.61 0.64 0.70 0.66 0.58
rc108 75 50 1 4 4179.12 780.01 0.00 4179.12 2.84 2.56 2.34 1.59 2.56 2.64 2.08
rc108 75 50 2 4 3994.11 † 2.04 3994.11 4.95 1.58 1.42 2.03 3.81 1.39 2.38
rc108 75 75 0 5 5134.52 6.946 0.00 5134.52 0.67 0.61 0.56 0.66 0.58 0.52 0.52
rc108 75 75 1 5 4785.87 3593.941 0.00 4785.87 3.34 3.58 1.03 1.30 3.67 1.02 4.59
rc108 75 75 2 5 4777.81 † 3.77 4777.81 3.34 2.78 2.48 2.14 2.58 2.56 2.66
rc205 25 25 0 4 3941.90 † 31.09 3923.66 4.02 3.48 3.13 3.42 5.23 3.50 3.19
rc205 25 25 1 3 NFS † - 3435.78 25.70 6.70 5.16 14.95 6.78 5.05 6.36
rc205 25 25 2 3 NFS † - 3339.83 128.16 17.69 15.19 74.73 18.42 16.39 16.80
rc205 25 50 0 3 NFS † - 3512.72 4.45 3.48 3.39 3.20 3.33 3.25 3.64
rc205 25 50 1 3 3132.04 † 36.75 2853.17 50.22 14.78 14.95 50.06 65.56 15.56 11.14
rc205 25 50 2 3 NFS † - 2622.99 266.98 32.36 33.00 598.12 42.48 33.56 36.25
rc205 25 75 0 4 4329.62 † 6.43 4328.99 4.95 3.06 3.13 3.14 3.17 2.91 2.78
rc205 25 75 1 4 3899.40 † 19.69 3894.89 8.77 3.28 3.19 3.78 4.36 4.55 3.89
rc205 25 75 2 4 3851.37 † 28.15 3787.87 40.69 7.05 7.06 17.31 8.61 6.66 7.56
rc205 50 25 0 4 4554.98 † 5.39 4554.98 2.86 3.16 3.27 4.98 3.20 3.19 2.94
rc205 50 25 1 4 4202.91 † 23.28 4198.08 4.70 3.56 3.44 3.58 3.63 5.52 2.89
rc205 50 25 2 4 4184.31 † 28.47 4139.36 15.86 4.36 4.05 5.78 5.77 4.83 4.38
rc205 50 50 0 4 4011.97 † 2.63 4011.97 2.91 0.89 1.84 2.41 1.95 0.83 2.75
rc205 50 50 1 4 3406.10 † 17.74 3399.79 9.62 3.23 3.03 5.61 3.80 3.37 3.27
rc205 50 50 2 4 3385.27 † 26.45 3202.24 48.25 6.75 6.59 25.59 8.30 6.61 7.19
rc205 50 75 0 4 4601.11 † 2.35 4601.11 2.84 5.02 3.22 5.11 4.84 4.95 3.06
rc205 50 75 1 4 4234.35 † 10.65 4234.09 5.56 2.34 3.16 3.53 3.70 2.28 5.17
rc205 50 75 2 4 NFS † - 4126.74 26.44 3.73 3.98 6.20 4.48 3.97 4.17
rc205 75 25 0 5 4846.58 41.534 0.00 4846.58 0.69 0.56 0.59 0.63 0.69 0.56 0.58
rc205 75 25 1 5 4393.80 † 3.61 4393.80 3.66 4.89 5.08 3.58 3.75 3.48 0.92
rc205 75 25 2 4 NFS † - 4260.67 5.55 2.02 2.89 3.30 3.86 1.69 2.72
rc205 75 50 0 4 4306.66 99.869 0.00 4306.66 0.80 0.59 0.55 0.63 0.69 0.56 0.55
rc205 75 50 1 4 3795.39 † 3.68 3795.39 3.78 1.06 1.09 1.28 1.25 1.00 1.03
rc205 75 50 2 4 3707.18 † 6.59 3706.77 5.34 1.98 1.83 3.67 2.31 5.73 1.88
rc205 75 75 0 5 5019.14 13.187 0.00 5019.14 0.64 0.63 0.55 0.63 0.70 0.56 0.59
rc205 75 75 1 5 4653.22 † 1.12 4653.22 2.66 0.97 2.28 1.17 1.33 0.98 1.19
rc205 75 75 2 5 4488.86 † 3.50 4488.86 4.09 2.67 3.63 2.53 3.25 2.50 2.38
AVG1 4 4331.24 3171.01 11.62 3562.94 24.50 72.75 72.72 86.25 147.37 52.96 8.18
AVG2 4 4331.24 290.68 0.00 4331.24 1.04 0.96 0.78 0.80 0.95 0.79 0.92
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Table B.26: Results on instances with 200 customers: Part I
T-ILP CBC6

Instance |K| TD CPU GAP TD CPU
C1 2 1 25 25 0 8 11283.51 68.31 0.00 11283.51 9.53
C1 2 1 25 25 1 8 10404.67 1556.78 0.00 10404.67 159.46
C1 2 1 25 25 2 8 NFS † – 10200.63 646.94
C1 2 1 25 50 0 8 10734.76 129.85 0.00 10734.76 13.39
C1 2 1 25 50 1 8 9359.18 1626.06 0.00 9359.18 178.20
C1 2 1 25 50 2 8 NFS † – 9019.17∗ †
C1 2 1 25 75 0 9 12196.92 69.56 0.00 12196.92 15.20
C1 2 1 25 75 1 8 11305.77 990.47 0.00 11305.77 115.48
C1 2 1 25 75 2 8 11251.82 † 0.02 11064.58 541.15
C1 2 1 50 25 0 11 15078.61 16.47 0.00 15078.61 3.34
C1 2 1 50 25 1 10 14404.63 138.93 0.00 14404.63 19.72
C1 2 1 50 25 2 10 14254.11 656.03 0.00 14254.11 67.76
C1 2 1 50 50 0 10 12549.10 20.02 0.00 12549.10 4.17
C1 2 1 50 50 1 9 11251.10 297.80 0.00 11251.10 21.30
C1 2 1 50 50 2 9 11015.23 2728.24 0.00 11015.23 96.67
C1 2 1 50 75 0 10 14533.41 39.33 0.00 14533.41 4.78
C1 2 1 50 75 1 10 13539.88 106.49 0.00 13539.88 13.30
C1 2 1 50 75 2 10 13422.07 570.63 0.00 13422.07 48.72
C1 2 1 75 25 0 12 16011.96 4.48 0.00 16011.96 1.83
C1 2 1 75 25 1 11 15362.15 28.78 0.00 15362.15 5.34
C1 2 1 75 25 2 11 15289.95 101.07 0.00 15289.95 9.75
C1 2 1 75 50 0 10 13187.62 9.44 0.00 13187.62 1.95
C1 2 1 75 50 1 10 11813.52 109.62 0.00 11813.52 7.30
C1 2 1 75 50 2 10 11466.82 373.78 0.00 11464.51∗ †
C1 2 1 75 75 0 11 14475.00 5.41 0.00 14475.00 3.11
C1 2 1 75 75 1 11 13607.58 28.51 0.00 13607.58 7.84
C1 2 1 75 75 2 10 13288.32 1626.34 0.00 13288.32 12.30
C2 2 3 25 25 0 8 10123.42 89.54 0.00 10123.42 13.55
C2 2 3 25 25 1 7 9423.27 3199.97 0.00 9423.27 265.97
C2 2 3 25 25 2 7 NFS † – 9121.84 650.19
C2 2 3 25 50 0 7 9251.42 381.03 0.00 9251.42 22.97
C2 2 3 25 50 1 7 8209.24 † 0.01 8161.40 250.99
C2 2 3 25 50 2 7 NFS † – 7766.10∗ †
C2 2 3 25 75 0 8 10450.37 88.90 0.00 10450.37 15.16
C2 2 3 25 75 1 8 9882.38 1052.79 0.00 9882.38 137.52
C2 2 3 25 75 2 8 NFS † – 9696.51 547.51
C2 2 3 50 25 0 10 13105.34 13.98 0.00 13105.34 4.31
C2 2 3 50 25 1 10 12296.73 156.98 0.00 12296.73 17.73
C2 2 3 50 25 2 10 12113.05 644.92 0.00 12113.05 62.81
C2 2 3 50 50 0 9 11342.06 18.20 0.00 11342.06 5.56
C2 2 3 50 50 1 8 9755.95 3343.90 0.00 9755.95 28.28
C2 2 3 50 50 2 8 NFS † – 9560.23∗ †
C2 2 3 50 75 0 9 11844.75 19.03 0.00 11844.75 5.69
C2 2 3 50 75 1 9 10969.32 159.79 0.00 10969.32 17.87
C2 2 3 50 75 2 9 10789.53 688.15 0.00 10789.53 67.00
C2 2 3 75 25 0 11 13946.50 4.31 0.00 13946.50 1.86
C2 2 3 75 25 1 11 13374.59 18.53 0.00 13374.59 4.42
C2 2 3 75 25 2 10 13314.91 944.55 0.00 13314.91 8.94
C2 2 3 75 50 0 10 12016.59 7.19 0.00 12016.59 2.41
C2 2 3 75 50 1 9 11084.88 566.03 0.00 11084.88 7.56
C2 2 3 75 50 2 9 10909.36 1375.34 0.00 10909.36 18.78
C2 2 3 75 75 0 10 12865.15 6.80 0.00 12865.15 2.30
C2 2 3 75 75 1 10 11711.98 54.23 0.00 11711.98 8.56
C2 2 3 75 75 2 10 11587.07 338.37 0.00 11587.07 29.19
R1 2 5 25 25 0 8 11399.57 132.21 0.00 11399.57 12.14
R1 2 5 25 25 1 8 10653.12 1099.92 0.00 10653.12 134.99
R1 2 5 25 25 2 8 NFS † – 10418.51 419.67
R1 2 5 25 50 0 8 9865.13 97.51 0.00 9865.13 21.08
R1 2 5 25 50 1 7 8599.48 1999.45 0.00 8599.48 543.11
R1 2 5 25 50 2 7 NFS † – 8231.49∗ †
R1 2 5 25 75 0 8 11349.44 67.11 0.00 11349.44 11.66
R1 2 5 25 75 1 8 10402.82 1670.65 0.00 10402.82 151.31
R1 2 5 25 75 2 8 NFS † – 10077.01 481.90
R1 2 5 50 25 0 10 13933.99 20.41 0.00 13933.99 5.23
R1 2 5 50 25 1 10 13231.03 235.38 0.00 13231.03 23.81
R1 2 5 50 25 2 10 12930.91 973.64 0.00 12930.91 81.61
R1 2 5 50 50 0 9 11209.97 38.11 0.00 11209.97 6.78
R1 2 5 50 50 1 8 9822.99 513.19 0.00 9822.99 40.50
R1 2 5 50 50 2 8 9612.11 † 0.02 9445.51∗ †
R1 2 5 50 75 0 10 12997.89 29.87 0.00 12997.89 5.16
R1 2 5 50 75 1 10 12212.10 253.80 0.00 12212.10 25.64
R1 2 5 50 75 2 10 11950.30 1394.59 0.00 11950.30 107.64
R1 2 5 75 25 0 11 15720.41 4.64 0.00 15720.41 2.06
R1 2 5 75 25 1 11 15167.18 29.55 0.00 15167.18 5.13
R1 2 5 75 25 2 11 15032.09 99.67 0.00 15032.09 10.47
R1 2 5 75 50 0 10 12991.71 9.48 0.00 12991.71 1.73
R1 2 5 75 50 1 10 11672.34 37.86 0.00 11672.34 6.19
R1 2 5 75 50 2 10 11334.87 149.29 0.00 11334.87 523.43
R1 2 5 75 75 0 11 14995.54 5.36 0.00 14995.54 1.97
R1 2 5 75 75 1 11 14439.77 41.73 0.00 14439.77 6.89
R1 2 5 75 75 2 11 14216.79 94.00 0.00 14216.79 13.14
R2 2 9 25 25 0 10 11971.75 69.93 0.00 11971.75 9.31
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Table B.27: Results on instances with 200 customers: Part II
T-ILP CBC6

Instance |K| TD CPU GAP TD CPU
R2 2 9 25 25 1 8 11121.18 713.70 0.00 11121.18 81.33
R2 2 9 25 25 2 8 NFS † – 10895.77 335.48
R2 2 9 25 50 0 8 10199.67 97.73 0.00 10199.67 18.11
R2 2 9 25 50 1 8 NFS † – 8818.51 197.38
R2 2 9 25 50 2 8 NFS † – 8412.13∗ †
R2 2 9 25 75 0 9 12104.21 73.46 0.00 12104.21 8.81
R2 2 9 25 75 1 8 11366.36 2583.36 0.00 11366.36 90.90
R2 2 9 25 75 2 9 11388.06 † 0.03 11117.62 393.06
R2 2 9 50 25 0 10 13733.07 19.51 0.00 13733.07 4.55
R2 2 9 50 25 1 10 12980.70 187.96 0.00 12980.70 21.61
R2 2 9 50 25 2 10 12694.18 786.35 0.00 12694.18 74.76
R2 2 9 50 50 0 9 11550.48 31.61 0.00 11550.48 4.69
R2 2 9 50 50 1 9 10152.71 396.81 0.00 10152.71 47.61
R2 2 9 50 50 2 9 9951.32 † 0.01 9813.56∗ †
R2 2 9 50 75 0 10 13670.67 20.55 0.00 13670.67 5.22
R2 2 9 50 75 1 10 12818.61 258.38 0.00 12818.61 26.69
R2 2 9 50 75 2 10 12563.97 991.31 0.00 12563.97 100.64
R2 2 9 75 25 0 11 15528.91 23.56 0.00 15528.91 2.45
R2 2 9 75 25 1 11 14954.69 21.87 0.00 14954.69 3.92
R2 2 9 75 25 2 11 14773.89 84.78 0.00 14773.89 9.55
R2 2 9 75 50 0 10 13056.48 7.20 0.00 13056.48 2.17
R2 2 9 75 50 1 10 11572.47 51.67 0.00 11572.47 7.61
R2 2 9 75 50 2 10 11228.07 278.24 0.00 11228.07 856.79
R2 2 9 75 75 0 11 15776.70 82.12 0.00 15776.70 2.53
R2 2 9 75 75 1 11 15239.62 29.06 0.00 15239.62 4.45
R2 2 9 75 75 2 11 15048.26 92.09 0.00 15048.26 9.64

RC1 2 2 25 25 0 8 11465.54 116.04 0.00 11465.54 14.50
RC1 2 2 25 25 1 8 10849.64 787.62 0.00 10849.64 97.15
RC1 2 2 25 25 2 8 NFS † – 10680.33 356.81
RC1 2 2 25 50 0 8 9873.04 115.90 0.00 9873.04 20.28
RC1 2 2 25 50 1 7 8485.05 1914.00 0.00 8485.05 324.25
RC1 2 2 25 50 2 7 NFS † – 8083.75∗ †
RC1 2 2 25 75 0 8 11407.10 72.15 0.00 11407.10 12.67
RC1 2 2 25 75 1 8 10633.50 678.44 0.00 10633.50 95.42
RC1 2 2 25 75 2 8 NFS † – 10479.76 336.06
RC1 2 2 50 25 0 10 12685.85 21.67 0.00 12685.85 4.75
RC1 2 2 50 25 1 9 11743.68 285.58 0.00 11743.68 31.83
RC1 2 2 50 25 2 9 11538.25 1919.08 0.00 11538.25 139.03
RC1 2 2 50 50 0 9 11901.84 29.67 0.00 11901.84 7.17
RC1 2 2 50 50 1 9 10389.54 360.47 0.00 10389.54 46.42
RC1 2 2 50 50 2 9 10179.69 2638.32 0.00 10179.69 276.22
RC1 2 2 50 75 0 10 14026.09 17.22 0.00 14026.09 5.77
RC1 2 2 50 75 1 10 13322.63 111.95 0.00 13322.63 15.36
RC1 2 2 50 75 2 10 13159.21 611.49 0.00 13159.21 58.25
RC1 2 2 75 25 0 12 15790.92 4.22 0.00 15790.92 2.14
RC1 2 2 75 25 1 11 15473.16 68.83 0.00 15473.16 4.22
RC1 2 2 75 25 2 11 15315.91 81.53 0.00 15315.91 8.30
RC1 2 2 75 50 0 10 12801.00 4.84 0.00 12801.00 1.73
RC1 2 2 75 50 1 10 11439.60 27.77 0.00 11439.60 5.42
RC1 2 2 75 50 2 10 11147.26 120.09 0.00 11147.26 10.66
RC1 2 2 75 75 0 11 15241.89 4.20 0.00 15241.89 2.20
RC1 2 2 75 75 1 11 14493.83 28.61 0.00 14493.83 4.72
RC1 2 2 75 75 2 11 14408.80 134.99 0.00 14408.80 11.36
RC2 2 2 25 25 0 9 11996.43 67.72 0.00 11996.43 10.38
RC2 2 2 25 25 1 8 11112.52 567.46 0.00 11112.52 68.40
RC2 2 2 25 25 2 8 10880.95 2566.52 0.00 10880.95 257.74
RC2 2 2 25 50 0 8 10288.10 81.67 0.00 10288.10 11.61
RC2 2 2 25 50 1 8 9049.90 1290.97 0.00 9049.90 166.18
RC2 2 2 25 50 2 8 NFS † – 8768.07 665.42
RC2 2 2 25 75 0 9 12390.03 38.92 0.00 12390.03 8.12
RC2 2 2 25 75 1 9 11702.26 589.61 0.00 11702.26 59.51
RC2 2 2 25 75 2 9 11554.80 2161.88 0.00 11554.80 201.46
RC2 2 2 50 25 0 10 13935.33 21.01 0.00 13935.33 4.89
RC2 2 2 50 25 1 10 13157.47 203.38 0.00 13157.47 22.00
RC2 2 2 50 25 2 10 13011.45 715.73 0.00 13011.45 73.20
RC2 2 2 50 50 0 9 11753.09 30.14 0.00 11753.09 5.89
RC2 2 2 50 50 1 8 9687.19 505.96 0.00 9687.19 56.43
RC2 2 2 50 50 2 8 9382.32 † 0.01 9271.31 197.02
RC2 2 2 50 75 0 10 13083.61 23.69 0.00 13083.61 4.94
RC2 2 2 50 75 1 9 12309.00 294.35 0.00 12309.00 26.09
RC2 2 2 50 75 2 9 12129.82 1103.73 0.00 12129.82 97.15
RC2 2 2 75 25 0 11 14765.00 6.45 0.00 14765.00 1.83
RC2 2 2 75 25 1 11 13917.72 40.97 0.00 13917.72 7.78
RC2 2 2 75 25 2 11 13700.43 157.77 0.00 13700.43 17.45
RC2 2 2 75 50 0 11 13466.10 5.56 0.00 13466.10 1.81
RC2 2 2 75 50 1 10 11406.55 35.67 0.00 11406.55 6.22
RC2 2 2 75 50 2 10 10803.64 733.54 0.00 10803.36∗ †
RC2 2 2 75 75 0 12 16883.64 3.34 0.00 16883.64 1.69
RC2 2 2 75 75 1 12 16476.26 18.69 0.00 16476.26 3.42
RC2 2 2 75 75 2 12 16440.09 65.61 0.00 16440.09 7.77

AVG1 10 12470.75 870.73 0.00 12252.67 302.75
AVG2 10 12490.10 440.23 0.00 12490.10 50.91
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