
01 March 2025

UNIVERSITÀ POLITECNICA DELLE MARCHE
Repository ISTITUZIONALE

A framework for anomaly detection and classification in Multiple IoT scenarios / Cauteruccio, F.; Cinelli, L.;
Corradini, E.; Terracina, G.; Ursino, D.; Virgili, L.; Fortino, G.; Liotta, A.; Savaglio, C.. - In: FUTURE
GENERATION COMPUTER SYSTEMS. - ISSN 0167-739X. - 114:(2021), pp. 322-335.
[10.1016/j.future.2020.08.010]

Original

A framework for anomaly detection and classification in Multiple IoT scenarios

Publisher:

Published
DOI:10.1016/j.future.2020.08.010

Terms of use:

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of
copyrighted works requires the consent of the rights’ holder (author or publisher). Works made available under a Creative Commons
license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor’s
website for further information and terms and conditions.
This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the
published version.

Availability:
This version is available at: 11566/283531 since: 2024-05-06T10:33:30Z

This is the peer reviewd version of the followng article:



A framework for anomaly detection and classification in Multiple IoT

scenarios

Francesco Cauteruccio1, Luca Cinelli1, Enrico Corradini2, Giorgio Terracina1, Domenico

Ursino2∗, Luca Virgili2, Giancarlo Fortino3, Antonio Liotta4, and Claudio Savaglio 3

1 DEMACS, University of Calabria,
2 DII, Polytechnic University of Marche,

3 DIMES, University of Calabria,
4 Faculty of Computer Science, Free University of Bozen-Bolzano

∗ Contact Author

{cauteruccio, cinelli, terracina}@mat.unical.it; {e.corradini, l.virgili}@pm.univpm.it;

d.ursino@univpm.it; giancarlo.fortino@unical.it; liotta.antonio@gmail.com;

csavaglio@dimes.unical.it

Abstract

The investigation of anomalies is an important element in many scientific research fields. In

recent years, this activity has been also extended to social networking and social internetworking,

where different networks interact with each other. In these research fields, we have recently wit-

nessed an important evolution because, beside networks of people, networks of things are becoming

increasingly common. IoT and Multiple IoT scenarios are thus more and more studied. This paper

represents a first attempt to investigate anomalies in a Multiple IoT scenario (MIoT). First, we

propose a new methodological framework that can make future investigations in this research field

easier, coherent, and uniform. Then, in the context of anomaly detection in an MIoT, we define

the so-called “forward problem” and “inverse problem”. The definition of these problems allows

the investigation of how anomalies depend on inter-node distances, the size of IoT networks, and

the degree centrality and closeness centrality of anomalous nodes. The approach proposed herein is

applied to a smart city scenario, which is a typical MIoT. Here, data coming from sensors and social

networks can boost smart lighting in order to provide citizens with a smart and safe environment.

Keywords: Anomaly Detection; Internet of Things; Multiple IoT; MIoT; Anomaly Investigation;

Forward Problem; Inverse Problem

1 Introduction

In the Concise Oxford Dictionary 1, anomaly is defined as “something that deviates from what is

standard, normal, or expected”. If regularities allow investigating the general characteristics of a

1Concise Oxford Dictionary - https://en.oxforddictionaries.com
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complex system, anomalies allow the uncover and analysis of unexpected features that might not be

otherwise discovered. For this reason, the detection of anomalies has become very important in data

analytics, and is widely investigated both in statistics and machine learning [3, 2, 5]. The relevance

of anomaly detection is universally acknowledged, since data anomalies are at basis of significant

events and patterns. Example application domains include: privacy and cybersecurity [68, 66]; fault

detection [37]; ecological disturbances [25]; communication networks [65]; social media life [26, 56, 61,

67]; and gene regulation [41, 40].

In recent years, anomalies have been widely investigated in social networks to detect fraudulent

individuals [55, 6], spammers [59, 28], malicious behavior, and so forth. Even more recently, anomaly

detection has been analyzed in contexts where more social networks interact with each other [19], thus

going from social networking into social internetworking.

Social internetworking is certainly one of the frontiers of social network analysis, since people tend

to have multiple social network accounts and can, thus, become “social bridges”. Furthermore, all

sorts of networked objects are getting increasingly smart and social, giving rise to the so-called Smart

Objects (SOs) and revolutionizing both the Internet of Things (IoT) and the Social Internet of Things

(SIoT) [11]. Also, several SIoTs and IoTs cooperate with each other through “bridge” objects, thus

generating new architectures, referred to in the literature as Multiple IoT (MIoT) [15].

The detection of anomalies in a single-IoT environment has been widely investigated [16, 69, 14,

44, 23], and many results involving privacy, security and fault detection have been found. However,

to the best of our knowledge, no investigation on anomalies and their possible detection in an MIoT

has been performed so far.

In this paper, we aim at filling this gap by proposing a new methodological framework for anomaly

detection and classification in MIoTs. Our framework models anomalies and the corresponding issues

in an MIoT by providing a multi-dimensional view, based on three orthogonal taxonomies: (i) presence

anomalies vs success anomalies; (ii) hard anomalies vs soft anomalies; and (iii) contact anomalies vs

content anomalies. Each combination of the possible values of these dimensions gives rise to a specific

type of anomaly to investigate, for instance the Presence-Hard-Contact anomalies. Furthermore,

anomaly definitions are orthogonal to specific anomaly detection approaches, past or future, which

may be applied (and will be combined) in the context of our framework.

Together with the multi-dimensional taxonomy, another main component of our framework is the

extension of conventional methodological frameworks to the MIoT case. Our framework has been

conceived to address two problems, known as the “forward problem” and the “inverse problem”,

respectively. In the forward problem, we aim to analyze the effects that multiple anomalies have onto

the MIoT. On the other hand, in the inverse problem, which is traditionally more complex, we aim at

detecting the source of the anomalies (i.e., the objects that have generated them) based on the effects

that these have on the objects or their connections.

In order to show the possible usage of our framework, we present a case study centered around a

smart city. Furthermore, in order to evaluate our framework and extract knowledge, we have conducted

a series of tests, which we extensively present in this paper. These allowed us to find several important

knowledge patterns about anomalies and their effects in an MIoT. Our most important findings may

be summarized as follows: (i) the effects of the anomalies of a node rapidly decrease as the distance

from the node itself increases; (ii) anomalies are less evident in an MIoT than in a single IoT; (iii) the
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number of anomalous nodes increases as the number of IoTs increases, in a roughly linear way; (iv)

the outdegree of anomalous nodes has a great impact on the spread of the anomaly over the MIoT; (v)

closeness centrality is even more important than degree centrality in the spread of anomalies; (vi) the

computation time necessary for the detection of anomalous nodes is polynomial against the number of

MIoT nodes; (vii) the time necessary for evaluating the effects of anomalies in an MIoT is quadratic

against the number of its nodes.

Summarizing, the main contributions of this paper are the following:

• We present three different anomaly taxonomies, orthogonal to each other, obtaining and formal-

izing eight kinds of different anomalies.

• We present an approach to evaluate the spread and the effects of an anomaly in an MIoT

(forward problem) and another one that, starting from the analysis of the effects of one or more

anomalies, aims at detecting the anomalous node(s) (inverse problem).

• We present a case study regarding smart cities, which can benefit from our framework, and

illustrate several experiments aimed at evaluating the proposed framework and at deriving many

knowledge patterns about anomalies in an MIoT.

The rest of this paper is organized as follows. In Section 2, we examine related literature. In

Section 3, we illustrate the MIoT paradigm, which is the reference one for our framework. In Section

4, we present our multi-dimensional taxonomy of anomalies in an MIoT context. In Section 5, we

introduce the specialization of the forward and the inverse problems for MIoTs. In Section 6, we

illustrate our experiments. Finally, in Section 7, we draw important conclusions and outline possible

future developments.

2 Related Work

Anomaly detection has been largely investigated in past literature. Here, anomalies have been defined

in very different ways, based on the reference domain and data model. A widely accepted definition

of anomaly is the one proposed by Hawkins in [35], where an anomaly is defined as “an observation

which deviates so much from other observations as to arouse suspicions that it was generated by a

different mechanism”. A definition of anomaly specific for social networks can be found in [17], where

the authors define anomaly as “an observation which appears to ignore interactions and relationships

between individuals and their peers”. In [24], anomalies are referred to as “patterns in data that do

not conform to a well–defined notion of normal behaviour”.

Anomaly detection is an issue largely investigated in past literature. The corresponding research

studies can be grouped in several ways. One approach distinguishes these studies into: (i) surveys and

taxonomies, (ii) approaches for anomaly detection in generic networks, (iii) approaches for anomaly

detection in social networks, and (iv) other approaches.

If we consider this classification, our approach belongs to class (iii). In this context, we introduce

two main novelties, in that: (i) we focus on networks of objects instead of networks of people; (ii)

we focus on multiple network scenarios instead of single networks. In addition, our methodological
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framework introduces two further novelties, namely: (i) the definition of three new taxonomies specific

for anomaly detection in MIoTs; and (ii) the investigation of the so called forward and inverse problems

in this research context. Moreover, the study we are presenting is orthogonal to other approaches for

anomaly detection in network-based data, since we do not aim at proposing a specific approach to

address this last issue.

In the following, in order to give a better overview of the literature, we first examine the four

classes of research studies on anomalies and, then, present a table comparing our approach to methods

introduced in the literature.

Surveys and taxonomies. Recently, several surveys have proposed structured and comprehensive

overviews of anomalies to cope with the need of providing usable taxonomies. A first classification of

anomalies can be found in [24], which is considered a pioneering paper in this sense. Besides a formal

definition of different kinds of anomalies, the authors highlight the challenges related to anomaly

detection. In particular, for each class of anomalies introduced, they focus on existing techniques and

application domains. Based on their nature, anomalies have been also classified as Point, Contextual

and Collective anomalies. Some applications related to these categories are reported in [4, 45, 54, 43].

A significant amount of work has been carried out on anomaly detection in individual IoTs, as

captured by a number of survey papers [16, 63, 14]. On the contrary, to the best of our knowledge, no

investigation or categorization of possible anomalies in the context of networks and layered networks

(mostly related to MIoTs) has been proposed so far. Works presenting relevant aspects are described

in the following.

In [7, 4], the authors investigate anomalies in graph-based environments. Specific analyses of this

topic can be found in [10] for social networks, in [29, 31, 39, 34] for intrusion detection, in [58] for

traffic modelling, and in [41, 40] for gene regulation.

We characterize anomalies as being either static or dynamic, and as being labelled or unlabelled.

In [55], the authors survey the state-of-the-art related to the detection of different types of anomalies

in social networks. Here, they show that anomalous users’ behaviors in social networks are due to a

change in their patterns of interaction or in their ways of interacting with the network, which markedly

differ from the ones of their peers. The impact of this anomalous behavior can be observed in the

resulting structure, allowing anomalies to be characterized as static or dynamic, labelled or unlabelled.

For instance, fraudulent individuals may create a network of collaborations to enhance their reputation

in a social network. However, when individuals behave in this way, they show an increased level of

interaction in the network and tend to form highly interconnected sub-regions therein.

Anomalies in generic networks. In [59], the authors analyze the detection of e-mail spam in

a static, unlabelled network context. In particular, they note that spam and other viral materials

are typically sent from a single malicious individual to many targets. As a consequence, detecting a

specific star-like structure in a network can be a symptom of malicious behavior. Another approach to

spam detection is proposed in [28]. In [6], the authors show that both near-stars and near-cliques are

indicators of anomalous behaviors in networks. They focus on anomaly detection in weighted graphs.

Their approach can be applied to different contexts, such as intrusion detection, spammer detection,

anomalies in social networks, and so forth. They also address the problem of anomaly detection in
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static, labeled networks. In this context, they consider some ego-networks, each one centered on an

individual and, when the sum over a particular label is disproportionately high with respect to the

number of edges in the network, they conclude that the corresponding individual has a potentially

anomalous behavior. In [36], a universal coding method for unlabeled graphs is introduced and is

adopted for anomaly detection in static, unlabeled graphs.

In [27], the authors propose an approach to anomaly detection in dynamic networks. This exploits

the analysis of sub-structures, such as maximal cliques, for detecting community-based anomalies, i.e.,

unexpected variations of communities. In this work, a community coincides with a maximal clique.

This approach considers grown, shrunken, merged, split, born and vanished communities, respectively.

In [47], an approach to detect anomalies on dynamic labeled networks in a big data context is

presented. Big data is usually equipped with significant amounts of metadata. This approach exploits

both raw data and metadata to detect anomalous events. It is based on the probability of an edge

to occur between any two nodes. This probability is a function of the linear combination of node

attributes.

Anomalies in social networks. In recent years, social networks have been able to attract the

interest of many researchers, who have started to study them from many points of view. A recent

guide to research methods, applications and software tools related to social network analysis can be

found in [20], while a review of social network analysis problems (including anomaly detection) and

related applications is presented in [21]. A review of research methods for figurative language analysis

in social networks can be found in [1], while the application of social network analysis to extract critical

information after a disaster is considered in [42]. Plenty of applications and software tools are also

available on this topic. For example, [64] discusses the integration of heterogeneous social networks;

[38] analyzes the search of opinion leaders in social networks; while [9] investigates recommendation

techniques in this context.

Recently, some authors have started to study scenarios in which several social networks interact

with each other to allow their users to achieve certain goals [19]. In past literature, different terms

have been used to refer to this context, including multilayer social networks [17], cross platform online

social networks [57], multi social networks [46], and Social Internetworking Scenarios [19]. This is a

highly investigated field, since the number of users who simultaneously interact with multiple social

networks is constantly growing. For instance, in [17], new forms of anomalies emerging in multi-layer

social networks are investigated. In [57], the authors propose an approach that exploits an intelligent-

sensing model for analyzing behavioral variations in multiple social networks. In it, controlled faulty

data, referred to as cognitive tokens, are intentionally introduced in the information flow for attracting

anomalous users. The authors show that the same approach could also be applied to a single IoT

scenario.

The MIoT environment used in this paper represents the extension to smart objects and the IoTs of

social internetworking scenarios [15]. Indeed, users joining multiple social networks can be assimilated

to objects belonging to different IoTs, although the data type and nature, and the kind of issues to

be addressed, are rather different.
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Other approaches Several recent approaches on anomaly detection exploit classification through

machine learning-based and/or neural network-based engines [52, 8, 18, 63, 50, 30, 49]. Due to the

intrinsic nature of these engines, the corresponding approaches do not construct an explicit model of

anomalies. This way of proceeding is complementary and dual with respect to the one adopted in our

approach which, indeed, aims at modeling anomalies in new MIoT scenarios.

Classification of our approach After having examined the literature about anomalies, we can

compare our approach with the most related ones, which have been introduced above. For this

purpose, we consider some comparison properties, namely: (i) the ability of handling more networks;

(ii) the usage of a unified scheme; (iii) the ability of managing labeled networks; (iv) the ability

of handling dynamic networks; (v) the exploitation of additional metadata; and (vi) the usage of

structural properties. Based on these features, our approach compares to the and the most related

studies, as shown in Table 1.

Capability

of han-

dling more

networks

Usage of

a unified

scheme

Capability

of man-

aging

labeled

networks

Capability

of handling

dynamic

networks

Exploitation

of additional

metadata

Usage of

structural

properties

Our approach X X X X X X
[59] - X - - - X
[6] - - X - - X

[36] - - - - - X
[27] - - X X - X
[47] - - X X X -

[17] X - - - - X
[57] X - X X - -

Table 1: Comparison between our approach and the most related ones

3 The MIoT paradigm

In this section, we provide an overview of the MIoT paradigm, described in detail in [15], since this is

the reference case for our study. An MIoT M consists of a set of m IoTs. Formally speaking:

M = {I1, I2, · · · , Im} (3.1)

where Ik, with k ∈ [1,m], is a single IoT.

Let oj be an object of M. We assume that if oj belongs to Ik it has an instance ιjk , representing

it in Ik. The instance ιjk consists of a virtual view (or, better, a software interface) representing oj
in Ik. For example, it provides all the other instances of Ik, and the users interacting with this IoT,

with all the necessary information about oj . The information stored in ιjk is represented according to

the format and the conventions adopted in Ik.
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An MIoT M can also be represented by means of a graph-based notation. In particular, a graph

Gk = 〈Nk, Ak〉 may be associated with an IoT, Ik of M. In this case:

• Nk is the set of nodes of Gk; there is a node njk for each instance ιjk ∈ Ik, and vice versa. Since

there is a biunivocal correspondence between a node and an instance, in the following we shall

use these two terms interchangeably.

• Ak is the set of the arcs of Gk; there is an arc, ajqk = (njk , nqk) if there exists any form of

relationship from njk to nqk .

Finally:

M = 〈N,A〉 (3.2)

Here:

N =

m⋃
k=1

Nk A = AI ∪AC (3.3)

where:

AI =

m⋃
k=1

Ak AC = {(njk , njq)|njk ∈ Nk, njq ∈ Nq, k 6= q} (3.4)

AI is the set of the inner arcs (hereafter, i-arcs) of M; they link instances of different objects

belonging to the same IoT. AC is the set of cross arcs (hereafter, c-arcs) of M; they link instances of

the same object belonging to different IoT. A node connected to at least one c-arc is called c-node;

otherwise, it is called i-node.

In M, an object oj has associated a set MDj of metadata. Our metadata model refers to the

one of the IPSO (Internet Protocol for Smart Object) Alliance2. Specifically, MDj consists of three

subsets, namely: (i) MDD
j , i.e., the set of descriptive metadata; (ii) MDT

j , i.e., the set of technical

metadata; (iii) MDB
j , i.e., the set of behavioral metadata. All details about these metadata can be

found in [15].

Given a pair of instances ιjk of oj and ιqk of oq in Ik, our model saves the set TrSjqk of the

transactions from ιjk to ιqk . It is defined as:

TrSjqk = {Trjqk1 , T rjqk2 , · · · , T rjqkv } (3.5)

A transaction Trjqkz ∈ TrSjqk is represented as follows:

Trjqkz = 〈stjqkz , fhjqkz , okjqkz , ctjqkz 〉 (3.6)

Here:

• stjqkz denotes the starting timestamp of Trjqkz .

• fhjqkz indicates the ending timestamp of Trjqkz .

2https://www.omaspecworks.org/
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• okjqkz denotes whether Trjqkz was successful or not; it is set to true in the affirmative case, to

false in the negative one, and to NULL if it is still in progress.

• ctjqkz indicates the set of the content topics considered by Trjqkz . Specifically, it consists of a

set of w keywords:

ctjqkz = {kw1
jqkz

, kw2
jqkz

, . . . , kwwjqkz } (3.7)

An important subset of TrSjqk is TrOkSjqk , which stores the successful transactions of TrSjqk . It

is defined as:

TrOkSjqk = {Trjqkz |Trjqkz ∈ TrSjqk , okjqkz = true} (3.8)

In other words, this set comprises all the transactions through which ιqk gave a positive answer to

a request of ιjk , thus providing this last one with services, information or data it required.

Now, we can define the set TrSjk of the transactions activated by ιjk in Ik. Specifically, let

ι1k , ι2k , · · · , ιwk
be all the instances belonging to Ik. Then:

TrSjk =
⋃

q=1..w,q 6=j
TrSjqk (3.9)

This means that the set TrSjk of the transactions of an instance ιjk is given by the union of the

sets of the transactions from ιjk to all the other instances of Ik.
We should note that, herein, we have reported only those aspects of the MIoT paradigm that are

strictly necessary for this paper. The interested reader can find further details in [15].

We can now introduce the concept of neighborhood of an instance ιjk in Ik. Specifically, the

neighborhood Nbhjk of ιjk is defined as:

Nbhjk = ONbhjk ∪ INbhjk (3.10)

where:

ONbhjk = {nqk |(njk , nqk) ∈ AI , |TrSjqk | > 0} INbhjk = {nqk |(nqk , njk) ∈ AI , |TrSqjk | > 0} (3.11)

In other words, Nbhjk comprises those instances directly connected to ιjk through an incoming or

an outgoing arc, which shared at least one transaction with it.

Finally, we can define the concept of neighborhood of an i-arc ajqk = (njk , nqk) ∈ AI . Specifically,

the neighborhood Nbhjqk of the i-arc ajqk is defined as:

Nbhjqk = ONbhjqk ∪ INbhjqk (3.12)

where:

ONbhjqk = {(nqk , nrk)|(nqk , nrk) ∈ AI} INbhjqk = {(nlk , njk)|(nlk , njk) ∈ AI} (3.13)

Hence, ONbhjqk contains all the arcs of AI having nqk as source node, whereas INbhjqk comprises

all the arcs of AI having njk as target node.
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4 Modeling Anomalies in an MIoT

In this section, we propose a model allowing for the representation and management of anomalies in

MIoTs. The core of our model consists of some possible taxonomies characterizing anomalies in this

scenario. Each one will correspond to different analysis viewpoints. Borrowing a terminology typical

in data analysis, these taxonomies can be seen as different dimensions of a multi-dimensional model,

through which the fact “anomalies in an MIoT” can be investigated. In this paper, we consider three

of these taxonomies, namely: (i) presence anomalies vs success anomalies; (ii) hard anomalies vs

soft anomalies; (iii) contact anomalies vs content anomalies. However, we do not exclude that other

taxonomies may also be possible in future works.

Continuing with the analogy between our taxonomies and the dimensions of a multi-dimensional

model, we have that each combination of the possible values of these dimensions gives rise to a specific

type of anomaly to study. Therefore, we have the Presence-Hard-Contact Anomalies, the Success-

Hard-Content Anomalies, and so on. In the following subsections, we briefly illustrate each taxonomy

and, then, provide a formalization for some types of combined anomalies. We point out again that the

description of our taxonomies is orthogonal to specific anomaly detection techniques. In order to keep

the formalization as clear as possible, we will focus on a simple anomaly detection scheme based on

frequencies. However, more complex detection schemes may certainly be applied to our taxonomies.

4.1 Definition of anomaly taxonomies

4.1.1 Presence Anomalies vs Success Anomalies

A presence anomaly denotes that there is a strong variation (i.e., increase or decrease) in the number

of transactions carried out from an instance ιjk to an instance ιqk in a unit of time. A success anomaly

shows that, although there is no presence anomaly from ιjk to ιqk , there is a strong decrease in the

number of successful transactions from ιjk to ιqk in a unit of time.

4.1.2 Hard Anomalies vs Soft Anomalies

A hard anomaly indicates that the frequency of successful transactions carried out from an instance

ιjk to an instance ιqk is higher than (or lower than) a certain threshold. A soft anomaly happens

when the frequency of the (successful) transactions ranges between the maximum and the minimum

thresholds but, for several consecutive instances of time, it is higher (resp., lower) than the mean

of these two thresholds and it shows a monotone increasing (resp., decreasing) trend. The rationale

underlying this taxonomy is that hard anomalies are indicators of faults, whereas soft anomalies are

indicators of a slow, but constant, degradation. Soft anomalies are extremely precious in applications

such as predictive maintenance.

4.1.3 Contact Anomalies and Content Anomalies

A contact anomaly from an instance ιjk to an instance ιqk considers only the presence or the absence

of transactions. By contrast, a content anomaly takes the content exchanged in the corresponding
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transactions into account3. Here, we assume that we are capable of identifying possible synonymies

or homonymies relating terms. This is a well-known problem in the cooperative information system

research field and several thesauruses have been proposed for this purpose. In this paper, unless

otherwise specified, we will refer to Babelnet [48], which is among the most advanced thesauruses.

As far as content anomalies are concerned, a reference content set, consisting of some keywords, is

necessary for verifying variations with respect to the content of the involved transactions. Two variants

of content anomalies can be considered, namely: (i) the strict content anomalies, where the whole

set of the reference keywords must be present in the involved transactions, and (ii) the loose content

anomalies, where at least one of the reference keywords must be present therein.

4.2 Formalization of anomalies

The combination of the three taxonomies introduced above gives rise to eight possible kinds of anomaly.

In the following, we provide the formal definition for representative cases. We recall that, for the

sake of clarity, in these definitions we consider frequencies as the basic factor for anomaly detection.

However, we point out that, even if frequencies are a well-accepted and widely adopted factor, even

more complex factors could easily be incorporated into our taxonomies.

In the next subsections, we present a formalization of a representative selection of the eight anomaly

types, providing the method for computing their anomaly degrees. We have not included the formal-

ization for all cases, due to brevity. Yet, their definition would be analogous and straightforward.

The kinds of anomaly that we formalize below include: (i) Presence-Hard-Contact anomalies,

(ii) Success-Hard-Contact anomalies, (iii) Presence-Soft-Contact anomalies, and (iv) Presence-Hard-

Content anomalies. In many of these definitions, the variable “time” plays a key role.

4.2.1 Presence-Hard-Contact Anomalies

Let t be a time instant and let ∆t be a time interval (consisting of one or more time units). The

frequency TrFrjqk(t,∆t) of the transactions from ιjk to ιqk can be defined as follows:

TrFjqk(t,∆t) =
|{Trjqkz | Trjqkz ∈ TrSjqk , stjqkz ≥ t, fhjqkz ≤ (t+ ∆t)}|

∆t
(4.1)

In other words, TrFjqk is given by the ratio between the number of transactions from ιjk to ιqk
exchanged in the time interval [t, t+ ∆t] to the length of this time interval (i.e., ∆t).

We say that there is a Presence-Hard-Contact anomaly from ιjk to ιqk in the time interval [t, t+∆t]

if:

• TrFjqk is higher than a certain threshold thmax, in which case the anomaly degree is defined as

αjqk(t,∆t) =
TrFjqk

(t,∆t)−thmax

thmax
, or

• TrFjqk is lower than a certain threshold thmin and this inequality does not hold in the time

instants preceding t. This last condition is necessary to avoid that the lack of transactions from

ιjk to ιqk is erroneously interpreted as a presence anomaly, as it would the case for instance when

3Recall that, given a transaction Trjqkz
, the corresponding content ctjqkz

consists of a set of w keywords.
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two instances have never performed transactions between them in the past. In this case, the

anomaly degree is defined as αjqk(t,∆t) =
thmin−TrFjqk

(t,∆t)

thmin
.

If no Presence-Hard-Contact anomaly is detected, αjqk(t,∆t) is set to 0.

Here and in the following, the thresholds thmax and thmin can either be static or are dynamically

computed over the previous observations. For instance, they could be computed considering both the

mean and the standard deviation observed for TrFjqk in a predefined period of time. However, their

actual definition depends on the application domain.

Presence-Hard-Contact anomalies focus on anomalies detected in the number of transactions (pres-

ence) occurring between two instances in an MIoT without considering the content they share (contact)

and focusing on sharp variations of observed values (hard).

Their detection could be particularly relevant, for example, to identify faults concerning the ability

of an MIoT object to send data. This may happen, for instance, because an object is no longer working.

Here and in the following, thanks to the concept of MIoT, anomalies between pairs of instances

can be used to compute anomalies between the corresponding pairs of objects. In particular, given

two objects oj and oq, let ISjq be the set of IoTs containing instances of both oj and oq connected

by an i-arc. The anomaly degree αjq(t,∆t) between the pair of objects oj and oq in an MIoT can be

defined as:

αjq(t,∆t) =

∑
Ik∈ISjq αjqk(t,∆t)

|ISjq|
(4.2)

This way of computing anomalies between pairs of objects in an MIoT, starting from the anomalies

of the corresponding pairs of instances, is valid for all kinds of anomalies.

4.2.2 Success-Hard-Contact Anomalies

Similarly to what we have done for Presence-Hard-Contact anomalies, we first define the frequency

TrOkFjqk(t, t+ ∆t) of the transactions from ιjk to ιqk that occurred successfully in the time interval

[t, t+ ∆t] as:

TrOkFjqk(t,∆t) =
|{Trjqkz | Trjqkz ∈ TrOkSjqk , stjqkz ≥ t, fhjqkz ≤ (t+ ∆t)}|

∆t
(4.3)

Now, we can say that, in the time interval [t, t+ ∆t], there is a Success-Hard-Contact anomaly if:

• there is no Presence-Hard-Contact anomaly in the same time interval;

• TrOkFjqk is lower than a certain threshold th′min.

In this case, the anomaly degree is defined as αjqk(t,∆t) =
th′min−TrOkFjqk

(t,∆t)

th′min
. Otherwise,

αjqk(t,∆t) = 0.

Success-Hard-Contact anomalies are very similar to Presence-Hard-Contact anomalies. However,

they focus on the fraction of successful transactions occurring between two instances in an MIoT

(success); they disregard the content exchanged by transactions (contact) and focus on sharp variations

of observed values (hard).

11



The detection of this kind of anomaly might be particularly relevant, for example, in recognizing

possible difficulties of an MIoT object to deliver requested data. Differently from the previous case,

this may happen because there is an issue in the network rather than in the object itself.

4.2.3 Presence-Soft-Contact Anomalies

Let t be a time instant, let ∆t be a time interval and let τ be a positive integer representing the

number of time units after t into consideration (generally, τ � ∆t), and let thavg = thmin+thmax
2 . We

can say that, in the time interval [t, t+ τ ], there is a Presence-Soft-Contact anomaly if, for each time

instant θ such that t ≤ θ ≤ t+ τ , the following conditions hold:

• thmin ≤ TrFjqk(θ,∆t) ≤ thmax, which implies that no Presence-Hard-Contact anomaly exists

in the time interval into consideration;

• TrFjqk(θ,∆t) > thavg (resp., TrFjqk(θ,∆t) < thavg ), which denotes that the frequency of the

transactions from ιjk to ιqk is always higher (resp., smaller) than the average between thmin and

thmax;

• TrFjqk(θ+1,∆t) ≥ TrFjqk(θ,∆t) (resp., TrFjqk(θ+1,∆t) ≤ TrFjqk(θ,∆t)), which implies that

the frequency of the transactions from ιjk to ιqk is monotonically increasing (resp., decreasing)

in the time interval ∆t of interest.

If an anomaly is detected, the corresponding anomaly degree αjqk(t,∆t) is set to αjqk(t,∆t) =
|TrFjqk

(t+τ,∆t)−thavg |
thavg

. Otherwise, αjqk(t,∆t) = 0.

Presence-Soft-Contact anomalies focus on a smooth (soft) decrease in the number of all (presence)

the transactions exchanged between two instances of an MIoT, without considering the exchanged

content (contact).

The detection of this kind of anomaly may be useful in identifying a slowly but constantly changing

behavior of an object. For instance, it could regard an object that is wearing out, an equipment whose

battery has a very low charge level, and so forth.

4.2.4 Presence-Hard-Content Anomalies

Let ct be a content consisting of (presumably very few) keywords. We define the set sTrCtSjqk(ct) of

the transactions from ιjk to ιqk strictly adherent to ct, i.e., the set of the transactions from ιjk to ιqk
that contain all the keywords of ct as follows:

sTrCtSjqk(ct) = {Trjqkz | Trjqkz ∈ TrSjqk , ct ⊆ ctjqkz } (4.4)

As previously pointed out, here we assume that we are capable of identifying possible synonymies

or homonymies relating a term of ct with a term of ctjqkz . For this purpose, we use Babelnet [48].

Consider, now, a content ct consisting of some keywords. We define the set lT rCtSjqk(ct) of the

transactions from ιjk to ιqk that are loosely adherent to ct, i.e., the set of the transactions from ιjk to

ιqk that contain at least one keyword of ct as follows:
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lT rCtSjqk(ct) = {Trjqkz | Trjqkz ∈ TrSjqk , (ct ∩ ctjqkz ) 6= ∅} (4.5)

Let t be a time instant and let ∆t be a time interval. By applying the same approach described

for Presence-Hard-Contact anomalies, it is possible to define the frequency sTrCtFjqk(ct) (resp.,

lT rCtFjqk(ct)) of the transactions from ιjk to ιqk strictly (resp., loosely) adherent to ct. Then, it

is possible to state that, in the time interval [t, t+ ∆t], there is a strict (resp., loose) Presence-Hard-

Content anomaly from ιjk to ιqk against ct if:

• sTrCtFjqk(ct) (resp., lT rCtFjqk(ct)) is higher than a certain threshold thmax, or

• sTrCtFjqk(ct) (resp., lT rCtFjqk(ct)) is lower than a certain threshold thmin and this inequality

does not hold in the time instants preceding t.

Analogously to what we have done for Presence-Hard-Contact anomalies, if the first condition is

verified, the anomaly degree αjqk(t,∆t) can be defined as αjqk(t,∆t) =
sTrCtFjqk

(ct)−thmax

thmax
, for strictly

adherent anomalies, and αjqk(t,∆t) =
lT rCtFjqk

(ct)−thmax

thmax
, for loosely adherent ones. Instead, if the

second condition is verified, then αjqk(t,∆t) =
thmin−sTrCtFjqk

(ct)

thmin
, for strictly adherent anomalies, and

αjqk(t,∆t) =
thmin−lT rCtFjqk

(ct)

thmin
for loosely adherent ones. αjqk(t,∆t) = 0 in all the other cases.

Presence-Hard-Content anomalies focus on sharp variations (hard) in the number of transactions

(presence) exchanged between two instances in an MIoT, with regard to a certain set of contents

(content).

The study of content variations paves the way to a wide variety of analyses, ranging from variations

in the interests of a user who is adopting the MIoT objects, to variations in the sentiment of a user

on a specific topic/service provided through the MIoT objects.

The other kinds of anomaly, whose formalization we have not reported in this paper because they

are very similar to the ones considered above, would provide four further viewpoints of the possible

anomalies existing in an MIoT. It would be straightforward to see how these extra anomalies would

allow us to model other possible real-world cases, which shows the generic applicability of our approach

(three taxonomies and a multi-dimensional perspective).

5 Investigating the origins and effects of anomalies in an MIoT

After providing a multi-dimensional taxonomy of the possible anomalies present in an MIoT, in this

section we aim at investigating their origins and effects. For this purpose, we address two problems

that, according to what happens in several other research fields, we dubbed “forward problem” and

“inverse problem”, respectively. In the forward problem, given one or more anomalies, we aim at

analyzing their effects on an MIoT. In the inverse problem, which is traditionally more complex than

the forward one, given the effects of one or more anomalies on the nodes and the arcs of an MIoT,

we aim at detecting the origin(s) of them, i.e., the node(s) or the arc(s) from which anomalies have

started.
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5.1 Forward Problem

As previously pointed out, this problem aims at understanding the effects that one or more anomalies

have on the nodes of an MIoT. In the following, we will investigate the forward problem for one kind

of anomaly, namely the Presence-Hard-Contact anomaly. However, all our results can be extended to

all the other cases introduced in Section 4.

First, given a node njk of an IoT Ik, along with the anomaly degrees of its outgoing arcs, in the

forward problem we want to compute the overall effects of these anomalies over the corresponding

IoT, Ik. Specifically, the degree δjk(t,∆t) of the anomalies of njk in the time instant t and in the time

interval ∆t depends on the number of nodes belonging to ONbhjk and, for each of these nodes nqk ,

on the degree δqk(t,∆t) of the anomalies involving it and on the anomaly degrees measured for the

corresponding arcs.

We wish to observe that, by saying that the degree of the anomalies of a node njk recursively

depends on the degree of the anomalies of the nodes belonging to ONbhjk , we introduce a way

of proceeding that is similar to the one underlying the definition of the PageRank [51]. Thus, to

compute δjk , it is possible to adapt the formula for the computation of the PageRank to our scenario.

Specifically:

δjk(t,∆t) = γ + (1− γ) ·

∑
nqk
∈ONbhjk

δqk(t,∆t) · αjqk(t,∆t)∑
nqk
∈ONbhjk

αjqk(t,∆t)
(5.1)

This formula says that the degree δjk(t,∆t) of the anomalies of njk in the time instant t and in

the time interval ∆t is obtained by summing two components:

• The former component, γ, is the damping factor generally existing in each approach based on

PageRank. It ranges in the real interval [0,1] and denotes the minimum absolute anomaly degree

that can be assigned to a node of the MIoT.

• The second component, is a weighted sum of the anomaly degree δqk(t,∆t) of the nodes nqk
directly connected to njk and, therefore, belonging to ONbhjk . The weight of each anomaly

degree δqk(t,∆t) is given by the value of the parameter αjqk , which considers the fraction of

anomalous transactions performed from njk to nqk .

In this formula, δjk(t,∆t) ranges in the real interval [0,1].

The above formula allows us to determine the effects of a faulty node over the corresponding

IoT, and consequently on the whole MIoT (as will become clearer next). However, we observe that

the current formalization is valid only in the presence of a single faulty node. When multiple nodes

simultaneously exhibit some anomalous behavior in one IoT (of the MIoT), our approach fails to

distinguish among the contributions of each anomaly, particularly when the effects are measured in a

single node. We wish to point out that this is our very first attempt to investigate MIoT anomalies,

proposing a method to evaluate their effects. Our next priority as a follow-up of the present study,

will be extending our method accordingly.

Having investigated the effects of an anomaly of an instance in an IoT, we can now exploit the

features of the MIoT paradigm to analyze the effects of an anomaly of an object in an MIoT. In
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particular, the anomaly degree δj(t,∆t) of an object oj can be computed starting from the anomaly

degrees of its instances. Specifically, given the set ISj of the IoT containing instances of oj , δj(t,∆t)

can be computed as:

δj(t,∆t) =

∑
Ijk∈ISj

δjk(t,∆t)

|ISj |
(5.2)

We observe that the value of δj(t,∆t), if compared with the one of δjk(t,∆t), can provide very

useful information. In particular, if δj(t,∆t) is very similar to δjk(t,∆t) for each IoT Ijk ∈ ISj , we

can conclude that oj is really a source of anomaly. Instead, if the standard deviation of δj(t,∆t) is

high, then we can conclude that oj is involved in, or affected by, some anomalies in one or more IoTs,

but not in some other ones.

5.2 Inverse Problem

As previously pointed out, the inverse problem is traditionally more complex than the forward one.

For this reason, in this paper, we will focus only on the simplest scenario, i.e., the case in which there

is only one anomaly in the MIoT. In the future, we plan to extend our investigation to more complex

scenarios. Let ajqk = (njk , nqk) be an i-arc of an MIoT presenting an anomaly whose origin is not

known. In the inverse problem we want to detect this origin.

First of all, we must verify if the origin of the anomaly is just ajqk . For this purpose, we consider

the “siblings” of ajqk , i.e., the other arcs having njk as the source node and the other arcs having nqk
as the target node. If none of these present anomalies, then it is possible to conclude that ajqk is the

origin of the observed anomaly and that this last one did not affect other nodes or arcs of the MIoT.

In this case, the inverse problem has been solved and the investigation terminates.

However, the situation described above is very particular and, also, quite rare. More typically,

anomalies tend to affect multiple nodes and arcs. In that case, given an anomaly found in an arc ajqk ,

in order to detect its origin, the first step consists in computing the anomaly degrees of njk and nqk
and to choose the maximum between the two. This becomes the current node under investigation.

At this point, an iterative process, aiming at finding the origin of the observed anomaly, is activated.

During each step of this process, we apply the PageRank-based formula for the computation of the

anomaly degree of a node, as discussed in Section 5.1, to all the nodes of the ONbh and the INbh of

the current node. After this, we select the node having the maximum anomaly degree. If the degree

of this node is higher than the one of the current node, it becomes the new current node and a new

iteration starts. Otherwise, our approach concludes that the current node is the origin of the anomaly

under consideration.

Clearly, the approach described above is greedy and, therefore, must be intended as a heuristic

that could return a local maximum, instead of a global one. However, it is possible to apply to this

approach all the techniques for improving the accuracy of a greedy approach already proposed in

past literature, spanning from meta heuristics, such as hill climbing [53], to evolutionary optimization

algorithms [60].

For instance, if the MIoT is not excessively large, it could be possible to compute the anomaly

degree of all its nodes by applying the PageRank-based approach described in Section 5.1. In this case,
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the node having the maximum value of anomaly degree would be selected as the anomaly origin. This

would correspond to applying an approach returning the optimum solution to the inverse problem,

instead of one returning an approximate solution.

On the opposite extreme, if the network is very large, and the anomaly is affecting a vast portion of

it, the greedy approach may be prohibitive. In this case, we will need to find an additional way to stop

the iterative process, particularly when resources are limited and the process does not stop because,

at each iteration, it continues to return a new current node with an anomaly degree higher than the

one of the previous iteration. For instance, we could define a maximum number of iterations or a

minimum increase of the anomaly degree necessary to activate a further iteration. Furthermore, this

required minimum increase could be dynamic and could vary based on the number of steps already

performed.

We conclude this section with an important consideration. Since this is our first paper that

investigates the inverse problem, we had the necessity to limit our analysis to only one case, i.e., the

one in which, in a certain time instant, there is only one anomaly in the MIoT. If at a given time

instant, there are more anomalies in the MIoT, the search of the corresponding origins becomes much

more complex, because the anomalies could interfere with each other. These interferences could make

the search of the anomaly sources extremely complex.

For instance, we argue that, in presence of two anomalies whose source nodes are not known, in

case these two nodes were relatively close to each other, the examination of the anomaly degree of

their neighbors could be extremely beneficial. In fact, in this scenario, some of these neighbors are

influenced only by one anomaly; other ones are influenced only by the other anomaly; a third group of

neighbors is influenced by both anomalies; finally, a fourth group is not influenced by any anomalies.

By deeply analyzing what happens in these four groups of nodes, it could be possible to derive precious

information leading us to identify the sources of the two anomalies. In the future, we plan to conduct

specific and accurate investigations about this case, and several other ones possibly characterizing the

inverse problem.

6 Use Case and Experiments

6.1 A smart city use case

All of the devices installed in urban infrastructures, such as smart lighting systems and traffic manage-

ment ones, contribute to the ecosystem of a so called smart community. This last one integrates a series

of technological solutions for the definition and implementation of innovative models for the smart

management of urban areas. One of the main challenges of the next generation of Information and

Communication Technologies (ICT) applied to smart communities is the collection, integration and

exploitation of information gathered from heterogeneous data sources, including autonomous smart

resources, like SO, sensors, surveillance systems, etc., and human resources, such as posts in social

networks. Another key challenge is the application of artificial intelligence tools, such as the ones

based on automated reasoning, to advance state-of-the-art in smart community management [22].

The use case we focus on in this section refers to a smart lighting system in a smart city. In

particular, we consider a data-centric platform integrated in a smart city environment, in which data
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coming from sensors and social networks can boost smart lighting, by operating and tuning different

smart lighting objects located in the smart city area. The aim of the whole system is to provide

citizens with a smart and safe environment.

Data are gathered from three different main sources, namely sensors, social networks and alerts

exchanged among citizens on a dedicated social platform. Sensors data are gathered from a set of

sensors installed on each smart lamp and handle different measures, such as temperature and humidity,

but also several events, such as the presence of a person or the presence of rain. Sensors and smart

lamps are organized in a Wireless Sensor Area Network (WSAN). Social networks data include geo-

localized tweets from Twitter and posts from specific Facebook pages and are generated by smart

personal devices.

All these data are stored in a data lake, which is directly accessed by a data mining module. This

last module includes both sentiment analysis and anomaly detection tasks. The former focuses on

the analysis of the data gathered from social posts. A polarity score, i.e., a positiveness/negativeness

degree, is assigned to each keyword that can be extracted from a post, and is used to intercept crucial

information from the citizens moving around the city. In order to unambiguously single out significant

information for the application context, keywords are mapped onto a specific urban taxonomy; this

task is also carried out with the support of Babelnet [48]. Furthermore, thanks to the geo-localization

of posts, information regarding a specific area of the smart city can be analyzed and assigned to the

correct area.

Some data mining tasks are also carried out in order to identify, among other things, situations

requiring a variation in the intensity of illumination for some area, for instance because of a variation

in the security level perceived by citizens therein. Each smart lamp can communicate with neighboring

ones in order to report variations in lighting parameters, as received by the mining module.

Anomaly detection works on both temporal data, gathered from sensors, and polarity scores,

extracted by sentiment analysis, in order to detect potential anomalies. It exploits the taxonomies

and the techniques presented in this paper (Sections 4 and 5).

In our scenario, the urban area is modeled as an MIoT consisting of a set of IoTs {I1, I2, · · · , Im},
each one associated with a portion of the area. The set of the objects of M comprises both the set

of sensors, installed in the various smart lamps, and the set of personal devices of people who are

moving around them. If an object oj of the MIoT is active in the kth portion of the urban area, it has

an instance ιjk in the IoT Ik. Clearly, when a person with a smart device oj moves around different

portions of the urban area, each one corresponding to a single IoT, oj will have different instances,

one for each IoT. An object oj corresponding to a smart lamp sensor in the kth urban area is fixed,

and will contain only one instance ιjk in the corresponding IoT Ik.
A transaction Trjqki between two object instances ιjk and ιqk can be generated in different ways.

First of all, when citizens move around the various IoTs, they generate posts and alerts with their

mobile devices. In this case, the transaction is associated with each post or alert. Sensors send

transactions to the platform for sensed data, and smart lamps communicate with each other for

parameter adjustments. Each of these events is translated into a transaction Trjqkz . Even the data

mining module may send messages to the various smart lamps, thus generating transactions Trjqkz in

the MIoT.
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6.2 Experiments

In this section, we present the experiments carried out to evaluate the performance of our approach

from several viewpoints. Specifically, in Sect. 6.2.1, we illustrate our testbed. In Sect. 6.2.2, we

analyze the forward problem from different perspectives. Finally, in Sect. 6.2.3, we focus on the

experiments concerning the inverse problem.

6.2.1 Description of the testbed

To perform this analysis, we considered a reference scenario related to a smart city context. To model

it, and to test our approach, we constructed a prototype. Furthermore, we realized an MIoT simulator.

In order to make “concrete” and “plausible” the simulated MIoT, our simulator needs to generate

MIoTs having the characteristics specified by the user, whilst being as close as possible to real-world

scenarios. In the simulator design, and in the construction of the MIoT used in the experiments, we

followed the guidelines outlined in [33, 12, 13], where the authors highlight that one of the main factors

used to build links in an IoT is node proximity.

In order to reproduce the creation of transactions among objects, we decided to leverage informa-

tion about a simulated smart city context. As for a dataset containing real-life paths in a smart city,

we selected the one reported in http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html.

This regards movements of objects, in terms of routes, in the city of Porto from July 1st 2013 to June

30th 2014. Each route contains several Points of Interest, corresponding to the GPS coordinates of

each object as it moves in Porto. With this information at hand, our simulator associates an object

(thus, creating a node) with one of the routes recorded in the dataset. Furthermore, it creates an

arc between two nodes when the distance between the corresponding routes is less than a certain

threshold thd, for a predefined time interval tht. The value of thd and tht can be specified through

the constructor interface. Clearly, the higher is this value the more connected the constructed MIoT

will be. When we defined the distribution of the transactions among the nodes, we leveraged scientific

literature and used the corresponding results to properly tune our simulator. In particular, we adopted

the values reported in [32].

The interested reader can find the MIoT created by our simulator for the experiments described in

this paper at the Web address http://daisy.dii.univpm.it/miot/datasets/anomaly-detection.

It consists of 1,256 nodes and six IoTs having 128, 362, 224, 280, 98 and 164 nodes, respectively. The

constructed MIoT is returned in a format that can be directly processed by the cypher-shell of Neo4J.

Some statistics about our dataset are reported in Table 2.

Parameter Value

Number of nodes 1,256

Number of relationships 6,860

Mean outdegree 5.44

Mean indegree 5.58

Table 2: Parameter values for our simulator

We carried out all the tests presented in this section on a server equipped with an Intel I7 Quad
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Figure 1: Values of δjk (corresponding to 0 hops) and average values of the anomaly degrees of all the

nodes of Ik (on the left) and of the MIoT (on the right) being 1, 2 and 3 hops far from njk in case of

Presence-Hard-Contact anomalies

Core 7700 HQ processor and 16 GB of RAM, with the Ubuntu 16.04 operating system. To implement

our approach, we adopted Python, as programming language, and Neo4J (Version 3.4.5), as underlying

DBMS.

6.2.2 Analysis of the forward problem

Let us preliminarily define the concept of “number of hops” hjqk between the node njk and another

node nqk as the minimum number of arcs of the MIoT that must be traversed in order to reach nqk
from njk .

In a first step we analyzed the effects that the anomalous behavior of an object oj had on the

nodes of an MIoT. As pointed out in Sect. 5.1, given a node njk of the IoT Ik, its anomaly degree

is represented by the parameter δjk . This anomaly may propagate through the MIoT, thus affecting

other nodes. To investigate this propagation, given an anomalous instance of an object oj and the IoT

Ik, we measured the anomaly degree δjk of njk and the average of the anomaly degrees δqk of all the

nodes nqk , grouped by the number of hops from njk to nqk . Moreover, we computed the same values

but averaged through the IoT belonging to the MIoT. The same test has been run over 100 randomly

chosen nodes, and results have been averaged over the runs.

Figure 1 shows the results obtained for Presence-Hard-Contact anomalies, while Figure 2 presents

those regarding Presence-Soft-Contact anomalies. From the analysis of these figures it is possible to

observe that the effects of an anomaly on a node spread over the surrounding nodes, even if they rapidly

decrease against the number of hops. The corresponding trend follows a power law distribution. If we

compare the left and the right distributions of Figures 1 and 2, we can observe that anomalies propagate

more slowly on an MIoT than on a single IoT. However, this difference is negligible. Furthermore, there

are no significant differences between Presence-Hard-Contact anomalies and Presence-Soft-Contact

anomalies, except that the latter ones are slightly smaller than the former ones. This trend can be

justified by considering that Presence-Soft-Contact anomalies are more difficult to be observed than

Presence-Hard-Contact ones, since the former ones are not only required to show values higher (resp.,
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Figure 2: Values of δjk (corresponding to 0 hops) and average values of the anomaly degrees of all the

nodes of Ik (on the left) and of the MIoT (on the right) being 1, 2 and 3 hops far from njk in case of

Presence-Soft-Contact anomalies

lower) than a given threshold, but should also exhibit a trend that is monotonically increasing (resp.,

decreasing), within the time interval of interest. As the trends are very similar, in the following tests

we focus only on Presence-Hard-Contact anomalies, without loss of generality.

Next, we investigated the effects that the anomaly of an object has on the other objects connected

to it. In particular, given an object oq, whose instances belong to the ONbh of the instances of

an anomalous object oj in at least one IoT of the MIoT, we computed the value and the standard

deviation4 of δj and δq. We repeated this task 100 times with different pairs of objects oj and oq.

Then, we averaged the values obtained over the runs. The corresponding results are shown in Figure

3, under the category ALL. As we can observe, the standard deviation of δj is very low. This result

can be explained by the fact that all the instances of the anomalous object oj present anomalies and,

consequently, the corresponding anomaly degrees are almost uniform. By contrast, the value of δq is

lower than the one of δj , exhibiting a very high standard deviation. This is explained by observing

that the instances of oq are not in the neighborhoods of the instances of oj in all the IoTs of the MIoT.

In fact, in some of them, they can be 2, 3 or more hops away from the instances of oj . In some cases,

they may even be disconnected from the instances of oj .

As a next step, we repeated the previous experiment, enforcing some extra constraints, which

defined three different scenarios. In the first (resp., second, third) one, all the instances of oq were 1

(resp., 2, more than 2) hop(s) far from the instances of oj ; the third scenario includes also instances of

oq not connected to instances of oj . The results obtained are shown in Figure 3 under the labels S1,

S2 and S3, respectively. Looking at the data labelled as ALL, these results are coherent with both the

ones of Figure 1 and the ones of Figure 3. We can see that the effects of a single anomaly are rapidly

reduced as soon as we move away from its origin. Furthermore, this experiment confirms what we

pointed out in Section 5.1, i.e., that the anomaly degree δ is a parameter that really helps detecting

the object that has caused the anomaly in the first place.

At this point, we investigated the number of nodes in an MIoT that turn out to be anomalous

as a consequence of a single anomaly of an object oj . Again, we repeated this experiment 100 times.

4Recall that δj and δq are computed by averaging the anomaly degrees of all the instances of oj and oq.
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Figure 3: Anomaly degrees and the corresponding standard deviations in different scenarios
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Figure 4: Average number of nodes affected by anomalies against the number of IoT which an anoma-

lous object participates to

Each time, we selected an anomalous object of the MIoT. The selected objects had different number

of instances in the MIoT, ranging from 1 to 6. For each run, we computed the number of anomalous

nodes detected in the MIoT. Then, we computed the averages, by grouping the cases based on the

number of instances of the anomalous objects and, therefore, based on the number of IoTs of the

MIoT involved in the anomaly.

The results obtained are shown in Figure 4, which shows how the number of anomalous nodes in-

creases against the number of IoTs in a roughly linear way. This trend can be explained by considering

that, even when the number of objects having instances in many IoTs is usually limited with respect to

the number of objects having instances in few IoTs, their anomalous behavior affects numerous nodes

across several IoT and, consequently, their effect is amplified. On the contrary, anomalies observed

on an object having instances in only one or two IoTs are more frequent. Yet, this is counterbalanced

by the fact that each of these nodes only exerts a limited and localized impact, which affects only few

nodes.

Then, we aimed to characterize which of the node properties impacted the spread of anomalies

the most. We repeated the previous experiment; but instead of choosing anomalous nodes randomly,

we selected them based on their characteristics. A first characteristic that we considered was the
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Figure 5: Average percentage of anomalous nodes against their degree centrality

outdegree of a node, i.e., the number of its outgoing arcs. In the various runs, we selected nodes with

different outdegrees ranging from 10 to 60. For each of these values, we measured the average number

of anomalous nodes throughout the MIoT detected by our approach. The results are illustrated in

Figure 5, which clearly shows that the outdegree of anomalous nodes has a significant impact on the

spread of the anomaly over the network. This result was not surprising, since it is consistent with the

results about the information diffusion in social network analysis [62].

However, we argue that there is another form of centrality in social network analysis, which could

be very promising as a node property to impact the spread of anomalies. This measure is closeness

centrality. We recall that the closeness centrality of a node is defined as the reciprocal of the sum of

the lengths of the shortest paths between the node itself and all the other nodes of the network.

Thus, we repeated the previous experiment; but this time we selected the anomalous nodes based

on their closeness centrality. The values of this parameter for the nodes selected ranged from 0.05

to 0.45. The results obtained are shown in Figure 6, where we can observe that our intuition was

right. Closeness centrality is really a key parameter in the spread of anomalies in an MIoT. It is even

more important than degree centrality in this task. In our opinion, this result is extremely interesting

because the impact of closeness centrality on anomaly diffusion is substantial, whilst the role of this

parameter was a-priori much less obvious than the one of degree centrality.
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Figure 6: Average percentage of anomalous nodes against their closeness centrality
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As a final test on the forward problem, we evaluated the running time necessary to compute the

anomaly degree δj of an object oj in an MIoT against the number of its nodes. The results obtained

are reported in Figure 7, where we can observe a polynomial (specifically, a quadratic) dependency of

the running time against the number of nodes of the MIoT. This can be explained by the fact that,

during the computation of the recursive formula of δjk , the values of αjqk tend to 0 rapidly while

moving away from the node njk .
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Figure 7: Running time (in seconds) needed to compute δj in an MIoT against the number of its nodes

6.2.3 Analysis of the inverse problem

In this section, we present the results of the tests we carried out to validate our approach for solving

the inverse problem. We recall that our solution to this problem starts from an i-arc of an MIoT that

presents an anomaly whose origin is not known. It applies a greedy algorithm, which aims at detecting

the node that originated the anomaly.

During this test, we repeated 100 times the following tasks. We simulated an anomaly on an object

and, then, we randomly selected an anomalous i-arc from the whole MIoT. We applied our solution

of the inverse problem on this arc and computed the following:

• the number of hits, i.e., the percentage of times our approach detected the anomaly source

correctly (we call S0 this scenario);

• the percentage of times our approach terminated in a node belonging to the ONbh of the

anomalous node and, therefore, being 1 hop away from it (we call S1 this scenario);

• the percentage of times our approach terminated in a node being 2 hops far from the anomalous

node (we call S2 this scenario);

• the percentage of times our approach terminated in a node being more than 2 hops away from

the anomalous node (we call S3 this scenario).

The results obtained are reported in Figure 8. They show that our approach is capable of correctly

identifying the anomaly source in most cases. In a fraction of cases it stops very near to the anomalous
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Figure 8: Percentage of times when our approach correctly detects the anomaly source (indicated by

the label 0) or terminates in a node being 1, 2 or more than 2 hops far from it
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Figure 9: Average running time (in seconds) of our approach for solving the inverse problem

node, i.e., 1 or 2 hops away from it. The slightly higher frequency of the fourth case can be explained

by the fact that the starting i-arc of the test is chosen randomly and, therefore, can be very far from

the anomalous node. As a consequence, it comprises a relatively high number of cases (3, 4, 5 or more

hops away from the anomalous object).

Next, we computed the average running time of our approach. Similarly to what we have done

for the forward problem, we evaluated this time against the number of the MIoT nodes. The results

obtained are shown in Figure 9, where we can observe that the running time increases polynomially

against the number of MIoT nodes. This result can be explained by the fact that the greedy algorithm

underlying our approach reaches the correct node, or a near one, in few iterations and by the fact

that, on average, an anomaly on an i-arc can be observed only when this is not too far away from the

node where the anomaly originated.

7 Conclusion

In this paper, we have presented a first attempt to investigate and classify anomalies in an MIoT. Our

proposal consists of two main components. The first one is a new methodological framework that can
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make future investigations in this research field easier, more coherent and more uniform. Indeed, our

framework extends existing methods to the case of anomaly detection in an MIoT, whilst also allowing

the definition of new cases. Another important contribution is the extension to the anomaly detection

in MIoT of the so-called forward problem and inverse problem, which have been largely investigated

and employed in scientific literature but were never analyzed in this research field. We also introduced

a use case on a smart lighting system for an MIoT deployed in a smart city.

Our experiments have provided interesting outcomes about the capability of detecting anomalies

and their effects in an MIoT. For instance, they revealed that: (i) the effects of an anomaly on a node

spread over the surrounding nodes, even though they rapidly decrease against the distance; (ii) the

anomaly degree δ defined in this paper is a parameter that really helps the detection of the anomalous

object in a network; (iii) the number of nodes affected by an anomaly increases against the number

of IoTs in a roughly linear way; (iv) degree centrality and, even more, closeness centrality are really

key parameters in the spread of anomalies in an MIoT.

In the future, we can foresee several developments of this research. First of all, we would like to

extend our framework to social networking and/or social internetworking scenarios, where humans

and objects simultaneously inter-operate. In fact, the investigation of mixed networks, consisting of

humans and smart/social objects, is attracting increasing interest among researchers. Next, we plan

to extend our studies on MIoT anomalies for predictive maintenance, in such a way as to optimize

the maintenance of production lines. Last, but not least, we think that several results obtained for

MIoTs can be further exploited by applying some sort of “feedback”, to identify new topics and new

approaches for the investigation of human behavior in Online Social Networks.
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