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Reduced-order models for the analysis of a vertical rod
under parametric excitation

Guilherme Jorge Vernizzia,∗, Guilherme Rosa Franzinia, Stefano Lencib

aOffshore Mechanics Laboratory - LMO, Escola Politécnica, University of São Paulo, Brazil
bUniversità Politecnica delle Marche, Ancona, Italy

Abstract

This paper focuses on the analysis of the parametric excitation of a vertical and im-

mersed flexible rod, showing the influence of the choice of the shape function used

in the Galerkin’s method. For this, three different reduced-order models (ROMs)

are obtained from the continuous equation of transverse motion employing differ-

ent shape functions. The first model (ROM(i)) uses an approximation of the actual

vibration mode of the rod, written as a “Bessel-like" function. The second model

(ROM(ii)) is based on a single trigonometric function as the shape function. Finally,

a multi-modal ROM (ROM(iii)) is obtained using three trigonometric functions as a

set of shape functions. Simulations are carried out aiming at verifying the capabil-

ity of each model to properly represent the dynamics of the rod under parametric

excitation. The quality of the numerical results obtained from the integration of the

aforementioned ROMs is assessed by means of a comparison with a solution based

on the finite element method. In addition to the numerical analysis, an analyti-

cal solution for the steady-state amplitude of a generic Duffing-Mathieu-Morrison

oscillator is obtained using the method of multiple scales. A case study is devel-

oped using the data of a vertical riser as an example of an engineering application.

Maps of the steady-state amplitude as a function of the excitation amplitude and

frequency are plotted using both the numerical simulations and the multiple scales

solution. The results show that ROM(i) and ROM(iii) are in good agreement with the

finite element solution. ROM(i) has the advantage of having only one degree of free-

dom; the obtained analytical solution can thus be applied to this model. The use

of a ROM with one degree of freedom using “Bessel-like" functions in the Galerkin’s
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scheme is concluded to have clear advantages from the practical point of view. The

analytical solution allows this kind of ROM to give a post-critical amplitude map

with low computational effort and that is in good agreement with the maps obtained

with the simulation of the ROMs.

Keywords: Parametric excitation, reduced-order model, multiple scales solution,

vertical flexible rod.

1. Introduction

From the point of view of the mathematical model of a dynamical system, the

parametric excitation phenomenon occurs when at least one of the parameters of

the equations of motion varies explicitly with respect to time. This variation comes

from different physical behaviours accordingly to the studied system. The simplest5

example is the Hill’s equation, the differential equation of motion of a linear dynami-

cal system of one degree of freedom (1-DOF) with a time-varying stiffness. When the

stiffness variation follows a trigonometric function in time, Hill’s equation becomes

the classical Mathieu’s equation, which has been extensively investigated (see for

example [1], [2], [3] and [4]).10

As a matter of motivation, the current work is based on the analysis of a vertical

flexible rod subjected to top motion excitation. A technological application of the

study lies on the offshore engineering scenario, in which a vertical riser is subjected

to vertical motions imposed at the top by the first-order response of the floating unit

to the wave excitation.15

The response of a vertical riser to parametric excitation has been addressed in

several works during the last decades. A pioneer work to understand the basic dy-

namical properties of the problem is [5], in which a hanging string in still fluid is

subjected to parametric excitation. This work revealed the essential role of the non-

linear hydrodynamic damping to limit the motion amplitude in the unstable regions20

of Mathieu’s equation. In [6], a 1-DOF model for a vertical tether of a TLP (Tension

Leg Platform) is investigated and used to construct the Strutt’s diagram for the prob-

lem. The results showed good agreement with the experimental data at disposal.

Another initial study that worth mentioning is the one presented in [7], in which an

extensible pendulum under support excitation is investigated. The model with only25

2-DOF has a very rich dynamical behaviour, with the parametric resonance condi-
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tion being similar to the dry 1-DOF model of a TLP. A remarkable result of the latter

work is the analytical solution obtained for the problem, which is in very good agree-

ment with conducted experiments presented in the same work.

In [8], the parametric excitation of the vertical tethers of a TLP was investigated.30

In this study, the variation of tension along the length of the tethers was disregarded,

since the data used considered the immersed weight (i.e., the weight minus the

buoyance force) to be much smaller than the tension at the upper and lower bound-

aries. This justified the use of a sinusoidal function as a shape function in the Galerkin’s

scheme employed aiming at obtaining a 1-DOF model for the problem. The authors35

used this model to plot a Mathieu stability chart for the linear problem. They also

obtained an expression for the steady-state amplitude of the non-linear problem

considering a Morrison damping term and applying the averaging method (for the

averaging method, see[4]).

The effect of the tension variation due to the immersed weight was kept in the40

analysis carried out by [9]. The authors investigated the top motion excitations on

a vertical extensible cable, applying the Galerkin method using the heavy vertical

cable modes of vibration, given by Bessel functions, as shape functions. The results

showed that the post-critical amplitude is significantly influenced by the choice of

projection function by comparing with the model presented in [8].45

The effects of the coupling between modes on the stability of vertical tethers un-

der parametric excitation is investigated in [10]. The axial and transversal dynamics

are kept and a Galerkin’s projection is applied with some modes of vibration. It is

pointed out that the coupled model changes the instability regions in the space of

control parameters. In [11], the coupled axial and transversal dynamics is also inves-50

tigated. In this case, the focus was the internal non-linear resonances in the struc-

ture. It is shown that in the undamped coupled model no steady-state solution is ob-

tained. However, when the non-linear Morrison damping is included, the effects of

internal resonances are reduced and steady-state solutions are developed. The anal-

ysis regarding the non-linear resonances is then expanded in [12]. A multiple scales55

solution is obtained for the coupled dynamics of the vertical tether under paramet-

ric excitation, and the principal parametric resonance is investigated. Another im-

portant result is presented in [13], in which the author applies the method of multi-

ple scales both in space and time for the equation of transversal motion. Non-linear
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modes of vibration are obtained for the structure using the multiple scales solution60

and the presence of travelling waves during the motion is also detected as a result of

the variation of the natural frequency with the position along the length of the beam

under varying tension.

All the aforementioned works treat the problem disregarding the axial dynamics,

investigating the situation of harmonic and vertical top motion and without the in-65

fluence of other phenomena. In [14], the parametric excitation of a TLP tether under

vertical and horizontal top motions is investigated. In this case, the axial dynamics is

kept and the equations of motion are shown not to become Mathieu’s equation, but

the general Hill’s equation. The horizontal top motion also shows to contribute to

the parametric excitation. In [15], only the transversal dynamics is considered, but70

a spectrum of irregular waves is used to describe the top motion. The latter work

shows that the responses can be significantly different from those arisen when har-

monic excitation is provided to the top. Furthermore, in [16], the multi-frequency

parametric excitation is combined with vortex-induced vibrations. One of the major

conclusions of that work is that the parametric excitation can significantly amplify75

the structural response due to vortex-induced vibrations. Finally, in [17], the con-

comitant effects of vortex-induced vibrations and parametric excitation on a flexi-

ble rod are experimentally investigated. It was observed that the imposed motion

causes modulation of the response amplitude and also enrich the amplitude spec-

tra.80

Since the chosen shape functions can have significant effects on the analysis, it is

natural to seek functions that correspond more closely to the vibration modes of the

structure. The present work uses the so called “Bessel-like" modes previously pre-

sented in [18]. The authors, inspired by a solution made for vertical cables obtained

in [19], obtained a closed-form solution for the non-linear modes of vibration of a85

vertical flexible rod, keeping the effects of bending stiffness and varying tension.The

linear modes of vibration incorporating both effects can be obtained as a particular

case of the formulation presented. The modes incorporating bending and varying

geometrical stiffness could also be obtained using the boundary layer method as it

is done in [20]. It is also important to mention that the obtaining of ROMs that can90

give a better representation of the structure is desirable for other problems in the

practice of the offshore engineering. In [21] the stability of two different platforms
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under wave action is investigated as study case. In that work the tethers are treated

using 1-DOF models. In [22] and [23] a vertical riser under vortex-induced vibra-

tions is investigated using ROMs. In those works, a Galerkin’s projection is applied95

to the equations of motion, and then the model is reduced using the NNM (non-

linear normal modes) approach (For the NNM, see [24]). Those examples show that

the obtaining of better ROMs is interesting for different applications.

Lately, some studies have been conducted with reduced-order models (ROMs),

in which the effects of the use of different shape functions can be compared. In100

[25] and [26], the influence of hydrodynamic coefficients on the post-critical ampli-

tude response were investigated using 1-DOF ROMs The difference between both

lies mainly on the shape function used, being a sinusoidal function used in the first

paper and a “Bessel-like" mode in the second.

In [27] and [28], ROMs are conceived and the results are compared with experi-105

mental data. These works show that the ROM based on “Bessel-like" functions are in

good agreement with the experimental results, both in the magnitude of the motion

displacement and the qualitative behaviour of the dynamics along time. The idea

of investigating the problem with simpler projections functions but more DOFs is

presented in [29]. In that work, a vertical beam under parametric excitation with-110

out considering the Morrison damping is modelled using a 3-DOF ROM based on

trigonometric functions. The results are compared to finite element simulations

and show good agreement for the amplitude response near the middle point of

the beam. In [30], a detailed analysis for the vertical beam, including the Morrison

damping, is made with a ROM obtained using three sinusoidal functions. Compar-115

isons are also made with a ROM obtained with a single sinusoidal function. How-

ever, the analysis are focused on the response of each degree of freedom alone, with

no deep investigation on the composed motion. In the conclusion drawn in [30],

the authors indicate as future work the comparison of the ROM derived there with

a ROM obtained with a “Bessel-like" functions. This suggestion is followed in the120

present work.

The aforementioned works on ROMs for the problem parametric excitation of

flexible rods focused on the behaviour around the principal parametric resonance

of the first vibration mode. Additionally, some of the papers presented post-critical

amplitude maps obtained as a result of a huge amount of numerical simulations.125
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The objective of this study is thus to compare the performance of different ROMs

for parametric excitation of a slender and immersed vertical rod considering the

first mode in the benchmark comparison. Besides the study showing the sensitiv-

ity of the response with respect to the choice of the projection function to be ap-

plied to the Galerkin’s method, analytical solutions for the post-critical amplitudes130

are obtained. The results are compared with finite element solutions for some exci-

tation amplitudes in the principal parametric resonance. It is worth to notice that

in the previously mentioned works, no direct comparison between ROMs based on

trigonometric shape functions and a ROM based in “Bessel-like" modes is made

and is a novelty of the present contribution. Another novel contribution herein135

presented is the post-critical amplitude map obtained by applying a perturbation

method to the 1-DOF ROM. This type of map is obtained with very low computa-

tional cost and very well agrees with the results arisen from the extensive numerical

integrations of the ROM.

The paper is structured as follows. In section 2, the model for the continuous140

problem is presented. Sections 3 and 4 bring the derivation of the 1-DOF and 3-

DOFs ROMs respectively. Section 5 presents the development of an analytical solu-

tion for the post-critical amplitudes using the method of multiple scales ([4]) in the

1-DOF ROMs. The results are presented and discussed in section 6. Finally, section

7 brings the conclusions.145

2. Continuous model

Prior to the development of the ROMs, the formulation of the equations of mo-

tion for the continuous domain is needed. Only the more important steps of the

derivation are shown. Details can be found, for example, in [31].

We here consider the problem of a vertical and flexible rod, with µ and µa being150

the structural mass and the added mass per unit length respectively. The rod has

unstretched length L and products of axial and bending stiffness E A and E I respec-

tively. A basic sketch with axis definition can be found in Figure 1. For the static

problem, the tension along the rod is given by T (Z ) = Tb +γZ , Tb being the tension

at the bottom, γ is the submerged weight of the riser, and Z is the axial coordinate,155

considered zero at the bottom section. Care need to be taken with the tension val-

ues, since for very long rods the value of Tb can be negative if the initial applied top
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tension is not large enough.

Figure 1: Basic sketch for the problem in study. A vertical and flexible rod immersed in fluid under vertical

top motion excitation.

Defining W and V as the displacements in the axial and transversal directions

respectively, Y the coordinate of a point in relation to the cross-section axis, and160

assuming a Bernoulli-Euler beam model, the strain at a point P on the cross section

can be written as ([31]):

εP =W ′
P + 1

2

(
W ′

P

)2 + 1

2

(
V ′

P

)2
�W ′−Y V ′′+ 1

2

(
V ′

P

)2 (1)

Along the paper, primes are used to denote differentiation with respect to Z . The

extended Hamilton’s principle is used to take into account the structural damping

and Morrison drag force. The principle then reads:165

∫ t2

t1

(
δT −δV −

(
cV̇ + 1

2
ρDCD

∣∣V̇ ∣∣V̇

)
δV

)
dt = 0 (2)

Dots are used to represent differentiation with respect to time, as usual. The

structural damping constant per unit length is c, ρ is the surrounding fluid specific

mass, D is the external diameter of the rod, and CD is the mean drag coefficient.
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Considering the results presented in [31], the differential equations of motion for

the problem are then:170

µẄ +γ−E A
(
W ′′+V ′V ′′)= 0 (3)

(
µ+µa

)
V̈ + cV̇ + 1

2
ρDCD

∣∣V̇ ∣∣V̇

−E A

(
W ′′V ′+W ′V ′′+ 3

2

(
V ′)2 V ′′

)
+E IV IV = 0 (4)

Following [31], the inertial effects in the axial direction are neglected, allowing

for a static condensation procedure. Applying this and integrating equation (3), one

obtains:

−γZ

E A
+W ′+ 1

2

(
V ′)2 = ε0 (5)

The axial strain ε0 is then obtained using an averaging procedure. The integra-

tion of equation (5) along the length of the riser leads to:175

ε0 = WL

L
+ 1

2L

∫ L

0

(
V ′)2 dZ − γL

2E A
(6)

The term WL stands for the applied displacement at the top. Using equations (5)

and (6), the dependence on W in equation (4) can be eliminated, leading to:

(
µ+µa

)
V̈ + cV̇ + 1

2
ρDCD

∣∣V̇ ∣∣V̇ +E IV IV −γV ′−γZ V ′′−TbV ′′

−E A

L
WL,d V ′′− E A

2L
V ′′

∫ L

0

(
V ′)2 dZ = 0 (7)

The top motion was separated into statical and dynamical components. The

static component being the displacement of the rod under a tension given by T0 =
Tb + γZ . The term WL,d is the dynamical component of the displacement at the180

top. Note that, disregarding the terms related to structural damping, top motion,

and drag force, equation (7) is the same as the one used in [18] to obtain non-linear

modes of vibration for a vertical flexible rod.
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3. 1-DOF reduced-order models

The derivation of both 1-DOF ROMs is grouped, since the procedure to obtain185

the models is the same and leads to equations of motion that have the same format.

The models are obtained using a Galerkin’s scheme assuming that the response of

the structure can be written as:

V (Z , t ) = v (t )ψ (Z ) (8)

For ROM(i), the shape function ψ is a “Bessel-like" mode, herein named as ψb ,

obtained in [18]. The expression for ψb for the m-th mode is given by equation (9)190

and the modal shape is shown in figure 2, using the numerical data presented in

section 6 for m = 1.

ψb = 4

√
Tb +E I (mπ/L)2

Tb +E I (mπ/L)2 +γZ
sin

mπ

√
Tb +E I (mπ/L)2 +γZ −

√
Tb +E I (mπ/L)2√

Tb +E I (mπ/L)2 +γL−
√

Tb +E I (mπ/L)2


(9)
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Figure 2: Normalized “Bessel-like" mode. First mode (m = 1).

Due to the mathematical expression of this kind of function, analytical expres-

sions for the integrals that appear in the Galerkin’s scheme are not available, the

reason why those integrals will be kept as part of the evaluation of the constants of195
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the ROM. Applying equation (8) on equation (7) and using the Galerkin’s projection,

the resulting model can be written as:

α1v̈ +α2v̇ +α3v +α4WL,d v +α5v3 +α6v̇ |v̇ | = 0 (10)

The definition of the parametersαi are given in Table 4, Appendix A. From equa-

tion (10), the natural frequency for the free linear vibrations of this ROM is given by

ωb = p
α3/α1. Defining the dimensionless displacement and time as r = v/D and200

τ = ωb t respectively and considering the top motion as a monochromatic oscilla-

tion WL,d = Dδcos(nτ), n being the ratio between the parametric frequency and

ωb , the equation of motion for the ROM becomes:

d2r

dτ2 +β1
dr

dτ
+ (

1+β2δcos(nτ)
)

r +β3r 3 +β4

∣∣∣∣dr

dτ

∣∣∣∣ dr

dτ
= 0 (11)

where the parameters βi are also given in Table 4. Equations (10) and (11) keep the

same form if a trigonometric shape functionψs given by equation (12) is used in the205

Galerkin’s scheme.

ψs = sin

(
mπZ

L

)
(12)

For the sake of clearness, the notation will be changed for the ROM based on one

trigonometric shape function, named ROM(ii) from now on, and equations (10) and

(11) are written for this case as:

a1v̈ +a2v̇ +a3v +a4WL,d v +a5v3 +a6v̇ |v̇ | = 0 (13)

d2r

dτ2 +b1
dr

dτ
+ (1+b2δcos(nτ))r +b3r 3 +b4

∣∣∣∣dr

dτ

∣∣∣∣ dr

dτ
= 0 (14)

For ROM(ii), the natural frequency is defined as ωs =
p

a3/a1. Still considering210

ROM (ii), the dimensionless time is given by τ=ωs t .

4. 3-DOF reduced-order model

For the derivation of the 3-DOF ROM, herein ROM(iii), three sinusoidal func-

tions are used as shape functions, assuming the response of the structure in the
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form:215

V (Z , t ) = v1 (t )ψ1 (Z )+ v2 (t )ψ2 (Z )+ v3 (t )ψ3 (Z ) (15)

The three sine functions are defined as:

ψ1 = sin

(
iπZ

L

)
(16)

ψ2 = sin

(
jπZ

L

)
(17)

ψ3 = sin

(
kπZ

L

)
(18)

The constants i , j and k are integer numbers to be chosen according to the de-

sired representation. This type of ROM is proposed here inspired by the analysis and

results in [30] considering only the first three modes (i.e., i=1, j=2 and k=3). Applying

the Galerkin’s scheme, the equations of motion read:220

a11 v̈1 +a12 v̇1 +a13v1 +a14WL,d v1 +a15v2 +a16v3

+a17v3
1 +a18v1v2

2 +a19v1v2
3 +MR1 = 0 (19)

a21 v̈2 +a22 v̇2 +a23v2 +a24WL,d v2 +a25v1 +a26v3

+a27v3
2 +a28v2v2

1 +a29v2v2
3 +MR2 = 0 (20)

a31v̈3 +a32 v̇3 +a33v3 +a34WL,d v3 +a35v1 +a36v2

+a37v3
3 +a38v3v2

1 +a39v3v2
2 +MR3 = 0 (21)

Terms MRi stand for the components of the equations that arise from the Mor-

rison drag force term after the Galerkin’s projection. Following what has been done

for the 1-DOF ROMs, the dimensionless displacements are defined as ri = vi /D , and

the dimensionless time is defined according to the frequency of the mode to be stud-

iedωt . Using the dimensionless variables and the top motion as WL,d = Dδcos(nτ),225

the equations of motion become:
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r̈1 +b11ṙ1 + (b12 +b13δcos(nπ))r1 +b14r2 +b15r3

+b16r 3
1 +b17r1r 2

2 +b18r1r 2
3 +MR1 = 0 (22)

r̈2 +b21ṙ2 + (b22 +b23δcos(nπ))r2 +b24r1 +b25r3

+b26r 3
2 +b27r2r 2

1 +b28r2r 2
3 +MR2 = 0 (23)

r̈3 +b31ṙ3 + (b32 +b33δcos(nπ))r3 +b34r1 +b35r2

+b36r 3
3 +b37r3r 2

1 +b38r3r 2
2 +MR3 = 0 (24)

The parameters of equations (22) to (24) are shown in Table 5, Appendix A. Note

that, for this kind of model, the integral of the Galerkin’s projection over the Morri-

son drag force term must be evaluated at each time-step due to the absolute value

function. On the other hand, for the 1-DOF ROMs, only the motion variable would230

appear inside the absolute value function. Terms MRx can be put in the general

form:

MRx = ρD2CD

2ax1

∫ L

0
ψx

∣∣ṙiψi + ṙ jψ j + ṙkψk
∣∣(ṙiψi + ṙ jψ j + ṙkψk

)
dZ (25)

Another interesting feature of the 3-DOF ROM is the approximation used for

computing the natural frequency. Two possibilities can arise, depending on the in-

terpretation given to the approximation used for the natural frequency. In this work,235

the linearized natural frequencies estimated by the 3-DOF ROM are adopted as the

natural frequencies of the dynamical system given by equations (19) to (21). How-

ever, one could see the approximated natural frequencies as an inherent charac-

teristic of the shape functions. In this case, the estimative of the natural frequency

related to one shape function would be defined as the natural frequency of the oscil-240

lator obtained by making a Galerkin’s projection with only the corresponding shape

function as component of the structural response. The latter approximation is the

one used in [30].
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5. Multiple Scales solution

For the 1-DOF ROMs (ROM (i) and ROM (ii)), in which the spatial integral of245

Galerkin’s projection of the Morrison term can be solved analytically, solutions using

the method of multiple scales ([32]) can be found. It is important to mention that

the multiple scale solution herein proposed can be applied to any oscillator whose

equation of motion can be put in the form of a Duffing-Mathieu-Morrison oscillator

as in equation (11). To use the method, a small parameter ε is created such that the250

relations β1 = ζ1ε, β2δ = ζ2ε, β3 = ζ3ε and β4 = ζ4ε hold. Two time scales are used,

namely, τ0 = τ and τ1 = τε. The solution is sough in the form:

r = r0 (τ0,τ1)+εr1 (τ0,τ1) (26)

The equation of motion becomes:

d2r

dτ2 +ζ1ε
dr

dτ
+ (1+ζ2εcos(nτ))r +ζ3εr 3 +ζ4ε

∣∣∣∣dr

dτ

∣∣∣∣ dr

dτ
= 0 (27)

The following operators, correct up to order ε, are used in the expansions:

d

dτ
= ∂

∂τ0
+ε ∂

∂τ1
(28)

d2

dτ2 = ∂2

∂τ2
0

+2ε
∂2

∂τ0∂τ1
(29)

Now, applying the operators defined by equations (28) and (29) to equation (27)255

and collecting terms of equal powers in ε, the following equations are obtained:

∂2r0

∂τ2
0

+ r0 = 0 (30)

∂2r1

∂τ2
0

+ r1 =−2
∂2r0

∂τ0∂τ1
−ζ1

∂r0

∂τ0
−ζ2 cos(nτ)r0

−ζ3r 3
0 −ζ4

∣∣∣∣ ∂r0

∂τ0

∣∣∣∣ ∂r0

∂τ0
(31)

The solution for equation (30) is well-known, and can be written as:

r0 = B1 (τ1)e iτ0 + c.c. (32)
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For the multiple scale analysis, i is the imaginary constant and “c.c.” means the

complex conjugate of the terms before it. Now, before substituting equation (32)

into equation (31) some strategies are adopted to deal with the quadratic term and260

the parametric excitation. Following [4], the quadratic damping term is expanded

in Fourier series, allowing to write it in terms of the harmonic components and ver-

ify which are relevant for eliminating the secular terms present in equation (31). The

parametric excitation is treated using the strategy employed in [4] for harmonic forc-

ing. In order to analyse the effects of the parametric excitation around the principal265

instability region in the Mathieu chart, the parameter n is defined as:

n = 2+εσ (33)

with σ being the detuning parameter. Applying those assumptions, equation (31)

becomes:

∂2r1

∂τ2
0

+ r1 = e iτ0

(
−2i

dB1

dτ1
− iζ1B1 −3ζ3B 2

1 B∗
1 − ζ2B∗

1

2
e iστ1

)
−e iτ0 f1

(
r0,

dr0

dτ0

)
+ c.c.+N .S.T. (34)

Function f1 stands for the term of the Fourier expansion of the quadratic damp-

ing that has unitary dimensionless frequency and N .S.T. stands for the non-secular270

terms of equation (34). Writing the complex function B1 in the polar form B1 =
R1e iθ1 , with R1 > 0 and θ1 being real functions, the solvability condition leads to

the complex equation:

−2i
dR1

dτ1
+2R1

dθ1

dτ1
− iζ1R1 −3ζ3R3

1 −
ζ2R1

2
e−2iθ1+iστ1

−
f1

(
r0, dr0

dτ0

)
e iθ1

= 0 (35)

Using the polar form of equation (32), it is clear that r0 = 2R1 cos(τ0 +θ1). With

that, the term arisen from the quadratic damping can be written as:275
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f1

e iθ1
=

ζ4

2π

∫ 2π

0
(−2R1 sin(τ0 +θ1)) |−2R1 sin(τ0 +θ1)|e−i (τ0+θ1)dτ0 =

16i R2
1ζ4

3π
(36)

Separating real and imaginary parts of equation (35), the following system of

equations is written:

2R1
dθ1

dτ1
−3ζ3R3

1 −
ζ2R1

2
cos(−2θ1 +στ1) = 0 (37)

−2
dR1

dτ1
−ζ1R1 −

16R2
1ζ4

3π
− ζ2R1

2
sin(−2θ1 +στ1) = 0 (38)

Giving continuity to the derivation, the relations given by equation (39) are pro-

posed.

φ=στ1 −2θ1 ⇒ 2
dθ1

dτ1
=σ− dφ

dτ1
(39)

After substituting equation 39 in equations (37) and (38), one obtains:280

R1σ−R1
dφ

dτ1
−3ζ3R3

1 −
ζ2R1

2
cos

(
φ

)= 0 (40)

−2
dR1

dτ1
−ζ1R1 −

16R2
1ζ4

3π
− ζ2R1

2
sin

(
φ

)= 0 (41)

Since the objective is to search for non-trivial steady state solutions, the deriva-

tives that appear in equations (40) and (41) are taken as zero. Isolating the trigono-

metric terms of both equations, squaring them and summing up both results lead

to:

(
2σ−6ζ3R2

1

)2 +
(
2ζ1 + 32

3π
R1ζ4

)2

= ζ2
2 (42)

It is clear that equation (42) is a bi-quadratic polynomial expression in the cases285

in which the linear or the quadratic damping are zero. In the present work, the case

of no structural damping is presented (ζ1 = 0) and the following expression is valid
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for the steady state solution:

R2
1 =

−1024ζ2
4

9π2 +24ζ3σ±
√(

1024ζ2
4

9π2 −24ζ3σ

)2

−144ζ2
3

(
4σ2 −ζ2

2

)
72ζ2

3

(43)

When this solution gives a possibility of a real positive value for R1 it can be ap-

plied; otherwise, there is no steady-state solution besides the trivial solution (R1 =290

0). Additionally, in the case of non-zero structural damping (ζ1 > 0), equation (42)

results in a polynomial expression that is not bi-quadratic. This leads to the possi-

bility of more than one positive value of R1 to be a solution of equation (42). This

case is not treated in this work. However, since for this kind of structure the struc-

tural damping is much smaller than the hydrodynamical one, the use of ζ1 = 0 is a295

good approximation for practical situations.

6. Results and discussion

Numerical investigations are carried out using the presented ROMs and the fi-

nite element simulations. Also, the numerical results of the 1-DOF ROMs are com-

pared to the multiple scales solution presented. The structural data is presented in300

Table 1 and are extraced from [33] and used by [19] as a case study for the applica-

tion of the segmentation method. In [18] this data is used in the numerical example

of the non-linear modes of a vertical rod.

Table 1: Data for the structural model extracted from [33].

Property Value(
µ+µa

)
1200 kg/m

E I 318.6×106 Nm2

γ 3433.5 N/m

E A 8541.8×106 N

L 2000 m

ρ 1025 kg/m3

D 0.5588 m

µa is the potential added mass for a cylinder. The mean drag coefficient is taken

as CD = 1.0, and the bottom tension is taken as Tb = 13.133×106 N. As mentioned305
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before, the results here are focused on the case of null structural damping, that is,

c = 0 Ns/m2. The parameters of the ROMs with these physical properties can be

found in table 6, Appendix A. The different ROMs are numerically integrated using a

Runge-Kutta scheme implemented in the ode45 function available in Matlab®. The

dimensionless time-step ∆τ = 0.1 and the total simulation dimensionless time is310

τt = 6000. Post-critical amplitude maps are constructed by taking the average of the

peaks in the last 1% of the time-series in order to obtain the steady state amplitude

Am . In addition, for the 1-DOF ROMs (ROM(i) and ROM(ii)), the post-critical maps

were plotted using the multiple scales solution as well.

Simulations using the finite element method (FEM) are also carried out for the315

sake of comparison. These higher-order hierarchical models are simulated using the

in-house software Giraffe, which has proved to be a useful tool for riser analysis. The

rod is modelled using 100 elements composed of three nodes each. The submerged

weight, added mass and Morrison drag forces are applied along the elements, while

a sinusoidal displacement is applied to the top of the rod. The time integration in320

Giraffe is made with the Newmark scheme with a self-adjusting time-step along the

simulation. Further details regarding Giraffe can be found in [35] and [36]. Not that

Giraffe makes use of the finite element described in [34], which is the same element

used for modelling the example herein worked.

One of the issues of the amplitude comparison is the fact that each ROM uses325

a different projection basis. Also, the FEM solution gives the time-series of the dis-

placement of each modelled node. In this study, the displacement field of the rod

was constructed for each ROM, using its respective projection functions. Then, the

point used for comparison of steady-state amplitude was the one who presented

the highest amplitude in each case, being that also adopted for the solution based330

on the FEM. Note that the point with the highest amplitude is more or less the same

between the different cases, as it can be seen in the modal shapes presented in Fig-

ure 3. Finally, considering the synchronous vibrations that are obtained in this kind

of problem, the value obtained for the maximum displacement amplitude along the

span is the most relevant from an engineering point of view.335

In order to keep the offshore engineering practice in the view, first-order motions

of the floating unit (observed, typically, with periods between 2 and 20 seconds - the

same of the sea-waves) are used as a source for the parametric excitation. The natu-
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ral frequencies of the first mode of the structure obtained from the FEM model and

from the three ROMs are presented in Table 2. As it can be calculated, the first mode340

will be under the principal Mathieu instability for waves with a period of 17 sec-

onds. In Table 2 the three frequencies obtained for ROM(iii) and the FEM solution

are presented in ascending order.

Table 2: Natural frequencies calculated by each model.

Model Mode Frequency (rad/s) Period (s)

FEM 1 0.1833 34.3

FEM 2 0.3667 17.1

FEM 3 0.5502 11.4

ROM(i) 1 0.1836 34.2

ROM(ii) 1 0.1643 38.2

ROM(iii) 1 0.1839 34.2

ROM(iii) 2 0.3674 17.1

ROM(iii) 3 0.5552 11.3

Completing the modal analyses, the shapes of the first mode of vibration are

compared in Figure 3.345
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Figure 3: Normalized modes of vibration for each model. Modal shape comparison.

The “Bessel-like" function is clearly the one suitable to represent the modes of
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vibration of this type of structure. Also, considering the results shown in Table 2, the

use of a single trigonometric function to obtain a ROM for the problem is clearly not

adequate in modal terms.

Figures 4 and 5 show the post-critical amplitude maps numerically and analyti-350

cally obtained from the analysis of ROM(i). In turn, Figures 6 and 7 show the same

maps resulting from ROM(ii).

Figure 4: Post critical amplitude map for ROM(i) in color-scale. Numerical integration results. n indicat-

ing the dimensionless frequency of the imposed motion, Am the steady-state amplitude and δ indicating

the dimensionless amplitude of the imposed motion.
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Figure 5: Post critical amplitude map for ROM(i) in color-scale based on the multiple scale analysis. n

indicating the dimensionless frequency of the imposed motion, Am the steady-state amplitude and δ

indicating the dimensionless amplitude of the imposed motion.
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Figure 6: Post critical amplitude map for ROM(ii) in color-scale. Numerical integration results. n indicat-

ing the dimensionless frequency of the imposed motion, Am the steady-state amplitude and δ indicating

the dimensionless amplitude of the imposed motion.
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Figure 7: Post critical amplitude map for ROM(ii) in color-scale based on the multiple scale analysis. n

indicating the dimensionless frequency of the imposed motion, Am the steady-state amplitude and δ

indicating the dimensionless amplitude of the imposed motion.

As it can be noticed from the analysis of Figures 4 to 7, there is a good agree-

ment between the multiple scales solution and the values obtained using numerical

integration of the equations of motion that govern the ROMs. One noticeable lim-355

itation of the analytical solution is the prediction of the frequency with the highest

amplitude as the amplitude of the parametric excitation grows. Another limitation

is that only the region close to the principal parametric excitation is captured by the

analytical solution. Notice, however, that focus is placed in the latter region.

Two major differences are noticed between the results in Figures 4 and 6. First,360

the amplitudes of steady-state motion are higher for ROM(ii). Second, there are

more regions of non-zero motion in Figure 6. The number of those regions and

the post-critical amplitude of response within them grow quickly with the ampli-

tude of the parametric excitation. This occurs because, since the stiffness obtained

in ROM(ii) is smaller, those regions start at lower values of δ. Since the frequency365

range is the same, the number of regions is larger in figure 6.
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Now, for ROM(iii), the post-critical amplitude map is shown in Figure 8. The

map is plotted using equation (15) for a particular point along the riser. For that

purpose, the displaced position of the riser is recovered from the shape functions

and the displacement time-series of one point is used to calculate the steady-state370

amplitude. The point considered is the one with unitary displacement on the modal

shape presented in Figure 3, at Z = 968 m.

Figure 8: Post critical amplitude map for ROM(iii) in color-scale. Numerical integration results. n indicat-

ing the dimensionless frequency of the imposed motion, Am the steady-state amplitude and δ indicating

the dimensionless amplitude of the imposed motion.

In Figure 8, The areas of steady-state response for three modes can be seen. In

the region corresponding to the first mode, it can be seen that ROM(iii) and ROM(i)

give results that are in agreement with each other, showing that in terms of repre-375

sentation of the mode in study, both approaches wield similar results. This can be

better seen in Figure 9 where focus is placed on the principal parametric resonance

of the first mode.
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Figure 9: Post critical amplitude map for ROM(iii) in color-scale around the principal parametric exci-

tation of the first mode. Numerical integration results. n indicating the dimensionless frequency of the

imposed motion, Am the steady-state amplitude and δ indicating the dimensionless amplitude of the

imposed motion.

In order to state the agreement of each ROM with an adopted reference, com-

parisons with the FEM solution are made. Figure 10 depicts the evolution curves of380

the steady-state amplitude with respect to the parametric excitation amplitude over

the principal parametric resonance (n = 2). For the FEM solution, the point with the

highest displacement during the motion is considered, which corresponds to the

modal amplitude in the case of ROM(i). Due to the presence of Morrison’s quadratic

damping, the point where the curves in Figure 10 start ascending in response am-385

plitude is not the origin. Bellow the values of dimensionless excitation amplitude

δ needed to start non-trivial responses, the stable solution is the trivial one. This

feature can be seen in Figure 11.
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Figure 10: Post critical amplitude comparison for the different models on the principal parametric reso-

nance (n = 2) as function of the dimensionless amplitude of excitation δ.
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Figure 11: Post critical amplitude comparison for the different models on the principal parametric res-

onance (n = 2) as function of the dimensionless amplitude of excitation δ. Focus on the region of small

δ.

As can be noticed, there is a good agreement on the steady-state amplitude pre-

diction between the FEM solution, ROM(i) and ROM(iii). The limit of the results390

presented, δ= 3, corresponds to 45% of the model stiffness. Since most of the stiff-

ness is from geometric nature (i.e., that associated with the traction in the rod), this

corresponds to values of axial displacements that are significant for the structural

behaviour. From this point on, the ROMs are expected to start losing accuracy be-

cause they are based on the hypothesis that the axial dynamics can be disregarded.395

As can be seen in Figures 4, 6 and 8, there is a widening in the range of excitation

frequencies that causes the models to exhibit a steady-state motion as the ampli-

tude of excitation grows. This means that care should be taken when dealing with

high values of the parametric excitation amplitude. Since the range of frequency

in which there is some response is large in that situation, the interaction between400

modes can occur for large excitation amplitudes and the 1-DOF model is not able to

reproduce this phenomenon. However, in engineering applications, the amplitude
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of parametric excitations are expected not to be so large. For this case, ROM(i) and

ROM(iii) give good results as compared to the finite element solution.

Now, in order to compare the models from a computational point of view, the405

time required for the simulation of each model is presented in Table 3. All the simu-

lations were carried out in the same standard household desktop without any other

tasks running in background. For the ROMs, it was measured the time required

to produce the simulations for a 600×600 post-critical amplitude map, resulting in

360000 simulations. The average time of a single simulation was then taken from410

that global measure. For the FEM the average of ten simulations was taken as the

average time for one single simulation and the time required for a 600×600 was es-

timated with that average.

Table 3: Comparison of computational time required by each type of solution.

Model Method Simulation of a 600x600 map (s) Single simulation (s)

FEM Numerical 483.1×106 1.342×103

ROM(i) Numerical 29.3×103 0.082

ROM(i) Analytical 11.5×10−3 3.194×10−8

ROM(iii) Numerical 114.9×103 0.319

With those results, some advantages of the ROMs and the analytical solution can

be drawn. When is desirable to know the response of the structure in some partic-415

ular frequencies, the ROMs are clearly a faster option in order to give preliminary

estimates. Also, the time demanded for a FEM simulation would lead to a high or

even impracticable computational time costs in order to do parametric studies, like

the one presented by the post-critical amplitude maps. Finally, the analytical solu-

tion has a great advantage even in relation to the numerical solution of the ROMs.420

This turns the analytical solution presented into an useful tool for engineering prac-

tice, since it can help defining the study-cases that need a more refined analysis

while having a small computational time cost. Note that the analytical solution was

only possible for the ROMs with a single DOF and that the quality of this ROM was

acquired thanks to the use of the “Bessel-like" function.425

Now, to make a qualitative comparison of the responses, the phase space for the

four models are presented in Figure 12. For the FEM solution, the displacements

and velocities of the point with the highest displacement during the steady-state
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motion are considered. The simulations presented in the figure represent the case

of the principal parametric resonance, n = 2. Two different top motion amplitudes430

are considered in the comparison, being them δ = 0.50 and δ = 3.00. This is made

to give another view of how closely each ROM agrees with the reference case and to

show the effects of the motion amplitude in the phase-space portrait.
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Figure 12: Comparison of the phase space portrait for the steady-state solution with different models and

amplitudes. Dimensionless frequency of excitation n = 2.

It can be seen from the phase space portraits that both ROM(i) and ROM(iii) are

in good agreement with the numeric reference. Both the amplitude and the shape of435

the limit cycle are well predicted by those two models. ROM(ii) in its turn presents a

larger amplitude for the same excitation. Those results confirm what was previously
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shown in figure 10. One interesting conclusion can be drawn from the limit cycles

with large amplitude, the case with δ = 3.00. ROM(i) reproduces a limit cycle that

is more close to the reference in both amplitude and shape than the one produced440

by ROM(iii), even with the latter having more DOF. This shows that, even with the

shape of the “Bessel-like" and the trigonometric functions not being so different, the

gains in terms of analysis can be quite different. Also, although the inclusion of more

projection functions allowed to obtain good modal shapes and frequencies using

trigonometric functions, ROM(i) still remains closer than ROM(iii) to the reference445

for large amplitudes.

7. Final remarks

Three reduced-order models (ROMs) were constructed to analyse the transver-

sal vibrations of an immersed, vertical and flexible rod under parametric excitation.

The ROMs were obtained using a Galerkin’s scheme with different shape functions.450

The first ROM (ROM(i)) used one “Bessel-like" function, which is a good approxima-

tion to the actual mode of vibration of the structure. For the second ROM (ROM(ii)),

one trigonometric function was used as a shape function. Finally, for the third ROM

(ROM(iii)), a multi-modal approach was carried out, using three trigonometric func-

tions as shape functions. Finite element simulations (FEMs) were also carried out to455

be used as a reference to verify the adherence of the ROMs. A riser is considered as

a case study and focus is placed on the parametric instability of the first mode.

The models were compared by means of phase space portraits and curves rep-

resenting the evolution of the steady-state amplitude of response with the variation

of the excitation amplitude at the frequency that corresponds to the principal Math-460

ieu’s instability. The use of a “Bessel-like" shape function can be concluded to lead

to good results if compared to the FEM solution in the range in which the hypoth-

esis of disregarding the axial dynamics is still acceptable. For the models based on

trigonometric functions, it is clear that an approach with more than one shape func-

tion to approximate the solution is needed, since ROM (ii) has proved to not properly465

represents the dynamics observed in the FEM solution. Although leading to a more

cumbersome algebra in order to obtain the ROM, it is concluded that the use of a

“Bessel-like" function is required for a good 1-DOF ROM. This also leads to three

gains in analysis terms. First, the problem becomes simpler, as it is reduced to a sin-
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gle equation of motion. Second, the evaluation of this ROM using numerical tools470

is faster than for ROM(iii). Finally, an analytical solution for the steady-state ampli-

tude of a generic Duffing-Mathieu-Morrison oscillator was obtained for the case of a

single DOF. This requires a good 1-DOF ROM, which is provided by the “Bessel-like"

function but not by a trigonometric function.

Additionally, maps of the vibration amplitude as functions of the parametric ex-475

citation frequency and amplitude were presented. Those maps were numerically

obtained from the ROMs. For the 1-DOF ROMs the maps were also obtained us-

ing the analytical solution, showing good agreement with the same maps obtained

numerically. The computational time for the construction of those maps were eval-

uated and compared. ROM(i) is considerably faster than ROM(iii), giving another480

advantage for the use of a 1-DOF ROM. In addition, the construction of the maps

with the analytical solution can be made in a fraction of second, which gives a prac-

tical advantage in using a ROM based in the “Bessel-like" function for a vertical rod.

This means that preliminary analysis and decisions in the offshore engineering can

be made with a very low computational cost for the motivational problem herein485

investigated. Finally, the use of the ROMs allows for this kind of parametric investi-

gations, that would be very costly in computational time when using the FEM.

Further works include the consideration of the linear structural damping in the

analytical solution and investigations regarding the situations where two distinct so-

lutions are predicted. Multi-modal approaches using “Bessel-like" modes instead of490

the trigonometric functions could be used to determine the value of excitation am-

plitude over which modal interaction starts to occur. In addition, for values below

this one, the post-critical amplitude for the continuous model can be obtained by

the superposition of the analytical solution herein presented for various modes of

the structure.495
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Appendix A

Table 4: Parameters for 1-DOF ROMs.

Parameter Expression

α1
(
µ+µa

)∫ L

0
ψbψb dZ

α2 c
∫ L

0
ψbψb dZ

α3

∫ L

0
E IψIV

b ψb −γψ′
bψb −γZψ′′

bψb −Tbψ
′′
bψb dZ

α4 −E A

L

∫ L

0
ψ′′

bψb dZ

α5 −E A

2L

∫ L

0
ψ′

bψ
′
b dZ

∫ L

0
ψ′′

bψb dZ

α6
1

2
ρDCD

∫ L

0
ψ2

b

∣∣ψb
∣∣ dZ

β1
α2

α1ωb

β2
Dα4

α1ω
2
b

β3
D2α5

α1ω
2
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β4
Dα6

α1

a1
(
µ+µa
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a2
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(mπ
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+
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E A

2

(mπ
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E AL

8

(mπ

L

)4

a6
2

3π
ρDLCD

b1
a2

a1ωs

b2
Da4

a1ω
2
s

b3
D2a5

a1ω
2
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b4
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Table 5: Parameters for 3-DOF ROM.

Term Expression Term Expression

a11
(
µ+µa

)
L/2 a12 cL/2

a21
(
µ+µa

)
L/2 a22 cL/2

a31
(
µ+µa

)
L/2 a32 cL/2

a13
E I L

2

(
iπ

L

)4

+
(

iπ

L

)2 (
γL2

4
+ TbL

2

)
a14

E A

2

(
iπ

L

)2

a23
E I L

2

(
jπ
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)4

+
(

jπ

L
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γL2

4
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2
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a24
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jπ

L
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a33
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(
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k
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2
2

)
b37 a38D2/

(
a31ω

2
2

)
b18 a19D2/

(
a11ω

2
2

)
b28 a29D2/

(
a21ω

2
2

)
b38 a39D2/

(
a31ω

2
2

)
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Table 6: Numerical parameters.

Par. Value Par. Value Par. Value Par. Value

β1 0 β2 0.1475 β3 0.0092×10−2 β4 0.1072

b1 0 b2 0.3251 b3 0.0126×10−2 b4 0.1132

b11 0 b12 1.0075 b13 0.1451 b14 −0.3009

b15 0 b16 0.0100×10−2 b17 0.0400×10−2 b18 0.0901×10−2

b21 0 b22 4.0307 b23 0.5806 b24 −0.0752

b25 −0.7312 b26 0.0016 b27 0.0400×10−2 b28 0.0036

b31 0 b32 9.0713 b33 1.3063 b34 0

b35 −0.3250 b36 0.0081 b37 0.0901×10−2 b38 0.0036
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[19] I. Senjanović, A. M. Ljuština, J. Parunov, Natural vibration analysis of tensioned

risers by segmentation method, Oil & Gas Science Technology 61 (2006) 647–

659 (2006). doi:http://dx.doi.org/10.2516/ogst:2006004.

[20] I. K. Chatjigeorgiou, Solution of the boundary layer problem for calculating the

natural modes of riser-type slender structures, Journal of Offshore Mechanics560

and Arctic Engineering 130 (2008) 011003–011003–7 (2008).

[21] S. Chandrasekaran, N. Chandak, G. Anupam, Stability analysis of TLP theters,

Ocean Engineering 33 (2006) 471–482 (2006).

[22] M. Keber, M. Wiercigroch, Comparison of dynamical responses of an offshore

riser with linear and nonlinear structural characteristics through nonlinear565

normal modes, in: OCEANS 2007 - Europe, IEEE, 2007 (jun 2007). doi:

10.1109/oceanse.2007.4302410.

[23] M. Keber, M. Wiercigroch, Dynamics of a vertical riser with weak structural

nonlinearity excited by wakes, Journal of Sound and Vibration 315 (3) (2008)

685–699 (aug 2008). doi:10.1016/j.jsv.2008.03.023.570

[24] S. W. Shaw, C. Pierre, Normal modes for non-linear vibratory systems, Journal

of Sound and Vibration 164 (1993) 85–124 (1993).

[25] G. R. Franzini, C. C. P. Santos, C. E. N. Mazzilli, C. P. Pesce, Parametric excita-

tion of an immersed, vertical and slender beam using reduced-order models:

influence of hydrodynamic coefficients, Marine Systems & Ocean Technology575

11 (1-2) (2016) 10–18 (apr 2016). doi:10.1007/s40868-016-0013-z.

[26] G. R. Franzini, T. Dias, C. Mazzilli, C. P. Pesce, Parametric excitation of an

offshore riser using reduced-order models based on bessel-type modes: as-

sessment on hydrodynamic coefficients effects, in: Proceedings of the 6th

35

https://doi.org/10.1016/j.oceaneng.2018.02.063
https://doi.org/10.1016/j.oceaneng.2018.02.063
https://doi.org/10.1016/j.oceaneng.2018.02.063
https://doi.org/http://dx.doi.org/10.2516/ogst:2006004
https://doi.org/10.1109/oceanse.2007.4302410
https://doi.org/10.1109/oceanse.2007.4302410
https://doi.org/10.1109/oceanse.2007.4302410
https://doi.org/10.1016/j.jsv.2008.03.023
https://doi.org/10.1007/s40868-016-0013-z


International Conference on Nonlinear Science and Complexity, INPE In-580

stituto Nacional de Pesquisas Espaciais, 2016 (2016). doi:10.20906/cps/

nsc2016-0009.

[27] C. E. N. Mazzilli, T. Dias, Non-linear reduced-order modelling of heave-

imposed motion in vertical risers, in: Proceedings of the 15th Pan-American

Congress of Applied Mechanics - PACAM XV, 2015 (2015).585

[28] C. E. Mazzilli, F. Rizza, T. Dias, Heave-imposed motion in vertical risers: A

reduced-order modelling based on bessel-like modes, Procedia IUTAM 19

(2016) 136–143 (2016). doi:10.1016/j.piutam.2016.03.018.

[29] G. R. Franzini, A. Gay Neto, Numerical investigations on parametric excitation

of a vertical beam under prescribed axial displacements, in: Proceedings of the590

22nd International Conference on Sound and Vibration, 2015 (2015).

[30] G. R. Franzini, C. E. N. Mazzilli, Non-linear reduced-order model for parametric

excitation of vertical and immersed slender rod, International Journal of Non-

linear Mechanics 80 (2016) 29–39 (2016). doi:10.1016/j.ijnonlinmec.

2015.09.019.595

[31] C. E. N. Mazzilli, C. T. Sanches, O. G. P. Baracho Neto, M. Wiercigroch, M. Ke-

ber, Non-linear modal analysis for beams subjected to axial loads: Analytical

and finite-element solutions, International Journal of Non-linear Mechanics 43

(2008) 551–561 (2008). doi:10.1016/j.ijnonlinmec.2008.04.004.

[32] A. H. Nayfeh, B. Balachandran, Applied Nonlinear Dynamics: Analytical, Com-600

putational and Experimental Methods, John Wiley & Sons, Inc., 1995 (1995).

[33] C. Sparks, Transverse modal vibrations of vertical tensioned risers. a simplified

analytical approach, Oil & Gas Science and Technology 57 (1) (2002) 71–86 (jan

2002). doi:10.2516/ogst:2002005.

[34] A. G. Neto, C. A. Martins, P. M. Pimenta, Static analysis of offshore risers605

with a geometrically-exact 3d beam model subjected to unilateral contact,

Computational Mechanics 53 (1) (2013) 125–145 (jul 2013). doi:10.1007/

s00466-013-0897-9.

36

https://doi.org/10.20906/cps/nsc2016-0009
https://doi.org/10.20906/cps/nsc2016-0009
https://doi.org/10.20906/cps/nsc2016-0009
https://doi.org/10.1016/j.piutam.2016.03.018
https://doi.org/10.1016/j.ijnonlinmec.2015.09.019
https://doi.org/10.1016/j.ijnonlinmec.2015.09.019
https://doi.org/10.1016/j.ijnonlinmec.2015.09.019
https://doi.org/10.1016/j.ijnonlinmec.2008.04.004
https://doi.org/10.2516/ogst:2002005
https://doi.org/10.1007/s00466-013-0897-9
https://doi.org/10.1007/s00466-013-0897-9
https://doi.org/10.1007/s00466-013-0897-9


[35] A. G. Neto, Dynamics of offshore risers using a geometrically-exact beam model

with hydrodynamic loads and contact with the seabed, Engineering Structures610

125 (2016) 438–454 (oct 2016). doi:10.1016/j.engstruct.2016.07.005.

[36] A. G. Neto, Giraffe user’s manual - generic interface readily accessible for finite

elements, http://sites.poli.usp.br/p/alfredo.gay/, accessed 25 Jan 2019 (2019).

37

https://doi.org/10.1016/j.engstruct.2016.07.005

	Introduction
	Continuous model
	1-DOF reduced-order models
	3-DOF reduced-order model
	Multiple Scales solution
	Results and discussion
	Final remarks

