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Impact of Wearable Measurement Properties
and Data Quality on ADLs Classification

Accuracy
A. Poli, G. Cosoli, L. Scalise Member, IEEE , S. Spinsante Senior Member, IEEE

Abstract— In the field of automatic recognition and classification
of Activities of Daily Living (ADLs), a paramount role to determine
the classification accuracy is played by sensor technologies, as the
algorithms’ performance is highly affected by the nature and quality
of the collected measurement data. This work aims to investigate
the influence of the wearable device characteristics and measure-
ment uncertainty on the classification accuracy. For this study,
two wearables devices are considered: a top-quality smartwatch
(Empatica E4) and a low-cost Arduino-based wristband prototype.
These devices have been used to measure the acceleration signal at
the dominant wrist of subjects performing some relevant activities
in real-life conditions. The experimental evaluation of some ADLs
classification algorithms shows that their accuracy fluctuates depending on the choice of the sensor, which in turn affects
the amount and type of relevant features to process. As such, the combination of features’ domain, i.e. time or frequency,
number and type, which leads to the best classification accuracy has to be tuned on a specific sensor basis, despite the
same type of signal, i.e. acceleration, is measured and processed under identical circumstances and processed. Accuracy
values of 50-99% and 66-95% in the ADLs classification, are obtained for Empatica E4 and Arduino-based prototype,
respectively; the best performance among classifiers is obtained with J48 and Random Forest, confirming that, with an
appropriate configuration, satisfactory accuracy may be attained, even by resorting to the use of simple sensors.

Index Terms— Accelerometers, Activities of Daily Living, data quality, measurement uncertainty, wearable devices.

I. INTRODUCTION

IN the last few years, research on human activity recognition
(HAR), which is defined as the capability to automati-

cally track and recognize human activity patterns in real life
settings [1]), has been increasing both in terms of number
of publications and application fields. Indeed, the automatic
recognition and classification of the so-called Activities of
Daily Living (ADLs) is gaining more and more relevance in
several areas: Active and Assisted Living (AAL) [2]–[5], to
support ageing population in leading an active and independent
lifestyle, also offering cognitive assistance [6]; rehabilitation
centers, to monitor physical activities and encourage physical
exercises, providing a feedback to the caregiver [7], [8]; Smart
Cities, to improve the people’s quality of life [9]; human
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computer interaction (HCI), to recognize human body gestures
in gaming and tell the machine to complete specific tasks [10];
Industry 4.0, to control and evaluate the workers’ conditions,
as well as to provide information about the performance [11],
[12]; surveillance systems, to prevent crimes and dangerous
activities in public busy environments [13], [14]. It is worthy
to note how the monitoring of physical activities has gained
particular relevance with the advent of tele-medicine and
home care, requiring suitable sensing devices and an adequate
intelligence to provide valuable parameters without the need
of too many hardware components, that are often difficult to
install and sometimes cumbersome and expensive.

A paramount role in HAR is obviously played by sensor
technologies, which for this area can be grouped in three
main categories: RGB-D camera-based, ambient-sensor based,
and wearable-based [15]. The last category is gaining more
and more consensus, since wearable devices have evolved
and become user-friendly, relatively cheap, easy-to-use [16],
naturally close to the measure and they can be applied to
manifold domains, from sport medicine to AAL, with a high
reliability [17]. This type of devices, typically equipped with
Micro Electro-Mechanical Systems (MEMS) accelerometers
and gyroscopes, can generate great amounts of data that are
often difficult to manage and process to derive valuable indica-
tors. Artificial Intelligence (AI) technologies have unquestion-
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ably tackled this problem and they make it possible to derive
meaningful health-related figures and indicators, assisting the
decision-making process and supporting the whole healthcare
system [18]. The indicators provided through AI can help the
patients’ assistance also at home, promoting their well-being
and improving their quality of life, thanks to the regular and
long-term monitoring capability, and the enabled preventative
interventions. Machine Learning (ML) can be considered as
the most tangible manifestation of AI and it can allow to
“obtain more with less”, enabling the minimization of the
required hardware thanks to the continuous growth in digital
technology [19]. Hence, ML algorithms offer a valid solution
for ADLs recognition and classification, whose performance
and accuracy will inevitably depend on the metrological char-
acteristics of the wearable device used for acquiring the data
[20], which need to be considered together with the intra- and
inter-subject variability impacting on the system usability [21].

Among the quantities commonly assessed by wearable
devices, many studies in literature related to HAR deal
with the acceleration signal [22]–[25]. In fact, accelerometers
quantify motion across three dimensions [26], being at the
same time small, lightweight, and inexpensive sensors, thus
appearing particularly suitable for the monitoring, recognition
and tracking of ADLs. It is worthy to note that the choice
of device type and the sensor positioning influences the
HAR performance [27]; an example is reported by Stisen
et al. [28], which investigated 13 different devices usable
as accelerometer readings. The final outcomes demonstrate
that devices heterogeneities affect the performance of ML
algorithms, impairing HAR tasks significantly. Regarding the
device positioning, many researchers compared different de-
vices locations to find the optimal solution, among which
Cleland et al. [29]. By considering seven ambulatory activities,
Cleland et al. found significant differences in classification
accuracy provided by data from different positions, such as
wrist and foot (even if the wrist seems to be the most preferred
placement [30]). A possible solution that can mitigate these
problems is to consider more than one sensor to collect a huge
variety of data. Indeed, the classification accuracy is arguably
improved by fusion with data generated by other sensors, such
as gyroscopes [31]. Finally, the use of multiple body-worn
accelerometers can improve the classification accuracy [32],
but the user’s comfort should always be accounted for, in
particular to ensure the compliance in the prolonged use of
wearable sensors for long-term monitoring [32]–[34].

Concerning ML algorithms, different approaches have been
extensively applied in the literature. Among the others, Zubair
et al. [35] performed activity classification using Random For-
est (RF) and Decision Tree (DT) in connection with Adaboost
ensemble method, obtaining an accuracy of 99.8% and 99.9%,
respectively, in five different activities, measured by means of
one body worn accelerometer. RF validity has been confirmed
also by Sztyler et al. [36] reporting a performance of 84%
in the classification of eight different activities measured with
the wearable device worn in seven different body positions.
Xu et al. [37] state that activity similarity can improve the
results obtainable with RF used alone, reporting an accuracy
increase from 92.31% to 95.59%. Fullerton et al. [32] report

an accuracy of 97.60% in the recognition of six different ADLs
with the k-Nearest Neighbours (kNN) classifier; moreover,
they state that Support Vector Machine (SVM) approaches are
accurate (96.7%, comparable to ensemble classifiers, reporting
an accuracy of 96.4%) but quite slow, and therefore not rec-
ommended for free-living monitoring. The better performance
of kNN with respect to SVM in physical activities classifi-
cation is confirmed also in [38]. Hsu et al. [39] tested Least
Squares SVM recognizer (LS-SVM) with the Nonparametric
Weighted Feature Extraction by Principal Component Analysis
(NWFE+PCA) reduction method in the classification of 10
ADLs and 11 sport activities, reporting an accuracy of 99.65%.

However, the performance of such algorithms is highly
affected by the nature and quality of the collected dataset
[40]. Such awareness results in challenges during the study,
especially in the phase of experimental setup and subsequent
data analysis. Among the challenges which highly affect the
quality of the recognition, the most common ones are how to
collect the data in the real-life conditions, and how to select
and extract the features to be computed [41]. Following the
preliminary findings presented in [42], the aim of this study
is to investigate the influence of the wearable sensing device
characteristics and measurement uncertainty on the accuracy
of ADLs classification. In particular, two different measuring
devices have been considered (Empatica E4 smartwatch [43]
and an Arduino-based wristband prototype) to measure the
acceleration signal at the dominant wrist of the subject per-
forming different ADLs in real-life conditions. The Waikato
Environment for Knowledge Analysis (Weka [44]) toolbox has
been used to implement different learning algorithms and to
evaluate their performance in HAR, in relation to the sensing
device and the measurement data accuracy.

The paper is organized as follows. Section II introduces
the experimental setup adopted and presents the materials
and methods used to develop the proposed study. The related
classification outcomes, and the main evaluation indicators to
assess the performance of six different ML algorithms working
on ADLs recognition, are discussed in Section III. Finally, the
main findings are summarized and discussed in Section IV,
followed by the conclusion of the work in Section V.

II. MATERIALS AND METHODS

In this study, the measurement of the acceleration signal at
the wrist of a subject performing different ADLs has been car-
ried out by means of two different wearable sensing devices,
namely the Empatica E4, and an Arduino-based wristband
prototype.

The Empatica E4, shown in Fig. 1, is a wrist-worn top-
quality sensor device that can be considered a Class IIa Med-
ical Device according to CE Crt. No. 1876/MDD (93/42/EEC
Directive).

The E4 is equipped with multiple sensors, allowing to
continuously measure and then assess the physiological quan-
tities in free-living conditions, namely: photoplethysmographic
and EDA sensors, triaxial MEMS accelerometer, and optical
infrared thermometer (whose characteristics are reported in
Table I). The E4 can be used in two different modalities:
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TABLE I
SENSORS INTEGRATED IN EMPATICA E4 AND ARDUINO-BASED PROTOTYPE DEVICES

Devices Sensors Measured parameters Applications Metrological characteristics

Empatica
E4

Photoplethysmographic Blood volume pulse (BVP) Analysis of cardiac Sampling frequency: 64 Hz
sensor (PPG) related-parameters (e.g.,

heart rate (HR) and heart
rate variability (HRV))

Electrodermal activity Changes in certain Investigation on the Alternating current (8 Hz with
sensor (EDA) electrical properties of psychological conditions max 100 µA, in compliance

the skin (i.e., Impedance) of the subject, such as to IEC 60601-1:2005);
stress or anxiety Sampling frequency: 4 Hz;

Resolution: 900 pS;
Range: 0.01-100 µS

Triaxial MEMS Acceleration signal Analysis of motion-based Sampling frequency: 32 Hz;
accelerometer activities Resolution: 0.015 g (8 bit);

Range: ±2 g (±4 g and ±8 g
are available only with a custom
on-demand firmware)

Optical infrared Skin Temperature Detection of fever states Sampling frequency: 4 Hz;
thermometer Accuracy:±0.2 ◦C;

Range: 36÷39◦C
Arduino-
based
prototype

I2C Grove 6-Axis Accelerometer Acceleration Analysis of motion-related Sampling frequency: 32 Hz;
Gyroscope (LSM6DS3 chip by activities Sensitivity: (0.061/0.122/0.244/0.488) mg/LSB;
STTMMicroelectronics) Range: ±2/±4/±8/±16g

Fig. 1. Empatica E4 wrist-band device.

streaming and recording mode. In the former mode, mea-
surement data are displayed in real-time through a dedicated
mobile app (named E4 realtime), whereas in the latter data are
stored in an internal memory. The battery duration declared by
the manufacturer is up to 24 hours in the former modality, 48
hours in the latter. In the streaming mode, measurement data
generated by the sensors onboard the E4 wristband is also sent
to a secure cloud-based repository (called Empatica Connect),
where the user shall setup an account, to which the device
is associated by means of its serial number. The cloud-based
repository provides to each registered user the list of recorded
sessions, and a dashboard for data visualization; each session,
saved in the form of a .zip archive, includes separate .csv
files, each one pertaining to a specific sensor. In particular,
the acceleration signals are organized in a table format, where
the rows report the sample time, whereas the columns show
the acceleration components (Ax, Ay , and Az) along the three
axes (X, Y, and Z). Each acceleration sample includes the three
components. It is worthy to note that the conversion factor
between raw samples and true acceleration values is attained
by g/64 (where g = 9.81 m/s2), given that according to E4
manual a sample component value of 64 corresponds to 1 g,
in the measurement range [-2g, 2g] m/s2.

On the other hand, the Arduino-based wristband prototype
shown in Fig. 2 has been manufactured by the authors using
an Arduino UNO Microcontroller, to which a Grove 3D
digital accelerometer and gyroscope (whose characteristics are
reported in Table I) has been connected through a four wires-
connector. For consistency with the acceleration data format
of the E4, the acceleration measurements acquired by Arduino
are saved in a file with a 4-column format, containing the
timestamp and the acceleration components’ values (expressed
as a multiple of g m/s2) along the three axes (Ax, Ay , Az).

A. Experimental campaign: ADLs and test population
This section describes the experiment design to collect the

whole dataset, and the participants involved. Experimental
tests were performed by making the test subjects wearing
at the same time both the devices, i.e. the Empatica E4
and the Arduino-based prototype. Each subject was asked
to perform a series of ADLs, which can be categorized as
personal hygiene and housekeeping related activities, specif-
ically: washing hands (WH), brushing teeth (BT), brushing

Fig. 2. Arduino-based prototype.
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hair (BH), dusting (D), ironing (I), and washing dishes (WD).
Each activity was recorded continuously for 5 minutes (to
have a quite long acquisition and facilitating, for example, the
spectral analysis of the signal thanks to a better resolution)
and repeated three times by each subject (in order to have
statistically significant data). The acquired signals can be
considered realistic because the activities were all performed
in free conditions and in a real-world scenario, namely the
home environment, by means of real tools, and in standard
daily hours. Only the activity duration is sometimes modified
(e.g., for WH or BT), with respect to what usually happens in
daily life, for the reasons mentioned above. The experiment
required the participants to wear the measurement devices on
the dominant wrist, executing the previously defined ADLs
without any instructions or guidance. However, in order to
annotate and label the data collected, the participants were
supervised during the recorded sessions, to collect reference
information for the activity classification task. The subject
population considered in this study was composed by 36
healthy subjects (18 females, 18 males), aged 29.5 ± 3.4 years
(mean ± standard deviation); 11 subjects were left-handed and
25 right-handed.

B. Data processing and feature extraction
Before moving to the classification of the ADLs performed

during the tests, the acquired acceleration data were processed
in MATLAB environment. Pre-processing may improve data
quality and consequently increase the reliability of outcomes,
since raw data are generally affected by noise, maybe linked
to movement artefacts or a not adequate device-wrist contact.
The main methods considered for refining noisy datasets were
a 4th order low-pass Butterworth filter with a cut-off frequency
equal to 15 Hz, to preserve human motion while eliminating
noise [40], [45], and a 3rd order median filter to remove
abnormal spikes. Regarding the sensor’s calibration, note that
E4 calibrates itself during the initial 15 s of each session,
which, for this reason are removed (the subject does not move
during this interval). On the other hand, the accelerometer
in the Arduino-based prototype performs calibration at the
start of the measurement exploiting the acceleration due to
gravity; in particular, the sensor is maintained fixed in three
different positions and orientations (aligning each sensor axis
with the gravitational pull corresponding one) for 30 s, hence
the collected data can be processed.

Before any further computation is performed, the segmen-
tation approach is widely used to divide the signal into a
series of windows segments. The segmentation depends on the
type and the duration of the activities, besides the sampling
rate, and it will influence the number of instances available
for the following classification algorithms. Therefore, the
size of windows must be both sufficient to include details
about the activity and to generate stable predictions. In this
study, prior to the classification, the acceleration signals are
sliding windowed to equal-sized parts, namely into 3 s non-
overlapping windows [46], since the performed ADLs are not
rapidly time-variant.

For each window, features are extracted as peculiar of
the different activities, where acceleration data significantly

TABLE II
LIST OF FEATURES EXTRACTED IN TIME AND FREQUENCY DOMAIN

Domain Features Computation

Time

Mean X, Y, Z axes, SMV
Median X, Y, Z axes, SMV
Standard Deviation X, Y, Z axes, SMV
Maximum X, Y, Z axes, SMV
Minimum X, Y, Z axes, SMV
Range X, Y, Z axes, SMV
Axis Correlation XY, YZ, ZX axes
Signal Magnitude Area SMV
Coefficient of Variation X, Y, Z axes, SMV
Median Absolute Deviation X, Y, Z axes, SMV
Skewness X, Y, Z axes, SMV
Kurtosis X, Y, Z axes, SMV
Zero Crossing X, Y, Z axes, SMV
Autocorrelation X, Y, Z axes, SMV
Percentiles (20th - 50th - 80th) SMV
No. of Peaks SMV
Peak - Peak Amplitude SMV

Frequency
Spectral Energy SMV
Spectral Entropy SMV
Spectral Centroid SMV

Fig. 3. Workflow of the proposed HAR approach.

vary among several subjects. In particular, ML algorithms
are able to realize an indirect measurement method by the
functional mapping ˆf(x) of features x [47]. As reported in the
literature [45]–[48], relevant time features were derived from
the acceleration signals, namely the directional components
(Ax,i, Ay,i, Az,i, where i is the index of the sample) and the
Signal Magnitude Vector (SMV), which can be defined as a
vector of N elements ai, with i = 1 . . . N , being N the total
number of samples in a given acquisition (i.e., the product
between the acquisition duration and the sampling frequency):
SMVi =

√
A2

x,i +A2
y,i +A2

z,i. The SMV was used to reduce
the impact of sensor orientation on the activity discrimination.
For what regards spectral features, they were extracted from
the magnitude of the discrete Fast Fourier Transform (FFT)
of each signal. Table II summarizes the whole set of time and
frequency features considered.

As shown in Fig. 3, the classification algorithms extract
the information related to the collected activities from the
computed features.

Therefore, a dataset including only time features (D1), one
composed only by frequency features (D2) and a third one
containing both time and frequency features (D3), extracted in
each case from the SMV, were created. In the same manner,
two additional datasets were established considering time only
(D4), and then both time and frequency domain (D5), features
extracted from both directional acceleration components and
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SMV. At this point, after having organized the data from E4
and Arduino-based prototype in the described datasets, ADLs
classification was performed. The performance of different
ML classifiers was estimated by means of the Weka tool,
which allowed to compute different evaluation metrics and
also to identify the features most suitable for the activities
classification.

C. Feature selection and automatic classification of
ADLs

According to the literature, the selected features have a
large impact on the classifiers performance. For this reason,
in order to select the most discriminant features and exclude
the redundant ones, a filter feature selection method was used.
Among the feature selection methods supported in Weka, the
Information Gain (IG) approach was selected, as validated in
a previous work [40]. This approach evaluates the amount of
information for each feature by measuring the information gain
with respect to the class of activity [44], namely:

IG = H(Class)−H(Class|Feature) (1)

where H(Class) is the entropy of the class of activity and
H(Class|Feature) is the conditional entropy, which represents
how the considered feature is consistent to identify a particular
class of activity. More specifically, IG assesses a specific
rank for each feature; low ranks are associated to redun-
dant or non essential features to identify the class, whereas
the higher ranks are related to features carrying significant
information for the classification. Regarding the approaches
for automatic classification, supervised learning approaches
are generally preferred in HAR systems, since they have
proved to show good performances in learning relationships
among input attributes, features, target attributes, and labeled
classes [49]. In this experimentation, the authors have tested
six different ML algorithms and evaluated their performance in
the ADLs classification. These approaches can be grouped in
three categories, based on the estimation criterion for adjusting
the parameters of the classification method [50], [51]:

• Generative approaches (e.g., Naı̈ve-Bayes, NB), which
are statistical approaches to the pattern recognition prob-
lem. Although they need a huge amount of training data,
these techniques are flexible and able to deal effectively
with the data uncertainty. Moreover, the generative tech-
niques learn from both labeled and unlabeled data;

• Discriminative approaches (e.g., DT, kNN, RF, SVM, and
Artificial Neural Networks - ANNs), which create the
decision boundaries in the feature space, thus learning
the feature mapping to activity labels. Discriminative
techniques face the problem of over-fitting and the large
amount of labeled data required for training;

• Heuristic approaches, which is a hybrid modality using a
combination of generative and discriminative approaches.
Generally, it was found to reach the best predictive
performance with respect to its single use.

The authors tested all the above-mentioned approaches in
classifying the considered ADLs; among the DT ones, the

J48 algorithm was used. Since it is well-known that cross-
validation results improve by repeating the operation multiple
times, the 10-fold cross-validation method was adopted for
the evaluation of the classifiers [52]. Each fold consists of a
training and a testing set; in this study, 70% of all the labeled
data is used for the training, whereas the remaining 30% for
the testing. The performance was measured by two different
validation metrics, namely the accuracy and f-measure.

D. Evaluation Metrics
According to the literature, there are a wide range of per-

formance metrics commonly used to evaluate the classification
algorithms. Here, for each tested approach we focused on two
evaluation measures that are the attained accuracy and the f-
measure. The former is defined as the number of correctly
classified ADLs instances over the total number of instances
considered [48], or:

accuracy = (1− ErrorRate)× 100 (2)

where:
ErrorRate =

|Ncci −Nti|
Nti

(3)

being Ncci the number of correctly classified instances, and
Nti the number of total instances considered by each classi-
fication algorithm. Contrarily, f-measure refers to a weighted
harmonic mean of the recall and precision, as an indicator of
the overall effectiveness of the activity classification. Accord-
ing to the definitions [48], the f-measure can be calculated as
per (4):

f −measure = (1 + β)2 ×Recall × Precision
β2 ×Recall + Precision

. (4)

Assuming that β is the weight coefficient, Recall (or Sensi-
tivity) is the ratio of correctly classified instances to the total
number of identified instances that are true, calculated as:

Sensitivity =
TP

TP + FN
(5)

whereas Precision is the ratio of correctly classified instances
to relevant instances, defined as:

Precision =
TP

TP + FP
. (6)

Hence, f-measure values depends on the abovementioned
performance indicators: true positive (TP), true negative (TN),
false positive (FP) and false negative (FN). An f-measure
closer to 1 means high values of accuracy.

III. RESULTS

A. Evaluation of classifiers performance
In this section, the authors evaluate the performance of

the different classifiers by considering as inputs the identified
datasets. The results from the 10-fold cross-validation are
reported as average values of the above-mentioned evaluation
metrics. In terms of accuracy, the preliminary performances
of the six different algorithms tested with the same set of
features for both the Empatica E4 and the Arduino-based
prototype signals are summarized in Table III. Regarding the
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TABLE III
AVERAGE PERCENT ACCURACY OF THE TESTED CLASSIFIERS ON

ACCELERATION MEASUREMENT DATA FROM EMPATICA E4 AND

ARDUINO-PROTOTYPE

Device Classifier D1 D2 D3 D4 D5

Empatica
E4

J48 99.55 31.36 99.51 99.39 99.23
RF 98.55 30.77 95.53 99.12 97.67
NB 56.87 20.80 48.65 50.66 54.20
SVM 70.65 17.84 71.11 83.39 86.12
ANNs 93.28 24.24 92.67 96.25 93.52
kNN 80.65 27.78 81.41 89.82 89.75

Arduino-
prototype

J48 83.49 31.63 80.37 90.04 87.05
RF 89.86 39.08 88.70 95.06 93.81
NB 54.37 16.73 55.93 66.54 67.23
SVM 65.17 18.81 65.97 81.24 81.57
ANNs 75.31 23.80 72.79 91.70 91.28
kNN 79.03 40.03 78.28 92.75 92.23

TABLE IV
SPECTRAL ENERGY AND ENTROPY VALUES (MEAN ± STANDARD

DEVIATION) COMPUTED FOR EACH DEVICE AND ADL

Spectral Entropy Spectral Energy
ADL E4 Arduino E4 Arduino
WH 4.28±3.79 2.78±1.80 0.51±0.22 0.61±0.19
BT 3.91±2.84 4.74±3.05 0.44±0.15 0.55±0.16
BH 2.31±1.61 4.44±3.81 0.58±0.18 0.53±0.23
D 5.42±5.44 4.41±3.61 0.46±0.23 0.49±0.19
I 5.75±5.09 7.33±9.21 0.44±0.19 0.31±0.19

WD 2.44±1.27 3.12±2.01 0.55±0.14 0.54±0.17

Empatica E4 data, it is possible to observe that accuracy is
>90% for D1 and D3 datasets analyzed with J48, RF, and
ANNs classifiers, whereas the value decreases to the range 70-
80% when SVM and kNN are used; the worst performance is
reported for NB classifier (i.e., 56.78% and 48.65% for D1 and
D3 respectively). Similar results are obtained with D4 and D5
datasets, whereas the accuracy of all the classifiers is <40%
if D2 is considered. Such results confirm that the frequency
domain features used alone are not suitable for the automatic
classification of the considered ADLs, based on acceleration
signals collected on the wrist. By the computation of the
mean ± standard deviation values of the Spectral Energy and
Spectral Entropy features, reported in Table IV, it is possible
to see that Spectral Energy values are very similar between
the two measurement devices, whereas the Spectral Entropy
is typically higher and much more dispersed for the Arduino-
based device than the E4. Similar values of the Spectral
Energy, either for different devices and activities, explain why
the use of such feature would not improve the accuracy of
the classification algorithm in a significant fashion. On the
other hand, Spectral Entropy is a measure of uncertainty, and
we can explain the differences among the devices based on
the fact that E4 runs a proprietary firmware that is able to
identify unreliable or noisy samples and automatically remove
them, while this capability is not available from the Arduino-
base device. So, we can assume that Spectral Entropy may be
a relevant feature when the target of the classification is to
identify the type of device used (E4 or Arduino), and not the
activity, as its value is similar among the six ADLs considered.

TABLE V
PARTIAL PERCENT ACCURACY AND AVERAGE PERCENT ACCURACY

(AVG.) OF THE TESTED CLASSIFIERS (CL.) – EMPATICA E4

ADLs
CL. WH BT BH D I WD Avg.
J48 99.09 98.55 100.00 99.81 99.45 99.40 99.39
RF 98.55 98.91 100.00 98.73 99.46 99.27 99.12
ANNs 96.19 97.46 99.45 96.90 96.24 91.84 96.25
kNN 90.39 90.57 99.45 92.39 88.94 77.17 89.82
NB 90.94 85.68 17.93 34.42 44.21 29.34 50.66
SVM 86.59 90.99 99.45 58.51 89.31 76.81 83.39

TABLE VI
PARTIAL PERCENT ACCURACY AND AVERAGE PERCENT ACCURACY

(AVG.) OF THE TESTED CLASSIFIERS (CL.) – ARDUINO PROTOTYPE

ADLs
CL. WH BT BH D I WD Avg.
J48 92.32 91.38 89.51 88.57 87.07 91.38 90.04
RF 94.38 96.82 96.63 94.38 93.82 94.38 95.06
ANNs 90.45 95.88 94.57 90.07 89.88 89.32 91.70
kNN 93.44 95.50 97.00 92.13 88.01 90.45 92.75
NB 71.72 82.21 82.78 52.06 64.80 45.70 66.54
SVM 83.52 91.76 85.39 76.03 84.64 66.10 81.24

On the other hand, if we consider the results attained
from the Arduino-based prototype, the highest accuracy values
(> 80%) are obtained for D1 and D3 datasets processed
by J48 and RF classifiers. D4 and D5 datasets (including
also the features computed over the three directions of the
acceleration signals, namely Ax, Ay and Az) allow to obtain
better performance for all the tested classifiers: accuracy values
> 90% are obtained for RF, ANNs, and kNN. Again, the
overall worst performance is reported for NB classifier (i.e.,
16.73%) and poor results are obtained when D2 dataset is
chosen, whatever classifier is used.

Being D4 the dataset allowing very good performance, the
accuracy values provided on it by the different classifiers
are detailed and summarized in Table V and Table VI, for
Empatica E4 and Arduino-based prototype, respectively. In
particular, the Tables show how accurately the six activities
performed by subjects (i.e., Washing Hands, Brushing Teeth,
Brushing Hair, Dusting, Ironing, Washing Dishes) are classi-
fied, depending on the different ML classifiers selected.

As stated above, for measurement data collected by wearing
the Empatica device, J48, RF and ANNs outperformed the
other classifiers, whereas NB was able to correctly recognize
50% of the activities. The same activities registered by wearing
Arduino-based prototype were well-recognized by RF, ANNs
and kNN algorithms, reaching a total accuracy greater than
91%. It is worthy to note that J48 and RF achieved 100%
accuracy for BH activity recorded by using the Empatica E4
device. However, their performance decreases when processing
data collected with the Arduino-based device. Similarly, ANNs
and SVM were efficient in recognizing all the activities from
the acceleration signals collected using Empatica E4, but
they were less accurate in classifying data from the Arduino-
based tested device. On the contrary, kNN classifier was more
suitable in analyzing data from Arduino-based tested device,
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TABLE VII
F-MEASURE PERFORMANCE OF THE TESTED CLASSIFIERS ON

ACCELERATION MEASUREMENT DATA

Arduino - based device Empatica E4
Dataset J48 RF ANNs J48 RF ANNs
D1 0.83 0.90 0.75 0.99 0.98 0.93
D2 0.32 0.38 0.20 0.31 0.31 0.23
D3 0.99 0.98 0.89 0.99 0.96 0.92
D4 0.90 0.89 0.92 0.99 0.99 0.96
D5 0.87 0.94 0.91 0.99 0.98 0.93

TABLE VIII
SENSITIVITY OF THE TESTED CLASSIFIERS ON ACCELERATION

MEASUREMENT DATA

Arduino - based device Empatica E4
Dataset J48 RF ANNs J48 RF ANNs
D1 0.83 0.89 0.75 0.99 0.98 0.93
D2 0.31 0.39 0.24 0.31 0.31 0.24
D3 0.98 0.97 0.89 0.99 0.96 0.93
D4 0.90 0.89 0.92 0.99 0.98 0.96
D5 0.87 0.94 0.91 0.99 0.98 0.93

reaching an accuracy greater than J48 one, for five activities,
excepting the WD activity. NB classifier seems to provide a
relatively low accuracy, since apparently the highest number
of mis-classifications happened when using it. Specifically, the
lowest accuracy value (i.e., 17.93%) was achieved working
on data pertaining to the BH activity and collected using the
Empatica E4.

In order to validate the findings presented above and com-
pare the performance of different learning algorithms, further
evaluations were carried out. Besides the accuracy, the f-
measure was computed for the tested classifiers with the
highest accuracy of the model for both Empatica E4 and
Arduino-based devices (i.e., J48, RF and ANNs), as reported
in Table VII. Among the classifiers that achieved the highest
accuracy, three ML algorithms were selected (i.e., J48, RF
and ANNs) and the f-measure was calculated for each single
dataset, as shown in Table VII. It is interesting to note how
very high values were achieved on D1, D3, D4 and D5 by
using Arduino-based device and Empatica E4. Firstly, the high
values of f-measure confirm the accuracy trend, achieving
simultaneously the highest accuracy and f-measure with the
same ML approaches. Secondly, the low f-measure values in
D2, which is the dataset including frequency-domain features
only, demonstrate that the features computed in the time do-
main are essential to reach a good classification performance.

Further analyses addressed the sensitivity and the precision
of each tested approach, as shown in Tables VIII and IX.
According to the definitions (5) and (6), the results in Tables

VIII and IX show that J48 and RF achieved the highest true
positive rates in almost all the datasets. By comparing the
five different datasets, the three ML approaches had unstable
accuracy for any dataset configuration selected. Anyway, the
classifier that reached the highest values was J48, especially
when fed on measurement data acquired by means of Empat-
ica. Such consideration is confirmed in terms of sensitivity and

TABLE IX
PRECISION OF THE TESTED CLASSIFIERS ON ACCELERATION

MEASUREMENT DATA

Arduino - based device Empatica E4
Dataset J48 RF ANNs J48 RF ANNs
D1 0.84 0.89 0.75 0.99 0.98 0.93
D2 0.32 0.38 0.22 0.31 0.31 0.23
D3 0.99 0.97 0.89 0.99 0.96 0.93
D4 0.90 0.89 0.92 0.98 0.98 0.96
D5 0.87 0.93 0.91 0.99 0.98 0.93

TABLE X
SUBSET OF FEATURES SELECTED BASED ON THE INFORMATION GAIN

EVALUATION

Arduino - based device Empatica E4
Autocorrelation Signal Magnitude Area
Maximum Mean
Mean Percentiles 80th

Median Median
Percentiles 80th Autocorrelation
Percentiles 20th Percentile 20th

Range Maximum
Standard Deviation Variance
Median Absolute Deviation Standard Deviation
Interquartile Range

precision. More in general, both metrics show high rates for
all classifiers, with the exception of D2. The reason is that the
ML algorithms require a larger amount of data for training,
which was not possible with D2, being composed exclusively
by features in the frequency domain.
From all these findings, RF clearly showed an accuracy
better than the other classifiers in terms of good performance
measures, in classifying different activities, based on data
collected from different wearable devices.

B. Evaluation of filter-selected features

Identifying the appropriate features is a crucial phase to
develop a successful automatic classification system based on
machine learning. Indeed, a high correlation among the fea-
tures may affect the classification performance in classifying
the activities [53]. As such, the IG filter was applied on D3
dataset, since it includes the whole set of features for SMV
signals, from both Arduino and E4. In order to have the same
number of features in both datasets, and according to the
number of features selected in previous works [54], [55], the
10 features with the highest IG ranking score were selected to
compose a new optimal subset, and test again the classifiers
performances. For both the devices used, the selected 10
features are listed in Table X, arranged in descending order of
their IG value.

It is interesting to notice how the features selected by
the IG filter are almost the same but with different ranking,
for the two sensing devices. Median absolute deviation with
interquartile, and signal magnitude area with variance are the
two couples of features that uniquely characterize the subset
of selected features for the specific Arduino-based prototype
and the E4 device, respectively. As a result, the selected
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Fig. 4. Comparison of accuracy before and after applying the Informa-
tion Gain - Empatica E4 acceleration measurement data.
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Fig. 5. Comparison of accuracy before and after applying the Informa-
tion Gain - Arduino-based device acceleration measurement data.

features were used as input to the six classifiers to compare the
performance obtained when using all features versus a smaller
set, as shown in Fig.4 and Fig. 5.

By examining the results obtained from E4 device, among
the learning algorithms, the RF, kNN, and J48 improved their
performance, reaching the highest values, as shown in Fig.4.
In details, following the features selection, J48 provided the
highest accuracy of 99.81%. Compared to the performance of
RF, kNN, and J48, the classification results from NB, SVM,
and ANNs cannot be considered satisfactory. Looking at the
results obtained by analyzing data collected with Arduino-base
prototype (Fig. 5), the highest accuracy of 89,39% is achieved
by RF. On the other hand, the accuracy obtained by NB and
SVM decreased from 56% to 40% and from 66% to 42%,
respectively. ANNs contributed with a wider range of accuracy
values, namely from 72% to 45%.
By comparing the general performance of using all the features
versus using less features, it is possible to notice that some

Fig. 6. Mean and standard deviation of the four most relevant features
normalized and averaged over the population performing the six ADLs -
Empatica E4.

Fig. 7. Mean and standard deviation of the four most relevant features
normalized and averaged over the population performing the six ADLs -
Arduino based prototype.

algorithms slightly increased their performance when process-
ing a smaller set of features, namely J48 and RF. In contrast,
other classifiers drastically decreased their performance when
using the reduced subset of features, especially to classify
data from Arduino-based device; indeed, this is the case of
ANNs, kNN, NB, and SVM, reporting a substantial decrease
in terms of accuracy (the maximum decrease, i.e., 27.02%
obtained for ANNs). Regarding the classification of activities
performed by wearing E4, the results indicate that three out
of six classifiers (i.e., ANNs, NB, and SVM) obtained lower
accuracy percentages (i.e., 67.96%, 40.61%, and 47.34% for
ANNs, NB, and SVM, respectively). This is reasonably due to
the nature of each classifier, which can be differently affected
by irrelevant and redundant features.

Therefore, the variability among the activities was assessed
resorting to the four best features selected by IG (Table X).
Fig. 6 and Fig. 7 show the mean values and the related
standard deviation for each selected feature, normalized and
then averaged over all the test users. Regarding E4, signal
magnitude area, mean, percentile 80th, and median were com-
pared among the six activities, as shown in Fig. 6. Instead, in
Fig. 7 the autocorrelation, mean, maximum and median values
were selected and compared, to estimate the variability among
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the activities recorded by wearing the Arduino prototype.
Looking at the two Figures we obtain information about the
characteristics of the collected signal, and consequently about
the activities performed by the users.

Although almost all the error bars are wider for the Arduino-
based prototype measurement data, there are some exceptions
in which the standard deviation values are quite similar to
those obtained from E4. A remarkable example is given by
the features computed for the ”Dusting” and ”Washing Dishes”
activities. An appropriate selection of the features can reduce
the high correlation between them and the dimension of the
feature space as well. This would improve the algorithm
performance, also in terms of latency, which is important
to consider in (almost) real-time applications, such as AAL
or healthcare-related ones, where a trade-off between perfor-
mance and efficiency is mandatory.

IV. DISCUSSION

In this work, the authors evaluated automatic HAR by
means of six different classifiers (i.e., J48, RF, ANNs, kNN,
NB, and SVM) on six ADLs (i.e., Washing Hands, Brushing
Teeth, Brushing Hair, Dusting, Ironing, and Washing Dishes)
performed in realistic daily life conditions by 36 subjects,
and for which acceleration signals were collected from the
wrist. Two wearable devices were worn at the same time by
the experiment participants, in order to evaluate the effect of
the measurement device choice: Empatica E4, an expensive
research device with certified features, and an Arduino-based
prototype, developed on purpose in the lab, from relatively
cheap commercial components. In order to compare both
the devices, data quality and classification accuracy were
investigated. In particular, the acceleration signals only were
considered for the ADLs classification.

The classification performance can fluctuate, depending on
the type of both activity and classifier (Table V and Table
VI). Identifying the appropriate features can be a chance to
improve the recognition performance. Therefore, five different
datasets combining features were arranged and tested; the best
classification performance in terms of accuracy is obtained
when time and frequency domain features are considered from
the acceleration SMV together with the signal components
along the three directions (i.e., Ax, Ay , and Az), that is D4
and D5 datasets.

The performance of classification using Empatica E4 was
higher than that obtained using the Arduino-based prototype.
Indeed, it was observed that the ML classifiers obtained higher
values of accuracy, f-measure, specificity, and precision, when
processing data collected from Empatica E4 than from Ar-
duino, over almost all classifiers. As a result, we can infer that
the measurement device characteristics affect the data quality
and, as a consequence, the activities classification accuracy.
Such influence is strictly connected to the reliability of activity
classification in critical application fields, such as assistive
technologies for ageing people. Indeed, accuracy values are
in the range of 50%-99% for Empatica E4, instead values of
66%-95% are obtained for the Arduino-based prototype. The
best performance is reached by using J48 and RF classifiers
for both the wearable devices used in this study.

Another point of interest is the type of activity performed,
and consequently the signal quality. Acceleration signals are
sensitive to the movements of the subjects. Accordingly, in this
work some activities are classified with a better performance,
whereas there are activities more difficult to discriminate.
In particular, the quality of data declines very drastically in
the case of non predictable physical activities. For example,
participants differently washed dishes and washed hands, since
these activities are characterized by personal and casual move-
ments, which are extremely subjective. In fact, from Table V,
it is observed that activities such as ”Washing Hands” and
”Washing Dishes” featured low classification rates, with high
misclassification, mostly due to the difficulty of distinguishing
the two activities characterized by highly random gestures.
Similarly, ”Dusting activity” can be considered a quite random
activity, depending on the cleaning surface, the tool used to
dust and the performed hand gestures. On the other hand,
activities such as ”Brushing Teeth”, ”Brushing Hair” and
”Ironing” are performed quite similarly among the users. In
this case, the movements are repetitive, linear and performed
mainly along one spatial dimension. Nevertheless, the best
performing classifiers were the RF and the DT algorithms,
that outperformed other classifiers in most cases.

The performance of classifiers was evaluated also consid-
ering the most meaningful features. The number of relevant
features for a good classification of ADLs varies both with the
sensing device and the classifier, denoting the importance of an
appropriate choice of both hardware and software components
of a monitoring system, especially when high accuracy and
reliability are required, such as in AAL and health-related
applications, sometimes also supporting decision-making pro-
cesses in the definition of therapeutic strategies. This means
that a HAR system should consider the diversity among
the activities repeated by the same person; in particular, in
order to have a good performance, a classifier should be
able to effectively deal with uncertainty and variability of the
input data. An accurate HAR system, reaching a compromise
between performance and computation load, could be a valid
tool in many applications. Especially for ageing people, this
tool can support as long as possible independent and safe
living, thus aiding the healthcare system in remotely managing
decentralized care, in home environments.

V. CONCLUSION AND FUTURE WORKS

The results of this study show the potential implications that
measurement device and data quality may have on HAR classi-
fication accuracy. This study would analyze the consequences
of making decisions in HAR system in real-life, investigating
some possible solutions to improve the results. As a future
work, the classification approaches herein considered can be
trained and tested on data gathered from older adults, verifying
the classification performance not only with respect to the
choice of device and the selection of features, but also in terms
of the influence of age-related patterns in the acceleration
signals.
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