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Early temporal prediction of Type 2 Diabetes Risk
Condition from a General Practitioner Electronic Health

Record: A Multiple Instance Boosting Approach

Michele Bernardinia, Micaela Morettinia, Luca Romeoa,b, Emanuele Frontonia,∗,
Laura Burattinia

aDepartment of Information Engineering (DII), Università Politecnica delle Marche, Ancona, Italy
bCognition, Motion and Neuroscience and Computational Statistics and Machine Learning, Istituto Italiano

di Tecnologia, Genova, Italy

Abstract

Early prediction of target patients at high risk of developing Type 2 diabetes (T2D)

plays a significant role in preventing the onset of overt disease and its associated co-

morbidities. Although fundamental in early phases of T2D natural history, insulin re-

sistance is not usually quantified by General Practitioners (GPs). Triglyceride-glucose

(TyG) index has been proven useful in clinical studies for quantifying insulin resistance

and for the early identification of individuals at T2D risk but still not applied by GPs

for diagnostic purposes. The aim of this study is to propose a multiple instance learning

boosting algorithm (MIL-Boost) for creating a predictive model capable of early pre-

diction of worsening insulin resistance (low vs high T2D risk) in terms of TyG index.

The MIL-Boost is applied to past electronic health record patients’ information stored

by a single GP. The proposed MIL-Boost algorithm proved to be effective in dealing

with this task, by overcoming the other state-of-the-art ML competitors (Recall from

0.70 and up to 0.83). The proposed MIL-based approach is able to extract hidden

patterns from past EHR temporal data, even not directly exploiting triglycerides and

glucose measurements. The major advantages of our method can be found in its ability

to model the temporal evolution of longitudinal EHR data while dealing with small

∗Corresponding author
Email addresses: m.bernardini@pm.univpm.it (Michele Bernardini),

m.morettini@univpm.it (Micaela Morettini), l.romeo@univpm.it (Luca Romeo),
e.frontoni@univpm.it (Emanuele Frontoni ), l.burattini@univpm.it (Laura Burattini)

Preprint submitted to Journal of Artificial Intelligence in Medicine May 11, 2024

Micaela
Evidenziato

Micaela
Rettangolo



sample size and sparse observations (e.g., a small variable number of prescriptions for

non-hospitalized patients). The proposed algorithm may represent the main core of a

clinical decision support system.

Keywords: Type 2 Diabetes; Machine Learning; Predictive Medicine; Temporal

Analysis; Electronic Health Record; Clinical Decision Support System.

1. Introduction

Type 2 Diabetes (T2D) is a chronic metabolic disorder characterized by high blood

glucose concentration (i.e., hyperglycemia). T2D affects millions of people worldwide

and predisposes to the development of severe cardiovascular and renal complications

[1]. Early prediction of target patients at high risk of developing T2D plays a sig-5

nificant role in preventing the onset of overt disease and its associated comorbidities.

Unfortunately, it is estimated that the first 10 years of T2D natural history - when the

disorder is easiest to treat - are wasted [2].

The most powerful predictor of future development of T2D is represented by "in-

sulin resistance", a reduced sensitivity of tissues to insulin action in lowering blood10

glucose concentration [3]. As insulin resistance worsens, more global defects in in-

sulin secretion occur and, at the end, hyperglycemia arises [4]. Although fundamental

in early phases of T2D natural history, insulin resistance is not usually quantified by

General Practitioners (GPs) since specific blood tests - which are not included in those

usually performed in routine examinations - as well as mathematical computations, are15

required [5].

A simple surrogate assessment of insulin resistance can be obtained through the

triglyceride-glucose (TyG) index, based on routine triglyceride and glucose measure-

ments [6, 7]. TyG index has been proven useful in clinical studies for the early iden-

tification of individuals at T2D risk and its predictive value was shown to be stronger20

than the one observed for triglyceride and glucose measurements taken singularly [8].

These findings highlight the usefulness of this index for the identification of individuals

with early risk of developing T2D. However TyG index is still not applied by GPs for

diagnostic purposes. In fact, this methodology may be ideally straightforward on an
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individual basis; however, scheduling an appointment for laboratory screening across25

a patient panel of thousands becomes challenging.

In this context, a Clinical Decision Support System (CDSS) predicting TyG changes

over time may allow for better predictions of target groups with high risk of T2D. Such

a CDSS may provide to GPs reminders for routine lab testing, recommendations for

specific medication choices, and prescription of specialist examinations for a more30

accurate assessment of the metabolic status. Design of a CDSS is usually based on

Electronic Health Record (EHR) systems, which are important tools in the daily GPs

activities to store a considerable volume of data [9]. Moreover, Machine Learning

(ML) techniques have been widely used for extracting information from such large

amount of data. In particular, ML have been proven useful in set-up powerful predic-35

tive models for T2D [10], but still never focused on early temporal prediction of T2D

risk (i.e. insulin resistance worsening prediction). One of the main challenge in this

context is the modelling of the temporal evolution of EHR data. The Multiple instance

learning (MIL) is one of the ML techniques that has been proven useful to accomplish

this challenge, even though in a different domain [11, 12].40

The aim of this study was to propose the core of a new CDSS based on a MIL

boosting (i.e., MIL-Boost) algorithm. The proposed algorithm was applied to past

EHR patient information stored by a single GP in order to create a predictive model

capable of early prediction of worsening insulin resistance (low vs high T2D risk) in

terms of TyG index.45

2. Related work

In recent literature several approaches have been proposed to predict chronic patholo-

gies onset from heterogeneous and longitudinal EHR data [13–19].

Usually, the most important requirement to perform this predictive task is the avail-

ability of a large amount of transversal (i.e., number of patients) and longitudinal (i.e.,50

number of temporal observations of the same patient) data, which commonly come

from hospitals or clinical research structures but are not always easily accessible or

publicly available in the general practice scenario. The authors in [15] predicted multi-
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ple chronic diseases from longitudinal EHR data through an unsupervised Deep Learn-

ing (DL) model (e.g., deep neural network of stack of denoising autoencoders). How-55

ever, this approach may suffer from a lack of interpretability because is not able to

explicitly provide a top feature rank importance. On the contrary, other work proposed

supervised techniques to predict chronic cardiovascular [16] and kidney diseases [17–

19] by providing also model interpretability. The authors in [16] employed Logistic

Regression (LR), Random Forest (RF), Gradient Boosting Trees (Boosting), Convo-60

lutional Neural Network (CNN) and Long Short-Term Memory (LSTM) models to

predict 10-year cardiovascular disease events. In addition, the authors in [17] used also

a temporal multi-task procedure to predict the short-term progression (i.e., 1 year) of

estimated glomerular filtration rate (eGFR). They proposed a L2-regularized LR model

to rank the predictors importance within each fixed past time-window (i.e., 6 months).65

Similarly, the authors in [18] determined the progression of kidney disease through the

prediction of the future eGFR from 1 to 3 years by applying a RF regression model.

The authors in [19] aimed to predict levels of albuminuria to evaluate renal function

changes across a 5-year time window. Time-interval relations patterns were employed

to discover the most relevant laboratory exams as predictive risk factors.70

Focusing on T2D, in literature lots of work have already been proposed for classifi-

cation [20–25] and/or prediction [10, 26, 27] tasks. Studies related to the classification

task did not focus on predicting the temporal evolution of T2D condition across EHR

longitudinal data. Differently, studies performing a prediction task employed standard

ML models to predict the T2D diagnosis using past EHR observations divided in a75

fixed number of time windows. Moreover, although the authors in [10] used EHR data

of GPs, the considered features space contains also glycaemic information. In order to

handle limited longitudinal EHR data, the authors in [28] proposed a semi-supervised

learning solution, that consists of a generative adversarial network coupled with a CNN

to augment the training set data and improve the risk prediction performance, respec-80

tively. Their proposed model, also compared with LR, RF, LSTM, and Support Vector

Machine (SVM) obtained the best predictive performance, but was not able to quan-

tify the importance of the best predictors. Differently from all the above cited work

[10, 26–28], our task aims to predict insulin-resistance as an early factor of T2D risk
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condition.85

The limited amount and sparsity of longitudinal observations for each patient re-

flect the main challenges of our task. Because of these differences in the task definition,

we have decided to perform the experimental comparison with respect to other state-

of-the-art ML models (i.e., Decision Tree (DT) [10, 25–27]; RF [18, 26, 27]; KNN

[26, 27]; Boosting [21]; SVM with linear kernel (SVM Lin) and SVM with Gaussian90

kernel (SVM Gauss) [10, 26, 27]; and SVM with Lasso regularizer (SVM Lasso) [23]),

employed in literature to solve tasks closer to our setting. Similarly to [17], we com-

pared these state-of-the art models according to time-invariant and temporal majority

vote procedures.

3. Materials95

3.1. Clinical Data: inclusion and exclusion criteria

The FIMMG dataset1 has been collected from a single General Practitioner’s Elec-

tronic Health Record which consists of 2433 patients. Our clinical data represent a sub-

set of the FIMMG dataset with a longitudinal observational time-period up to 9 years

according to the following criteria (see Fig. 1): i) exclusion of all diagnosed diabetic100

patients according to the International Classification of Disease 9th Revision (ICD-9)

(since they can be farmacologically treated) ii) inclusion of only demographic, moni-

toring and laboratory exam fields (since continuous EHR features are collected more

frequently over time); and iii) inclusion of patients with at least a single measurement of

triglycerides (TG; mg/dl) and fasting glycemia (Gb; mg/dl) collected simultaneously.105

For each i-th patient, a different number (ti) of (TGj , Gbj) pairs measurements

were collected, where j identified the temporal instance with {1, . . . , j, . . . , ti}. Ac-

cordingly, the TyGj index was computed according to [8]:

TyGj =
ln(TGj ·Gbj)

2
(1)

On the basis of the insulin resistance threshold of TyG (TyGth = 8.65) reported

1http://vrai.dii.univpm.it/content/fimmg-dataset
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in [8], each observation can be classified as low (TyGj < TyGth) or high (TyGj ≥

TyGth) risk. We let seqij be the d-dimensional EHR features vector of the j-th instance

for the i-th patient. If a single EHR feature has multiple records between two TyG

measurements its median value was taken into account. Missing values of monitoring110

and laboratory exams features were indicated as NaN.

3.2. Problem formulation

FIMMG dataset
N=2433 N=2208 N=1861

V=107
N=968
V=81

N=374
V=81

N=256
V=81

FIMMG_pred dataset
N=256
V=49i viviiiii vi

Figure 1: Inclusion and exclusion criteria (N identifies the number of EHR patients, and V the
number of EHR features)

In order to better evaluate the temporal evolution of the patient’s T2D risk condi-

tion, more strict inclusion criteria (see Fig. 1) were added to i), ii) and iii) as follows:

iv) patients with at least 3 instances (for ensuring sufficient medical history to be inves-115

tigated); v) patients with a temporal distance ∆(ti−1)ti between the two last instances

equal or greater than 12 months (to guarantee, also in agreement with GPs, a consis-

tent and robust predictive temporal window [17]); and vi) EHR features that contain

an overall amount of NaN less than a threshold of 90% (thnan= 90%). The rationale

choice behind this threshold is the need of a predictive model in the clinical scenario120

that is consistent even with large proportions of missing data (up to 90%), as previously

did in other studies [29, 30].

The proposed approach predicts the future TyGiti ( ˆTyGi) considering only the past

instances (i.e., {seqi1, . . . , seqi(ti−1)}) (see Fig. 2).

Table 1 shows the final configuration of our clinical data, named FIMMG_pred125

dataset2, after the application of all six inclusion/exclusion criteria to the original

FIMMG dataset.

2http://vrai.dii.univpm.it/content/fimmgpred-dataset
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seqi(ti-1) seqitiseqij
j(ti-1)

> 12 months

patient
i-th

Future TyGiti

(ti-1)tiseqi1
1j

Past instances (thnan= 90%)

Figure 2: For each i-th patient, the temporal distance between past instances (i.e., ∆1j , ∆j(ti−1))
is variable, while between the last 2 instances (i.e., ∆(ti−1)ti ) is at least equal or greater than 12
months.

Table 1: FIMMG_pred dataset comprised of a total of 256 patients and 681 past instances related
to 49 EHR features. The detailed list of the 45 laboratory exams features is reported in Appendix
A (see Tab. A.1). Both age and blood pressure measurements were computed at seqi(ti−1) time
point. In the case that blood pressure measurements were missing at seqi(ti−1), the closest past
time-window blood pressure was taken into account (i.e. zero-order hold interpolation).

Dataset description Count Mean (std)

Total patients 256 -
Controls (TyG<8.65) 179 (70%) -
High-risk controls (TyG≥8.65) 77 (30%) -

Observation period (years) 9 -
Past instances {seqi1, . . . , seqi(ti−1)} 681 -
Fields (EHR features) Count Mean (std)
Demographic 2

Gender:
Male 126 (49%) -
Female 130 (51%) -

Age (years) - 68(±14)
Monitoring 2

Blood pressure (mmHg)
Systolic - 136(±14)
Diastolic - 82(±7)

Laboratory exams 45

4. Methods

4.1. Preprocessing

In order to retrieve information from NaN stored in FIMMG_pred dataset we ex-130

ploited the K-Nearest Neighbor (KNN) imputation, consisting in replacing the NaN

according to the KNN strategy [31]. The hyper-parameter K was set to 1 in order to

preserve the initial data structure [31]. As already done in a similar context [32], the
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K-Nearest Neighbor (KNN) imputation was selected as the best strategy after exploring

other data imputation techniques (extra values imputation, median imputation).135

4.2. Multiple instance learning boosting algorithm

MIL paradigm has attracted much attention in the last several years, and has been

proven useful in various domains, including bioinformatics [33], text processing [34]

and computer vision [35] and biomedical image analysis [36].

In the MIL paradigm the data is assumed to have some ambiguity in how the labels140

are associated. Differently from traditional supervised learning, labels are assigned to

a set of inputs (bags) rather than providing input/label pairs. Thus, during the learning

process, the classifier receives a set of bags along with the corresponding ground-truth

(i.e., label). Each bag contains multiple instances. In this framework, the data is as-

sumed to have some ambiguity in how the labels are associated: a bag is labeled posi-145

tive if there is at least one positive instance [37]. Hence, the MIL task can be addressed

to both estimate the instance and bag labels.

The MIL-Boost algorithm is originated from the work presented in [38] by starting

with the standard multiple instance assumption [37] and the boosting algorithm [39].

The main idea behind the boosting algorithm is to sequentially train several weak clas-150

sifiers hk ∈ H and combine them into a strong classifier h [37]. The combination is

performed in an additive way by weighting each weak classifier hk:

h =

K∑
k=1

αkhk(x) (2)

where αk are positive weights, K refers to the number of weak classifiers and x is the

feature vector. The employed weak classifier is the logistic regression. The gradient

boosting framework evolves the standard boosting formulation by considering each155

classifier hk the best sequential approximation in the classifiers space H of the relative

loss function based on a previous estimation [40, 41].

The general idea behind the application of MIL-Boost is to consider as instances

the set of past observations (seqij) related to different patients (i.e., bags). In the MIL
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paradigm, the instance probabilities of the MIL-Boost algorithm are derived as follows:160

pij = σ(h(seqij)) (3)

where σ(·) is the logistic function 1
1+exp(−(·)) . The instance probability is related

to the bag probability as follows:

pi = gj(pij) (4)

where g(·) is a function that approximates the max operator (i.e., noisy OR function).

The loss function is the negative binomial log-likelihood. For each patient, the last

TyGiti measurement was assumed as the bag label (0 [negative bag] if the TyGiti <165

8.65, 1 [positive bag] if the TyGiti ≥ 8.65) of the proposed MIL-Boost algorithm

where the past instances {seqi1, . . . , seqi(ti−1)} are the instance predictors (see Fig. 2

and Fig. 3a). The MIL-Boost algorithm (see Fig. 3a) groups the past instances into

bags of instances. Thus, our task is to predict the bag label according to the estimated

bag probability (pi).170

In the proposed MIL-based approach each bag is allowed to have different size (i.e.

different number of instances ti − 1), by taking into account the sparse sample size

of longitudinal data (i.e. the laboratory exams for non-hospitalized patients are not

prescribed on a regular basis over time).

Although we modeled the single bag as a set of multiple instances, we did not175

assume explicitly an ordinal and defined structure of the instance (e.g. by including the

instance ordering number [ion] in the feature set).

4.3. Experimental procedure

We evaluated the performance of the MIL-Boost using a Tenfold Cross-Validation

over subjects (CVOS-10) procedure3 to measure the prediction of early T2D risk con-180

dition. All subjects were divided in ten folds and selecting alternately nine folds for

3The code to reproduce the experimental results is available at the following link: https://github.
com/michelebernardini/Early-temporal-prediction-of-type-2-diabetes-risk
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training and one fold for testing in order to generalize across unseen patients. This

setup is closer to clinical diagnosis purposes, since the ML algorithm needs to gener-

alize the decision rules, learnt from subjects who already have a diagnosis, across new

unseen subjects.185

(b) baseline

(c) majority vote

mean averaging

disaggregation

seqiavg MLinput

ML

TyGi

prediction

T2D Risk

Majority 
Vote

TyGi

T2D Risk

i-th

TyGi

i-th

(a) MIL-Boost

bag of instances

T2D Risk

seqi1

seqi2

Bag space

MIL 
Boost

input prediction
Bag-level prediction

TyGi

i-th

seqit -1seqi2seqi1

prediction

i

seqit -1i

seqit -1seqi2seqi1

seqit -1seqi2seqi1

i

i

seqi1

seqi2

seqit -1i

input

Figure 3: Overview of the experimental procedures: a) MIL-Boost, b) time-invariant baseline,
and c) temporal majority vote.

The experimental procedure was evaluated by considering two different configura-

tions: i) "yesTyG" where triglycerides and glycaemia were included as separate EHR

predictors; ii) "noTyG" where triglycerides and glycaemia were not included.

4.3.1. Measures

The predictive performance was evaluated according to the following measures:190

– Accuracy: the percentage of correct predictions;

– Macro-precision: the Precision is calculated for each class and then take the

unweighted mean. The Precision reflects the percentage of true positive over the

predicted condition positive;

– Macro-recall: the Recall is calculated for each class and then take the unweighted195
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mean. The Recall reflects the percentage of true positive over the condition pos-

itive (sensitivity);

– Macro-F1: the harmonic mean of precision and recall averaged over all classes;

– Area Under Receiver Operating Characteristic curve (AUC): represents the prob-

ability that the classifier will rank a randomly chosen positive sample higher than200

a randomly chosen negative one.

From now on we refer to the Macro-precision, Macro-recall and Macro-F1 as Preci-

sion, Recall and F1 respectively.

4.4. Experimental Comparisons

We decided to compare the MIL-Boost algorithm with respect to other ML algo-205

rithms employed in literature closer to our setting (see Sec. 2), such as: DT [10, 25–27];

RF [18, 26, 27]; KNN [26, 27]; Boosting [21]; SVM Lin and SVM Gauss [10, 26, 27];

and SVM Lasso [23]. These state-of-the-art approaches were also combined with the

KNN imputation technique described in Sec. 4.1 to provide a fair comparison with

the proposed MIL-Boost. Moreover, we compared these state-of-the art methods ac-210

cording to the approach proposed by [17] where a time-invariant and a temporal ma-

jority vote procedures were used. Further comparisons were performed with respect

to other standard MIL-algorithms: MIL-DT [ID3-MI] [42], MIL-RF [MIForests] [43]

and MIL-SVM [34] with linear and Gaussian kernel.

4.4.1. Time-invariant baseline215

In the time-invariant baseline experimental procedure (see Fig. 3b) a single instance

was computed for each bag/patient as the average of the past EHR features (seqiavg).

The ˆTyGiti
was predicted without taking into account the temporal evolution of the

past clinical history.

4.4.2. Temporal majority vote220

The temporal majority vote experimental procedure (see Fig. 3c) is able to combine

the temporal information in the longitudinal data. A single instance learning ML model
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was trained by all the past instances seqij of the trained subjects for predicting the

ˆTyGi. Each past instance ({seqi1, . . . , seqi(ti−1)}) of the i− th patient provides a total

of ti − 1 predictions of ˆTyGi. The final output ˆTyGi was computed by computing the225

majority vote of each single prediction for each patient.

4.5. Validation procedure

Table 2 summarizes the range of the hyperparameters optimized for each ML model

during the CVOS-10. The chosen hyperparameters were summarized according to how

many times the value was chosen in the CVOS-10 models (count) for the noTyG pro-230

cedure. In particular, the hyperparameters tuning was performed implementing a grid-

search and optimizing the Recall in a nested CVOS-5. Recall was preferred over other

optimization objectives, because minimising the false negative rate has more clinical

relevance for a screening purpose. Hence, each split of the outer loop was trained with

the optimal hyperparameters tuned in the inner loop. Although this procedure was235

computationally expensive, it allowed to obtain an unbiased and robust performance

evaluation [44]. For all models the Accuracy, F1, Precision and Recall were computed

by selecting the best threshold in the nested CVOS-5. The predicted bag label was

assigned according to the best threshold and the model scores. This procedure aims to

deal with the natural unbalanced setting of this task.240

5. Results

Figure 4 shows the overall temporal distance between consecutive instances (∆j(j+1))

per patient. It turns out that in our dataset in average laboratory exams are repeated for

each patient at regular time intervals of almost 400 days.

Figure 5 shows the TyGiti index distribution for the final configuration of the245

FIMMG_pred dataset (see Tab. 1). The data follow a Normal distribution (accord-

ing to a Kolmogorov Smirnov Test, D = 0.041, p = 0.753) with mean µ = 8.41 and

standard deviation σ = 0.52.

Figure 6 quantifies the NaN occurrences for each EHR feature (i.e., demographic,

monitoring and laboratory exams) stored in the FIMMG_pred dataset.250

12



Table 2: Range of Hyperparameters (Hyp) for each model: Decision Tree (DT), Regression
Forest (RF), K-Nearest Neighbor (KNN), Gradient Boosting Trees (Boosting), Support Vector
Machine with linear kernel (SVM Lin), Support Vector Machine with Gaussian kernel (SVM
Gauss), Support Vector Machine with Lasso regularizer (SVM Lasso), and Multiple Instance
Learning Boosting (MIL-Boost). The chosen hyperparameters were summarized according to
how many times the value was chosen in the CVOS-10 models (count) for the noTyG procedure.

Model Hyp Range(count)

DT [10, 25–27] max # of splits {5(3), 10(2), 15(2), 20(2), 25(0), 50(1)}

RF [18, 26, 27] # of DT
# of predictors to select

{5(4), 10(2), 20(1), 30(2), 40(0), 50(1)}
{ all

4 (0), all
3 (0), all

2 (0), all(10)}

KNN [26, 27] max # of neighbors {1(1), 3(2), 5(1), 7(1), 9(0), 11(0), 13(3), 15(2)}

Boosting [21] max # of splits
max # of weak classifiers

{1(0), 5(2), 10(2), 20(3), 30(1), 40(1), 50(1)}
{1(1), 5(0), 10(1), 20(0), 30(3), 40(2), 50(3)}

SVM Lin [10, 26, 27] Box Constraint {10−2(0), 0.1(1), 1(1), 10(2), 102(5), 103(1)}

SVM Gauss [10, 26, 27] Box Constraint
Kernel Scale

{10−4(0), 10−3(1), 10−2(9), 0.1, 1, 10, 102, 103}
{10−4(0), 10−3(2), 10−2(8), 0.1, 1, 10, 102, 103}

SVM Lasso [45] Lambda {10−5(0), 10−4(5)10−3(3), 10−2(2), 0.1(0), 1(0), 10(0)}

MIL-DT max # of splits {5(2), 10(1), 15(2), 20(1), 25(1), 50(3)}

MIL-RF # of DT
# of predictors to select

{5, 10, 20(1), 30(5), 40(2), 50(2)}
{ all

4 (0), all
3 (0), all

2 (0), all(10)}

MIL-SVM Lin Box Constraint {10−4(0), 10−3(0), 10−2(0), 0.1(7), 1(3), 10(0)}

MIL-SVM Gauss Box Constraint
Kernel Scale

{10−5(0), 10−4(6), 10−3(0), 10−2(4), 0.1(0), 1(0)}
{10−5(0), 10−4(7), 10−3(3), 10−2(0), 0.1(0), 1(0)}

MIL-Boost learning rate
# of weak classifiers

{10−5(0), 10−4(3), 10−3(1), 10−2(0), 0.1, 1(3), 10(2), 102(1)}
{1(0), 5(10), 10(0), 15(0)}

5.1. Predictive performance

Table 3 shows the predictive performance of the MIL-Boost and the performed

comparison. The comparison was carried out both with the different experimental

procedures (i.e., time-invariant baseline, temporal majority vote) and with the different

configurations (i.e., yesTyG, noTyG).255

Figure 7 shows the performance comparison in terms of averaged Recall and stan-

dard deviation of Majority vote and MIL-algorithms over all CVOS-10 folds

The Recall obtained for both MIL configurations follows a Normal distribution

according to the one-sample Kolmogorov-Smirnov test (yesTyG:D = 0.198, p = 0.76;

noTyG: D = 0.161, p = 0.92).260

Accordingly, the statistical comparisons in terms of Recall between the proposed

approach and the other ML models for each configuration were performed by a two-

sample t-test (significance level = 0.05). Results evidenced that MIL-Boost is statisti-

cally superior (p < 0.05) than baseline yesTyG: KNN, SVM Gauss; baseline noTyG:
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DT, RF, Boosting, KNN, SVM lasso, SVM Gauss; majority vote yesTyG: KNN, SVM265

lin, SVM lasso, SVM Gauss; and majority vote noTyG: RF, KNN, SVM Lasso, SVM
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Figure 6: Percentage (%) of missing values (NaN) for each of the 49 EHR features: demographic,
monitoring, and laboratory exams.

Gauss. Moreover MIL-Boost is statistically superior (p < 0.05) than noTyG: MIL-DT,

MIL-RF and MIL-SVM Gauss and yesTyG: MIL-SVM lin and MIL-SVM Gauss.

5.2. Model interpretability

The top-10 rank features were listed in descending order of percentage importance270

for the temporal MIL-Boost experimental procedure in yesTyG configuration (see Fig.

8) and in noTyG configuration (see Fig. 9). The most discriminative predictors were

extracted in according to the weights ωK of the last updated weak logistic regressor

hK averaged over the 10 folds, where K is the maximum # of classifiers tuned during

the validation stage. The percentage of the top-10 rank features was about 46.30 % and275

40.91%, respectively.
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Table 3: Results of baseline, majority vote and MIL-Boost experimental procedures by consid-
ering (i.e., yesTyG) or not considering (i.e., noTyG) triglycerides and glucose information. Best
results are evidenced in bold for both (i.e., yesTyG, noTyG) configurations. Recall is underlined
because it is chosen as the hyperparameters optimization metric during the validation stage.

Baseline Accuracy F1 Precision Recall AUC

yesTyG noTyG yesTyG noTyG yesTyG noTyG yesTyG noTyG yesTyG noTyG

DT 0.77 0.67 0.72 0.60 0.75 0.61 0.71 0.61 0.79 0.64
RF 0.77 0.68 0.72 0.57 0.74 0.61 0.72 0.58 0.84 0.66
Boosting 0.76 0.70 0.71 0.59 0.73 0.62 0.72 0.59 0.82 0.58
KNN 0.69 0.63 0.57 0.49 0.62 0.50 0.58 0.51 0.64 0.56
SVM lin 0.73 0.67 0.68 0.62 0.70 0.63 0.68 0.62 0.75 0.66
SVM lasso 0.77 0.65 0.70 0.57 0.76 0.60 0.70 0.57 0.80 0.63
SVM Gauss 0.70 0.70 0.41 0.41 0.35 0.35 0.50 0.50 0.50 0.50

Majority vote Accuracy F1 Precision Recall AUC

yesTyG noTyG yesTyG noTyG yesTyG noTyG yesTyG noTyG yesTyG noTyG

DT 0.78 0.68 0.74 0.62 0.74 0.65 0.76 0.66 0.84 0.74
RF 0.77 0.65 0.73 0.57 0.73 0.60 0.75 0.59 0.83 0.69
Boosting 0.79 0.70 0.74 0.61 0.75 0.63 0.75 0.62 0.87 0.68
KNN 0.63 0.60 0.50 0.42 0.51 0.41 0.52 0.46 0.64 0.54
SVM lin 0.75 0.64 0.69 0.57 0.70 0.59 0.71 0.60 0.81 0.65
SVM lasso 0.77 0.66 0.69 0.57 0.71 0.59 0.70 0.59 0.81 0.66
SVM Gauss 0.63 0.66 0.38 0.39 0.31 0.33 0.50 0.50 0.46 0.50

MIL-algorithm Accuracy F1 Precision Recall AUC

yesTyG noTyG yesTyG noTyG yesTyG noTyG yesTyG noTyG yesTyG noTyG

MIL-Boost 0.83 0.70 0.81 0.68 0.82 0.69 0.83 0.70 0.89 0.71
MIL-DT 0.84 0.59 0.84 0.56 0.84 0.57 0.87 0.58 0.91 0.59
MIL-RF 0.87 0.63 0.86 0.60 0.86 0.60 0.89 0.61 0.94 0.64
MIL-SVM lin 0.67 0.72 0.40 0.67 0.34 0.69 0.50 0.68 0.47 0.52
MIL-SVM Gauss 0.67 0.67 0.40 0.40 0.34 0.34 0.50 0.50 0.51 0.49

Decision Tree (DT), Regression Forest (RF), K-Nearest Neighbor (KNN), Gradient Boosting Trees (Boosting), Support
Vector Machine with linear kernel (SVM Lin), Support Vector Machine with Gaussian kernel (SVM Gauss), Support

Vector Machine with Lasso regularizer (SVM Lasso), and Multiple Instance Learning Boosting (MIL-Boost)

5.3. Sensitivity to missing values

Figure 10 shows the trend of the MIL-Boost Recall as a function of the missing

values threshold thnan for both feature space configurations. For yesTyG configuration,

the lower the thnan, the more the Recall increases (up to almost 0.90), while for noTyG280

configuration, the maximum Recall (thnan= 90%) does not increase by decreasing the

thnan and thus, it appears that Recall is not affected by the EHR features elimination.

Standard deviation in noTyG configuration is globally greater than yesTyG one. A

multiple comparison t-test confirms how there are not any significative differences (p <

.05) across NaN thresholds.285
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Figure 7: Averaged Recall and standard deviation of Majority vote and MIL-algorithms over all
CVOS-10 procedure.

5.4. Sensitivity to the sparsity of the data

We have computed the Recall of MIL-Boost vs a measure of the sparsity of the

data (see Figure 11). Since the sparsity can be due to a small variable number of exam

prescriptions, the number of past instances (ti − 1) was selected as a measure of the

sparsity in the data. The lower the number of past instances and the higher the sparsity290

in the data.

Although the performance decrease as the sparsity in the data increases, the Recall

remains always over chance level (0.5).

6. Discussion

6.1. Predictive performance295

This study proposed a model that captures temporal information for the early pre-

diction of worsening insulin resistance (low vs high T2D risk) in terms of TyG in-

dex. The model learns from past routine measurements either including or excluding
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Figure 8: Top-10 rank features for MIL-Boost experimental procedure (yesTyG configuration).
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Figure 9: Top-10 rank features for MIL-Boost experimental procedure (noTyG configuration).
The percentage importance of the Others features was about 59%.

triglycerides and glucose measurements, which are the ones used to compute TyG in-

dex. The proposed MIL-Boost algorithm proved to be effective in dealing with this300
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Figure 11: MIL-Boost Recall vs sparsity of the dataset in terms of the number of past instances
(ti − 1).

task, by overcoming the other state-of-the-art ML models for both configurations (Re-

call, yesTyG: 0.83, noTyG: 0.70) and overcoming the other MIL-based approaches for

noTyG configuration. In particular, the higher performance of MIL-Boost with respect

to other MIL-based approaches in the more challenging clinical scenario (i.e. noTyG)

highlights how the proposed approach is able to extract hidden patterns from past EHR305
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temporal data, even not directly exploiting triglycerides and glucose measurements.

The TyG index, core element of this study, has been exploited by the same authors

also in a previous work [32]. However, the present study is basically different with

the previous one in terms of tasks (identification vs. forecast) and dataset considered

(present observations/future observations) and thus, also for the adopted methodolo-310

gies. The TyG-er approach [32] deals with the identification of the TyG index from

routine data, i.e. the extraction of the most relevant non-glycemic (routinary) clini-

cal factors strictly associated with the insulin-resistance condition; associations have

been investigated by looking at clinical factors and TyG observed at the same time

point. Results of [32] highlighted clinical factors having a well-known (as for example315

cholesterol), but also a non-trivial (as for example leukocytes and protein profile) as-

sociation with insulin resistance. Knowledge of non-trivial associations provides hints

for further investigation in clinical studies. On the other side, this work deals with

the prediction of future (i.e. forecast) TyG worsening, starting from the knowledge

of past values of routine clinical factors. Thus, the proposed MIL algortihm explored320

the relation among the sparse observations of the clinical factors in order to improve

the prediction of TyG worsening and thus of the T2D risk. As desirable, clinical fac-

tors highlighted by the TyG-er approach [32] are also the more relevant ones for TyG

worsening prediction.

The recent advances of DL and the huge amount of the data have laid the founda-325

tions to apply DL methodologies to EHR data for predictive tasks [46]. However, in

most cases EHR data pertain to hospitalized subjects [46–48], thus being characterized

by a huge set of longitudinal and more specific measurements. The major advantages

of our method with respect to other approaches reported in literature [15–19] can be

found in its ability to deal with a lower and a more sparse sample size of transversal and330

longitudinal data (e.g., a lower number of prescriptions for non-hospitalized patients).

The proposed MIL-Boost algorithm may deal with the sparse nature of this setting,

where different subjects (i.e., bags) may have a different number of observation (i.e.,

instances) over time (see Section 5.4). Our MIL-based approach relaxes the constraint

imposed by some other work [10, 17, 26, 27] by modeling a variable number of obser-335

vations for each patient (i.e. in the proposed MIL-based approach each bag is allowed
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to have different size). Additionally, we did not employ any preprocessing step (e.g.,

resampling strategies) to deal with the natural unbalance of this task.

Moreover, we did not find any statistical changes related to the inclusion of the

temporal information (i.e. instance ordering number [ion]) in the model for the yesTyG340

(p = 0.793) and noTyG (p = 0.375) configuration. Results evidenced that MIL-Boost

Recall of the noTyG configuration is slightly higher (0.70 vs 0.68) if the ion is not

included in the feature set. On the other hand the MIL-Boost Recall of the yesTyG

configuration is slightly lower if the ion is not included in the feature set. Although

the experimental results might suggest that the temporal ordering of the exams is not345

relevant for predicting the early T2D risk condition, future work might be addressed to

model the temporal evolution of the instance inside the bag by imposing a sequential

constraint (e.g. by applying a laplacian regularizer which encourages the temporal

smoothness between two exams).

Additionally, concerning the sensitivity to missing values, we found that the pro-350

posed model is affected only by the yesTyG configuration, because the progressive

EHR feature elimination gives more importance to triglycerides and glycaemia as dis-

criminant predictors; while for noTyG configuration the Reecall trend appears more

stable. However, t-test confirms how there are not any significative differences (p <

.05) across NaN thresholds. This fact implies that features with many missing values355

are not discriminative, and thus, suggests how the distribution of missing values is the

same for all the two classes (i.e. the missing values mechanism is not informative about

the classification target [49]).

6.2. Clinical significance

MIL-Boost predicts the deterioration of TyG index, whose efficacy in discriminat-360

ing subjects at low and high T2D risk has been recently recognized in clinical settings

[8, 50]. Our approach could lay the foundations for a CDSS having an important impact

from the therapeutic point of view. Besides planning targeted screening, such a CDSS

may allow pharmacological and non-pharmacological interventions administration by

GPs in an early pathophysiological T2D state, thus when they are more effective. Non-365

pharmacological interventions may include timely promotion by GPs of a healthy diet
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and/or regular physical activity, which have been shown to modify early T2D mecha-

nisms correlated to insulin resistance [51, 52].

The model interpretability results of our study provided novel insight into the best

combination of conventionally used (HDL, ALT, γGT) and non-conventionally used370

(urea, α2 globulin, bosophils, lymphocytes, neutrophils) biomarkers for diagnosing

early T2D risk condition. Evidence in recent literature can be found to support our

model interpretability results [32, 53]. Glycaemia appears redundant (12nd rank) in

case of presence of triglycerides and other clinical factors in the yesTyG configura-

tion. Thus, it turned out that triglycerides are more relevant than glycaemia in order375

to predict the future TyG status of the patient. Additionally, regarding the comple-

mentary set of features, ALT, gamma-GT, HDL cholesterol, and urea keep remaining

within the top-10 rank features. Notice that glycated haemoglobin (HbA1c), an im-

portant clinical factor used for T2D diagnosis and monitoring, was not included in our

analysis. However, HbA1c is not included in routinely examinations since GPs usually380

prescribe HbA1c assessment when T2D is strongly suspected or already diagnosed.

In our dataset (which does not consider already-diagnosed T2D patients), HbA1c was

measured in less that 10% of the cases and it has been discarded according to the ex-

clusion criteria vi) (i.e., EHR features that contain an overall amount of NaN less than

a threshold of 90%)385

6.3. Future work

Starting from the knowledge of the best features, the higher interpretability of our

approach may favor the acceptance of the experimental findings by the medical com-

munity and allow an easier implementation of a CDSS. The proposed MIL-Boost ap-

proach performed on the FIMMG_pred dataset, collected by the same GP, could be also390

extended and applied to other EHRs stored by multiple GPs. In fact, the computational-

time efficiency of our algorithm allows to easily re-train the model over new EHR data

(see Fig. B.1a). Such competitiveness in terms of computational efficiency (see Fig.

B.1) allows the proposed algorithm to be embedded also in a cross-platform framework

for low-cost mobile devices. Since missing values represent one of the main problems395

of this kind of data, future work should also try to investigate the effect of more ad-
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vanced strategies (e.g., collaborative filtering, matrix factorization, etc.).

Of note, the methodology proposed in the present study is not meant to replace cur-

rent diagnostic T2D methodology, which will be applied in the case of TyG classified

as "high". Our aim was to provide a support to screen patients at risk for T2D at the400

very beginning and a classification setup may be effective. Of course, a continuous

prediction of TyG changes over time resulting from a regression setup is desirable and

will be explored in future studies.

The final application of the proposed approach will be the integration of the MIL-

Boost on the FIMMG Nu.Sa. cloud platform [54] to achieve a real-world application405

of a data driven CDSS. The actual FIMMG Nu.Sa. suite has more than 20 statistical or

ML based applications to support GPs in their daily activities and, the proposed new

approach will be the first based on a predictive and high-interpretable ML model able

to capture EHR temporal data.

7. Conclusions410

As demonstrated by the high predictive performances, the model interpretability,

and the capability to deal with missing values and sparsity of data, the proposed MIL-

Boost is a reliable approach for the early prediction of T2D risk condition (low vs

high T2D risk) using past EHR temporal information collected from a single GP. The

proposed algorithm may represent the main core of a CDSS.415
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Appendix A. Full list of the laboratory exams

Table A.1: Detailed list of the 45 laboratory exams evaluated for this study.

# Laboratory exams # Laboratory exams

1 Albumin 24 Hematocrit (HCT)
2 Alpha-1 globulin (α1 globulin) 25 Haemoglobin (HGB)
3 Alpha-2 globulin (α2 globulin) 26 Lymphocytes
4 Alanine transaminase (ALT) 27 Bilateral mammography
5 Aspartate aminotransferase (AST) 28 Mean cellular volume (MCV)
6 Basophils 29 Monocytes
7 Beta globulin (β globulin) 30 Neutrophils
8 Total bilirubin 31 C-reactive protein (CRP)
9 Calcium (Ca) 32 Platelets (PLT)
10 Occult blood stool sample 33 Potassium (K)
11 Creatinine clearance (Cockroft) 34 Total proteins
12 HDL Cholesterol 35 Protein electrophoresis
13 LDL Cholesterol 36 Prostate-specific antigen (PSA)
14 Total Cholesterol 37 Free prostate-specific antigen (free PSA)
15 Creatinine kinase (CK) 38 Erythrocytes (RBC)
16 Creatinine 39 Sodium (Na)
17 Complete blood count (CBC) 40 Thyrotropin (TSH)
18 Eosinophils 41 Urea
19 Iron (Fe) 42 Uric acid
20 Alkaline phosphatase (ALP) 43 Complete urine test
21 Free/total prostate-specific antigen ratio (free/total PSA ratio) 44 Erythrocyte sedimentation rate (ESR)
22 Gamma globulin (γ globulin) 45 Leukocytes (WBC)
23 Gamma-glutamyl transferase (γGT)
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Appendix B. Computation-time analysis

The computation time analysis for the training and validation stage is shown in

Figure B.1a, while for the testing stage in Figure B.1b.600
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(a) Training and validation time
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Figure B.1: Comparison in terms of computation time.
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