

UNIVERSITÀ POLITECNICA DELLE MARCHE Repository ISTITUZIONALE

Plasma oxidation status and antioxidant capacity in psoriatic children

This is the peer reviewd version of the followng article:

Original

Plasma oxidation status and antioxidant capacity in psoriatic children / Bacchetti, T.; Simonetti, O.; Ricotti, F.; Offidani, A.; Ferretti, G.. - In: ARCHIVES OF DERMATOLOGICAL RESEARCH. - ISSN 0340-3696. - 312:1(2020), pp. 33-39. [10.1007/s00403-019-01976-z]

Availability:

This version is available at: 11566/272477 since: 2024-04-14T08:47:11Z

Publisher:

Published

DOI:10.1007/s00403-019-01976-z

Terms of use:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of copyrighted works requires the consent of the rights' holder (author or publisher). Works made available under a Creative Commons license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor's website for further information and terms and conditions.

This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the published version.

Plasma oxidation status and antioxidant capacity in psoriatic children.

Tiziana Bacchetti§,¹Oriana Simonetti²§*, Francesca Ricotti¹, Annamaria Offidani¹, Gianna Ferretti³

§ Both authors contributed equally to this work.

²Department of Life and Environmental Sciences- Biochemistry; ¹Department of Clinical and

Molecular Sciences- Dermatology, ³Department of Clinical Experimental Science and

Odontostomatology- Biochemistry, Università Politecnica delle Marche, 60100, Ancona, ITALY.

Corresponding author

*Oriana Simonetti

Clinic of Dermatology, Department of Clinical and Molecular Sciences, Università Politecnica delle

Marche, 60100, Ancona, ITALY.

o.simonetti@univpm.it

Phone: +39-071-5963494

Running title: Role of myeloperoxidase in psoriatic children

1

ABSTRACT

Background: Psoriasis, a chronic inflammatory skin disease, is associated with oxidative stress of serum lipoproteins.

Objectives: In psoriatic children we evaluated the activity and levels of myeloperoxidase, the activity of paraoxonase-1 (PON1) and biochemical markers of lipid peroxidation, to investigate wether an unbalance between oxidant-antioxidants occurs very early in psoriasis.

Materials and Methods: A total of 52 patients affected by psoriasis and 48sex-age matched healthy controls were enrolled. Serum MPO levels were measured using ELISA method. MPO and PON1 activities (paraoxonase, arylesterase and lactonase) were evaluated by spectroscopic methods.

Results: Our results demonstrated a significant increase of MPO levels and activity in psoriatic subjects. PON1 activities were found to be significantly decreased. A positive correlation has been established between the MPO/PON1 ratio and levels of lipid peroxides in all psoriatic patients.

Conclusions: These results suggest that an unbalance between MPO and PON1 can reflect in higher oxidative stress in serum lipoproteins.

KEY WORDS

Myeloperoxidase, paraoxonase-1, high density lipoproteins, pediatric psoriasis, lipid peroxidation.

INTRODUCTION

Psoriasis (PS) is a chronic inflammatory skin disease characterized by increased keratinocyte proliferation and alterations in dermal and epidermal T-cells, monocytes-macrophages and neutrophils [1]. Increased cardiovascular and metabolic co-morbidity [2,3] related to alterations of plasma lipoprotein levels and composition has been described [4-8]. A relationship between psoriasisand oxidative stress has also been demonstrated with higher levels of biochemical markers of plasma lipid and protein oxidation[4,9-11], including higher levels of lipid peroxidation markers in very low density and low density lipoproteins in adult patients with a history of disease that lasts for years [12]. High titers of autoantibodies against oxidized low density lipoproteins (ox-LDL) confirm that in vivo oxidation of LDL occurs in plasma of psoriatic patients [13]. Furthermore, an accumulation of ox-LDL has been detected in the upper epidermis of the involved skin from psoriatic patients by direct immune-fluorescent method [14]. Compositional and functional alterations of high density lipoproteins (HDL) have also been studied in psoriasis and recently reviewed [15-18]. A decrease of cholesterol efflux from macrophages, higher levels of lipid hydroperoxides and a decrease of the anti-inflammatory and antioxidant properties has been reported in HDL from adult psoriatic patients [16,18]. In detail, the activity of paraoxonase 1 (PON1), a multitasking enzyme associated to HDL [19], is significantly lower in adult PS patients and a relationship with disease activity has been observed [11, 20].

The study of the molecular mechanisms that could trigger oxidative damage to lipoproteins *in vivo* in psoriasis has not been previously investigated. A role of the enzyme myeloperoxidase (MPO) in oxidative damage of plasma lipoproteins has been recently reported in atherosclerosis and inflammatory diseases[21]. Myeloperoxidase (MPO), secreted by activated monocytes, is a prooxidative and pro-inflammatory hemeprotein [22], which catalyzes the conversion of chloride and hydrogen peroxide to hypochlorite [22]. MPO generates other reactive oxygen species such as hydroxyl radical and singlet oxygenand cross-links proteins [21]. ROS generated by activated monocytes oxidatively modify LDL and HDL *in vitro*[22]. Previous studieshave suggested that the ratio between serum levels of myeloperoxidase and paraoxonase 1 activity could be a potential indicator of dysfunctional high-density lipoprotein [23]. We studied MPO levels and activity, PON1 activity and biochemical markers of lipid peroxidation in pediatric patients to investigate whether an unbalance between oxidant-antioxidants occurs very early in psoriasis.

MATERIALS AND METHODS

Subjects

52 psoriaticchildren (29/23 F/M mean age 9.8 ± 3.7) affected by psoriasis were included through consecutive recruitment from new referrals and follow-up visits at the Clinic of Dermatology of the Department of Clinical and Molecular Sciences of the Polytechnic University of Marche.

Inclusion criteria for pediatric patients were: a confident clinical diagnosis of psoriasis, age between 0–14 years and onset of disease within the past 12 months. Only scalp involvement or diaper rash was not regarded as sufficient for diagnosis. Diaper rash psoriasis was not included because of the difficulty in separating psoriatic diaper rash from other diaper rashes. None among the patients showed any clinical sign, or reported a history of psoriatic arthritis. Subjects with diabetes, clinical evidence of cardiovascular diseases, or receiving lipid-lowering drugs or antioxidant supplements were excluded from the study to avoid possible interferences on PON1 activity and plasma lipids. All selected subjects had avoided UVBnb, UVBbb, UVA or PUVA treatments and direct sun exposure for almost four weeks. Disease severity was quantified by the Psoriasis Area and Severity Index (PASI) (Table 1).

48 pediatric subjects (25/23 F/M mean age, 10.3 ± 2.7 years) ,age and sex matched ,without skin or systemic inflammatory disease (e.g. with nevi, molluscum contagiosum, warts) and without a family history of psoriasis or psoriatic arthritis were also recruited

Both controls and PS patients have comparable body mass index (BMI) (21.8 for control vs 22.5 for patients). All the procedures were in accordance with the Helsinki Declaration of 1975, as revised in 2000. The study was approved by "Ethics Committee, OspedaliRiuniti di Ancona". Written informed consent for participation in the study was obtained from each patient's parent with the approval of the attending physician.

Sample collection

Blood samples of controls and PS patients were collected at 8 a.m., after overnight fasting. Venous blood (about 10 ml) was placed in two tubes. An aliquot was incubated with heparin and plasma was separated by low speed centrifugation (3000 rpm) at 4°C for 20 min. Another aliquot was used for serum separation. A glass centrifuge tube containing blood (about 5 ml) without anticoagulant was left at room temperature for 30 min to allow formation of the clot, which was immediately removed. The tubes were centrifuged in a tabletop centrifuge for 10 min at a rotation speed of 2000 rpm. Both plasma and serum samples were divided in aliquots and stored immediately at -80°C.

Plasma lipid profile

Fasting levels of total cholesterol (TC), HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C) and triglycerides (TG) were measured in plasma of controls and PS patients using commercially available kits (Roche Diagnostics, Switzerland).

Serum lipid peroxidation

The levels of lipid hydroperoxides were determined in serum of controls and psoriatic patients using FOX2 assay as previously described [11]. The levels of lipid hydroperoxides were quantified using a stock solution of t-butyl hydroperoxide. The results are shown as μ mol of lipid hydroperoxides for L of serum.

Serum Total Antioxidant capacity

Serum total antioxidant capacity was assessed using the oxygen radical absorbance capacity (ORAC) assay [24]. The oxygen radical absorbance capacity of serum employs the oxidative loss of intrinsic fluorescence of fluorescein induced by the free radical initiator 2,2'-azobis(2-amidinopropane) hydrochloride. Fluorescein fluorescence decay shows a lag or retardation in the presence of antioxidants, related to the antioxidant capacity of the sample. Trolox was used as a reference antioxidant for calculating the ORAC values. Results were expressed as μ mol Trolox equivalents /L (μ mol TE/L).

Serum PON1 Activities

PON1 activities were evaluated in serum of controls and psoriatic patients using three substrates [25] paraoxon for paraoxonase activity, phenylacetate for ary lesterase activity and dihydrocoumarin for lactonase. All assays were performed in a 96 well plate, in a total reaction volume of 200 μ L. Paraoxonase Activity. 10 μ L of serum (non-diluted samples) were used. The basal assay mixture included 5mmol/L Tris-HCl, pH 7.4 containing 1 mmol/L CaCl₂ and 1.0 mmol/L paraoxon. Paraoxon hydrolysis was spectrophotometrically monitored for 8 min (every 15 s) at 412 nm. Non-enzymatic hydrolysis of paraoxon was subtracted from the total rate of hydrolysis. One unit of PON1 paraoxonase activity was equivalent to 1 nmol of paraoxon hydrolyzed/ min/ mL .

Arylesterase Activity. Serum samples were diluted 1:10 with 1 mmol/L CaCl₂ in 50 mmol/L Tris HCl, pH 8.0 and then, 5 μ L was taken for a total reaction volume of 200 μ L. After addition of the substrate phenyl acetate (1 mmol/L), the hydrolysis was monitored at 270 nm for 3 min (every 15 s). One unit of arylesterase activity was equivalent to 1 μ mol of phenyl acetate hydrolyzed/min/mL.

Lactonase Activity. Serum samples were diluted 1:10 with 1 mmol/L $CaCl_2$ in 50 mmol/L Tris HCl, pH 8.0 and 3 μ L were then taken for the assay. After addition of the substrate dihydrocoumarin (DHC) (1.0 mmol/L), the hydrolysis was monitored at 270 nm for 10 min (every 15 s). Non enzymatic hydrolysis of DHC was subtracted from the total rate of hydrolysis. One unit of lactonase activity was equivalent to 1 μ mol of DHC hydrolyzed/min/mL.

All assays were performed in a 96 well plate, in a total reaction volume of 200 µL.

Myeloperoxidase levels and activity

Serum MPO levels were measured using a solid phase two-site MPO ELISA Kit from Mercodia (Uppsala, Sweden) according to instructions provided by the manufacturer (26).

MPO activity was evaluated by a colorimetric Activity Assay Kit (Sigma-Aldrich).

Statistical analysis

The results are reported as mean ± standard error (SE). For the comparison of normally distributed variables between groups, Student's t-test was used. Paraoxonase activity showed a non gaussian distribution; therefore we used a non-parametric test (Wilcoxon rank sum test). Pearson correlation coefficients and their significance levels were calculated for linear regression analysis. Differences were considered statistically significant at p<0.05 (Microcal Origin 5.0, OriginLab, Northampton, MA).

RESULTS

As shown in the table 1, plasma levels of total cholesterol, HDL-C, LDL-C were not significantly modified in paediatric patients compared to controls.

Lipid peroxides and total antioxidant capacity

Higher levels of lipid hydroperoxides (Table 2) and lower values of total antioxidant capacity were observed in serum of patients compared to sex-age matched healthy control children. The differences were statistically significant.

Activity of PON1 and levels of MPO

As reported in Table 2, lower activities of PON1 (paraoxonase, arylesterase and lactonase) were observed in sserum of patients compared to control subjects (p<0.05). In the same patients, a

significant increase of serum levels and activity ofmyeloperoxidase (MPO) was found in PS children (p<0.05,Table 2). The comparison of the ratio between serum MPO level /PON1 paraoxonase activity (MPO/PON1 ratio) showed higher levels in patients compared to controls (p<0.05, Table 2). In all groups of subjects, levels of serum PON1 paraoxonase activitywere negatively correlated with serum MPO concentration (Table 3). Furthermore a significant positive correlation was established between serum levels of lipid hydroperoxides and MPO/PON1 ratio (Table 3).

DISCUSSION

Higher levels of biomarkers of lipid peroxidation, lower total antioxidant capacity and lower PON1 activities in serum of psoriatic children have been demonstrated. The lower activity of PON1 is in good agreement with other studies in adult subjects [11,15, 20]. Our results, in absence of significant changes of plasma lipids, suggest that oxidative stress and an unbalance between oxidant-antioxidants occurs very early in psoriatic children.

Our study, for the first time, demonstrates also a significant increase in serum MPO levels and activity in psoriatic children and PON1 activity was negatively correlated with MPO levels. A higher ratio MPO/PON1 was observed in serum of pediatric patients compared to controls. Moreover a positive correlation has been established between the MPO/PON1 ratio and levels of lipid peroxides in all psoriatic patients. These results suggest that an unbalance between MPO and PON1 can reflect in higher oxidative stress in serum lipoproteins. All psoriatic children included in our study had a mild form of the disease. No correlation has been established between PASI scores and biochemical indexes of lipid peroxidation or PON1 activities in psoriatic children. In adult patients a negative correlation between PON1 activity and PASI score has been reported in subjects with PASI values ranging from moderate to severe disease by other authors [26-28]. However, other studies did not find significant relationship between PON1 activities and severity of the disease [29]. These results are likely related to disease duration ranging from few months to several years.

Some hypotheses can be formulated to explain the potential molecular mechanisms involved in the alterations of PON1 activities in psoriatic children. We suggest that the higher MPO levels and activity could contribute to alterations of HDL and paraoxonase. This hypothesis is supported by previous studies which have demonstrated that among molecular mechanism able to trigger lipid peroxidation of lipoproteins, an emerging role is reserved to the enzyme MPO [21-23]. High MPO levels and/or activity have recently been demonstrated in a psoriatic animal model [30]. Moreover

in adult human subjects psoriatic lesions are characterized by a focal dense infiltration of neutrophils, T lymphocytes and macrophages that migrate from the vascular to the dermal compartment and through all layers of the epidermis up to the stratum corneum [31]. Furthermore Dylek et al [32] have recently demonstrated that neutrophils in psoriasis lesions are actively producing MPO [32]. *In vitro* studies confirm that MPO and reactive oxygen species generated by neutrophils trigger lipid peroxidation of LDL and HDL [22]. In particular MPO mediates modifications of apoAl with formation of chlorotyrosine and nitrotyrosine from tyrosine residues [33-35]. Other mechanisms could be involved. A considerable number of inflammatory cytokines have been shown to be elevated in lesional psoriasis skin in adult subjects [36]. Previous studies have shown that inflammation in both humans and rabbits leads to the loss of PON1 activity and a decreased ability to protect LDL against oxidation [19]. TNF and IL-1 leads to a decrease in PON1 mRNA levels in liver and a decrease in serum PON1 activity [37].

In conclusion, our data demonstrate that psoriasis in pediatric patients, is associated with higher levels of MPO, oxidative damage of plasma lipids and lipoproteins, a decrease in antioxidant defensesand a significant decrease of PON1. The higher ratio MPO/ PON1 suggests dysfunctional high-density lipoprotein in psoriatic pediatric patients. HDL has a number of important functions (anti-oxidant, anithrombotic) that could reduce the risk of CVD and which may be adversely impacted by inflammation [38]. As aforementioned, PON1 is a multitasking protein localized at the HDL surface and is associated with protection against oxidative stress- related diseases [19, 39], in fact it exerts a protective role against lipid peroxidation of biological membranes, HDL and LDL [19, 39, 40]. We suggest that whenever the activity of the antioxidant enzyme PON1 is lowered, it will be unable to prevent oxidation of membranes and LDL and coud be involved in the higher oxidative stress in psoriasis.

Figure 1 summarizes our hypothesis of the potential role of MPO and PON1 in inflammation and lipid peroxidation in psoriasis. The relationship between psoriasis, oxidative stress,inflammation and alteration of lipoprotein functions is supported by previous studies, which have demonstrated that drug treatments decrease inflammation, lipid peroxidation and recover HDL functions in psoriatic adult patients [17, 20]. It as to be stressed that modifications of HDL composition, PON1 activity and MPO levels realize early in pediatric patients, even in absence of modification of plasma lipids

Although further studies are necessary to evaluate whether the lower PON1 activities are primary events or a consequence of abnormal metabolism of inflamed skin in pediatric patients, we suggest

that an intensive multidisciplinary lifestyle intervention on inflammatory biomarkers could positively affect risk factors for cardiovascular disease in psoriatic children.

Financial support: NONE.

Conflict of Interest. NONE.

REFERENCES

- 1) Crow JM(2012)Psoriasis uncovered. Nature 492(7429):S50-1.
- 2) Augustin M, Glaeske G,Radtke MA,Christophers E,Reich K,Schäferl(2010)Epidemiology and comorbidity of psoriasis in children. Br J Dermatol162(3):633-6.
- 3) Miller IM, EllervikC, Yazdanyar S, Jemec GB (2013) Meta-analysis of psoriasis, cardiovascular disease, and associated risk factors. JAm AcadDermatol 69(6):1014-24.
- 4) Ferretti G, AllevaR, Taus M, Simonetti O, Cinti B, Offidani A, Bossi G, and G. Curatola G (1994) Abnormalities of plasma lipoprotein composition and fluidity in psoriasis. Acta Dermato Venereol 74(3):171-5.
- 5) Koebnick C, BlackM-H, SmithN, Der-SarkissianJK, PorterAH, Jacobsen SJ(2011)The Association of Psoriasis and Elevated Blood Lipids in Overweight and Obese Children.J Pediatrics 159(4):577-83.
- 6) Simonetti O, FerrettiG, SalviA, OffidaniA, Bossi G(1992) Plasma lipid changes in psoriatic children. Dermatology 185(2):96-100.
- 7) Pietrzak A, Michalak-StomaA, ChodorowskaG, SzepietowskiJC (2010) Lipid Disturbances in Psoriasis: An Update. Mediat Inflamm 2010, 535612.
- 8) Vanizor Kural B, OremA, CimsitG, YandiYE, CalapogluM(2003) Evaluation of the atherogenic tendency of lipids and lipoprotein content and their relationships with oxidant-antioxidant system in patients with psoriasis. Clinica Chimica Acta 328(1-2):71-82.
- 9) Matoshvili M, Katsitadze A, Sanikidze T, Tophuria D, Richetta A, D'Epiro S(2014) Alterations of redox-status during psoriasis. Georgian Medical News232-233:60-4.

- 10) Yazici C, KoseK,UtasS,TanrikuluE,TaslidereN(2016)A novel approach in psoriasis: first usage of known protein oxidation markers to prove oxidative stress. ArchDermatol Res 308(3):207-12.
- 11) Ferretti G, BacchettiT, CampanatiA, Simonetti O, Liberati G, Offidani A (2012) Correlation between lipoprotein(a) and lipid peroxidation in psoriasis: role of the enzyme paraoxonase-1. Br J Dermatol 166(1):204-7.
- 12) Offidani AM, Ferretti G, Taus M, Simonetti O, Dousset N, Valdiguie P, Curatola G, Bossi G (1994) Lipoprotein peroxidation in adult psoriatic patients. Acta Dermato Venere ol 186:38-40.
- 13) Orem A, Cimsit G,DegerO,OremC,VanizorB(1999) The significance of autoantibodies against oxidatively modified low-density lipoprotein (LDL) in patients with psoriasis. Clin Chim Acta284(1):81-8.
- 14) Tekin NS, TekinIO, BarutF, SipahiEY (2007) Accumulation of oxidized low-density lipoprotein in psoriatic skin and changes of plasma lipid levels in psoriatic patients. Mediators of Inflammation 2007, 78454.
- 15) Paiva-Lopes MJ, Delgado AlvesJ(2017)Psoriasis-associated vascular disease: the role of HDL. J Biomed Sci 24(1):73.
- 16) Holzer M, WolfP, CurcicS, Birner-Gruenberger R, Weger W, Inzinger M, El-Gamal D, Wadsack C, Heinemann A, Marsche C (2012) Psoriasis alters HDL composition and cholesterol efflux capacity. JLipid Res 53(8):1618-24.
- 17) Holzer M, WolfP, InzingerM, TriebM, CurcicS, PasterkL, Weger W, Heinemann MA, Marsche G(2014)Anti-Psoriatic Therapy Recovers High-Density Lipoprotein Composition and Function. J Invest Dermatol 134(3):635-42.
- 18) He L, QinS, Dang L, Song G, Yao S, Yang N, Li Y(2014) Psoriasis decreases the anti-oxidation and anti-inflammation properties of high-density lipoprotein. BiochimBiophys Acta. 1841(12):1709-15.
- 19) Mackness M, MacknessB(2015) Human paraoxonase-1 (PON1): Gene structure and expression, promiscuous activities and multiple physiological roles. Gene567(1):12-21.
- 20) BacchettiT, Campanati A, Ferretti G,Simonetti O, Liberati G,Offidani A(2013)Oxidative stress and psoriasis: the effect of antitumour necrosis factor- inhibitor treatment. Br J Dermatol168(5):984-9.

- 21) Heinecke JW(1999)Mechanisms of oxidative damage by myeloperoxidase in atherosclerosis and other inflammatory disorders. J LabClinMed 133(4):321-5.
- 22) Zhang RL, BrennanML, ShenZZ, MacPhersonJC, SchmittD, MolendaCE, HazenSL (2002) Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. J Biol Chem277(48):46116-22.
- 23) Haraguchi Y, TohR, Hasokawa M, Nakajima H, Honjo T, Otsui K, Mori K, Miyamoto-Sasaki M, Shinohara M, Nishimura K, Ishida T, Hirata K (2014) Serum myeloperoxidase/paraoxonase 1 ratio as potential indicator of dysfunctional high-density lipoprotein and risk stratification in coronary artery disease. Atherosclerosis 234(2):288-94.
- 24) Ou BX, Hampsch-WoodillM,PriorRL(2009) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. JAgricFood Chem49(10):4619-26.
- 25) Rock W, RosenblatM, Miller-LotanR, Levy AP, Elias M, Aviram M (2008) Consumption of wonderful variety pomegranate juice and extract by diabetic patients increases paraoxonase 1 association with high-density lipoprotein and stimulates its catalytic activities. J Agric Food Chem 56 (18):8704-13.
- 26) Ferretti G, Bacchetti T, Campanati A, Simonetti O, Liberati G, Offidani A (2012) Correlation between lipoprotein(a) and lipid peroxidation in psoriasis: role of the enzyme paraoxonase-1. Br J Dermatol 166: 204-7.
- 27) He L, Qin S, Dang L, Song G, Yao S, Yang N, Li Y (2014) Psoriasis decreases the anti-oxidation and anti-inflammation properties of high-density lipoproteinBiochim Biophys Acta. 1841(12):1709-15.
- 28) Attwa E, Swelam E (2011) Relationship between smoking-induced oxidative stress and the clinical severity of psoriasis. J Eur Acad Dermatol Venereol. 2011 Jul;25(7):782-7.
- 29) Pektas SD, Akoglu G, Metin A, Neselioglu S, Erel O.(2013) Evaluation of systemic oxidant/antioxidant status and paraoxonase 1 enzyme activities in psoriatic patients treated by narrow band ultraviolet B phototherapy. Redox Rep. 18(5):200-4.
- 30) Baek JO, ByambaD, WuWH, KimTG, LeeMG(2012) Assessment of an imiquimod-induced psoriatic mouse model in relation to oxidative stress. Arch Dermatol Res 304(9), 699-706.
- 31) Pietrzak A, Kozioł-Montewka M, Lecewicz-Toruń B, Krasowska D. (2000) Is there any correlation between the total number of neutrophils in plasma and concentration of interleukin-8 in psoriatic patients? Med Sci Monit. 6:867–70

- 32) Dilek N, DilekAR, TaskinY, ErkinuresinT, YalcinO, SaralY (2006) Contribution of myeloperoxidase and inducible nitric oxide synthase to pathogenesis of psoriasis. Postepy Dermatolologii i Alergologii 33(6):435-9.
- 33) Zheng L, NukunaB,BrennanML,SunM,GoormasticM,SettleM,SchmittD, FuX, ThomsonL, FoxPL, IschiropoulosH, SmithJD, KinterM, HazenSL(2004)Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease.JClin Invest 114(4):529-41.
- 34) Peng DQ, WuZ,BrubakerG,ZhengL,SettleM,GrossE,KinterM, HazenSL, SmithJD (2005) Tyrosine modification is not required for myeloperoxidase-induced loss of apolipoprotein A-I functional activities. J Biol Chem 280(40):33775-84.
- 35) Huang Y, WuZP, Riwanto M, Gao SQ, Levison BS, GuX, FuX, Wagner MA, Besler C, Gerstenecker G, Zhang R, LiXM, Di Donato AJ, Gogonea V, Tang WH, Smith JD, Plow EF, Fox PL, Shih DM, Lusis AJ, Fisher EA, DiDonato JA, Landmesser U, Hazen SL (2013) Myeloperoxidase, paraoxonase 1, and HDL form a functional ternary complex. J Clin Invest 123(9):3815-28.
- 36) Baliwag J, Barnes DH, Johnston A.(2015) Cytokines in psoriasis. Cytokine. 73(2):342-50
- 37) Feingold KR, Memon RA, Moser AH, Grunfeld C. (1998) Paraoxonase activity in the serum and hepatic mRNA levels decrease during the acute phase response. Atherosclerosis 139:307-15.
- 38) Feingold KR, Grunfeld C. (2016) Effect of inflammation on HDL structure and function. Curr Opin Lipidol. 27(5):521-30.
- 39) Chambers JE(2008) PON1 multitasks to protect health. Proc Nat Acad Sci U.S.A. 105(35):12639-40.
- 40) Ferretti G, BacchettiT, Masciangelo S, Bicchiega V (2010) HDL-paraoxonase and membrane lipid peroxidation: a comparison between healthy and obese subjects. Obesity 18(6):1079-84.

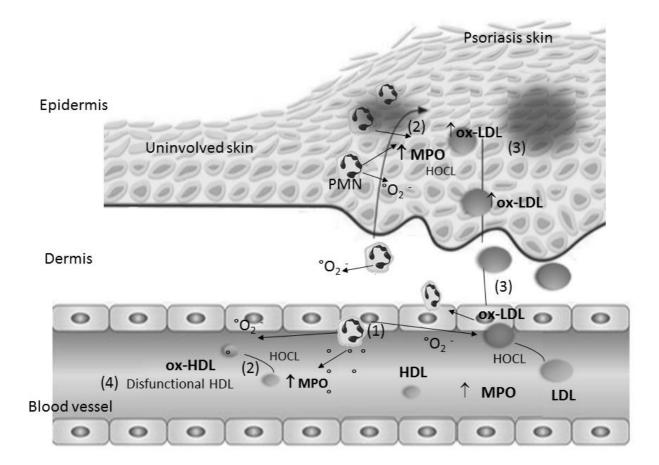
FIGURE LEGEND

Figure 1. Schematic representation of potential molecular mechanisms involved in lipid peroxidation, lipoprotein dysfunction and alterations in inflamed skin in psoriasis .

- (1) The higher production of superoxide anion and MPO from activated PMN contributes to lipid peroxidation of LDL and HDL.
- (2) MPO catalyzes the conversion of chloride and hydrogen peroxide to hypochlorite, a strong reactive oxygen species (ROS).
- (3) Oxidized LDL (ox-LDL) and oxidized HDL (ox-HDL) show compositional and functional alterations. In particular ox-LDL exert pro-inflammatory properties and activate migration and degranulation of PMN. Ox-HDL have lower PON1 activity and exibit lower antioxidant and anti-inflammatory activity.

Table 1: Clinical characteristics and plasma parameters in controls and subjects affected by psoriasis. TG, triglycerides; TC, total cholesterol; LDL-C, LDL cholesterol; HDL-C, HDL cholesterol

	Healthy subjects	PsoriaticPatients
Age (years)	9.8 ± 3.7	10.3± 2.7 years
Fastingglucose (mg/dL)	81.1±7.7	73.4±15.8
TG (mg/dL)	74.3±18.4	75.2±31.0
TC (mg/dL)	165.9±26.7	158.2±25.5
HDL-C(mg/dL)	51.6±7.3	49.21±6.5
LDL-C (mg/dL)	89.9±20.9	90.1±24.1
ВМІ	21.8±3.5	22.7±3.1
PASI	-	9.8± 4.3


Table 2: PON1 activities (paraoxonase, arylesterase, lactonase), MPO activity and levels in controls and psoriatic patients *p<0.05 vs healthy subjects

	Healthy subjects	Psoriatic patients
Lipid hydroperoxides (μmol/L)	2.56 ± 0.7	5.2 ± 1.4*
Total antioxidant capacity (mmol TE /L)	13.2 ± 1.9	8.78 ± 4.1*
PON-1 – paraoxonase (U/mL)	211.1 ± 13.9	94.7±9.6*
PON-1 – arylesterase (U/mL)	76.3± 2.6	51.2±3.0*
PON1 –lactonase (U/mL	27.2± 1.4	18.3±1.5*
MPO levels (ng/mL)	101.8±12.3	149.6±14.8*
MPO activity	9± 3	14± 2*
MPO /PON1 (paraoxonase) ratio	0.7± 0.09	1.85± 0.31*

Table 3 : Correlations between PON1 paraoxonase activity and MPO levels and between MPO/PON1 ratio and lipid hydroperoxide levels in serum of control subjects and of patients affected by psoriasis.

	Healthy subjects	Psoriaticpatients
PON1 activity vs MPO levels	r= -0.64,p<0.004	r= -0.57, p<0.01
MPO/ PON1 ratio vs lipid hydroperoxides	r=0.46, p<0.03	r=0.69, p<0.006

Figure 1

