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Abstract

The last decade has witnessed the rapid development of a broad range of
Financial Technology (FinTech) services. This work shows innovations in
two functions of finance, savings and payments, focusing on robot-advisory
platforms and crypto prices.

Robot-advisors involve the provision of online automated investment ser-
vices with virtually no human contact. For this reason, they may reduce
costs and improve the quality of the service, making user involvement more
transparent. However, this digital platforms may underestimate market risks,
especially when highly correlated assets are being considered, leading to a
mismatch between investors’ expected and actual risk.

In this perspective, the main goal is to enhance robot-advisory portfolio
allocation, taking users’ preference into account. In particular, this work
demonstrates how random matrix theory and network models can be com-
bined to construct investment portfolios that provide lower risks and higher
returns with respect to standard Markowitz portfolios.

According to digital currencies that allow online payments to be sent directly
from one party to another without going through a financial institution, this
work analyses the dynamics of crypto asset prices and, specifically, how price
information is transmitted among different bitcoin market exchanges, and
between bitcoin markets and traditional ones.

The methodology adopted groups bitcoin prices from different exchanges, as
well as classic assets, by enriching the correlation based minimal spanning
tree algorithm with a preliminary filtering method based on the random ma-
trix approach.

To this aim, main empirical findings are: i) bitcoin exchange prices are posi-
tively related with each other and, among them, the largest exchanges, such
as Bitstamp, drive the prices; ii) bitcoin exchange prices are not affected by
classic asset prices while their volatilities are, with a negative and lagged



effect.

Some of the most known techniques can be combined in order to reach up
completely different goals, from one side the construction of asset allocation
model and to the other the detection of mechanisms of price information
between traditional and new financial products.



Acknowledgements

Vorrei approfittare di queste brevi righe per ringraziare il Professor Francesco
Maria Chelli e il Professor Paolo Giudici per la professionalita con la quale
mi hanno aiutato durante lo svolgimento della tesi ma sopratutto li ringrazio
per avermi insegnato ad affrontare le nuove sfide che si sono presentate du-
rante il mio percorso.

Ringrazio la Professoressa Maria Crisitna Recchioni che, insieme al Pro-
fessor Chelli, mi ha supportato e sopportato con grande professionalitd (e
pazienzal).

Per gli aiuti e i consigli tecnicni ricevuti ringrazio i professori Riccardo Luc-
chetti, Giulio Palomba e Claudia Pigini, insieme al coordinatore Marco Cuc-
culelli.

Un doveroso ringraziamento va a Andrea Bucci, Alessandro Spelta e Luca
Pedini per avermi aiutato concretamente nella realizzazione della tesi.

Un ringraziamento caloroso ai miei compagni di corso Diego, Francesco,
Chiara, Luca e Taslim per le risate e i pianti condivisi durante questa bella
quanto faticosa avventura.

Grazie a Sabrina, collega e amica, che mi é stata ed é sempre vicina.

Grazie alla mia famiglia, a Matteo e a tutti i miei amici che hanno avuto un
peso determinante nel conseguimento di questo obiettivo, punto di arrivo e
di partenza. GRAZIE a tutti di cuore!






Contents

[Abstractl

[Acknowledgements|

(1.2 Techniques to “filter” correlation matrix| . . . .. . ... ...
(1.2.1  Hierarchical clustering algorithm| . . . . ... ... ..
[1.2.2  Extensions of the MST: different algorithms| . . . . . .

[1.3  Correlation analysis and portfolio optimization|. . . . . . . . .
[1.3.1 Alternative asset allocation strategies| . . . . .. ...
[1.3.2 Centrality and optimal weights . . . . ... ... ...

(L4 Conclusionl. . . . . . . . . . o

Robot-advisors and portfolio model

2.1 Introduction and literature reviewl . . . . . . . . ... ... ..
[2.2  Methodologyl . . . . . . . . ... ...
[2.2.1 The random matrix approach| . . . . . ... ... ...
[2.2.2  The minimal spanning treef. . . . . . . . . . ... ...
[2.2.3  The eigenvector centrality] . . . .. .. ... .. ... .
.24 Portfoliomodell . . . . . .. ... oL
(2.3 Empirical findings|. . . . . .. ... o000
[2.3.1 Random matrix theory and network topology| . . . . .

11
12
15
18
19
20
22

25
25
29
29
31
32
33
35
37
41
49



CONTENTS

[Appendix A

70






Chapter

Literature Review

1.1 Introduction

The Financial Stability Board defines the Financial Technology (FinTech) as
technologically-enabled financial innovation that could result in new business
models, applications, processes or products with an associated material ef-
fect on financial markets, financial institutions and the provision of financial
services.

During the last decade, FinTech innovations are increasing exponentially in
many facets of finance , from making payments, to saving, borrowing, man-
aging risks, and getting financial advice from automated consultants known
as robot-advisors. Total global investment in FinTech companies reportedly
increased from US$ 9 billion in 2010 to over US$25 billion in 2016. Ven-
ture capital investment has also risen steadily, from US$0.8 billion in 2010
to US$13.6 billion in 2016 (Fortnum et al. 2017).

The Financial Stability Board (FSB) in its two recent reports (FSB| (2017a)),
F'SB (2017b)) identifies three common drivers of FinTech: shifting consumer
preferences on the demand side; evolving technology and changing finan-
cial regulation on the supply side. The first one concerns higher customer
expectations for convenience, speed, cost and “user-friendliness, the second
concerns advances in technology, mainly related to big data and mobile tech-
nology and the third regards the increased frequency of changes in regulatory
and supervisory requirements.

Unfortunately, rapid growth and innovation in Fintech context were not well
supported by regulation. First, robot-advisors that build personal portfolio
on the basis of algorithms that take into account information provided by in-
vestors filling out online questionnaire have been indicted of underestimating
the investors risk profile. Investors information is relative to age, risk tol-
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erance and aversion, net income, family status and this obtaining is a legal
requirement specified by the MIFID directive.

Regulatory Authorities impose on robot-advisors a best matching between
risk profile resulting from online questionnaire and assigned portfolio. In
this perspective, our work that proposes a revisited technique of constructing
portfolios including network parameters contributes to improve this relevant
issue.

Also cryptocurrencies, which allow online payments to be sent directly from
one party to another without going through a financial institution [1} fall out-
side traditional regulation (Gregoriou & Nian, 2015)).

The key role of information contained in correlation matrix of financial asset
returns is the crucial point of this work both to construct portfolios tay-
lor made for investors and for the detection of price drivers, specifically for
robot-advisor and cryptocurrency fields.

For this reason, the purpose of this first chapter is to show the state of the
art of methods concerning cluster algorithms applied on correlation matri-
ces in order to analyze interconnectedness of assets in the financial markets.
The literature relative to clustering algorithms on correlation matrices of
stock returns time series is very amply and it stems from the seminal paper
of Mantegna, (1999). In fact this author investigates the correlation coeffi-
cient matrix to detect the hierarchical organization present inside the stock
market: distance matrix based on correlation matrix is used to determine
the minimal spanning tree (MST) connecting the N stocks considered in the
time horizon T. With only a few exceptions Mantegna shows that groups are
homogeneous with respect to industry and often also subindustry sectors,
meaning that stocks belonging to the same sector or subsector are driven by
the same economic factors.

Marti et al.| (2017) in their review list methodological extensions for improv-
ing algorithm, distance and other aspects raised in literature with respect to
the paper of Mantegna, however this work remains the more important in
order to detect structural organization in financial markets.

Tumminello et al| (2005) extend Mantegna by filtering correlation matrix
through a network which is a topological generalisation of the MST. This
network is known as planar maximally filtered graph (PMFG) which retains
the same hierarchical properties of the MST but adds more complex topo-

L “Establishing a definition of cryptocurrencies is no easy task. Much like blockchain,
cryptocurrencies has become a buzzword to refer to a wide array of technological devel-
opments that utilize a technique better known as cryptography. In simple terms, cryp-
tography is the technique of protecting information by transforming it (i.e. encrypting it)
into an unreadable format that can only be deciphered (or decrypted) by someone who
possesses a secret key.” (Houben & Snyers, [2018)).
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logical structures, such as loops and cliques.

The main purpose of these previous researches is to look for hierarchical
structure of financial assets (especially stocks) in the complex financial mar-
ket and on the basis of this methodology some authors construct investment
portfolios as explained in Section 2.2.4.

For example, Tola et al| (2008) show how the use of clustering algorithms
can improve the reliability of the portfolios in terms of the ratio between
predicted and realized risk. Once they filtered correlation matrix using clus-
tering techniques (specifically single and average linkage methods) and the
alternative approach based on random matrix theory (RMT) they construct
portfolios by using the resulting covariance matrix in the Markowitz’s solu-
tion.

Ledn et al.| (2017) first place stocks into given groups applying hierarchical
clustering technique on correlation matrix then select best assets in each
cluster relying on a Sharpe Ratio optimization.

Raffinot| (2017)) constructs groups of stocks using hierarchical clustering al-
gorithms then builds portfolios by assigning capital equally to each cluster,
inside each cluster allocation is equally-weighted.

Quite different clustering methods are used by other authors, always consid-
ering the same distance measure based on Pearson correlation coefficient.
Ren et al.| (2017) show a portfolio strategy that consider the time-varying
structures of MST networks in the Chinese stock markets.

Instead, Zhan et al.|(2015) investigate four different portfolio selection strate-
gies and one of these concerns correlation clusters constructed by using
Neighbor-Net graph.

Before them, other authors like Rea & Rea| (2014) presented a method to visu-
alize the correlation matrix using neighbor-Net networks (Bryant & Moulton,
2004)), seizing relationships in the financial stock market.

This work presents a common part based on literature review related to
hierarchical clustering algorithms and RMT exploited to detect topological
structure of financial market since the beginning paper of the 1999 and two
empirical applications in the FinTech world.

These applications show how known techniques could be implied in pioneer-
ing contexts for the development of a portfolio model specific for robot-
advisors able to diversify investments at individual level and for the investi-
gation of cryptocurrencies price drivers.

The structure of the thesis is as follows: next sections of this Chapter presents
literature review relative to hierarchical clustering algorithms and extensions
to “filter” correlation matrix of financial assets considered in a specific time
horizon. Chapter 2 proposes a portfolio optimization approach specific for
robot-advisory platforms that takes RMT filter and network centrality explic-
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itly into account. Finally, Chapter 3 concludes by showing an application of
RMT and graph tree on the correlation matrix of cryptocurrencies and “clas-
sical” assets such as gold and oil, with the aim to discover interconnectedness
among crypto prices and between crypto prices and classic prices.

1.2 Techniques to “filter” correlation matrix

Time series is one of the many instruments to represent data and this type
of data is present in a variety of fields, from brain activity to financial area.
There are many reasons for which researchers apply clustering techniques to
time series data.

Zhang et al| (2011) remark three main objectives implied in order to catch
different similarities between time series: in time, in shape and in change.
Similarity in time means that time series are grouped together when they
move similarly time by time; there is similarity in shape if time series share
common trends or sub patterns. Instead, similarity in change means that
time series shown similarity of fitted parameters referred to fitted underlying
models, which may be different.

For the nature of this type of data, cluster analysis of time series requires
peculiar techniques.

Mantegna/ (1999)) and other authors following him use a raw data approach
for returns time series. A single observation (day, week or month) of the
time series represents a characteristic of the element and stocks are grouped
together when they are correlated: the Pearson correlation coefficient c;;
quantifies the degree of interdependence between pair of financial assets.
Clustering algorithms allow to extract leading information about aspects of
structural organization from correlation matrix of return time series whereas
correlation matrices can be represented as complete graphs where the notion
of hierarchy lacks (de Prado, |2016).

Clustering tools, spectral methods (theory of random matrix) and correlation
based graph represent the algorithms in order to extract information from
complex systems of the correlation matrices. In fact, correlation matrices are
subjected to the non stationary market conditions and “measurement noise”
due to the finite length of time series that make the analysis difficult without
appeal these filtering tools.

Furthermore, these procedure could improve portfolios diversification, as ex-
plained in Section 2.2.4.



CHAPTER 1. LITERATURE REVIEW 12

1.2.1 Hierarchical clustering algorithm

This paragraph aims to show the use of hierarchical clustering algorithm in
order to filter correlation matrices of return time series reducing the number
of parameters. The analysis considers both a static financial market and a
complex system that evolves over time.

Mantegna’s first work dates back to the 1999 and this author investigates the
correlation matrix to detect the hierarchical organization of stocks in finan-
cial market. In a ultrametric space, the graph minimal spanning tree (MST)
connecting stocks reveals a topological arrangement of financial market that
has an important meaning from an economic point of view. MST, defined as
the minimum structure in terms of sum of distances between nodes, groups
stocks homogeneous with respect to the economic sector of underlying com-
panies.

Also Tumminello et al.| (2010) confirm that elements (or nodes) share infor-
mation according to the communities they belong to and communities are
organized in a nested structure. Hierarchical clustering algorithms allow to
detect this complex structure.

Spelta & Aratjo| (2012) qualify the minimal spanning tree as the correspond-
ing representation of a fully-connected system (network) where sparseness
replaces completeness in a suitable way.

Steps in order to draw MST can be summarized as follow. One starts from
the correlation matrix of the time series of N stock returns, computed as
difference of the logarithm of stock prices in the time horizon T [}

ri(t) = logP;(t) — logPi(t — 1) (1.1)

The elements of correlation matrix for each pair of stocks

ey = E(riry) — E(ri) E(r;) (1.2)

0;0;

converted in distance elements:

dz’j = \/2 - 202'3' (].3)

MST is based on the distance matrix computed in this way and this tree
graph allows to shrink links connecting stocks from w (total number

2Prices and returns of stocks, in general of the financial assets considered, can be daily,
weekly, monthly or yearly.
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of parameters in the distance matrix) to N — 1. Kruskal’s (Kruskal, 1956)
and Prims’ (Prim, 1957) algorithms are the most known algorithms to build
MST.

Kruskal’s algorithm operates by building a MST one vertex at a time: at
each step it adds the edge, by increasing distances, with least distance that
does not form a loop; if the graph is not connected, a minimal spanning forest
is founded.

Differently from the above algorithm, the Prim’s one works by building a
MST one vertex at a time, from an arbitrary starting vertex, at each step
adding the edge with least distance, that connects a new vertex to the graph.
For further details on algorithms to derive MST see |Moret & Shapiro (1991).
In general, minimal spanning trees allow to detect the hierarchical organi-
zation in sectors and subsectors of stocks, but it is known in literature that
result changes if frequency of data changes.

Bonanno et al.[(2001) demonstrate that decreasing the time horizon (i.e. from
daily to intraday frequency) correlation between pairs of stocks decreases by
affecting the hierarchical organization: minimal spanning tree moves from a
clustered and structured set to a simpler set. This result is known as EPPS
effect, for more details see |Epps (1979), Minnix et al. (2010).

MST is the spanning tree associated to Single Linkage Clustering Algorithm
(SLCA). However the MST retains some information that the single linkage
dendrogram throws away (Raffinot, |2017)).

This latter tests some variants of SL: complete linkage (CL), average linkage
(AL) and Ward’s Method (WM).

All these algorithms follow an agglomerative approach based on aggregating
clusters in bottom-up fashion, they differ for the way of grouping elements
into clusters. At each clustering algorithm corresponds an ultrametric ma-
trix, used as a “filter” of the original one.

e SL, at each step it combines two clusters that contain the closest (mini-
mum distance) pair of elements. Let C; and Cy two clusters, the linkage
function is described by:

Dist(C1,Cy) =  min  dist(cy, o)

c1€C1,c0€Cy

e CL, it works in a converse way with respect to SL. In fact, at each step
combines two clusters that hold the farest (maximum distance) pair of
elements:

Dist(Cy,Cy) = max  dist(cy, o)

c1€C1,c2€C2
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e AL, it considers the distance between two clusters as the average dis-
tance between pair of elements belonging to those clusters:

1 .
m Z Z d@St(Cl,Cg)

c1€C coeCsy

e WM, at each stage, two clusters merge if they provide the smallest
increase of the squared error:

Dist(Cy,Cy) = dist({C1},{Cs}) = ||C1 — Cs|

Different dendrograms or hierarchical trees are associated to these algorithms.
Other authors concentrate on the MST as a characteristic tree graph for the
description of the correlation matrix.

For example, the work of Onnela et al.| (2003b) emphasizes the aspects al-
ready presented by previous authors but in the same time it complaints about
the fact that minimal spanning tree (or simply “asset tree”) only represents
a static average of an evolving complex system. For this reason these authors
explore the asset tree dynamics computing the correlation matrix for each
rolling window of width T and draw MST for each period considered in order
to see how the structure of the minimal spanning tree changes over time.
They demonstrate that the basic structure of MST is very robust with re-
spect to time but during market crisis it shrinks due to the strong global
correlation which makes the assets behaviour very homogeneous.

Mean occupation layer is used as a summary statistics in order to monitor
the time evolution of the asset tree. It represents the layer of the tree where,
on average, the mass of stocks is concentrated. During the 1987 stock market
crash, the structure of MST becomes flat and the value of the mean occupa-
tion layer decreases.

Also [Spelta & Aratjo| (2012) propose a measure called residuality coefficient
that compares the relative strengths of the connections above and below a
threshold distance value of the tree in order to asses structural changes of
MST over time.

Matesanz & Ortegal (2015) draw MSTs in each temporal window consid-
ered with the aim of evaluating temporal changes of time series of countries
debt-to-GDP ratio. They calculate agglomerative coefficient (Kaufman &
Rousseeuw, [2009) of each temporal tree and cophenetic correlation (Sokal &
Rohlf, [1962) between hierarchical trees of different times. Agglomerative co-
efficient close to 1 implies a highly nested structure of tree instead cophenetic
correlation gives an idea of how similar is the grouping structure between two
different hierarchical tree.
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During market crises started at the year 2008 the value of the agglomerative
coefficient is much less than 1 and hierarchical trees for overlapping windows
are not correlated.

Although works refer to different time periods and type of data considered,
results confirm what said above: structure of hierarchical trees tends to be
flat and different from others during market crisis.

A critical aspect in considering dynamic MSTs is represented by the fact
that the choice of the temporal windows (number and length) is arbitrary as
asserted by Marti et al.| (2017).

There is not a predominant methodology but the “naive” one consists in:

e Computing Pearson correlations on a rolling window, which width can
be linked, for example, to the duration of the investment in the case of
cluster analysis for portfolio construction.

e Drawing a network or a tree on the rolling empirical correlation matrix.

A trade off exists between too noisy and too smoothed data for small and
large window widths, respectively (see Onnela et al. (2003a)) for detail).
Some works try to solve problems linked to Pearson correlation coefficient
considering nonlinear correlations for example Spearman correlation coef-
ficient (Micciche et al.| (2003) and Hartman & Hlinkal (2018))), conditional
Spearman correlation coefficient (Durante et al., 2014) that is conditional to
the behavior in the tail of assets after fitting of a copula-based time series
model. |Baitinger & Papenbrock (2017) introduce mutual information mea-
sure able to detect linear and nonlinear dependences between different asset
classes.

1.2.2 Extensions of the MST: different algorithms

According to the work of |Marti et al.| (2017), this part aims to list some of
different algorithms used to replace the minimal spanning tree and its cor-
responding clusters, with the goal to improve the seminal work of Mantegna:
(1999).

These algorithms have both hierarchical, with correlated graphs, and not hi-
erarchical nature. This latter consider a spectral method based on the study
of eigenvalues of correlation matrices.

From the side of hierarchical algorithms, Tumminello et al.| (2005) introduce
a graph for filtering correlation matrix that preserves the hierarchical orga-
nization of the minimal spanning tree but comprising more information.
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This graph is known as planar maximally filtered graph (PMFG) and it rep-
resents an extension of the MST. The basic difference between the two is
the number of links considered: MST contains N — 1 links instead PMFG
3(N —2), where N is the number of nodes in the graph. [}

Therefore PMFG holds the hierarchical skeleton of the minimal spanning
tree but it is enriched with loops and cliques. As explained in [Tumminello
et al| (2010) a clique of k elements is a complete subgraph that links all &k
elements. Due to the Kuratowski’s theorem, PMFG can only have cliques of
3 and 4 elements. The number of 3 — cliques and 4 — cliques that can be
built is 3N — 8 and N — 3 respectively.

Tumminello et al| (2007al) investigate the planar graph considering two dif-
ferent sampling time horizons of return time series: PMFG at 5 min time
horizon (intradaily time scale) and PMGF at daily time horizon.

In general, they note that PMFG selects links which higher values of p;j
between pairs of stocks but the arrangement of the PMFG is also affected
by the EPPS effect: the inter-sector correlation increases while intra-sector
correlation decreases by decreasing the frequency of data. This means that
PMFG at daily time horizon detects connections inside the same sector in-
stead PMFG at intradaily time horizon catch up correlations between differ-
ent sector.

An other network-filtering method for correlation matrices is the triangu-
lated maximally filtered graph (TMFG) proposed by Massara et al.| (2016]).
Starting from a 4 — clique, TMFG produces planar graphs by optimizing an
objective function, also known as “score function”, that represents the sum
of the weights of the edges.

Tumminello et al. (2007b) introduce the average linkage minimum spanning
tree (ALMST) that is the spanning tree associated to the average linkage
clustering algorithms (ALCA).

They show that ALMST detects economic sectors and subsectors in the net-
work slightly better than the MST. Instead, the average value of the reliabil-
ity of links relative to minimal spanning tree is slightly greater with respect
to the average linkage minimum spanning tree.

As a global measure of the reliability of links in a graph, authors consider
the average of bootstrap values. The bootstrap value represents the times
number in which the link appears in the M ST; and ALM ST; drawn for each
replica ¢ randomly constructed selecting rows from the original correlation
matrix.

3In the case of planar filtered graphs the genus is equal to 0. According to the definition
in {Tumminello et al| (2005), the genus is a topologically invariant property of a surface
defined as the largest number of nonisotopic simple closed curves that can be drawn on
the surface without separating it, i.e., the number of handles in the surface.
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Recently, Musmeci et al.| (2015) have introduced the directed bubble hier-
archical tree (DBHT), a novel clustering algorithm based on the topological
structure of the PMFG. Differently form other hierarchical techniques, DBHT
first identifies clusters and then set the hierarchy intra and inter groups.
From the not hierarchical side, random matrix theory (RMT) is the main
approach in order to investigate the structure of return correlation matrices
of financial assets.

The basic idea of RMT is testing eigenvalues such that Ay < A\;y; of an em-
pirical correlation matrix which elements derive from equation (1) against the
null hypothesis given by eigenvalues of a same size random Wishart matrix
R = %AAT, where A is an N x T matrix containing N time series of length
T which elements are independent, identically distributed random variables
with zero mean and variance o2 = 1.

The random correlation matrix of this set of variables in the limit 7" — oo
is the identity matrix, when T is finite the correlation matrix is in general
different from identity matrix.

The theory of random matrices allows to prove that in the limit N — oo and
T — oo with a fixed ratio ) = % > 1 and 02 = 1, the eigenvalue spectral
density is given by:

) = % e A;(A ) (1.4)

where A\ =1+ é + 2\/%’

The theory of random matrices has a long history (Mehta/ (1990)), first re-
sults in the financial context are known from works of (Galluccio et al.[(1998),
Laloux et al|(1999) and [Plerou et al.| (1999).

Coronnello et al|(2005) also compare eigenvalues of empirical correlation ma-
trix and random correlation matrix by imposing 0% = 1 — % that allows to
take into account the behaviour of the first eigenvalue, the “market mode”.

Authors have already tested the finite size effect on A4, Plerou et al.|(2002)
demonstrate that the eigenvalues deviating from random matrix convey mean-
ingful information stored in the correlation matrix.

Information can be extract from eigenvalues that are higher then A\, (de-
viating eigenvalues) and it involves correlations between stocks that belong
to the same industry or geographical area, instead the “bulk” of eigenvalues
agree with RMT reveals the random correlations.

Coronnello et al.| (2005) introduce a measure that quantifies the role of a
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given secto s in explaining the composition of each eigenvector u*:

XE =" Pylul)? (1.5)
i=1

Deviating eigenvectors associated to deviating eigenvalues are characterized
by prominent sectors, consequently they present higher values of X¥.

The robustness of these results has been checked also testing the statistical
properties of the eigenvalues of original correlation matrix for three known
universal properties displayed by gaussian orthogonal ensemble (GOE) matri-
ces: the distribution of nearest-neighbor eigenvalue spacings, the distribution
of next-nearest neighbor eigenvalue spacings and the long-range eigenvalue
correlations.

Onnela et al|(2004)) remark that random matrix theory offers an interesting
comparative perspective with respect to hierarchical clustering techniques.
Tola et al.| (2008) compare filtering procedures of correlation matrix based
on RMT and hierarchical clustering methods.

Some authors use RMT to filter correlation matrix and construct MST on
this filtered matrix because, in order to extract the structure hidden in large
correlation matrices, trees are easier to interpret with respect to the inspec-
tion of large matrices. By using this procedure, Miceli & Susinno| (2004)
obtain a clusterization per strategies of the Hedge Funds returns, according
to the definition of strategies provided by [Lhabitant & Learned| (2002). Also
Conlon et al.| (2007) confirmed this result.

1.3 Correlation analysis and portfolio opti-
mization

The hierarchical organization behind the financial market represented as a
complex network contributes to solve portfolio optimization problem.
Onnela et al.|(2003b) show that the assets of classic Markowitz portfolio are
always located on the outer leaves of the minimal spanning tree, although
the topological structure of the tree changes with time. Once again correla-
tion matrix plays a fundamental role in the financial sector, in fact empirical
researches have explored potential diversification benefits across asset classes
by studying their centrality in the network.

Chi et al.| (2010) confirm the importance of correlation analysis in portfolio

41f data considered are stock returns.
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optimization for both international and domestic market investments.
Vyrost et al|(2018)) suggest network-based asset allocation strategies aimed
to improve risk-return profiles relative to portfolios. This work is based on
the study of [Peralta & Zareei| (2016) who exploit the negative correlation
between the centrality of assets within a complex financial network and op-
timal weights under the Markowitz model.

Pozzi et al.|(2013) show how an efficient portfolio strategy benefits from the
knowledge of the hierarchical structure of the market: portfolios including
central assets are characterized by greater risk and worse performance with
respect to peripheral portfolios.

It is quite clear the importance of centrality and peripherality measures in or-
der to distinguish central and non-central vertices in the network, explained
in detail in the Section 1.3.2.

In the Section 1.3.1, we introduce all the asset allocation based on network
strategies employed as alternative or improvement of Markowitz framework.

1.3.1 Alternative asset allocation strategies

A large amount of works has contributed to the study of portfolios by us-
ing alternative or improving methods with respect to the original one of
Markowitz| (1952).

These methods include neural networks, genetic algorithms, random matrix
theory filtering and hierarchical clustering. Among them, the latter is one of
the most efficient methods for the selection of stocks for optimal portfolios
(Ren et al., |2017).

The use of “improved covariance” matrix estimators as an alternative to the
sample estimator is considered an important approach for enhancing portfo-
lio optimization (Pantaleo et al., 2011).

In particular, we consider works relative to portfolio strategies based on RMT
filtering procedure and ultrametric matrices associated to the hierarchical
clustering algorithms applied to the empirical correlation matrices.

Lopez de Prado| (2016) explains the Hierarchical Risk Parity (HRP) approach
for the portfolios construction starting from the hierarchical tree inside the
correlation matrix of investments. The HRP method not only exploits the in-
formation contained in the covariance matrix without requiring its inversion
or positive definitiveness, fundamental condition for the Markowitz’ solution,
also it reaches a better diversification then minimum-variance portfolios for
a very similar level of risk.

Plerou et al|(2002) use the filtering correlation matrix resulting from random
matrix approach in the minimum variance model proposed by Markowitz.
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They show that for these portfolios the realized risk is more closer to the
predicted one.

Years after, (Conlon et al.|(2007) demonstrate that RMT is found to greatly
reduce the difference between the predicted and realized risk of a portfolio,
leading to an improved risk profile for a fund of hedge funds.

Tola et al.[(2008]) construct portfolio by solving Markowitz solution but clean-
ing correlation matrix of stock returns through random matrix approach, sin-
gle linkage and average linkage. They show that clustering algorithms and
RMT filtering procedure improve the reliability of the Markowitz portfolio
in terms of the ratio between predicted and realized risk.

Also [Tumminello et al| (2010) prove that using the empirical correlation
matrix leads to a dramatic underestimation of the real risk. In fact, they
demonstrate that the risk of the optimized portfolio obtained using a “fil-
tered” correlation matrix is more stable, although the real risk is always
larger than the predicted one.

Furthermore, Gera et al|(2016) show that using filtered covariance matrices
(RMT and MST) the original Markowitz solution is outperformed in terms
of standard portfolio performance measures.

Previous works consider Pearson correlation coefficient, other researches fo-
cus their attention on different correlations.

For example, Baitinger & Papenbrock| (2017) apply an active portfolio man-
agement framework ( see |Grinold & Kahn| (1999))) that consider intercon-
nectedness between assets based on mutual information measure, |[Durante
et al| (2014) and Durante et al| (2015) propose to group time series of re-
turns according to assets behaviour in tail (loss events) and then construct
portfolios in order to manage risk during crisis scenario.

Hardle et al.| (2018)) pick satellite (or pheripheral) assets according to their
Adaptive Lasso Quantile Regression (ALQR) coefficients, that provide the
information concerning the dependence between core portfolio and satellites
at different tail events.

Satellite-assets with negative ALQR coefficient are included in a new portfo-
lio with core assets and the rebalancing of weights occurs appealing different
techniques (basic, naive and hybrid).

1.3.2 Centrality and optimal weights

This section aim to describe the main centrality /peripherality measures and
the negative relationship between the centrality of a node, in various ways
considered, and its optimal weight in a portfolio based on clustering strategy.
For a graph G(V,E), where V is the set of vertices (nodes) and E, the set of
edges between nodes, the most common measures of centrality and periph-
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erality are:

e Degree of a node is the number of edges connected to that node. The

formula is:
> deg(v) = 2|E| (1.6)

veV

e Betweenness centrality is the ratio between the number of times
which a vertex lies in the shortest path of pairs of nodes and the number
of shortest paths of these two nodes. The betweenness of a node 7 with
respect to nodes 4,1, with 4, 7,1 € V, can be computed as follow:

Dyl (1.7)
A

e Closeness centrality of a node 7 is the reciprocal of the sum of the
length of the shortest paths between the node and all other nodes ;7 in
the graph. It represents the reciprocal of the farness and for a node ¢

it is computed as:
, 1
Cli)y=>Y_ — (1.8)
i

e Eigenvector Centrality is a qualitative index of centrality and it
measures the influence of a node in the network. This measure assumes
that the centrality of a node 4 is proportional to the centrality of its
neighbor nodes: being connected few times to highly central nodes may
be more relevant than having a lot of links with less central nodes.
Let D the adjacency matrix of a graph G(V,E), the centrality of all
vertices is obtained by finding the greatest eigenvalue \ € R such that
for a vector x € RM:

Dx = Mx (1.9)

In a recent work Vyrost et al.| (2018]) assert that a vertex that is very strongly
connected to others may be viewed as risky because any negative market
movement is able to influence not just the asset, but also its neighbors.

In fact, they add constraints based on the negative correlation between weight
of an asset and its centrality coming from different network graphs (MST,
PMFG and threshold graph) to the classical benchmark portfolio based on
return maximization and risk minimization strategies.

They use the long-run correlation coefficient, which is based on the estimator
of the heteroskedasticity and autocorrelation consistent variance-covariance
matrix introduced by |Andrews (1991)).
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The performance of the benchmark portfolio is always lower than those of a
portfolio that takes into account the centrality of a node in the network.
Peralta & Zareei (2016) have already shown that optimal portfolio’s weights
of assets are negatively correlated to them centrality and positively corre-
lated to the individual perfomance of an asset, under two different portfolios
strategies that minimize the variance of portfolio m-var and M-var, the latter
differ because it considers a given level of expected returns.

The individual performance of assets is measured by standard deviation in
the first strategy and Sharpe Ratio in the second one, instead, the systemic
performance is represented by the nodes’ eigenvector centrality.

The dependence between performance (individual and systemic) of an as-
set ¢ and its optimal weight in the portfolio considering m-var and M-var
strategies can be explained by these two OLS equations:

W; povar = Bo + BrCentrality; + B2Std; +
w; = By + B1Centrality; + PoSharpeRatio; + €;

i, M-var
The most result obtained by [Peralta & Zareei (2016]) show that higher values
of centrality implies lower values of weights in an optimal portfolio under
both strategies, in a static and dynamic (among different rolling time win-
dows) temporal dimension.
Pozzi et al. (2013)) first draw filtered graphs (MST and PMFG) from the stock
complex network in order to evaluate the centrality of assets, then they com-
pare portfolios made with central, peripheral and randomly selected stocks:
peripheral portfolios perform always better than the others.
Different works show the importance of constructing portfolios taking into
account the role of a node in the network regardless the type of assets con-
sidered.
Results also outlined by [Baitinger & Papenbrock! (2016), where interconnect-
edness risk of assets can be quantified by their respective centrality scores
according to the centrality measures listed above.

1.4 Conclusion

In this first chapter, we have presented hierarchical clustering and spectral
methods in order to highlight stronger correlations between time series re-
turns of financial assets. These methods allow to filter information in complex
datasets by building sparse networks or trees but retaining relevant edges.

These tools not only provide useful information about the hierarchical orga-
nization behind asset markets but if employed in the portfolio construction



CHAPTER 1. LITERATURE REVIEW 23

they allow to reach investments more performing in term of realized risk.
The relationship between centrality of a node/asset and its optimal weight
in the portfolio become a crucial aspect in the perspective of optimal invest-
ments.

This part is the preliminary one of a research that aims to filter correlation
matrix of Exchange Traded Funds (ETFs), type of data never used in this
research field.

In fact, in the second Chapter, we will show that applying random matrix ap-
proach to the correlation matrix of ETF returns and then drawing a minimal
spanning tree as in the work of [Miceli & Susinno| (2004), clusters obtained
represent specific class of ETFs according to the classification per classes
provided by the Italian Stock Exchange.

The information coming from clusterization of correlation matrix is used to
construct investment portfolios. This latter part, that is based on the works
of [Vyrost et al|(2018) and Bai et al|(2009), adds network constraints and
random matrix theory to the Markowitz optimization model. Starting from
the idea that filtering techniques are tailored to manage risk of portfolio,
farther we exploit the information provided by robot-advisors online ques-
tionnaires.

Instead, in the third Chapter, the application of RMT and MST to correla-
tion matrix of crypto and real assets allow to detect transmission channels of
price information. Specifically, how price information is transferred among
different bitcoin market exchanges, and between bitcoin markets and tradi-
tional ones.






Chapter

Network models to improve
robot-advisory portfolio
management

2.1 Introduction and literature review

FinTechs potential springs from its possibility to unbundle banking activity
into its main functions of settling payments, performing maturity transfor-
mation and asset allocation (Carney, 2017).

In the last few years, FinTech innovations have increased exponentially by
delivering new payments and lending methods, and by penetrating the in-
surance sector and asset management activity.

Against this background, robot-advisory services for automated investments
are growing fast to address the need of directly managing savings. They are
accessible via online platforms and therefore, they allow to act quickly and
in the first person. According to Statista, in 2019, the masses managed by
automatic consultancy are estimated around 980 billion dollars and forecasts
state they will reach over 2,552 billion in 20237

The rapid growth of FinTech activities, and of robot-advisors in particular,
has determined the emergence of new financial risks. In this perspective,
robot-advisors that build personalized portfolios on the basis of automated
algorithms have been suspected of underestimating investors’ risk profile in
their actual assets’ allocations. Indeed, on one side, the user could not under-
stand the mechanisms underlying portfolios construction and, on the other

For more information please see: https://www.statista.com/outlook/337/100/robo-
advisors/worldwide

25



CHAPTER 2. ROBOT-ADVISORS AND PORTFOLIO MODEL 26

side, computational models that are employed to build portfolios are often
simplified, and do not take multivariate dependencies between asset returns
properly into account.

We remark that our work is related to a recent stream of papers in the oper-
ations research literature, dedicated to the extension of Markowitz portfolio
allocation theory, taking network models and, more generally, graph theory
models into account.

The paper closest to our work is (Clemente et al.|(2019), who approach asset
allocation problems within a network framework. They modify the objective
function of the classical minimum variance portfolio taking into account not
only the volatility of individual assets but also their network interconnect-
edness. Both aspects are considered including an N-square interconnected-
ness matrix computed by means of a local clustering coefficient, calculated
on three different correlation networks, and of a diagonal matrix whose ele-
ments represent the contribution of the standard deviation of each asset with
respect to the total standard deviation.

The three alternative correlation networks considered in the paper are based
on both linear and non linear dependence structures, obtained applying Pear-
son, Kendall and tail correlations. Based on their empirical results, the
authors conclude that network-based portfolios lead to portfolios that are
more diversified and that show best performances and higher values of risk-
adjusted measures with respect to the classical Markowitz portfolios.
Similarly to |Clemente et al. (2019), our proposal is based on the insertion
of correlation network models into the Markowitz objective function. Our
additional contribution, from a theoretical viewpoint, is a more interpretable
measure of interconnectedness, based on the motion of network centrality,
and on the community structure present in a correlation network. In addi-
tion, we extend the applicability of the proposal to Exchange Traded Funds,
extensively used in robot-advisory and in many forms of “passive investment
platforms.

Another work related to our research is [Boginski et al.| (2014)), who exploit
the concept of clique relaxations in weighted graphs to find profitable “well-
diversified” portfolios. In this paper, the weight of each asset corresponds to
its return over the considered time period and each pair of assets is connected
if the corresponding correlation exceeds a certain threshold value. This mech-
anism is able to ensure high returns of portfolios that are not guaranteed by
the cliques themselves. The work is based on the paper of Boginski et al.
(2006)) in which models of clique relaxations are proposed, exploiting the pre-
vious work of |Pattillo et al.| (2013). A third paper related to our research is
He & Zhou (2011)), who modify the optimal allocation problem by exploiting
a different utility function, introducing a new measure of loss aversion for
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large payoffs, called the large-loss aversion degree (LLAD). The measure is
applied to portfolio choice under the cumulative prospect theory of [Tversky
& Kahneman| (1992).

Other extensions of the Markowitz portfolio model that involve operation
research and graphical models, as in our proposal, consider multiobjective
evolutionary algorithms (MOEAs), as in Metaxiotis & Liagkouras| (2012)).
For example, |Cesarone et al.| (2013) propose a heuristic solution based on
a reformulation in terms of a Standard Quadratic Program to solve mean-
variance portfolio issues related to the introduction of constraints based on
cardinality (which limits the number of assets to be held in an efficient port-
folio) and allocation shares (which determines the fraction of the capital
invested in each asset).

Further researches within the same stream concern local search, simulated
annealing, tabu search and genetic algorithm, as in [Schaerf| (2002)), |Crama;
& Schyns (2003), Shoaf & Foster| (1996]) and Branke et al.| (2009)). In this
framework, [Ehrgott et al.| (2004) present a method based on the application
of four different heuristic solution techniques to test problems involving up
to 1416 assets. |Woodside-Oriakhi et al. (2011)) consider the application of
genetic algorithm, tabu search and simulated annealing meta heuristic ap-
proaches to find the cardinality constrained efficient frontier that arises in
portfolio optimization.

And, finally, Doerner et al.|(2004) introduce Pareto Ant Colony Optimization
as an effective meta-heuristic solution, proposing a two-stage procedure that
first identifies the solution space of all efficient portfolios and then locates
the best solution within that space.

We contribute to the above literature on graphical network models by propos-
ing a novel network-based asset allocation strategy, which takes into account
the network centrality and the community structure of assets in the objective
function of Markowitz portfolio allocation.

More precisely, we propose to exploit the information embedded into similar-
ity networks. Indeed, understanding the structure of the similarity networks
among assets (see Mantegna & Stanley| (1999)) is instrumental for recogniz-
ing the origin and the distribution of their returns and to build portfolios
more robust against adverse shocks hitting the economy. Similarity pat-
terns between asset returns can be extracted from distance matrices derived
from pairwise correlations among returns’ time series and these patterns can
reveal how asset performances are related to the topology of the network.
To account for such topological information, we rely on centrality measures
introduced in network theory (see Newman| (2018)). More specifically we
adopt a global centrality measure that provides information on the position
of each node relative to all other nodes in the network; namely the eigen-
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vector centrality (see Bonacich (2007))). This measure assigns relative scores
to all nodes in the network, based on the principle that connections to few
high scoring nodes contribute more to the score of the node in question than
equal connections to low scoring nodes.

The aim of the paper is to show how the inclusion of such centrality mea-
sure into portfolio generative models improves their performances in terms
of risk/returns. Moreover, we propose a novel portfolio allocation method-
ology that correctly takes multivariate dependencies and risk contagion into
account and, consequently, improves the matching between the expected and
the actual risk profile of an hypothetical investor. Our purpose is to demon-
strate that topological methods based on correlation matrices, not yet em-
ployed by robot-advisory platforms, can generate new portfolio allocation
strategies able to systematically outperform the benchmark index and other
naive investment strategies in terms of the implied risk/returns.

The literature on stock and financial networks based on correlation matrices
stems from the seminal paper of Mantegna| (1999). The author employs cor-
relation matrices to detect the hierarchical organization of stock markets; a
distance metric based on correlation matrices is used to determine a minimal
spanning tree (MST), which connects stocks on a considered time horizon.
Tumminello et al.| (2005) extend Mantegna| (1999)) with a topological gener-
alization of the MST, the planar maximally filtered graph (PMFG), which
retains the same hierarchical properties of the MST but adds more complex
structures, such as loops and cliques. Tola et al.| (2008) show how, cluster-
ing techniques on correlation matrices combined with filtering approaches
based on the random matrix theory (RMT) improve the reliability of port-
folios in terms of expected and realized risk. Other contributions that follow
Tola et al.| (2008)) are Ledn et al.| (2017)), Raffinot| (2017), Ren et al.| (2017)
and Zhan et al| (2015). To summarize, this literature looks for a hierar-
chical structure in stock returns and, based on such structure, it constructs
Markowitz portfolios.

In this paper, we follow the previous stream of literature by adding two main
original contributions. From an applied viewpoint, we extend the methodol-
ogy from stock returns to Exchange Traded Fund returns (ETFs). The term
ETF identifies a particular type of investment fund with two main features:
it is traded on the stock exchange like a stock and it aims to replicate the
index to which it refers (benchmark) through totally passive management. A
single ETF embeds the characteristics of both a fund and a stock, allowing
investors to exploit the strengths of both instruments: diversification and
risk reduction peculiar to funds; flexibility and information transparency of
real-time trading of stocks. From a methodological viewpoint, we propose a
portfolio optimization approach different from what proposed by [Tola et al.
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(2008)), taking network centrality explicitly into account in the Markowitz
model. In this work, we do not rely only on a typical indicator of diversifi-
cation, such as the pairwise covariance between assets returns, but we apply
a topological measure which embeds also higher order information on assets’
behavior to build suitable portfolios.

The empirical findings obtained from the application of our proposed method
confirm the validity of the approach revealing that such methodology can con-
stitute a new instrument in robot-advisor toolboxes.

The structure of the chapter is as follows: Section 2 presents the random
matrix theory, a technique to purge data from noise components, and the
minimal spanning tree approach able to build, in a parsimonious way, a sim-
ilarity network among assets. Furthermore, Section 2 presents a new portfo-
lio optimization strategy that embeds topological information extracted from
the network through the eigenvector centrality. Section 3 presents the results
of the application of our models to ETFs data managed by a leading euro-
pean robot-advisory platform. Section 4 ends with some concluding remarks.

2.2 Methodology

2.2.1 The random matrix approach

Since the mid-nineties, random matrix theory (RMT) has been used in var-
ious applications, ranging from quantum mechanics(Beenakker, 1997)), con-
densed matter physics (Guhr et al., 1998), wireless communications (Tulino
et al., 2004), economics and finance (Potters et al), |2005). In a nutshell,
RMT aims at separating the “systematic” part of a signal embedded into a
correlation matrix from the “noise” component.

The basic idea of RMT is to test the subsequent empirical eigenvalues of a
correlation matrix: Ay < Ap11;k =1,...,n, against the null hypothesis that
they are equal to the eigenvalues of a random Wishart matrix R = %AAT
of the same size, with A being a N x T matrix containing N time series of
length T" whose elements are independent and identically distributed random
variables, with zero mean and unit variance.

It can be shown (see Marchenko & Pastur| (1967)) that, as N — oo and
T — oo, with a fixed ratio () = % > 1, the density of the sample eigenvalues
converges to:

T A =AM =)
T or A ’

ey (2.1)
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where A € (AL, M), Ae =1+ 4 = 2\/3

It follows that, when Ay > A, the null hypotheses is rejected, from the k-
th eigenvalue on-wards. Then, RMT “reconstructs” the correlation matrix
applying a singular value decomposition based only on the eigenvectors that
correspond to eigenvalues that are greater than A,.

In other words, RMT eigendecomposes a correlation matrix of time series by
returning a filtered correlation matrix (see |[Eom et al.[(2009)). The empirical
correlation matrix can be used to extract the observed eigenvalues and, then,
through Equation to check whether some of them reject the null hy-
pothesis. Finally, the filtered correlation matrix is built retaining only those
eigenvectors which reject the null hypothesis.

Plerou et al. (2002)) show that the characteristic directions of the signal corre-
spond to the eigenvalues that are clearly different from those obtained from
the random Wishart matrix. They define a subspace which contains the
systematic information related to the market structure. This corresponds,
in this framework, to the identification of empirically constructed variables
that drive the EFTs’ system being the number of surviving eigenvalues the
effective characteristic dimension of this economic space ﬂ More formally, let
r;, for i =1,...,n, be a time series of asset returns, computed, for any given
time point ¢, as the difference between the logarithms of daily asset prices:

ri(t) = logP;(t) — logP;(t — 1).

Given a set of N asset return series, a correlation coefficient between any two
pairs can be defined as:
E(rir;) — E(ri) E(r;)

Cii =
J 0,035 ’

where E(o) and o(o) indicate, respectively, the mean and the standard devi-
ation operators. Let C be the matrix that contains all pairwise correlations,
the correlation matrix.

According to the RMT the filtered correlation matrix which is given by:

C' =VAVT, (2.2)
where NS
. 0 i < Ayp
A= { N>,

2With respect to the principal component analysis (PCA), which is a shrinkage method
with the same goal but where the threshold for the eigenvalues must be defined in a
deterministic way, in RMT the number of “deviating” eigenvalues used to reconstruct the
“filtered” correlation matrix depends from the value of the ratio Q.
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and V represents the matrix of the deviating eigenvectors associated to the
eigenvalues greater than ..

2.2.2 The minimal spanning tree

With the filtered correlation matrix C’ obtained from RMT the next step is
to find out the sparse representation of the relationships derived from such
matrix. To accomplish this purpose we apply the minimal spanning tree
(MST) representation of EFT returns similarities (see |Mantegna & Stanley
(1999); Bonanno et al| (2003)); Spelta & Aratjo) (2012)).

In particular, Mantegna/ (1999) has demonstrated that this particular type of
graph, derived from the correlations between stock returns, reveals a topo-
logical arrangement of the assets that has an important meaning from an
economic point of view.

Each pairwise correlation obtained through RTM can be converted in an
Euclidean distance by the function:

di; = /2 - 2¢};. (2.3)

and the pairwise distances can be organised in a distance matrix D = {d;;},
which can be used to draw the MSTE]

The MST is derived using the single linkage clustering algorithm which, based
on the distance matrix, associates each asset node to its closest neighbour,
avoiding loops. The term “minimal” refers to the fact that the MST allows
to reduce the number of links between assets from w to N — 1 and the
sum of those links provide the minimum weight of the graph.

More precisely, to build the MST we initially consider N clusters correspond-
ing to the V ETFs. Then, at each subsequent step, two clusters [; and [; are
merged into a single cluster if:

d(l;,1;) = min{d (l;, ;) }
2¥)

with the distance between clusters being defined as:

~

d (ll, lj) = min {dpq}
p?q

3Moreover [Raffinot| (2017) extends the MST considering some clustering variants, such
as complete linkage (CL), average linkage (AL) and Ward’s Method (WM). He shows
however that different algorithms differ in terms of grouping structures, but not in terms
of performance.
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with p € [; and ¢ € [;. The steps are repeated until a single cluster emerges.
In the following, we use the symbols d and D to denote the distances repre-
senting the MST derived from the fully connected network D.

In order to detect how financial relationships evolve over time we follow
Spelta & Araujo (2012)) by employing the residuality coefficient measure (R)
that compares the relative strengths of the connections above and below a
threshold value, in formula:

—1
> di
di7j>L

R= 2"
2

d;i ;<L

(2.4)

where L is the highest threshold distance value that ensures connectivity of
the MST.

We expect that during crisis phases the structure of the MST reinforces in
the topological sense, thus impacting on the number of redundant elements
that characterize the distinct time periods. Such structural changes, due to
the emergence of high correlated positions (synchronization) in the network,
affect the behavior of the residuality coefficient. Overall, R decreases when a
network becomes less sparse (the number of links increases), and vice-versa.

2.2.3 The eigenvector centrality

Understanding the structure of the similarity network, and in particular de-
termining which nodes act as hubs in the network, is key for assessing how
EFT returns behave in a multidimensional space and thus to construct port-
folios that suitably take into account risk/return trade-off.

The research in network theory has dedicated a huge effort to developing
measures of interconnectedness, aimed to detect the most important player
in a network. The idea of “centrality” was initially proposed in the context
of social systems, where a relationship between the location of a subject in
the social network and its influence on group’s processes was assumed.
Various measures of centrality have been proposed in network theory such
as the count of neighbors of a node has, i.e. the degree centrality, which is a
local centrality measure, or measures based on the spectral properties of the
graph (see Perra & Fortunato (2008))).

Spectral centrality measures include the eigenvector centrality (Bonacich
(2007)), Katzs centrality (Katz (1953)), PageRank (Brin & Page (1998)),
hub and authority centralities (Kleinbergl (1999)). These measures are feed-
back, also known as global, centrality measures and provide information on
the position of each node relative to all other nodes in the network.
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The eigenvector centrality measures the importance of a node by assigning
relative scores to all nodes in the network, based on the principle that con-
nections to few high scoring nodes contribute more to the score of the node
in question than equal connections to low scoring nodes. More formally, for
the i-th node, the centrality score is proportional to the sum of the scores of
all nodes which are connected to it, as in the following equation:

N ~
Z d@j.’lﬁj (25)
7=1

xT; =

> =

where z; is the score of a node j, d;j is the (i;7) element of the distance
matrix of the network, A is a constant and N is the number of nodes of the
network.
The previous equation can be rewritten for all nodes more compactly using
matrix notations:

Dx = Ax (2.6)

where D is the distance matrix, \ is the eigenvalue of D, with associated
eigenvector x, an N-vector of scores (one for each node).

Note that, in general, there will be many different eigenvalues A for which
a solution to the previous equation exists. However, the additional require-
ment that all the elements of the eigenvector must be positive (a natural
request in our context) implies (by the Perron-Frobenius theorem) that only
the eigenvector corresponding to the largest eigenvalue provides the desired
centrality measures. Therefore, once an estimate of D is provided, network
centrality scores can be obtained from the previous equation, as elements of
the eigenvector associated to the largest eigenvalue.

Notice that, in similarity networks based on distances between objects, the
higher the centrality score associated to a node, the more the node is dis-
similar with respect to its peers (or with respect to all other nodes in the
network).

2.2.4 Portfolio model

In this Section, we show how similarity networks and topological measures
can be combined into a portfolio optimization framework and how they can
contribute to improve portfolio performances.

Correlations between stocks play a central role in investment theory and risk
management being key elements for optimization problems as in |Markowitz
(1952)) portfolio theory. Thus, correlation based graphs could be very useful
for analyzing the interactions between financial markets and building optimal
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investment strategy. Onnela et al.| (2003b)) indeed have shown that the assets
picked by Markowitz portfolios (Markowitz (1952))) are always located on the
outer nodes of a MST, i.e. the portfolios are mainly composed by assets that
lay in the periphery of the network and not in its core. Moreover, Pozzi
et al| (2013) have shown how an efficient portfolio strategy benefits from the
knowledge of the hierarchical structure of the market: portfolios including
central assets are characterized by a greater risk and a worse performance
with respect to portfolios including peripheral assets. Vyrost et al. (2018)
have suggested that network-based asset allocation strategies may improve
risk/return trade-offs. Their work is based on the study of |Peralta & Zareei
(2016) which have found a negative relationships between assets’ central-
ity within a complex financial network and the optimal weights under the
Markowitz model.

Other authors have gone beyond the above remarks by proposing novel port-
folio optimization strategies. For example, [Plerou et al.| (2002) and Conlon
et al[(2007) have used the correlation matrix, filtered with the random matrix
approach, in the Markowitz model. They have shown that for the obtained
portfolios the realized risk is closer to the expected one while (Tola et al.
(2008)), combining the MST with the RMT filtering, have provided improve-
ment with respect to Markowitz portfolios. Finally, Tumminello et al. (2010)
have demonstrated that the risk of the optimized portfolio obtained using a
“filtered” correlation matrix is more stable than the one associated with the
“non filtered” matrix.

As the above authors, we intend to exploit topological measures to improve
portfolio performances with respect to the standard Markowitz approach.
However, differently from previous works which employ RMT and MST as
an alternative measure of diversification risk, we extend Markowitz’ approach
using RMT and MST in the optimization function itself, rather than apply-
ing Markowitz to the filtered and simplified correlation matrix. In our case
we minimize the following constrained objective function:

minwTCOV'w + ’sziwi (2.7)
i=1

subject to

Zi: Hi
pp > =i

{ Z?:l w; =1
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where pp indicates the returns of the portfolio, the parameter + represents a
risk aversion coefficient, x; is the eigenvector centrality associated with ETF
i while the 4, j element of the COV" is given by o;0;c; ;.

The basic principle that governs Markowitz’s theory is that, in order to
build an efficient portfolio, it is necessary to identify a combination of as-
sets such as to minimize risk and maximize total return by offsetting the
synchronous trends of the individual securities. In a nutshell, assets that
constitute the portfolio must be uncorrelated or, rather, not perfectly cor-
related. Within the minimization problem we are facing, the component
derived from the MST structure is related to additional risks that eventually,
an investor want to minimize. In other words, by increasing the value of v
we are asking whether this topological measure is a meaningful measure of
risk and whether its inclusion in the minimization problem produces superior
performance with respect to the standard Markowitz portfolio. We remark
that, in our formulation, the risk aversion coefficient v expresses aversion
towards systemic risk and not, as in classical Markowitz’, towards risk in
general. Therefore, since a high centrality is inversely related to the dis-
tance the asset has with respect to all other ETFs in the network, a high
risk propensity (represented by a high value of 7) translates in a portfolio
composed by systemically riskier assets that lay in the central body of the
network thus avoiding peripheral ETFs.

2.3 Empirical findings

The data set we consider is composed by 92 ETFs returns’ time series traded
over the period January 2006 - February 2018 (3173 daily observations) ﬁ
Table [2.1]shows the classification of the 92 ETFs in 11 asset classes, according
to the classification per class of ETFs provided by the Italian Stock Exchange.
From Table note that the Emerging Market asset classes are the most
frequent, followed by Corporate ETFs. Table displays summary statistics
for the considered asset classes and, specifically, the mean, variance and
kurtosis of the returns’ distribution, to describe their location and variability.
From Table 2.2 note that the mean value of the returns is around 0 for each
asset class, consistently with the efficient market hypothesis suggested by
Malkiel & Fama/(1970). Differently, the value assumed by standard deviation
depends on the considered asset class: Emerging Equity and Commodity
classes are more volatile with respect to the Corporate classes. Moreover, the
high values of the kurtosis confirm some known stylized facts: the distribution
of most ETFs’ returns tends to be non-Gaussian and heavy tailed.

4The Author thank ModeFinance, a European ECAI for the data
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ETF class Number of ETFs
1 Aggregate Bond 4
2 Commodity 8
3 Corporate-euro 11
4 Corporate-not euro 3
5 Corporate-high yield 2
6 Corporate-world 1
7 Emerging Equity-Asia 30
8 Emerging Equity-America 10
9 Emerging Equity-East Europe 4
10 Emerging Equity-world 17
11  Equity-Europe 1

Table 2.1: ETF's by asset classes. Number of Exchange Traded Funds for
each class.

ETF class Mean St. Dev. Kurtosis

1 Aggregate Bond  0.00014 0.00265 6.66
2 Commodity -0.00007 0.01052 3.64
3 Corporate-euro  0.00014 0.00155 3.35
4 Corporate-not euro  0.00021 0.00454 5.36
) Corporate-high yield  0.00040 0.00602 24.42
6 Corporate-world  0.00017 0.00320 4.32
7 Emerging Equity-Asia  0.00036 0.01541 11.43
8 Emerging Equity-America  0.00024 0.01928 8.99
9 Emerging Equity-East Europe  0.00011 0.02380 18.19
10 Emerging Equity-world  0.00026 0.01235 9.10
11 Equity-Europe  0.00018 0.01213 6.96

Table 2.2: ETF classes summary statistics. Summary statistics for Ex-
change Traded Funds classes compositions: mean, standard deviation and
kurtosis computed for the whole dataset.

To compare the behavior of the returns during financial crises and expansive
market phases, the data set has been divided in two chronologically succes-
sive batches, from 2006 to 2012 (crisis) and from 2013 to 2018 (post-crisis).
Figure provides temporal boxplots for ETFs’ returns, grouped by their
asset class, as reported in Table 2.1 Figure [2.1] shows that the volatility
of the ETFs belonging to the Emerging Equity classes, regardless of the ge-
ographical area considered, as well as that of the Commodity asset class,
is larger during the crisis period. This feature explains why their overall
standard deviation, reported in is the highest.
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Figure 2.1: Summary plots for ETF class returns. Two different periods
are compared: crisis (2006-2012) and post crisis (2012-2013).

2.3.1 Random matrix theory and network topology

To apply RTM filtering, we first need to divide the data into consecutive
overlapping time windows. The width of such windows has been set equal
to T' = 250 (12 trading months), with a window step length of one month
(= 21 trading days) for a total of 140 overlapping windows. For each time
window, we use 11 months (= 229 trading days) of daily observations to
build our model and the remained month to validate it. This means, in
particular, that we calculate 140 correlation matrices between all 92 ETFs’
returns, based on 11 months of data to obtain the “filter” correlation matrix
applying the RTM approach and the consequent portfolio, which is validated
in an out-of-sample fashion using the last month of the window.

Figure shows the ordered eigenvalue distribution, for both the empirical
and the random correlation matrices, for the last time window of the data
set (March 2017- January 2018) as representative of the procedure.

Figure [2.2| shows that most of the data of the eigenvalues’ distribution lies
between A\ and A,, which are respectively equal to 0.16 and 2.71. This
“bulk” may be considered as being generated by random fluctuations while
the six deviating eigenvalues that are greater than A, represent the effective
characteristic dimension of the economic space described by the correlation
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Figure 2.2: Eigenvalue distribution In the figure, the red line shows the
kernel density of the eigenvalues associated to the empirical correlation ma-
trix C, in the main graph, and of the random correlation matrix R, in the
smaller graph. The dashed vertical line indicates the threshold value A,
which separates the “signal” eigenvalues from the “noise” ones.

matrix. Similar considerations occur for the other considered time windows.
According to Equation that measures the role of each class of ETFs in
the composition of the eigenvectors, Figure shows the value X* for each
eigenvector associated to the six deviating eigenvalues of the last time window
(March 2017- January 2018).

In Figure [2.3, peaks indicating the prominent role of one or few classes in
determining the dynamics of these eigenvectors.

As described in the methodological Section, if, for each time window, we re-
construct the correlation matrix using only the eigenvectors that correspond
to the larger eigenvalues, we obtain a sequence of filtered correlation matrices
which can be used to improve the minimal spanning tree representation of
the ETFs’ similarity network. Figure[2.4{reports for both the filtered and the
unfiltered correlation matrices and for each time window, the most central
node, defined by the ETF with the highest degree (with the largest number
of connected nodes), in the MST representation.

From Figure note that the RMT approach allows to achieve a more di-
versified minimal spanning tree over time: central vertices according to the
highest degree criterion are different and belong to different ETF classes. On
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Figure 2.3: Eigenvector composition. In the Figure, x-axis represents
the classes of ETFs according to the classification per class provided by the
Italian Stock Exchange, instead the y-axis shows the value X* computed for
the six deviating eigenvector.

the other hand, the MSTs based on the empirical correlation matrices seem
to almost always repeat the same structure: the ETF labeled EIMI-IM, be-
longing to the Asia Emerging Market class, is for most of the time the central
node.

We finally evaluate how the MSTs dynamically change over time. To this
aim, we employ, as a summary measure of each MST, the Max link, i.e. the
maximum distance value between two pairs of nodes used in the construction
of the tree, and the residuality coefficient, which measures the ratio between
links eliminated and maintained by the MST building procedure. Figure
shows the evolution of these two quantities over the considered period.
From Figure note that, during the 2008 financial crisis, the Max link
sharply decreases, due to the decrease of most distances between ETF re-
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Figure 2.4: Central nodes of MSTs, along time windows. The figure
reports the ETF node that has the highest degree in the MST representation,
in each of the 140 time windows, considering the filtered correlation matrix
(top) and the empirical correlation matrix (bottom). Node colors represent
the belonging class of ETFs: Corporate (yellow), Emerging Market Asia
(black), America (grey), World (beige).

turns. This can be explained by the increased correlations between all re-
turns, which synchronize during the crisis, consistently with the literature
findings. While the Max link bounces back after the crisis, the residuality
coefficient continues its decline until 2014. This may indicate the persistence
of a set of strong connections in the market, that determine the relevance of
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Figure 2.5: MST thresholds and residuality coefficients. The blue
line shows the Maximum link distance (Max), while the red line shows the
residuality coefficient, whose values are reported respectively on the left and
right-y axis.

a limited number of links.

To better understand the previous findings, Figure[2.6 shows the MST topol-
ogy during 2008, as representative of crisis times, and its topology during the
last time window, taken as a reference period for a “business as usual” market
phase.

Figure [2.6) reflects how correlations increase during the crisis phase, leading
to the growth of the number of links in the network. In addition, in the
crisis period, the MST reveals the importance of the Asian, American and
World Emerging Market classes, which have the highest centralities. The
importance of the American Emerging Market node declines post crisis, but
the Asian class centrality remains high. This may explain the persistence of
low values in the residuality coefficient, after the crisis phase.

2.3.2 Portfolio construction

We now present the application of our proposed portfolio strategy, in which
the eigenvector centrality computed on the MST derived from RMT is in-
serted as an additional diversification measure of risk in the objective function
of the Markowitz optimization problem.

The optimal weights are obtained by minimizing the constrained objective
function (see Equation , where the value of 7 is set a priori accordingly
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Figure 2.6: Minimal spanning tree drawn from the RMT filtered
correlation matrix for crisis and post-crisis periods. The nodes in the
figure indicate ETFs, the size of the node represents their degree centrality.
Colors indicate different asset classes, as reported in the legend.

to the level of the risk aversion of a hypothetical investor. A high value of
~ indicates that, in the desired allocation of financial assets, more central
ETFs (such as the Emerging Markets ones) have higher weights.

Portfolio returns, and the associated Profit & Loss, are computed using the
last month of each time window, in an out-of-sample manner. More pre-
cisely, we use eleven months of observations as a build-up period, computing
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asset centralities and the consequent portfolio weights. We then calculate
the return of each portfolio over the next month, weighting each ETF with
the obtained weights. Finally, we cumulate each monthly portfolio return,
from December 2006 to February 2018 taking re-balancing costs of 10 bps
into account .

Figure represents the cumulative returns obtained by performing invest-
ment strategies based on different values of v, using the model reported in
Equation [2.7. The figure also reports for comparison, the portfolio Profit
& Loss of a “naive” (equally weighted) strategy as well as a benchmark
portofolio performance, the MSCI Index. Moreover, we also compute the
performances obtained by employing the non filtered covariance matrix and
the one filtered with the Glassd’|method of [Friedman et al (2008). We report
in Table the annual Profit & Loss of each competing strategy.

5The sparsity parameter p has been set to 0.01 as in the reference paper.
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Figure 2.7: Cumulative returns for different portfolio strategies.The
plot reports the cumulative Profits & Losses obtained by using our model
based on different values of v, the “naive” strategy portfolio (orange line),
the MSCI benchmark index (blue line), the Glasso covariance matrix (Glasso)
and the standard covariance matrix (not filtered) indicated with Cov.

Figure highlights that our proposed model performs better than the
benchmark index, the “naive” portfolio strategy, the standard Markowitz
portfolio and the portfolio obtained with the sparse Glasso covariance ma-
trix. All of our strategies win in terms of end of sample cumulative returns,
regardless the coefficient of the individual risk propensity. Notice that the
portfolio based on the non filtered covariance matrix produces the worst per-
formance thus the RMT filter appears to be a fundamental condition for
having adequate asset diversification in investment portfolios.

Looking in more detail, during the crisis period (2007 — 2009) our strategy
produces higher returns with respect to the competitor portfolios, since it
suffers less from financial draw-down. However, it is not able to intercept
the growing rebound at the end of 2009. More generally, during non-crisis
times our strategy, despite producing positive returns, can not reach the per-
formance of the other portfolios. This fact is clearly shown in Table [2.3] the
annual loss suffered during 2008 is significantly lower for our strategy with
respect to the competitor portfolios.

To provide further insights on portfolio compositions, we report in Figure 2.8
the dynamic of the portfolio weights for ETF classes, considering v = 0.7

SResults for the other v coefficients are qualitatively the same.
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year Bench. glasso naive cov y=0 y=.0056 y=.025 y=.05 y=.15 y=.7 y=1 =2 7=4

2006 2.82 6.07 6.08 -0.18  6.46 10.53 8.74 8.67 8.54 757 762 567 713
2007 714 2611 26.17 3.81 16.21 18.24 19.99 19.95 20.39  20.05 19.86 19.41 17.44
2008  -52.97 -53.84 -54.26 -22.87 -1.27 2.06 2.68 3.51 4.29 564 590 641 6.13
2009 48.71  51.67 5297 9.50  8.04 7.24 6.27 5.56 5.87 492 451 564 942
2010 13.31 1256 12.54 23.01  4.65 2.38 4.43 6.87 10.52 945 897 7.82 5.46
2011 -6.55 -10.21 -10.20 -14.13 -0.50 -2.42 -3.09 -3.95 -5.81  -6.39  -6.93 -7.69 -8.43
2012 15.04 1157 11.54 11.29 488 5.41 5.38 5.50 6.02 6.59 677 714 7.05
2013 21.37  -1.53  -1.54 7.60 1.72 0.72 0.86 111 1.53 154 173 209 275
2014 2.80 0.99 0.98 259 222 3.99 3.99 3.94 3.91 414 422 466 449
2015 -1.75 -10.49 -10.50 -4.89  0.21 -1.19 -1.23 -0.87 -1.03  -1.22 -183 -311 -3.77
2016 5.09 8.61 8.60 -3.36 291 1.66 1.45 1.76 1.49 1.60 147 134 149
2017 14.25 1491 1488 255  7.72 3.05 4.53 5.04 5.05 543 562 590 5.75
2018 0.86 1.26 127 -087 0.86 -0.53 -0.96 -1.29 -1.55  -1.65 -1.72 -193 -2.25

Table 2.3: Annual cumulative Profits & Losses . The table shows the
cumulative Profits & Losses of portfolios under different strategies. All the
values are expressed in %.

portfolio temporal composition y=0.7
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Figure 2.8: Portfolio weights along time. The figure reports the portfolio
weights associated with a risk aversion coefficient equal to v = 0.7

From Figure it is clear that during crisis times the weight of the ETF's
belonging to Emerging Equity classes is the highest. Differently, during non-
crisis times, Emerging ETFs are substituted, in particular with Corporate
ones.

To have deeper insights about how portfolio performances change as market
conditions mutate, the following tables report, as performance measures that
take both risk and returns into consideration, the Sharpe Ratio (Sharpe
11994),the « of the Capital Asset Pricing Model (CAPM), the Value at Risk



CHAPTER 2. ROBOT-ADVISORS AND PORTFOLIO MODEL 46

(VaR) and Conditional VaR (CVaR).
Table specifically refers to the yearly Sharpe Ratio, defined as the ratio
between the mean value of the excess returns and its standard deviation.

year glasso naive cov 7=0 7=0.005 v=0.025 =005 =015 =07 =1 =2 =4
2006 0.37  0.37 -0.08 0.54 0.42 0.33 0.33 0.31 028 028 022 0.30
2007 0.14 0.14 0.02 0.16 0.17 0.18 0.18 0.17 0.16 0.16 0.15 0.12
2008  -0.10 -0.10 -0.13 -0.02 0.03 0.03 0.04 0.04 0.06 0.06 0.06 0.06
2009 0.15 0.14 0.11 0.15 0.12 0.07 0.05 0.04 0.03 0.03 003 0.05
2010 0.07  0.07 0.09 0.08 0.03 0.05 0.08 0.11 0.09 0.08 0.07 0.05
2011 -0.05 -0.05 -0.06 -0.00 -0.04 -0.05 -0.06 -0.08 -0.08 -0.08 -0.09 -0.09
2012 0.09 0.09 0.04 030 0.29 0.25 0.19 0.20 020 020 020 0.19
2013 -0.01 -0.01 0.04 0.09 0.03 0.03 0.04 0.05 0.04 0.05 0.06 0.06
2014 0.01 0.01 0.05 0.17 0.25 0.24 0.22 0.20 0.14 014 013 0.12
2015  -0.07  -0.07 -0.05  0.02 -0.05 -0.05 -0.03 -0.04 -0.03  -0.04 -0.06 -0.07
2016 0.05  0.05 -0.04 0.12 0.06 0.04 0.04 0.04 0.04 0.03 0.03 0.03
2017 0.21 021 0.08 0.30 0.05 0.07 0.08 0.08 0.08 0.08 0.07 0.07
2018 0.08 0.08 -0.11 0.10 -0.05 -0.08 -0.10 -0.11 -0.12  -0.12 -0.13 -0.15

Table 2.4: Annual Sharpe Ratio. The table shows the Sharpe Ratio of
portfolios under different strategies. All measures are computed relatively to
the benchmark strategy.

Table highlights how, during market crises (as in 2008), the Sharpe Ratio
of our portfolio strategy is higher with respect to the “naive” one and to the
Sharpe Ratio obtained with the Glasso shrinkage method, due to the higher
returns produced in this specific phase. The subsequent rebound of 2009 is
not captured by our strategy and the low Sharpe Ratio reflects this feature.
However, the worst values of the Sharpe Ratio are associated to the portfolio
derived for the non-filtered covariance matrix.

The value of the CAPM « measures the ability to choose potentially prof-
itable assets, reflecting the expertise of asset managers in exploiting market
signals and investing accordingly, thus generating positive extra-performances.
Table describes the a coefficient, which reflects portfolio extra/under per-
formances with respect to the benchmark. Table[2.5/shows that our portfolios
outperform the benchmark strategy reporting values greater then 0. More-
over they are also generally better than the “naive” and “Glasso” portfolios.
Only during the growing rebound phase of 2009 do our strategies under per-
form the “naive” portfolio.

Differently from portfolio performance measures based on returns, those fo-
cused on risk compare only our strategies with respect to benchmark and
“naive” portfolio. Table specifically refers to Value at Risk. Table
highlights that our portfolio strategies, although becoming more risky during
the crisis period (proportionally to risk aversion), present a lower risk than
the benchmark portfolio and the “naive” one.

Table reports the values of the CVaR of the different portfolio strategies.
This measure introduced by |[Rockafellar et al.[(2000)) quantifies the potential
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year glasso naive cov 7v=0 =0.005 v=0.025 =005 yv=015 =07 =1 =2 =4
2006 0.13  0.13 0.00 0.19 0.29 0.23 0.22 0.22 0.19 0.19 013 0.16
2007 0.08  0.08 0.00 0.06 0.06 0.07 0.07 0.07 0.07  0.07 0.07 0.06
2008  -0.11 -0.11 -0.08 -0.00 0.01 0.01 0.02 0.02 0.02 0.03 003 0.03
2009 0.14 0.14 0.03 0.03 0.03 0.02 0.01 0.01 0.01  0.00 0.01 0.02
2010 0.03  0.03 0.08 0.01 0.00 0.01 0.02 0.04 0.03 0.03 0.02 0.01
2011 -0.03 -0.03 -0.05  0.00 -0.01 -0.01 -0.01 -0.02 -0.02 -0.02 -0.03 -0.03
2012 0.02  0.02 -0.00 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03
2013 -0.04 -0.04 -0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2014 0.00 0.00 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 002 0.02
2015 -0.04 -0.04 -0.02  0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.01 -0.01 -0.01
2016 0.02  0.02 -0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01
2017 0.03  0.03 0.01 0.02 0.00 0.00 0.00 0.00 0.01 0.01 001 0.01
2018 0.02  0.02 -0.03 0.02 -0.02 -0.03 -0.04 -0.05 -0.05 -0.05 -0.06 -0.06

Table 2.5: Annual portfolio a. The table shows « of the CAPM model of
portfolios under different strategies. All measures are computed in relation
to the benchmark strategy and all the reported values are multiplied by a
scale factor of 100.

year Bench. glasso naive cov 7=0 7=.005 7=.025 v=.05 y=.15 y=.7 7=1 v=2 =4
2006 0.35 0.68  0.68 0.11 0.35 0.58 0.61 0.64 0.76 112 131 127 1.15
2007 1.46 1.24 125 136 0.75 0.76 0.78 0.79 0.79 085 0.85 089 093
2008 3.73 3.04 312 1.10 0.51 0.54 0.57 0.59 0.58 0.58 0.56 055  0.56
2009 2.35 1.38 1.42 041  0.30 0.47 0.76 0.96 1.29 1.50 159 1.62 1.64
2010 1.70 1.37 1.38 1.46  0.53 0.65 0.70 0.73 0.76 082 098 1.00 1.02
2011 2.29 1.63 1.64 135 0.42 0.52 0.56 0.57 0.67 070  0.68 064 0.74
2012 1.35 094 095 155 0.11 0.12 0.12 0.13 0.14 0.15 0.15 015 0.18
2013 0.88 079 079 134 0.14 0.24 0.26 0.25 0.26 027 028 028 0.31
2014 1.07 0.78  0.79 0.38  0.09 0.09 0.10 0.14 0.16 024 027 030 0.32
2015 1.27 1.09 1.09 0.80 0.10 0.23 0.23 0.26 0.31 042 041 046  0.52
2016 1.23 1.12 1.13 0.38 0.22 0.26 0.22 0.29 0.29 0.27 0.27 0.29 0.29
2017 0.48 0.47 047 022  0.20 0.46 0.47 0.50 0.50 0.50  0.50 053  0.56
2018 2.04 1.11 1.11 037  0.69 0.87 1.05 1.14 1.27 1.27 127 127 1.27

Table 2.6: VaR. The table shows annual Value at Risk of portfolios under
different strategies for a confidence interval of 95 %. All the values are
expressed in absolute terms multiplied by a scale factor of 100.

extreme losses in the tail of a distribution of possible returns. Results are in
line with those presented in Table 2.6} our strategies over perform in terms
of expected losses the “naive” and benchmark portfolios, except for the last
year considered in the analysis.



CHAPTER 2. ROBOT-ADVISORS AND PORTFOLIO MODEL 48
year Bench. glasso naive cov =0 7=.005 7=.025 =05 y=.15 y=.7 7v=1 v=2 =4
2006 0.74 095 095 0.12 0.39 1.48 1.65 1.68 1.75 1.89 190 1.80 1.40
2007 1.79 214 2.08 242 1.02 1.07 1.07 1.10 1.20 1.29 128 1.28 144
2008 5.56 436 443 1.79 092 1.01 1.08 1.15 1.17 1.16 116 1.15  1.17
2009 3.33 2.16 2.23 0.58 0.54 0.62 1.14 1.57 2.03 2.09 2.19 2.38 2.30
2010 2.48 1.83 1.84 2.00 0.73 0.95 1.10 1.17 1.21 144 150 1.52  1.55
2011 3.35 215 216 232 0.68 0.79 0.86 0.90 1.11 1.16 119 122 124
2012 1.67 1.22 1.23 2.26 0.15 0.18 0.20 0.23 0.24 0.25 0.25 0.27 0.29
2013 1.45 1.25 1.25 192  0.26 0.36 0.38 0.38 0.38 041 041 044 052
2014 1.35 097 096 045 0.17 0.18 0.20 0.22 0.26 036  0.39 045 0.48
2015 2.00 1.52 1.53 1.14  0.14 0.36 0.39 0.40 0.46 059 0.63 075 0.75
2016 1.97 1.67  1.68 091 0.32 0.40 0.55 0.61 0.64 066 0.70 071 0.71
2017 0.73 0.76  0.77 0.33  0.29 0.87 0.95 0.96 0.97 097 1.00 1.05 1.05
2018 2.94 1.47 1.47 0.45 0.89 1.26 1.48 1.68 1.95 1.95 1.95 1.95 1.95

Table 2.7: CVaR.The table shows annual Conditional VaR of portfolios
under different strategies for a confidence interval of 95 %. All the values are

expressed in absolute terms multiplied by a scale factor of 100.

year Bench. glasso naive cov 7=0 7=.005 7y=.025 y=.05 y=.15 y=.7 7=1 v=2 y=4
2006 0.85 1.03 1.04 0.12  0.39 1.76 1.93 1.95 2.00 2.09 207 189 144
2007 2.00 2.39 2.39 3.16 1.18 1.13 1.17 1.24 1.42 1.48 1.40 1.39 1.69
2008 6.85 5.24 5.34  2.00 1.24 1.23 1.60 1.65 1.75 1.77 1.77 1.84 1.66
2009 4.07 2.87 295 0.66 0.68 0.68 1.49 1.96 2.28 221 226 280 258
2010 2.89 2.03 204 229 0091 1.08 1.34 1.50 1.52 1.82 194 196 195
2011 4.34 2.02 2.02 2.89 0.82 1.00 1.02 1.18 1.45 1.49 1.54 1.56 1.58
2012 1.88 1.49 1.50 2.69 0.16 0.22 0.23 0.30 0.29 030 030 032 0.31
2013 1.48 1.32 1.32 222 031 0.41 0.44 0.44 0.42 052 0.53 060 0.75
2014 1.54 1.10 1.11 0.50 0.23 0.17 0.19 0.22 0.29 0.36 0.42 0.52 0.54
2015 2.42 1.66 1.68 1.37 0.14 0.46 0.44 0.47 0.51 069 0.69 087 0.84
2016 2.12 2.01 2.02 1.08 0.41 0.47 0.52 0.59 0.69 073 075 088 0.86
2017 0.82 0.85 0.85 040 0.35 0.80 0.83 0.84 0.84 0.8 0.87 087 0.86
2018 3.01 1.50 1.50 047  0.89 1.35 1.57 1.76 2.01 201 201 201 201

Table 2.8: VaR
different strategies for a confidence interval of 99 %.

expressed in absolute terms multiplied by a scale factor of 100.

. The table shows annual Value at Risk of portfolios under
All the values are

year Bench. glasso naive cov 7y=0 7=.005 7=.025 y=.05 y=.15 y=.7 7v=1 =2 5=

2006 1.05 1.19 1.19 0.13 0.40 2.26 2.43 2.44 2.45 2.46 2.37 2.06 1.51
2007 2.32 291 292 3.72  1.30 1.46 1.47 1.54 1.82 2.09 208 206 202
2008 7.26 573 583 284 1.56 1.83 2.03 2.16 2.25 218 215 202 193
2009 4.56 3.21 3.33 0.87 0.84 0.87 1.68 2.60 3.27 328 329 353 3.5
2010 3.04 234 234 343 112 1.42 1.68 1.83 1.84 1.98 212 212 225
2011 4.71 332 333 320 1.09 1.32 1.50 1.53 1.97 2.00 202 206 1.86
2012 2.04 1.64 1.65 3.12 0.22 0.25 0.32 0.46 0.48 0.47 0.47 0.48 0.47
2013 2.27 2.08 2.08 285 0.46 0.60 0.67 0.66 0.64 0.66 0.66 0.69 0.87
2014 1.75 1.21 1.21 055  0.33 0.33 0.42 0.43 0.48 058 0.66 079 0.79
2015 3.10 239 240 176  0.23 0.58 0.72 0.73 0.76 090 090 097 098
2016 3.16 2.32 2.34 191 0.53 0.71 1.20 1.37 1.45 1.49 1.50 1.52 1.50
2017 1.09 1.29 1.30 043  0.43 1.74 1.97 1.98 2.03 215 223 232 231
2018 3.18 1.58 1.58 0.52  0.92 1.57 1.80 1.95 2.17 217 217 217 217

Table 2.9: CVaR.The table shows annual Conditional VaR of portfolios
under different strategies for a confidence interval of 99 %. All the values are

expressed in absolute terms multiplied by a scale factor of 100.
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Tables 2.8 and 2.9 show annual values of VaR and CVaR for a given confi-
dence interval of 99%, results are slightly different with respect to Tables
and However, RMT approach applied to the covariance matrix allow the
construction of portfolios that are not only more remunerative but also less
risky:.

2.4 Conclusion

In this paper we have shown how similarity networks can be used to improve
robot-advisory services, generating portfolios with better risk/return perfor-
mances.

In particular, we have demonstrated how random matrix theory together
with a topological approach based on the minimal spanning tree can be used
to construct investment portfolios that take risk aversion and return corre-
lations into account.

We have applied our proposal to the observed returns of a set of Exchange
Traded Funds (ETFs), typically highly correlated, which are representative of
the assets traded by robot-advisors. Our empirical findings show that, when
the random matrix theory approach is used to filter the correlation matrix,
we obtain a network representation of ETFs which is clear, and leads to use-
ful insights.

In addition, when the network centrality parameters are included in the
Markowitz optimization function, a further diversification of portfolio risk
can be reached, for a given value of returns. In fact, the model takes into
account not only the individual and general risk of financial assets but it also
incorporates aversion towards systemic risk by managing the coefficient ~.
For this reason, we believe that our proposal could be relevant, especially
for regulators aimed at measuring and preventing the under estimation of
compliance risks coming from the adoption of robot-advisory financial con-
sulting.

Future extensions of this work will be purposed at investigating the rela-
tionship between the risk propensity deriving from the robot-advisor online
questionnaires and the parameter 7, together with the inclusion of other
measures of network centrality in the Markowitz objective function.






Chapter

Crypto price discovery through
correlation networks

3.1 Introduction and literature review

The research literature on crypto currencies is relatively new, but is con-
stantly growing. After the seminal technical paper of [Nakamoto (2008), the
paper by Dwyer| (2015) examines the economics and financial properties of
cryptocurrencies, and the paper by |Corbet et al.|(2019) provides a systematic
review of the literature that has been developed after 2008 on cryptocurren-
cies as financial assets.

Within such literature, a relevant stream of research concerns the study of
the dynamics of cryptocurrency market prices, either from an internal view-
point (between cryptocurrency markets) or in relationship with other “clas-
sic” market prices.

While some papers investigate this issue from a univariate statistical ap-
proach, focusing on bitcoin prices, very few consider a multivariate statistics
viewpoint, which deals with the interconnectedness among crypto prices and
between crypto prices and classic prices.

A noticeable exception is the paper by (Corbet et al| (2018)), who analy-
ses the relationships among alternative cryptocurrencies: Bitcoin, Litecoin
and Ripple, and show that they are strongly interconnected, demonstrating
similar patterns of returns and volatility. A related paper is (Ciaian & Raj-
canioval (2018)) who analyses the relationship between the bitcoin and sixteen
alternative coin prices, and found that they are indeed interdependent, but
independent from exogenous factors.

Corbet et al.| (2018)) also analyse interdependence between crypto prices and
a variety of other financial assets such as gold, bonds and stocks. They

o1
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found that the volatility of cryptoassets is substantially higher than that of
traditional assets, and that cryptocurrencies are rather isolated from other
assets, thus showing a diversification benefit. Dyhrberg (2016) and Bouri
et al.|(2017) reach similar conclusions, thus confirming that cryptocurrencies
are rather isolated from classical assets. Note however that the same authors
conclude that such isolation emerges in the short run, but not in the long
run and, thus, the evidence on the diversification benefit is not conclusive.
Understanding price interconnectedness is important not only to describe
relationships between different asset prices, but also to understand whether
prices in different markets quickly react to each other or, in other words,
whether markets are efficient. The paper by Brandvold et al| (2015) is
the first one that addresses this question, studying the price discovery pro-
cess in bitcoin markets, by means of the econometric methodologies of Has-
brouck| (1995) and |Gonzalo & Granger| (1995). Using data from seven ex-
changes, in the period from April 2013 to February 2014, they find that
Mtgox (bankrupting shortly after the sampled period) and BTC-e are the
price setters. |Pagnottoni et al.| (2018) extends their analysis to the period
January 2014 to March 2017, and found an increased role of Chinese ex-
changes.

A related work is the paper of Urquhart| (2016) who specifically analyzes
whether bitcoin markets are efficient, using price return data from August
2010 through July 2016: they cannot confirm the efficient market hypothe-
sis. However, another study (Nadarajah & Chu|, 2017)) reveals that a power
transformation of bitcoin returns can be concluded as “weakly efficient” and,
thus, the evidence on bitcoin market efficiency is not conclusive.

Our contribution is to develop a novel multivariate statistical model to study
cryptocurrency price dynamics, aimed at acquiring further empirical evidence
on whether bitcoin prices from different exchanges are strongly interrelated,
as in an integrated and efficient market, following the paper by Brandvold
et al| (2015); but also whether such interactions are affected by “exogenous”
prices of classical assets, as in the paper of (Corbet et al| (2019). In other
words, we aim to know if the bitcoin, whose capitalization is now substan-
tial, is still an investment diversifier and whether the bitcoin markets are
efficiently integrated.

Besides shedding more light on the diversification and efficiency property of
bitcoin prices, we extend Corbet et al.| (2018])/Brandvold et al| (2015), and
the related papers, by modelling price interconnectedness with correlation
network models, as in the recent paper of (Giudici & Abu-Hashish (2019).
However, differently from the previous authors, instead of inserting corre-
lation networks into a Vector Autoregressive model, which requires strong
distributional assumptions, we follow a non parametric clustering model,
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based on the minimal spanning tree (MST) approach proposed by [Mantegna
(1999). The MST approach will be extended with a preliminary random
matrix filtering, that improves its interpretability.

The paper is organized as follows: Section 2 contains our proposed model;
Section 3 presents the available data; Section 4 the empirical application of
the proposed model to the data; Section 5 contains some concluding remarks.

3.2 Proposal

In this section we present our methodological contribution: a clustering
method for market prices, based on the minimal spanning tree approach
proposed by Mantegna, empowered by the random matrix theory approach.
Mantegna (1999) proposed the minimal spanning tree (MST) to detect the
hierarchical organization of stock prices in financial markets, using their cor-
relation matrix. Spelta & Araujol (2012) further qualified the MST as a
network structure between a group of nodes, representing different time se-
ries, whose edges minimize the pairwise distances between each pair of nodes.
In other words, an MST can be seen as a parsimonious representation of a
network model, in which sparseness replaces completeness in a suitable way.
More formally, consider N financial assets, for which we observe the corre-

sponding price time series: (FP;, 7 = 1,..., N), each of which is a vector of
prices observed in T different time periods: P, = (P;(t), t =1,..., T). From
the price time series we can obtain N return time series, (r;, ¢ = 1,..., N),
as follows:

ri(t) = logFi(t) — logPi(t — 1).

From the return time series we can calculate the correlation matrix C, whose
elements ¢;; are defined by:

E(riry) = E(ri)E(ry)

a(ri)o(r;)

Cij = )
where F(o) indicates the mean value and (o) the standard deviation of each
return time series. From the correlation matrix C we can then calculate the
distance between any two asset returns, d,;, as follows:

a function which ranges between (0, 2), with d;; = 0 when p;; = 1 and d;; = 2
when p;; = —1. It assumes that, for any pair of asset return time series, the
higher the correlation, the lower the distance.

Let then D = (d;j,i = 1,...,N;j = 1,...,N) be a matrix which contains
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all pairwise distances. We can associate to the distance matrix a network
G = (V,W), with vertices V' that correspond to the N asset return time
series and with connection weights W between them which correspond to
the w pairwise distances d;;.

The minimal spanning tree (MST) proposed by Mantegna; (1999) is based
on the distance matrix D. It reduces the number of weights that can con-
nect the N nodes, from w to N — 1. It does so through a hierarchical
clustering algorithm which associates to each node only another one, that
is minimally distant from it, under the constraint of avoiding loops between
groups of nodes.

We remark that the network structure simplification induced by a minimal
spanning tree may be too drastic, especially if based on random noise rather
than on actual distances between nodes. To overcome this problem, in this
paper we suggest of preprocessing the correlation matrix and, therefore, the
distance matrix, before applying the minimal spanning tree method.

The necessity to improve the MST representation was pointed out by [Tum-
minello et al| (2005), who introduced the planar maximally filtered graph
(PMFG), which preserves the hierarchical structure of the MST, but with a
more complex structure. Indeed, given a set of N time series, a MST con-
tains N — 1 links whereas a PMFG contains 3(N — 2) links.

Here we aim to improve the MST without enriching its structure but, rather,
working on its input: the distance matrix. To achieve this goal, we employ
the random matrix theory approach (RMT), proposed by Onnela et al.| (2004)
and [Tola et al.| (2008), preprocessing the correlation matrix by removing the
noise contained in it.

The rationale behind the random matrix theory approach is to employ each
empirical eigenvalue (\g,k = 1,..., N) obtained from the correlation matrix
C, as a test statistic for the null hypothesis that the correlation matrix is a
random Wishart matrix C' = %AAT, where A is a N x T matrix containing
N time series of length T, whose elements are independent and identically
distributed “white noise” random variables, with zero mean and unit vari-
ance.

To actually implement the test, we need a statistical distribution. Marchenko
& Pastur| (1967) showed that, under the null hypotheses, A\ = ... = Ay = A,
and that the asymptotic density of A, for a fixed ) = % >1,as N = oo and
T — o0, is given by:

T VO =N =)
27 A
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where A € (A, Ay), with Ay = o2 + & + \/g and A = 1+ 4 - \/g.
From the above density, it follows that, when Ay > A, the null hypotheses
is rejected, as the k-th empirical eigenvalue cannot be an eigenvalue from a
random Wishart matrix.

From an operational viewpoint, if the eigenvalues are ordered from the largest
to the smallest, we can retain only those that exceed A, and reconstruct
the correlation matrix, through singular value decomposition, using only the
eigenvectors corresponding to them. Doing so, as suggested by Plerou et al.
(2002) we “filter” the correlation matrix.

From an empirical viewpoint, Miceli & Susinno| (2004) show that, when the
random matrix approach is applied as outlined before, the minimal spanning
tree leads to a grouping of assets that better correspond to “typical” invest-
ment strategies. Our aim is different: we would like to verify whether the
application of the RMT on the correlation matrix between bitcoin exchange
and classical market prices produces a minimal spanning tree that can shed
light on what drives bitcoin prices: endogenous or exogenous factors.

3.3 Data

In this Section, we describe the analyzed data.We consider, without loss of
generality, the most important cryptocurrency: the bitcoin, whose relative
price will be taken with respect to the US dollar. With no further loss of
generality, and to reduce volatility issues, we consider daily prices, obtained
at the end of the day.

Our first research question is to assess whether bitcoin prices in different ex-
change markets are correlated with each other, thus exhibiting “endogenous”
price variations. To understand this question, we have chosen a set of repre-
sentative exchange markets, for which price data is available, in a sufficiently
long period of time. Specifically, we have selected eight exchange markets,
representative of different geographic locations, which represent about 60%
of the total daily volume trades. They are reported in Table [3.1] along with
the corresponding market shares. For each exchange market, we have col-
lected daily data for a time period that goes from May, 18th, 2016, to April
30th, 2018.

Our second research question is to understand whether bitcoin price varia-
tions can also be explained by exogenous classical market prices. To evaluate
this issue, we have obtained daily data on some of the most important asset
prices: Gold, Oil and SP500; as well as on the exchange rates USD/Yuan and
USD/Eur. Similarly to what done for bitcoin prices, we have considered, as
daily price, the market closing price. When jointly considering bitcoin and
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Exchange Market share

Bitfinex 42%
Coinbase 6%
Bitstamp 5%
Hitbtc 3%
Gemini 2%
itBit 1%
Kraken 0.5%
Bittrex 0.5%

Table 3.1: Exchange markets by daily trading volumes. Source:
https://coin.market/markets/info.

“standard” markets, one issue to be solved is that, while Bitcoins are traded
24 hours per day and 7 days per week, standard markets have closing times
and days. We have overcome this issue keeping standard market prices con-
stant at the last closing time, during market closure.

Figure[3.1] presents the time evolution of the Bitcoin prices, in the considered
time period.

Bitcoin Prices (USD)

20k . ——— COINBASE

KRAKEN

' BITSTAMP

TBIT

15k BITFINEX
—— HITBTC

GEMINI

BITTREX

Sk

Jul 2016 Ocr 2016 Jan 2017 Apr 2017 Jul 2017 Oct 2017 Jan 2012 Apr 2018

Time

Figure 3.1: The time series plot of Bitcoin prices.

From Figure note the well known 2017 rise in Bitcoin prices, from a
minimum of about 430 dollars per bitcoin to a maximum of almost 20,000
dollars, followed by a high volatility in 2018. Note the slight differences
between prices, which shows that bitcoin prices in different market exchanges


https://coin.market/markets/info

CHAPTER 3. CRYPTO PRICE DRIVERS o7

are not perfectly aligned. To better understand the latter finding, some
summary statistics on the considered data are presented in Table [3.2]

Price Mean St. Dev. Min Max Kurtosis
Bitfinex Bitcoin = 3899.56 4274.46  435.61 19187.12 3.22
Coinbase Bitcoin 3919.05 4318.98  438.38 19650.01 3.22
Bitstamp Bitcoin 3899.04 4286.02  439.62 19187.78 2.50
HitBtc Bitcoin 3916.19  4297.17 436.36 19095.30 3.77
Gemini Bitcoin 3910.38  4306.36  437.57 19475.90 2.90
ItBit Bitcoin 3907.13 4300.32 438.61 19357.97 2.67
Kraken Bitcoin 3890.18  4272.55  433.50 19356.91 2.05
Bittrex Bitcoin 3893.83  4269.89  421.11 19261.10 2.53
Gold 1275.57 52.34 112842 1366.38 7.02
Oil 48.67 3.16 39.51 54.45 18.98
SP500 2414.78  212.308 2000.54  2872.87 11.86
USDYuan 6.67 0.19 6.26 6.96 4.85
USDEur 0.88 0.04 0.80 0.96 4.53

Table 3.2: Summary statistics for bitcoin and classic asset prices.
Means, standard deviations, minimum and maximum values are all expressed
in dollars.

Table confirms the slight differences in bitcoin prices along the consid-
ered market exchanges: the means and the standard deviations are slightly
different, and more so are the extreme statistics.

With respect to classical assets, such as Gold and Oil, the volatility of bitcoin
prices is much higher: respectively, about 80 and 1400 times higher.

Even with respect to SP500, the volatility of Bitcoin prices is about 20 times
higher. Instead, exchange rates are, as well known, much less volatile than
bitcoin prices. These results are in line with the available literature (see e.g.
Corbet et al. (2019))).

Finally, looking at the last column in Table note that bitcoin prices have
values of kurtosis quite similar among each other, and lower than those of
the classical assets.

3.4 Empirical findings

The aim of this section is to apply our proposed model to verify whether
bitcoin prices from different exchanges are strongly interrelated with each
other and whether such “endogenous” interactions are affected by “exoge-
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nous” prices of classical assets.

Figure presents, by means of a heatmap, all pairwise correlations between
the considered asset prices, in the considered time period. Positive correla-
tions are marked in blue, and negative correlations in red, with stronger
colors indicating higher correlations (in absolute values).
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Figure 3.2: Correlation matrix between prices.

From Figure note that the correlations between different exchange prices
are quite high, revealing that markets are highly correlated and synchronized,
resulting in a strong endogenous driver of price variation. On the other hand,
correlations with “real” asset prices, such as gold and oil, are low, a result
in line with the literature, that considers bitcoins as potential diversification
assets (see e.g. |Corbet et al| (2018))). However, the correlation with the
SP500 index is positive and those with the exchange rates are negative, a
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result that seems to conflict with the reference literature.

To better understand the implications of Figure [3.2] |Giudici & Abu-Hashish
(2019) analyzed similar bitcoin price data using partial correlation networks.
This because pairwise correlation may be inflated by correlations that may
arise from a common relationship with third variables. Their empirical find-
ings show that bitcoin prices on one hand, and “classic” asset prices on the
other hand, form two rather distinct clusters of connections, which are are
highly interconnected inside. They also show the high centrality of two of
the largest bitcoin exchanges: Bitfinex and Bitstamp, which thus emerge as
“price setters”. They also find that the link between the two clusters is given
by the Hitbtc exchange, which is affected both by standard asset prices and
by other exchange market prices.

Here we take a different approach to improve the empirical findings that can
be obtained from the correlation matrix in Figure We derive the min-
imal spanning tree of the correlation matrix, introduced in Section 2. The
obtained MST is shown in Figure [3.3

“bic_hilbe

Figure 3.3: Minimal spanning tree between prices.

From Figure [3.3|note that Bitfinex and Bitstamp have a pivotal role, as found
in (Giudici & Abu-Hashish (2019). However, the MST reveals more insights.
For example, it shows that, while Bitfinex is “closer” to real financial assets,
such as Gold, SP500 and Oil, Bitstamp is more related with exchange rates.
In addition, Hitbtc separates Bitfinex from Gold. Note also that smaller ex-
changes are more peripheral.

Indeed, the advantage of MST models, with respect to correlation network
models, is that they provide a “hierarchical” split of the prices (nodes), show-
ing them in order of distances (weights), calculated from their correlations.
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Table reports the weights corresponding to the application of the MST
algorithm to the considered data.

weight
1 btc_coinbase btc_gemini 0.207968897069462
2 btc_bitfinex  btc_gemini 0.252298438331244
3 btc_bitstamp btc_itbit 0.279684526027965
4 btc_bitstamp btc_bitfinex  0.314896774631822
5 btc_bitfinex  btc_hitbtc 0.380165409259575
6 btc_bitfinex  btc_bittrex 0.458640635735809
7  btc_kraken btc_bitstamp  0.596065889298915
8 usdeur usdyuan 0.989859235886413
9 spb00 oil 1.23032152766612
10 gold btc_hitbtc 1.35470479294313
11  btc_gemini spb00 1.3728902044797
12 usdyuan btc_kraken 1.3951809819423

Table 3.3: Adjacency matrix from MST. Indirect links between nodes
from the distance matrix.

From Table [3.3] note that the “closest” nodes are those between bitcoin
price exchanges, as expected: their pairwise connections correspond to the
first seven edges of the MST. The following edge is placed between the two
exchange rates, then between SP500 and oil.

Last, the procedure finds three edges that break the “separation” between
crypto and classical asset prices: the first one relates Hitbtc with Gold; the
second one Gemini with SP500; the last one UsdYuan with Kraken. These
latter results are quite meaningful, as they characterise the “local” behaviour
of specific exchanges, a phenomena already found in |Giudici & Abu-Hashish
(2019).

We now verify whether the application of the random matrix theory ap-
proach, before implementing the minimal spanning tree, can extract further
empirical findings from the correlation matrix. The results are shown in

Figure [3.4]
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* 500

Figure 3.4: Minimal spanning tree between prices, after random
matrix theory filtering.

From figure note that the filtered MST provides a graphical structure
that is simpler then that obtained in [3.3] without the application of RMT
filtering. On one hand, bitcoin exchange prices form a “star” configuration,
with Bitstamp at the center, confirming its role of price setter; while Bitfinex,
probably because of its relatively high volatility, is not found to be central.
On the other hand, all classic asset prices are separated from bitcoin prices,
pointing towards a “diversification benefit” of bitcoins with respect to them,
a result fully in line with the existing literature. Note also that the MST
well separates the role of “real” assets, such as SP500, Oil and Gold, from
“financial” assets such as the exchange rates.

To summarize, filtering the correlation matrix with the random matrix ap-
proach leads to a minimal spanning tree that, with respect to the unfiltered
one, is simpler and which leads to empirical findings that: i) do not indicate
a significant correlation between crypto prices and exogenous price drivers,
from classical markets, consistently with the literature; ii) indicate that ex-
change prices have a strong endogenous source, which specifically come from
the largest and least volatile exchanges, such as Bitstamp.

We can draw more interpretation examining the distance weights correspond-
ing to the joint application of the RMT and MST, in Table
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weight
1 btc_gemini btc_bitstamp  0.288433056210555
2 btc_bitstamp btc_bitfinex  0.292594189179681
3 btc_coinbase btc_bitstamp 0.292645290798001
4 btc_bitstamp btc_itbit 0.359144767683509
5 btc_hitbtc btc_bitstamp 0.39147736801806
6 btc_bitstamp btc_bittrex 0.440520251858754
7 btc_kraken btc_bitstamp  0.600090764365521
8 usdeur usdyuan 0.759135861596123
9 sph00 oil 1.14667657820831
10 oil gold 1.2914392737851
11 gold btc_hitbtc 1.35598797995048
12 usdyuan btc_hitbtc 1.39185686202477

Table 3.4: Adjacency matrix from RMT+MST. Indirect links between
nodes from the distance matrix based on the filtered correlation matrix.

Comparing Table with Table [3.3] the previously discussed findings are
confirmed. Again the seven closest pairs of nodes concern bitcoin exchange
prices, indicating a strong presence of endogenous price variation; in addition,
in Table [3.4] all pairs contain the Bitstamp node, indicating its centrality. A
further difference is that the connections between crypto prices and classic
prices reduce to two, and they both involve Hitbtc. This result is more in
line with what obtained in |Giudici & Abu-Hashish (2019) about the role of
Hitbtc as a “separator” between classic and crypto assets.

To assess the robustness of our empirical findings, we now verify whether
the found tree structure is stable over time. For this purpose, Figure [3.5
shows the MST obtained in each of nine one-year rolling periods, after the
application of RMT. The first one starts from 18/05/2016, the following are
shifted ahead by one month, until the eigth one which starts on 18/02/2017.
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Figure 3.5: Time evolution of the the minimal spanning tree.
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Figure shows that the MST configuration is quite stable over time, par-
ticularly from the third period onwards, as all graphs show a configuration
similar to the “static” one in Figure From a theoretical viewpoint, we
remark that, when random matrix theory is applied before the application
of the minimal spanning tree the results are “stabilized, as RMT filters out
noise. In fact, comparing the different time periods in Figure [3.5] the span-
ning trees do not change sensibly, even during bubble periods. We have
indeed applied the test for crypto bubbles suggested in |Cheah & Fry| (2015)
and Hafner| (2018]), obtaining that the December 2017 period shows a signif-
icant bubble. However, Figure shows that the two correlation networks
at the bottom of Figure [3.5] which fully contain the bubble period, do not
show an evident structural change.

We have conducted a further robustness test on the time dynamics of our
results. From Table the kurtosis observed for the bitcoin prices is smaller
than that of classical assets, and this may justify the use of an unconditional
variance.

We have however assumed that the unconditional variance is different from
the realized one and we have calculated pairwise correlations not among re-
turns, as before, but among volatilities, to see what could drive the volatility
dynamics, rather than the price dynamics.

In particular, we have postulated the existence of a negative correlation be-
tween the realized macroeconomic volatility and the realized volatility of
bitcoin prices, as suggested by |Christian et al.| (2018)).

These authors report that the two months lagged SP500 realized volatility
may be a useful predictor for the bitcoin volatility. Following this suggestion,
we have calculated the pairwise correlations between all bitcoin exchange
volatilities, and all classical assets volatilities (lagged by two months), and
reported them in Figure (3.6
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Figure 3.6: Volatility correlation plot.

From Figure (3.6} note that the correlation between classic assets and bitcoins
is constant across different exchanges. In particular, the bitcoin volatility is
negatively correlated with that of the SP500 index. This indicates a further,
important, empirical finding: the volatility of classic asset prices negatively
affects the volatility of bitcoin prices, with a delay.

This result, that confirms Christian et al. (2018) can be better seen in Figure
which reports in the same graph the realized volatilities of the Bitcoin
Bitstamp price and for the SP500 index.

In the Figure 3.7, both volatilities have been normalized, being the volatility
of the bitcoin price much higher (10 times more on average).
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Figure 3.7: Realized volatilities for SP500 (blue) and Bitcoin Kraken
(red), normalized.

From Figure the two months lagged effect of the volatility of the SP500
index on the bitcoin price volatility of the Bitstamp exchange, is evident.
Similar results hold for all other exchange prices, consistently with the found
price setter nature of the Bitstamp exchange.

As a last robustness exercise on our empirical findings, we compare, on the
same data, our method with the planar maximally filtered graph and with
the Granger causality network, suggested in Billio et al.| (2012).

Figure [3.8 and [3.9] give the results from the application of these two method-
ologies.
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Figure 3.8: Planar maximally filtered graph.



CHAPTER 3. CRYPTO PRICE DRIVERS 67

: ‘l/‘/“‘ / ""—‘7]] b i
Sans el
‘\\’.‘7“‘@& X /=

Figure 3.9: Interconnectedness graph obtained from the application
of Granger causality networks.

Figure and show that, as expected, the granger causality network
graph and the planar maximally filtered graph are more connected than our
minimal spanning tree graphs.

They also show that the connections found with the MST are also significant
present in the planar maximally filtered graph and in the Granger causality
network graph. Upon comparison with |Giudici & Abu-Hashish (2019)) the
same connections are also present in their partial correlation graph.

All these findings lead to the conclusion that the relationships found by our
MST graphs are consistently found using other methods and, therefore, the
interpretation drawn upon their findings are quite robust.

3.5 Conclusion

We have proposed a new statistical model for the explanation of what drives
the bitcoin prices. The model is based on the correlation matrix between
the observed returns, which is first filtered from noise, applying the random
matrix theory and, then, employed to derive a clustering structure among
prices, applying the minimal spanning tree.

The main methodological contribution consists of combining the random ma-
trix theory approach with the minimal spanning tree one, with the aim to
assess the bitcoin price drivers.

Empirical findings show that bitcoin prices from different exchanges have a
strong endogenous driver of variation: they are highly interrelated, as in an
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efficiently integrated market, consistently with the literature. In addition,
we found that the largest and least volatile exchanges (such as Bitstamp) are
the most important price setters.

Our results also confirm the literature in showing that bitcoin prices are
unrelated with classical market prices, thus bringing further support to the
“diversification benefit” property of crypto assets. In addition, we found
that the volatility of classic assets affects negatively, and with a time lag, the
volatility of bitcoin prices.

Finally, our empirical findings are robust, with respect to the consideration
of different time periods, that also include bubbles, and are consistent with
those obtained from different methodologies aimed at measuring intercon-
nectdness between market prices.

We believe that the main beneficiaries of our results may be regulators and
supervisors, aimed at preserving financial stability, as well as investors of
crypto assets, who should be protected against the negative sides of FinTech
innovations (higher risks) while keeping their positive sides (lower costs and
better user experience). For a general discussion of this point see also Giudici
(2018).

Future work requires acquiring more data, on other bitcoin exchanges, and
on other crypto assets, to further assess the validity of the obtained con-
clusions, and possibly obtain further findings. From a methodological view-
point, it may be worth considering modeling assets returns with generalized
extreme value distributions (as in (Calabrese & Giudici (2015)), which can
take high volatility into account; or with Bayesian models (as in |Figini &
Giudicil (2011))), which can incorporate expert information into the model. It
would also be important to consider the implications of our results in terms
of asset allocation.
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ETF ticker ETF class
1 [EAG IM Aggregate Bond
2 XBAG IM Aggregate Bond
3 XBAE IM Aggregate Bond
4 GAGG IM Aggregate Bond
5 DJCOMEX IM Commodity
6 CRB IM Commodity
7 XDBC IM Commodity
8 CRWE IM Commodity
9 CCUSASIM  Commodity
10 WCOA IM Commodity
11 CRBA IM Commodity
12 CMOD IM Commodity
13 RIJKEX IM  Corporate-euro
14 ICOV IM Corporate-euro
15 IEAC IM Corporate-euro
16 SE15 IM Corporate-euro
17 XBLC IM Corporate-euro
18 XB4N IM Corporate-euro
19 EUCO IM Corporate-euro
20 ECOEUA IM  Corporate-euro
21 IEXF IM Corporate-euro
22 ECRP IM Corporate-euro
23 PSFE IM Corporate-euro

24  LQDE IM
25  USCO IM
26 LUSC IM

Corporate-not euro
Corporate-not euro
Corporate-not euro
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ETF ticker ETF class
27 JNKE IM Corporate-high yield
28 WING IM Corporate-high yield
29 CORP IM Corporate-world
30 SAFRI IM Emerging Equity-Asia
31 AEJ IM Emerging Equity-Asia
32 INDI IM Emerging Equity-Asia
33 KOR IM Emerging Equity-Asia
34 MAL IM Emerging Equity-Asia
35 TWN IM Emerging Equity-Asia
36 APEX IM Emerging Equity-Asia
37 FXC IM Emerging Equity-Asia
38 IKOR IM Emerging Equity-Asia
39 ITWN IM Emerging Equity-Asia
40 IFFF IM Emerging Equity-Asia
41 XMKO IM Emerging Equity-Asia
42 XMAS IM Emerging Equity-Asia
43 XMTW IM Emerging Equity-Asia
44 XNIF IM Emerging Equity-Asia
45 XAXJ IM Emerging Equity-Asia
46 CI2 IM Emerging Equity-Asia
47 CSKR IM Emerging Equity-Asia
48 CSEMAS IM  Emerging Equity-Asia
49 XMIN IM Emerging Equity-Asia
50 XCS3 IM Emerging Equity-Asia
51 XCS4 IM Emerging Equity-Asia
52 AASI IM Emerging Equity-Asia
53 TAI IM Emerging Equity-Asia
54 EMAE IM Emerging Equity-Asia
55 XCHA IM Emerging Equity-Asia
56  AJEUAS IM  Emerging Equity-Asia
57 RQFT IM Emerging Equity-Asia
58 CASH IM Emerging Equity-Asia
59 CHNA IM Emerging Equity-Asia
60 CNAA IM Emerging Equity-Asia
61 BRA IM Emerging Equity-America
62 LATAM IM  Emerging Equity-America
63 IBZL IM Emerging Equity-America
64 LTAM IM Emerging Equity-America
65 XMLA IM Emerging Equity-America
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ETF ticker ETF class
66 XMBR IM Emerging Equity-America
67 XMEX IM Emerging Equity-America
68 CSMXCP IM  Emerging Equity-America
69 ALAT IM Emerging Equity-America
70 BRZ IM Emerging Equity-America
71 TUR IM Emerging Equity-East Europe
72 ITKY IM Emerging Equity-East Europe
73 XMRC IM Emerging Equity-East Europe
74 RDXS IM Emerging Equity-East Europe
75 EMKT IM Emerging Equity-world
76 IEEM IM Emerging Equity-world
7 XMEM IM Emerging Equity-world
78 XMEA IM Emerging Equity-world
79 XSFR IM Emerging Equity-world
80 SEMA IM Emerging Equity-world
81 AEEM IM Emerging Equity-world
82 EMMV IM Emerging Equity-world
83 EMRG IM Emerging Equity-world
84 EMGEAS IM  Emerging Equity-world
85 EMMEUA IM Emerging Equity-world
86 EIMI IM Emerging Equity-world
87 MXFS IM Emerging Equity-world
88 EMV IM Emerging Equity-world
89 MVAM IM Emerging Equity-world
90 HMEM IM Emerging Equity-world
91 XMME IM Emerging Equity-world
92 SXXPIEX IM  Equity-Europe

Table A.1: Summary statistics for ETFs daily returns.
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