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Abstract 

The current paper focuses on a sector of the historic centre of Muccia, in the district of Macerata 

(Italy), affected by the seismic sequence that involved Central Italy in 2016. The main goal is the 

comparison in terms of fragility curves among two vulnerability assessment methodologies, empirical 

and mechanical ones. The study area has been structurally and typologically identified according to 

the Building Typology Matrix (BTM). The physical vulnerability analysis of the urban-sector was 

performed through the application of a specific form for masonry building aggregates. Consecutively, 

an isolated masonry building, damaged after the seismic sequences, has been selected as a case study.  

On the assessed building, empirical fragility curves are presented according to the Guagenti & 

Petrini’s correlation law. Furthermore, the numerical model was built by using the macro-element 

approach, in order to simulate the seismic behaviour of the analysed structure. Mechanical 

properties of masonry were defined according to the New Technical Codes for Constructions 

(NTC18), assuming a limited knowledge level (LC1). A refined mechanical fragility functions 

have been derived and compared to the empirical ones.

From the results achieved, the empirical method tends to overestimate by 5% and 10% the expected 

damage for slight and moderate thresholds. Contrary, for PGA values greater than 0,3g the damage 

levels decreased by 30% and 20%, with reference to the near collapse and collapse conditions, 

respectively.

Keywords: Masonry buildings, empirical method, mechanical method, vulnerability assessment, 

damage scenarios, fragility curves.
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1. State of Art

The seismic risk assessment is a multivariate problem based on the estimation of three major factors 

such as vulnerability (V), hazard (H) and exposure (E). The combination of these factors allows to 

qualitatively and quantitatively describe the risk in a given area and allows estimates of possible 

losses as a result of catastrophic events. The estimation of these three factors is very important for the 

planning of interventions (on an urban scale) of risk mitigation [1, 2]. The concept of vulnerability, 

V, is mainly based on the capacity of a building to suffer specific damage due to a seismic event. The 

exposure, is connected to the nature, quantity and value of the properties and activities of the area 

that can be influenced directly or indirectly by a seismic event and finally, the hazard is understood 

as the probability of occurrence of the asymptomatic event of a certain intensity in a specific site, and 

depends mainly on the geographic position and the geological characteristics of the site in which the 

event is expected. The seismic hazard represented by the frequency and the force of the earthquakes 

that affect it, or by its seismicity. It is defined as the probability that in an area and in a certain time 

interval an earthquake occurs that exceeds a threshold of intensity, magnitude or peak acceleration 

(PGA).

Masonry has been one of the most popular construction materials developed during the centuries as 

it provided economic and functional solutions worldwide. Nevertheless, the existing unreinforced 

masonry buildings (URM) are typically identified as "potential risk factors" due to the behaviour of 

masonry that is very complicated to be predicted.  In fact, when the URM buildings are subjected to 

shaking due to the earthquake, the mass of the walls and lightweight flexible diaphragms, leads to a 

rigid-fragile global behavior that triggers the possible collapse mechanisms increasing the possibility 

of repercussions on society (physical and economic losses). Generally, these constructions have been 

designed to resist only gravity loads, offering a very low resistance to seismic actions [3, 4]. 

The URM response depends on several aspects that mainly affect the ductility piers and strength of 

the walls [5]. The failure mode is affected by several parameters, such as the vertical compression 

due to gravity loads, the wall aspect ratio, the boundary conditions, and the relative strength between 

mortar joints and units. In the past, strong earthquakes have caused considerable damage given the 

poor consistency of the building samples. The damage is attributed to an inadequate structural 

integrity and to the lack of connection between the orthogonal walls which results in typical shear 

cracking and disintegration of the walls with consequent partial or total collapses [6, 7]. It seems 

evident that the many uncertainties, mainly associated with the mechanical characteristics of the basic 

material (not homogeneous and anisotropic) and construction techniques, negatively influence the 

structures' capacity to overcome a seismic event [8]. 
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Focusing on historical centers, they are characterized by numerous buildings of immeasurable 

architectural and cultural value. In fact, the large number of old masonry buildings in many of the 

Italian seismic areas represents one of the crucial points for the preservation and protection of the 

existing heritage.

The heterogeneity of buildings formed in aggregate is a very delicate aspect as it requires a significant 

level of knowledge on every single building that is however very small compared to numerical 

analysis methodologies. Nevertheless, ordinary buildings located in the historical centres are often 

made of different quality masonries and constructive details that can highlight deficiencies with 

respect to safety conditions against seismic actions [9, 10]. A significant number of proposals based 

on simplified modeling approaches is already available in the scientific literature. Most of them are 

based on the assumption that the masonry wall is represented as a set of one-dimensional macro-

elements (piers and spandrels), connected by nodes in such a way as to reproduce the behavior of the 

wall by an equivalent frame, which gives the possibility of using conventional numerical methods of 

structural mechanics [11, 12]. Other advanced methods, proposed in [13, 14], investigates the seismic 

response by means of non-linear dynamic analysis assuming that masonry behaves as a damaging-

plastic material with almost vanishing tensile strength. Generally, the presence of vulnerability factors 

is a fundamental feature that significantly decreases the strength of the walls, influencing the damage 

distribution mainly due to out-of-plane actions. Furthermore, it has been stated that a preliminary 

structural assessment through kinematic limit analysis on partial failure mechanisms may be reliable 

only after a proper estimation of the different structural elements playing a role in the horizontal 

behavior (e.g. interlocking between walls, typology of masonry, distribution of horizontal loads, 

constraints and dead loads distribution, etc.). The comparison between the numerical results and the 

damage survey showed that the numerical approach used in [15] may be an adequate tool to properly 

evaluate the seismic response of historical masonry buildings. However, it would be unreasonable to 

perform numerical analyses on each individual building within historic centers.

To this purpose, the large-scale evaluation methodologies are mainly based on observational data for 

a significant sample of buildings, therefore, for the evaluation of the seismic vulnerability of the 

aggregates, rapid methods are generally used (vulnerability index method) for an appropriate 

vulnerability estimate and the attribution of the vulnerability class is supported on information on 

buildings (drawings and on-site inspections) [13, 14].  The peculiarity of this methodology lies in the 

fact that it can be combined with the macroseismic method for the assessment of damage scenarios. 

The macroseismic methodology, therefore, foresees to be able to evaluate the susceptibility of a stock 

of buildings to the variation of the hazard which in the specific case is defined as macroseismic 
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intensity EMS-98 [15]. The possibility of identifying the most vulnerable sample of buildings, allows 

previously to mitigate the effects of the seismic phenomenon [16]. 

Based on these premises, the main target of this research work is to identify the seismic response of 

the isolated building by means of fragility curves developed using different approaches in order to 

obtain a synthetic damage parameter under different grade earthquakes.

2. Historical background of the City of Muccia

The City of Muccia (Fig.1) is an Italian town of 911 inhabitants in the province of Macerata in the 

Marche region. The Municipality is 454 m on the sea level with an area of 25.91 Km2. On the banks 

of the Chienti River, located at an important road junction since antiquity, Muccia hosts numerous 

archeological finds, remarkable 15th century churches and a wonderful Franciscan hermitage, oasis 

of peace and meditation. Since prehistory, has been characterised as a knot of important 

communication channels. In the middle Ages, under the name of Mutia, it was a strategic place for 

the processing and trade of grains, so that the lordship of Da Varano di Camerino erected a castle in 

defense of mills [17].
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Figure 1. The city of Muccia in the Marche region of Italy.

On January 1436 it was sacked by the troops of Francesco Sforza when he occupied the Marche. His 

proximity to Camerino makes him presumptuous. Next, with the Napoleonic Kingdom of Italy, was 

part of the department of Tronto, district of Camerino, canton of the same name. With the district of 

Camerino, he passed to the Musone department in 1811.The definitive destruction of the Musone 

took into account decree no. 118 of July 14th 1807, and brought together in a single municipality 

several nearby locations, so that none of them had a population of less than 1000 inhabitants. During 

the Restoration, it was common under the governorate of Camerino, in the homonymous delegation. 

The advent of the Unity of Italy, the commune became part of the province of Macerata in Camerino's 

mandate. Muccia is also a center characterized by numerous archeological finds and sites of interest, 

among which are the Church of Santa Maria di Varano, with an octagonal plan, the "Tower of Massa", 

"Torraccia" at Mentori.s.l.m. 808 at Massaprofoglio (Fig. 2).
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(a) (b) 
Figure 2. Archeological site: a) Sant Maria di Varano Church; b) Massaproglio Castle.

2.1. The Central Italy seismic sequences

The first main-shock occurred August 24th, 2016 had its epicenter in the province of Rieti (near the 

municipality of Accumoli), but it also affected the provinces of Perugia, Ascoli Piceno, L'Aquila and 

Teramo. The municipalities closest to the epicenter are: Accumoli, Amatrice, Arquata del Tronto. 

The maximum moment magnitude recorded, Mw, was equal to 6,0. The area affected by the 

aftershocks, which in a first approximation represents the extension of the activated fault, is 

approximately 25 km and is aligned in the sense NNO - SSE. Subsequently, several aftershocks have 

been recorded, the largest of which are in the area of Norcia (PG) with magnitude equal to 5,4. The 

hypocenter depths of the replicas are modest, almost all within the first 10 km [18].

Two powerful replicas took place on October 26th, 2016 with epicentres at the Umbria-Marche border 

between the municipalities of Visso, Ussita and Castelsantangelo sul Nera with a magnitude of 5,9. 

On October 30th, 2016, the strongest shock, magnitude 6,5, with the epicenter between the 

municipalities of Norcia and Preci, in the Province of Perugia was recorded. The observations and 

preliminary analyses prepared by INGV [19] through seismological surveys, allowed a first 

interpretation of the event (Figure 3).
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(a) (b) 

(c)
Figure 3. Shake maps of the events occurred: (a) August 24th, 2016; (b) October 26th, 2016 and (c) October 

30th, 2016 [19].

The seismogenetic area was characterized by the presence of different segments of fault with high 

structural complexity. The focal mechanisms (slip) allow identifying the type of movement that 

occurred following a specific earthquake, then how the area moved in response to tectonic 

deformation as reported in Fig. 4.
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Figure 4. The focal mechanism occurred [19].

Already from the morning of August 24th, following the first excavations in the area, some surface 

fractures (cosmic effects) have been discovered and mapped [20], showing a continuity of at least 1,8 

km from the Monte Vettore side. The maximum of cosismic deformation seems to be found near 

Accumoli (Fig. 5).

Figure 5. The coseismic deformation map [20].
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The area was characterised by a vertical extension indicated with "+" in the previously figure, while, 

the zone subject to a depression, is indicated with the symbol "-". The green line indicates the seismic 

fault that generated the earthquake. 

3. Seismic vulnerability assessment of the historical centre of Muccia

3.1. Characterisation of the study area

The sub-urban sector analysed (Fig.6) is to be considered homogeneous from a typological and 

structural point of view. It consists of 50 masonry buildings dating back to the 19th century.

Figure 6. The sub-urban sector identification.

According to Building Tipology Matrix (BTM) [21], this sector is composed by 50 buildings: 

M3.1 class masonry structures with steel floors (36% of the cases) and M3.3 class masonry 

structures with wooden floors (54%) and M3.4 masonry structures with rc floors (10%) (Fig.7).
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Figure 7. Typological characterisation of sub-urban sector. 

The masonry aggregates under study generally develop in elevation from 2 to 3 stories. The inter-

storey height is about 3.00-4.00 m for the first level and 3.00-3.50 m for other floors. 

Roofing structures are often composed of double pitch r.c. beams with clay tile covering or wooden 

elements. It many cases the presence in the walls of an incongruous and brittle binder, which lost over 

time its characteristics, compromises the static nature of the buildings themselves and, sometimes, of 

the whole aggregate. The presence of these vulnerability factors increases the possibility of collapse 

and instability of the historical built-up when subjected to an impacting seismic action (Fig. 8).

(a) (b)

Figure 8. Building conformation: a) vertical configuration; b) structural heterogeneities.
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3.2. Seismic vulnerability assessment

Aiming at implementing a quick seismic evaluation procedure for masonry aggregates, it has been 

used the new vulnerability form proposed in Table 1 [22], which has been used in recent years for the 

seismic vulnerability assessment of several historical masonry aggregate [23, 24]  (Table. 1).

Table 1. The vulnerability form for buildings in aggregate.
Class Score, SiParameters

A B C D
Weight, Wi

1. Organization of vertical structures 0 5 20 45 1,00
2. Nature of vertical structures 0 5 25 45 0,25
3. Location of the building and type of foundation 0 5 25 45 0,75
4. Distribution of plan resisting elements 0 5 25 45 1,50
5. In-plane regularity 0 5 25 45 0,50
6. Vertical regularity 0 5 25 45 0,50
7. Type of floor 0 5 15 45 0,80
8. Roofing 0 15 25 45 0,75
9. Details 0 0 25 45 0,25
10. Physical conditions 0 5 25 45 1,00
11. Presence of adjacent building with different height -20 0 15 45 1,00
12. Position of the building in the aggregate -45 -25 -15 0 1,50
13. Number of staggered floors 0 15 25 45 0,50
14. Structural or typological heterogeneity among adjacent 
S.U. -15 -10 0 45 1,20

15. Percentage difference of opening areas among adjacent 
facades -20 0 25 45 1,00

This new form is based on the method of the vulnerability index devised by Benedetti and Petrini 

[25]. This survey form is composed of 10 basic parameters and has been widely used in the past to 

survey the main structural system and the fundamental seismic deficiencies of isolated buildings in 

the case of an earthquake. In order to consider the structural interaction between adjacent buildings, 

not considered in the previously mentioned method, a new form has been adopted. The new form of 

investigation, appropriately conceived for the aggregates of masonry buildings, is conceived by 

adding five new parameters to the ten basic parameters of the original form. These new parameters 

take into account the interaction effects between the aggregate structural units under earthquake [26].

Formally, the methodology is based on the evaluation of a vulnerability index, Iv, for each S.U. of the 

aggregate intended as the weighted sum of the 15 parameters mentioned above. In Table 1, it is 

possible to notice how these parameters are distributed into four classes (A, B, C and D) with scores, 

Si, of growing vulnerability. 
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A weight, Wi, is associated to each parameter that can range from 0,25 for the less important 

parameters to a maximum of 1,50 for the most important ones. According to this, the vulnerability 

index, Iv, can be calculated according to the following equation:

15

1
V i i
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I S W
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  (1)

Subsequently, Iv is normalised in the range [0÷1], adopting the notation VI, by means of the following 
relationship:
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Based on these premises, the statistical distributions of the global vulnerability of the sub-urban 

sector analysed has been depicted in Figure 9. 

(a) (b)

(c)

Figure 9: Vulnerability fraquency distributions of the sample of buildings belonging to (a) M3.1, (b) M3.3 

and (c) M3.4 typological classes.
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From the analysis of the results, it is worth noting how 28% of buildings belonging to the 

typological class M3.1 have a vulnerability index of 0,42 and only 5% have an index of 0,50 and 

0,60.  Similarly, for the class M3.3, 34% of the sample will have a vulnerability index of 0,42 

and has a minimum of 3% associated with a vulnerability index of 0.38. Considering the M3.4 

class, 35% of the buildings case have index of 0,38 and the 15% have index equal to 0,20 and 

0,60, respectively.

3.3. Typological vulnerability curves

The proposed procedure, developed by [27], allows correlated macroseismic intensity, according 

to the EMS-98 scale, with the expected mean damage grade mathematically expressed by Eq. (3). 

𝜇𝐷 = 2,5[1 +  𝑡𝑎𝑛ℎ( 
𝐼 + 6,25 ×  𝑉𝐼 ‒ 13,1

𝑄  )] (3)

As can be seen, the vulnerability curves depend on three variables: the vulnerability index (VI), 

the hazard, expressed in terms of macroseismic intensity (I), and a ductility factor Q, ranging 

from 1 to 4, which describes the ductility of typological classes of buildings and has been assumed 

as equal to 2,3 as proposed by [9]. The method refers to the vulnerability model implicitly 

included in the EMS-98 and accounts for the uncertainty in the attribution of the different building 

typologies to the EMS-98 vulnerability classes and for the variability in the building-to building 

vulnerability within the same typology. Therefore, the mean vulnerability curves shown in Figure 

10 have been plotted in order to estimate the collapse probability of analysed buildings for 

different scenarios (VI-σVI, Mean; VI +σVI, Mean; VI +2σVI, Mean; VI +2σVI, Mean) [28, 29].  

(a) (b)

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767



(c)
Figure 10: Mean typological vulnerability curves for the sample of buildings examinated.

4 Estimated damage scenario

4.1 Damage model prediction

Scenario analysis allows to analyse in detail the damage associated with a generic structural 

system when subjected to a natural event. Referring to the case study examined, the damage 

associated with a seismic event is considered. In particular, according to the Section 2.1, a set of 

magnitudes, enclosed in the range [5,4 ‐ 6,5] have been selected. 

The severity of the damage was analysed thanks to predictive analysis in which, during the 

earthquake, buildings with the same structural characteristics would be subject to a damage that 

decreases when increase the epicentral distance. Subsequently, the attenuation law defines the 

macrosismic intensity according to EMS-98 by the formula proposed by Crespellani, [30] and 

reported in Equation (4).

98 6,39 1,756 2,747 ln( 7)EMS wI M R      (4)

where, Mw is the moment magnitude occurred and R is the site-source distance expressed in Km.  

According to the scale EMS-98, six damage levels, Dk, each one associated to a damage score k, 

ranging from 0 to 5, are defined: D0: no damage; D1(moderate damage): with hair-line cracks in very 

few walls and fall of small pieces of plaster only; D2 (substantial damage): structural damage and 

moderate non-structural damage. Cracks in many walls with fall of fairly large pieces of plaster. 

Partial collapse of chimneys; D3 (significant damage): intensive structural damage and heavy non-

structural damage, with large and extensive cracks in most walls; roof tiles detachment; chimneys 

fracture at the roof line; failure of individual non-structural elements (partitions, gable walls); 

activation of the first out-of-plane mechanisms; 
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D4 (partial collapse): extended damage and very heavy non-structural damage, with serious wall 

failures; partial structural failure of roofs and floors; D5 (collapse): collapse to both non-structural 

and structural parts, with total or near total collapse of the whole building. Considering the 

representative damage parameter μD, the expected number of buildings that undergo a certain 

damage level has been determined (Fig. 11).

(a) Mw= 5,4; IEMS-98= 5 (b) Mw= 6,0; IEMS-98= 6 (c) Mw= 6,5; IEMS-98= 7

Figure 11. Damage scenarios for a set of moment magnitudes occurred.

A complete damage distribution has been defined from the scenario prviously achieved. The 

conditional probability, P[Dk>Di|Mw; R], of exceeding a certain damage state, Dk, varying the 

magnitude, Mw, and epicentral distances, R were presented in Fig. 12.

Mw= 5,4; IEMS-98= 5 Mw= 6,0; IEMS-98= 6 Mw= 6,5; IEMS-98= 7
(a) (b) (c)

Figure 12. Vulnerability fraquency distributions: (a) M3.1, (b) M3.3 and (c) M3.4 typological classes.

As can be seen, for a moment magnitude, Mw, equal to 5,4, a 100% of building stocks reached 

damage D0 (No Damage).  Consequently, for a magnitude 6,0, the damage distribution shows 

that a 90% of the cases reached damage D0, instead only 10% of the sample are characterized by 

damage D2. Furthmore, referring to the event occurred on October 30th (epicenter at Accumuli), 

for a moment magnitude equal to 6,5, the damage distribution provided 40% of the buildings case 

suffered a D2 damage, 6% suffered a damage D3 and only the 8% of the buildings sample have 

D4 damage (Extended damage). 
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Morever, considering the event occurred on October 30th, the correlation between the empirical 

damage scenario and site-inspection recognition have been showed in Fig.13.

Figure 13: Correlation between examineted damage scenario and site-inspection.

4.2 Empirical fragility curves

Once the global vulnerability of the entire sub-sector under investigation was defined, it was possible 

to focus attention on the case study building indicated with the number 45 in the previous Section 3. 

The examined building is in an isolated position (Fig. 14). It is characterized by load-bearing masonry 

walls, with wooden floors and pitched roofs with an average height of 3.50 m. 

The physical conditions denote a widespread damage characterized by the presence of cracks along 

the West and North façades, respectively.
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(b)

(a) (c)
Figure 14: The case study building n.45, (a) street view, intermediate floor (b) and (c) North prospect.

The vulnerability index, VI, derived from the index-based method for isolated buildings, is equal to 

0,40. Fragility curves are used to define the probability of exceeding a certain degree of damage, 

Dk (K [0÷5]). To this purpose, a correlation law proposed by Gaugenti-Petrini [31], is formally 

used in Equation (5). 

ln( ) 0,602 7,073 [ ]PGA I g  (5)

Mathematically, this law provides the variation of PGA as a function of macroseismic intensity, 

I, through empirical correlation coefficients C1 (0,602) and C2 (7,073). The gotten results are 

presented in Fig. 15.

(a) (b)
Figure 15: Fragility curves derived by empirical method (a) and damage distribution (b).
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5 Mechanical vulnerability approach

5.1 Assessment of the structural properties

The mechanical characteristics of the materials were chosen according to Italian New Technical 

Codes for Constructions (NTC18) [32]. The masonry walls, both perimeter and internal, assume a 

constant thickness in height, without the presence of diffused heterogeneity. The mean compressive 

strength of masonry (fm) and shear strength (τ0) are to be considered as minimum values of the range 

established by NTC18 referring to existing masonry buildings, respectively of 1,00 N/mm2 and 0,02 

N/mm2. The modulus of elasticity, E, have been considered of 870 N/mm2, likewise the tangential 

shear modulus, G, equal to 290 N/mm2. The specific weight of the masonry, W, is equal to 19,37 

KN/m3 as achieved in Table 2.  Moreover, the mechanical proeprties of the timber elements (oak) are 

given in Table 3. The expected level of knowledge adopted is LC1 which corresponds to a reduction 

factor of the mechanical properties of the materials, F.C, equal to 1,35.

Table 2. Mechanical properties of masonry.
Mechanical Properties Units Masonry

Modulus of elasticity E (N/mm2) 870
Shear modulus G (N/mm2) 290
Mean compressive strenght fm (N/mm2) 1,00
Tensile strength τ0 (N/mm2) 0,02
Specific weight W (Kg/m3) 1937

Table 3. Mechanical properties of wooden elements.
Mechanical Properties Units Timber

Modulus of elasticity E (N/mm2) 800
Shear modulus G (N/mm2) 590
Mean compressive strenght fm (N/mm2) 18
Tensile strength τ0 (N/mm2) 3,5
Specific weight W (Kg/m3) 570

5.2 Non-linear static analysis

Non-linear static analysis have been performed by using 3Muri software developed by S.T.A. 

DATA srl [33]. About numerical modelling, according to the geometrical survey performed, the 

interstory height is assumed 3.50 m as resorting in the previous section. Wooden floors with 

thickness of 20 cm have been considered at each level. 

Concerning the structural models, the structure is schematized through a series of macroelements 

interconnected to each other, in some cases leading towards the definition of the so-called 

"equivalent frames"[34, 35, 36, 37]. 

1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062



These macro-elements allow simulating the seismic behaviour of masonry structures, providing 

all the information required for their static linear analyses. 

The 3Muri software uses macro-elements to generate the threedimensional model of the structure, 

which is then automatically transformed into an assemblage of 3D equivalent frames to perform 

pushover analyses. The typical macro-element used for static linear analyses is schematised with 

the kinematic model reported in Figure 16 (a). The 3D model of the examined housing building, 

where it is apparent that masonry walls are modelled through a mesh of masonry piers and 

spandrels, is depicted in Figure 16 (b).

(a) (b)
Figure 16: The macro-element kinematic model (a) and (b) the 3D building model with macro-elements 

through the 3Muri software.

The resistence criterias are given on the basis of EN 1998-3 [38] according to which the drift for shear 

and flexural crack mechanisms are established equal to 0.4% and 0.8% of the ultimate displacement 

(du). The shear criteria is based on the diagonal cracks model and adapted to existing masonry 

buildings in the Italian seismic code, NTC18 [32]. The flexural response is developed by neglecting 

the tensile strength of the material and assuming a uniformly distributed compression stress 

distribution at the masonry interface. 

Numerical analysis was performed considering a soil category “C” and a design spectrum referred to 

the Life Safety limit state. Dead and variable loads applied at the different structural levels, as well 

as partial safety factors for gravity loads combination at the Ultimate Limit State, are shown in Table 

4.

Table 4. Design load applied.

Static Load Intermediate Floor 
[KN/m2]

Roof 
[KN/m2]

Partial safety 
factor

G1 3 3 1,3
G2 2 1 1,3
Qk 2 0,5 1,5
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Non-linear static analysis has been performed in the two main directions (X and Y), taking also into 

account the effect of accidental eccentricities. The analysis results in terms of SDoF capacity curves 

and corresponding damage are shown in Figure 17.

(a) (b)

(c) (d)
Figure 17: SdoF capacity curves: (a) X direction, (b) Y direction, (c) damage level in X direction and (d) 

damage level in Y direction.

The capacity curves show that in the X direction the structure has a maximum shear force equal to 

272,66 KN with a yield displacement and ultimate displacements, D*
y and D*

u, equal to 0,0029 m and 

0,0064 m, respectively. Similarly, in Y direction, the maximum shear threshold reached is 360,81 KN 

with the corresponding displacements equal to D*
y= 0,0030 m and D*

u= 0,0065 m.  

Refering to a failure hierarchy, in X direction the distribution of ductile mechanisms (bending 

damage) occurs only in some masonry spandrels, whereas the fragile failures, induced by shear, are 

reached in the East and West façades, respectively. Moreover, the tensile failures are widespread 

(Figure 17 (c)). Similarly, in Y direction, the damage tends to increase globally. In fact, as can be seen 

in Figure 17 (d), bending failures occurred in the panel nodes instead the bending damage in some 

masonry panels. Concerning the shear damage, it is reached in the North and South façades, 

respectively. In terms of ductility (µ), in X direction the estimated value is 2,87 which corresponds 

to a percentage increment of 16,7% compared to the ductility calculated in the Y direction equal to 

2,4. 
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The estimated vulnerability indices associated to the two main directions X and Y are evaluated as 

the ratio between the seismic demand and the corresponding capacity of the building considering the 

Ultimate Limite State (ULS). In particular, the calculated indexes, in X and Y direction, are 0,38 and 

0,48, respectively. 

5.3 Mechanical fragility curves

Fragility curves express the probability of exceeding a generic damage threshold, DK, for a 

predetermined value of the Intensity Measurement (IM), generally represented by the PGA or spectral 

displacements, Sd. The evaluation of the fragility curves is carried out according to the methodology 

proposed by [4]. In particular, four damage thresholds, D1 (slight), D2 (moderate), D3 (near collapse) 

and D4-D5 (collapse), have been defined and achieved in Table 4. As can be seen, the damage states 

are intrinsically defined considering the yelding displacement (Dy) and ultimate displacement (Du) of 

the SDoF system. 

Table 4. Damage thresholds.
Damage Limit State, Di Displacement Limit State

D1 Slight 0,7 Dy

D2 Moderate Dy

D3 Near collapse Dy +0.5(Du - Dy)
D4-D5 Collapse Du

Methodologically, fragility curves are defined according to Equation (6)

1[ | ]
K

K
D

PGAP D PGA
PGA




  
       

(6)

where, Φ, is the cumulative distribution function, PGADK is the median acceleration value associated 

for each damage threshold and β is the standard deviation of the log-normal distribution.

The dispersion, β, generally depends on the contribution of uncertainties in the seismic demand. This 

parameter is a fanction of the ductility, µ, of the structural system intended as the ratio between 

ultimate displacement, Du, and the corresponding yelding displacement, Dy. Based on this 

assumption, the estimate value of the disperisons are given in Table 5 [39].

Table 5. Standard deviation for each damage thresholds.
Standard Deviation, βi Ductility Limit State

β1 Slight 0,25+0,07ln(µ)
β2 Moderate 0,2+0,18ln(µ)
β3 Near collapse 0,1+0,41ln(µ)
β4-β5 Collapse 0,15+0,5ln(µ)

1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239



However, in this research work, the fragility functions are derived according to Equation (7)

2
2

, ,
2

Ka e d e DS S S
T
      

 
(7)

where, Sae is the expected spectral acceleration, T is the vibration period of the structural system 

and SDK is the spectral displacement associated to the damage thresholds reported in Table 4. 

Therefore, the fragility curves have been plotted in both directions, longitudinal X and transversal 

Y, respectively, and depicted in Figure 18.

(a) (b)
Figure 18: Fragility curves (a) X direction, (b) Y direction, respectively.

As analysed, it is possible to compare the fragility functions for the methods adopted in the present 

work. The gotten results are depicted in Figure 19.

(a) (b)

Figure 19: Fragility curves comparison: (a) X direction, (b) Y direction.
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From the comparison of the applied methodologies, it is possible to notice how the fragility curves 

present different values of the expected damage. 

Generally, this discrepancy is due the different procedures to estimate the damage threshold, DK, and 

the uncertainties, βi. 

On one side, the macroseismic methodology, used for large-scale assessment, adopts an acceleration-

intensity conversion law for the identification of the PGA range and, subsequently, it allows to plot 

the fragility curves through the cumulative distribution function without taking into account the 

uncertainties, β. On the other hand, the mechanical procedure provides more refined results since it 

takes into account the uncertainties of the structural system and combines them through the lognormal 

distribution.

Nevertheless, the macroseismic method in both analysis directions, tends to overestimate the damage 

thresholds D1 and D2 by 5% and 10%, respectively, for a spectral acceleration enclosed in the range 

[0÷0,3 g]. Contrary, for PGA values greater than 0,3g, this method provides an underestimation for 

each damage levels considered. In particular, considering a damage D4 and D5 in both directions, it 

is possible to estimate a mean percentage decrese of 30% and 20%, compared to the mechanical 

procedure. As a conclusion, the mechanical approach can be considered as a very reliable tool in 

predicting fragility curves, since it provides safely more accurate results than the empirical method 

ones.

6 Conclusion

The study illustrates a comparison between two different approaches for estimating seismic 

vulnerability in terms of expected damage for an isolated masonry building located in the center 

of Muccia. The study area was composed by 50 structural units erected in aggregate, opportunely 

classified according to the BTM in three different classes as M3.1, M3.3, and M3.4, respectively.

The assessment of seismic vulnerability of the inspected urban-sector has been analysed by means 

of index method approach. The statistical distribution of vulnerability indices shows, globally, a 

medium vulnerability of the stock.

Afterwards, mean typological vulnerability curves were derived in order to characterize the 

expected global damage varyinig the macroseismic intensity accoding to EMS-98 scale. The 

gotten results shown that, for seismic intensities less than X grade, the expected damage has not 

been relevant, but for high values of seismic intensity (X<IEMS-98< XII), the expected damage 

would cause an incipient collapse of the analysed sample. 

Analysis of the damage scenario by means parametric approach have been considered using the 

attenuation law in terms of seismic intensity proposed by Crespellani. 
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Having defined a set of occurred magnitude (Mw) and site-source distances (R), it has been 

possible to analyse in detail the influence of these factors on an urban scale. The results obtained 

have shown that, the most severe scenario was for Mw=6,5 in which at least 40% of the buildings 

reached damage D2 (Substantial damage) and 8% of the cases reached damage D4 (Extended 

damage).

Subsequently, an isolated building was considered as a case study. The mechanical approach was 

used for the characterisation of the structural model. A 3D model of the examined building, was 

modelled through a mesh of masonry piers and spandrels. The capacity of the structure in Y 

direction showed higher damage than the other orthogonal direction. In fact, considering a failure 

hierarchy a bending and shear damages tend to increase globally.  In terms of ductility (µ), the results 

achieved shown an estimated value of µ=2,87 in X direction which corresponds to a percentage 

increment of 16,7% compared to the ductility calculated in the Y direction equal to 2,4. The 

vulnerability indices in X and Y directions, evaluated as the ration between the seismic demand and 

the capacity of the structure, were 0,38 and 0,48 respectively.

Consecutively, the fragility curves have been derived for both, empirical and mechanical 

approaches. From the comparison of the applied methodologies, the fragility curves present different 

values of the expected damage. Generally, these differences are due the different procedures to 

estimate the damage threshold, DK, and the uncertainties, βi.  In particular, the macroseismic method 

in both analysis directions, tends to overestimate the damage thresholds by 5% and 10%, respectively, 

for a spectral acceleration enclosed in the range [0÷0,3 g]. 

Contrary, for PGA values greater than 0,3g, this method provides an underestimation for each damage 

levels considered of of 30% and 20%, compared to the mechanical procedure. In conclusion, the 

macroseismic method can be considered an exhaustive approach for urban scale scenario analysis but 

its empirical nature tends to underestimate the damage compared to the mechanical ones. To improve 

the fragility curves, it will therefore be necessary to improve the estimation of the exposure at the 

time of the earthquake and to complete the observational database in order to ensure all the 

information on the surveyed buildings can be processed. For these reasons, the mechanical 

methodology used for estimating the expected damage through fragility curves, is a proven reliability 

method for the evaluation of seismic vulnerability.
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