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HIGHLIGHTS 15 

 Tensile tests on glass FRCM systems with different fabrics’ overlap lengths have been 16 
performed. 17 

 DIC has been successfully employed to provide the FRCM strain field. 18 
 A variational model has been numerically implemented to simulate the FRCM tensile 19 

behaviour. 20 
 21 
 22 
 23 
ABSTRACT 24 

The use of Fabric Reinforced Cementitious Matrix (FRCM) systems to reinforce existing masonry 25 
and concrete structures is nowadays a well-established practice. The mechanical characterization 26 
of FRCM systems is of fundamental importance to define the correct parameters needed to design 27 
a strengthening intervention. However, some aspects regarding FRCM tensile behaviour need to 28 
be further investigated.  29 
The aim of this paper is to provide a detailed overview on the mechanical behaviour of FRCM 30 
specimens subjected to tensile tests. In this context, the effect of fabrics’ overlapping on the global 31 
behaviour of the system is extensively analyzed. Different sample’s configurations have been 32 
studied: one reinforced with a single layer of bidirectional glass fabric and three others with 33 
different fabrics’ overlap lengths, varying between 100 and 200 mm. Digital Image Correlation 34 
(DIC) has been also used to measure displacements in experimental testing. 35 
A phase-field model, that accounts for brittle fracture of cementitious matrix and fabric 36 
reinforcement and possible slippage at the fabric-to-matrix interface, has been developed. The 37 
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variational formulation has been implemented in a finite element code to simulate the tensile 1 
behaviour of FRCM systems and the effects of using different fabrics’ overlap lengths. 2 
 3 
Keywords: 4 

FRCM; strengthening; tensile behaviour; overlap; Digital Image Correlation; modeling. 5 
 6 

1. Introduction 7 

The use of composite materials, consisting of inorganic matrices reinforced with fabrics in the 8 
form of open mesh textiles (Fabric Reinforced Cementitious Matrix), externally applied to 9 
masonry walls or concrete elements, is nowadays considered an effective and compatible 10 
reinforcement solution. FRCM have considerable advantages if compared to more traditional 11 
strengthening systems (e.g. Fiber Reinforced Polymer (FRP) or steel plates), such as high strength-12 
to-weight ratio, ease of installation, high compatibility with masonry or concrete substrates, 13 
applicability on wet surfaces, resistance to high temperatures and safety for operators during 14 
installation [1-5].  15 
FRCM systems have been successfully employed for flexural and shear strengthening of concrete 16 
beams [6-12], to confine concrete columns [13-17] and as in-plane and out-of-plane reinforcement 17 
of masonry walls [18-23]. However, there are still no standardized procedures for the mechanical 18 
characterization of FRCM systems, and, to date, ACI549.4 R-13 is the only guideline that provides 19 
for the design of reinforcement interventions with these systems [24].  20 
The tensile characterization of FRCM systems is usually carried out by means of two test setups, 21 
the clevis-grip method, required by ACI549.4 R-13 and described in AC434-13 [25], and the 22 
clamping-grip method, recommended by Rilem TC 232-TDT [26]. These two test methods provide 23 
for different boundary conditions at the specimens’ ends and can lead to significantly different 24 
results [27,28]. Even if the mechanical characterization of FRCM systems has been investigated 25 
by several authors [27-30], with different techniques and different materials, there are still some 26 
aspects that need further investigation. 27 
One that deserves attention is represented by the fabrics’ overlap. The limited width of the rolls in 28 
which the fabric is provided by manufactories (about 1 meter), often causes the need to overlap 29 
the fabrics. The minimum overlap length between two fabrics, which should be defined for each 30 
FRCM system, guarantees the complete transfer of tensile stresses from one fabric to another. An 31 
overlap length greater than the minimum overlap length, should promote the failure of the FRCM 32 
reinforcement before debonding of the overlapped FRCM fabrics. Tensile tests on FRCM coupons 33 
with fabrics’ overlap are required by AC434 [25] and the most recent Italian guideline issued by 34 
CSLP [31]. During FRCM installation, it is important to provide sufficient overlap when splicing 35 
fiber fabrics, as determined according to test methods specified in [25]. The required overlap, or 36 
lap-splice length, depends on the tensile strength and thickness of the FRCM material system and 37 
on the bond strength between adjacent layers of FRCM reinforcement [24]. 38 
In this study, the effects of different glass fabrics’ overlap lengths on the mechanical behaviour of 39 
the composite material have been analyzed through tensile tests on prismatic coupons, and then a 40 
minimum overlap length related to the system analyzed has been identified. It is important to 41 
understand if the lap can cause the formation of a weak section with respect to the continuous 42 
fabric section. The objective is to determine the minimum fabrics’ overlap length able to maintain 43 
fabric continuity and to avoid a loss of tensile strength in FRCM specimens. 44 
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Furthermore, in order to obtain the mechanical parameters needed for the strengthening design, it 1 
is also important to identify a reliable way to measure the deformations of FRCM systems during 2 
tensile tests. For this kind of material, consisting of both an inorganic matrix that cracks when 3 
subjected to tensile stresses and a fabric that can slip within the matrix, it may be difficult to 4 
measure displacements and deformations in an accurately way relying on traditional sensors. 5 
Strain gauges can measure only local values and do not allow to monitor the ‘tension stiffening’ 6 
effect of the mortar after the formation of cracks. As for LVDTs, the position of the instruments 7 
with respect to the cracking pattern, clearly unknown before the test, can affect the reliability of 8 
results.  9 
The use of full-field contactless optical methods, such as Digital Image Correlation (DIC), could 10 
be a possible solution that does not interfere with the specimen during the test, and it is not affected 11 
by the formation of cracks on the specimen surface. This method has been already successfully 12 
applied by the authors in testing of metals [32], brittle materials such as ceramics [33], rubber [34], 13 
foam [35] and cork [36]. The application of DIC to FRCM systems has been investigated by 14 
Tekieli et al. [37] and Bilotta et al. [38]. In both cases DIC provided reliable results and additional 15 
information that would have been unavailable otherwise. 16 
In this study, DIC has been successfully used to monitor the evolution of the strain field during 17 
tensile tests and has been able to provide important information about the evolution of the cracks 18 
pattern, local deformations and width of the cracks. 19 
For a better comprehension of the experimental results, a damage model has been numerically 20 
implemented in a finite element code, and simulations have been performed to reproduce the 21 
FRCM tensile response. A phase-field approach has been followed to develop the model, 22 
according to which fracture is approximated by a smooth damage variable and governing and 23 
evolution equations are variationally deduced by minimizing proper energy functionals, depending 24 
on damage and its gradient [39]. In the last years, following the pioneering paper [40] (see [41] for 25 
a more detailed description), several variational formulations were proposed to reproduce many 26 
different failure modes (e.g., shear fracture [42], rupture due only to tensile loads [43,44], ductile 27 
failure [45]), and to describe failure of different materials (rubbers [46], cement mortar [47], fiber 28 
reinforced concretes [48], etc.). Variational approaches were also applied to plasticity in [49-51], 29 
and to coupled damage and plasticity in [52]. Applications of phase-filed models to FRCM systems 30 
were proposed in [53,54]. Debonding of fiber yarns was modeled in [53] by assuming that the 31 
damage energy of the yarn-to-matrix interface has the form of power functions, while, in [54], a 32 
specific damage dependent energy term was included in the interface energy, to account for 33 
frictional slippage. 34 
In this paper, the model proposed in [55] for hybrid laminates, is revised and adapted to the specific 35 
problem of tensile FRCM systems. FRCM specimens are schematized as multilayer systems 36 
constituted by layers of mortar and reinforcement. Each layer is modeled as a brittle bar that 37 
elastically stretches and, when a limit stress is reached, it breaks. Its energy collects three 38 
contributions, as usually in phase field theories [39]: an elastic term, a local damage term and a 39 
non-local gradient part. Different stiffnesses and strengths have been assigned to the anchor parts 40 
and to the central free parts of mortar layers. Each layer is connected to the adjacent one by non-41 
linear springs, which allow elastic shear strain and slippage in regime of stress softening. Balance 42 
and evolution equations are determined by energy minimization. Regarding the evolution, an 43 
incremental procedure is adopted, consisting in solving a constrained programming problem at 44 
each increment of the imposed tensile deformation. A similar evolution scheme was analytically 45 
solved in [48], in a simplified one-dimensional context, providing parametric and stability 46 
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analyses. Here the evolution problem is solved numerically, by implementing the model in a finite 1 
element code. Simulations are performed by considering specimens with a single reinforcement 2 
layer and with overlapped double reinforcement layers. All the evolution phases that leads to 3 
specimens’ failure are accurately captured by simulations, whose predictions are in good 4 
agreement with the experimental evidences. 5 
 6 
The paper is organized as follows: after a description of the materials used to manufacture FRCM 7 
coupons (Section 2) and of the tensile test setup adopted (Section 3), experimental results are 8 
reported in Section 4. In this section the effect of fabrics’ overlapping on the mechanical behaviour 9 
of FRCM systems is analyzed. The possibility of using different measurement methods (DIC, 10 
displacement transducer and extensometer) is also discussed. Finally, a phase-field model has been 11 
developed (Section 5), in order to reproduce the tensile behaviour of FRCM coupons reinforced 12 
with single or overlapped layers of glass fabrics. Numerical results have been described in Section 13 
6 and compared with those obtained in experiments.  14 
 15 

2. Materials 16 
 17 
A bidirectional fabric made of alkali resistant (AR) glass fibers coated with a layer of polyvinyl 18 
alcohol (PVA) was considered. The fabric structure is attained through leno wave technique, with 19 
weft yarns that pass through the warp yarns. Geometrical properties of the glass fabric employed 20 
are reported in Fig. 1. 21 

 22 

Fig. 1 – Geometrical properties of the glass fabric employed (250 g/m2) 23 
 24 

The mechanical properties of the glass fabric were determined through tensile tests on single fiber 25 
yarns taken from the warp direction. Tensile tests on glass fiber yarns were performed in 26 
displacement-control at a rate of 0.5 mm/min, by using a tensile testing machine with a load 27 
bearing capacity of 50 kN. Specimens comprised one fiber yarn 300 mm long. FRP tabs were 28 
epoxy-bonded to the ends of the specimen to ensure slip-free gripping by the testing machine. The 29 
cross-sectional area of the single yarn Af (Table 1) was computed from the nominal thickness 30 
provided by the manufacturer. A macro extensometer with a length of 50 mm was positioned at 31 
the center of each specimen to measure the strain of the yarn. The mean tensile strength σf, the 32 
corresponding strain εf, and the elastic modulus Ef are obtained by averaging the results of 5 33 
specimens and are reported in Table 1 together with the corresponding coefficient of variation, 34 
CoV. 35 
A lime-based mortar was used as FRCM matrix. Three prismatic specimens (40x40x160 mm3) 36 
were cast, cured at laboratory conditions (20 °C, 70% RH) up to 28 days and tested according to 37 
EN 1015-11 [56]. The average flexural strength σm,f, compressive strength σm,c and elastic modulus 38 
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in compression Em, are reported in Table 1 together with the corresponding Coefficient of 1 
Variation, CoV.  2 

 3 

Table 1 – Mechanical properties of glass yarns (warp direction) and inorganic matrix 4 

Material 
 σf  

[MPa] 
εf 

[%] 
Ef 

[GPa] 
Af  

[mm2] 
σm,f 

[MPa] 
σm,c 

[MPa] 
Em 

[GPa] 

Glass 250 
Average 1405 2.4 57.1 0.923 - - - 
CoV  0.102 0.061 0.087 - - - - 

Matrix 
Average - - - - 4.1 10.2 9.5 

CoV - - - - 2.9 0.025 - 

 5 

3. Experimental investigation 6 
 7 

3.1 Specimens preparation 8 

FRCM coupons (dimensions of 70x400x10 mm3) were manufactured by first applying a thin layer 9 
of mortar of about 5 mm, using a wooden formwork. A layer of glass fabric was then placed on 10 
top of the mortar and covered with a second layer of mortar with same thickness. Coupons were 11 
cured at laboratory ambient conditions at 20 °C and 70% relative humidity for 28 days. After that, 12 
four metal tabs were applied with epoxy at the ends of each specimen (Fig. 2) with an anchor 13 
length of 150 mm, as indicated in the AC434. 14 
In addition to the one ply specimen (Fig. 3a), panels with a lap splice overlap of 100, 150 and 200 15 
mm were manufactured, following the same procedure. Geometrical properties of FRCM 16 
specimens with fabrics’ overlap are illustrated in Fig. 3b. The free length of the specimen (equal 17 
to the distance between the metal plates) has been varied according to the overlap length. The 18 
anchor length between metal plates and specimen has been kept constant (150 mm). 19 
 20 

         21 
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 1 

Fig. 2 – Preparation of FRCM coupons with fabrics’ overlap 2 
 3 

 4 

Fig. 3 - Geometrical properties of FRCM coupons with a single layer of glass fabric (a) and 5 
with fabrics’ overlap (b). 6 

 7 
3.2 Tensile Test Setup 8 
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A total of 20 specimens have been manufactured and tested using a clevis-type gripping system, 1 
as recommended by the US guideline AC434.13 Annex A, in which the load is transferred from 2 
the testing machine to the mortar by shear adhesion, using metal tabs directly bonded to the mortar 3 
surface. If compared to the test setup proposed by RILEM TC 232-TDT (“clamping grip” is the 4 
term used for load application through compressive stress normal to the specimen's plane), the 5 
system proposed by AC434 (“clevis grip”) does not provide for the application of compressive 6 
forces at the specimen’s ends, leaving the fabric free to slip within the mortar. This system is 7 
connected to the testing frame with a clevis joint (Fig. 4). Tests were conducted under displacement 8 
control at 0.5 mm/min by using a tensile machine with a load bearing capacity of 50 kN. The 9 
global displacement was recorded by the LVDT integrated in the testing machine, while the local 10 
axial deformation was measured using a clip-on extensometer with a 100 mm gauge length directly 11 
applied at the ends of the metal tabs (Fig. 4).  12 
 13 

            14 

Fig. 4 – FRCM tensile test setup: strains measured with macro extensometer 15 
 16 

3.3 Digital Image Correlation 17 

Digital Image Correlatation (DIC) was also used as additional measurement system. DIC offers 18 
the possibility to monitor strains and displacements on the whole surface of the specimen and 19 
allows to select the area of the sample in which the strain field is required (in this case the area in 20 
between the metal tabs).  21 
The main characteristics of experimental and DIC set-up are given in Table 2 and shown in Fig. 22 
5.  23 
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 1 
Table 2 – Optical set-up and DIC characteristics 2 

Sensor  [Type] CMOS 
Sensor pixel size [μm] 6.8 × 6.8 
Sensor resolution [pixel] 1280 × 1024 
Frame rate [fps] 27 
Lens [Type, mm] C mount, 16 
Working distance [mm] ≈ 800 
Sensor noise [gray level, dB] 0.94, −19 
Subset size [pixel, mm] 24, 3 
Displ. accuracy (st. dev) [pixel, mm] ±[0.01, 0.05] 
Strain accuracy (st. dev) [mm/mm] ±0.00022 

 3 
 4 

 5 

Fig. 5 – FRCM tensile test setup with Digital Image Correlation (DIC) acquisition system 6 
 7 
During the tests, pictures of the frontal surface of the specimens have been acquired by a digital 8 
camera (model Pixelink® B371F - camera on the left in Fig. 5) at 2 frame per second, collecting 9 
about 600 images. The camera was equipped with a lens having a focal length of 16 mm and placed 10 
about 800 mm away from the specimen, in order to reduce the perspective errors due to eventual 11 
out-of-plane motions. The specimen was illuminated using an LED spotlight. A second camera, 12 
placed on the right side (camera on the right in Fig. 5), was used to monitor possible motions out 13 
of the plane. 14 
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A speckle pattern, consisting of black dots randomly distributed over the specimen surface, was 1 
firstly realized by means of spray painting. The size of the spots was chosen in relation to the size 2 
of the specimens and the position of the cameras. The pictures acquired during the tests have been 3 
post-processed by an in-house developed DIC software. The correlation method here adopted is 4 
based on global DIC, which incorporates the assembling approach of Finite Element method. A 5 
grid of points was drawn on the free surface of the specimen, in order to measure displacements 6 
and deformations over the free length of the specimen. Displacements of all nodes of the grid are 7 
obtained by minimizing the correlation error computed all over the current frame with respect to 8 
the reference frame [57]. The zero-mean sum of square difference (ZSSD) criterion was adopted 9 
to avoid the effects of lighting offset and inhomogeneity. A typical picture recorded by the camera 10 
and the grid drawn on the specimen, together with its histogram and strain noise evaluation are 11 
shown in Fig. 6. 12 
 13 

 14 

Fig. 6 – Grid (a), histogram (b), and strain noise evaluation for the DIC image (c) 15 
 16 

The picture on the left (Fig. 6a) show the subsets discretization used for the image analysis: the 17 
subset size was typically 24×24 pixels that means a measure point about each 3 mm. 18 
The strain used in the subsequent elaboration has been computed by means of the Cauchy-Green 19 
theory, within the framework of large displacements and large deformations, starting from the 20 
node displacements. The components of the Hencky strain tensor εx, εy, and εxy have been 21 
computed. 22 
To assess the quality of the correlation technique and strain measurement, a set of 30 stationary 23 
images was acquired and analyzed before the test of the specimen; the average values of the strain 24 
distribution and its standard deviation within each frame are shown on Fig. 6b,c. No bias is 25 
observed since the average strains present small random oscillations around zero. The standard 26 
deviations are nearly constant, in the order of 220 με. 27 
Strains reported in Table 3 (εu,DIC), and those of the experimental curves of Fig.7, were calculated 28 
by means of DIC. Global strain was calculated by measuring the mean strain over the free length 29 
of the specimen (Fig. 7a). By doing so, results obtained with the use of macro-extensometer 30 
(applied at the ends of the metal tabs) can be compared. A sequence of axial displacement and 31 
strain maps measured at different instants is reported in next section (Fig.8). 32 

 33 
4. Experimental results 34 

 35 
4.1 Tensile tests on glass FRCM systems  36 
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The results of tensile tests on glass FRCM systems in terms of stiffness modulus (Eu), ultimate 1 
stress (σu) and ultimate strain (εu), together with the failure mode observed and the corresponding 2 
coefficient of variation (CoV), are reported in Table 3.  3 
Ultimate strain has been determined in different ways: by dividing the total displacement measured 4 
at the load cell for the total length of the specimen (εu,TOT), by means of an extensometer with 5 
gauge length of 100 mm directly applied at the ends of the metal plates (εu,Ext) and with the use of 6 
digital image correlation (DIC) technology (εu,DIC). In the case of specimens G-250_Lap150 and 7 
G-250_Lap200 the extensometer could not be used due to the distance between the metal plates 8 
exceeding 100 mm.  9 
For the determination of the ultimate stress, the measured force (F) was divided by the cross-10 
section of the textile reinforcement (Af) in the load direction. The modulus of the cracked specimen 11 
(Eu) was calculated as the slope of the segment of the response curve between two points equal to 12 
0.90 σu and 0.60 σu as indicated in the AC434.13. 13 
 14 

Table 3 – Results of Tensile Tests [according to AC434, Annex A] 15 

Specimen 
Fmax 

[kN] 

σu  

[MPa] 

εu,TOT 

 

εu,Ext 

 

εu,DIC 

 

Eu 

[GPa] 

Failure 

mode 

G250 
Average 3.53 1275 0.0139 0.049 0.047 28.92 

F 
CoV 0.059 0.059 0.125 0.218 0.112 0.129 

G250_ Lap100 
Average 2.16 780 0.0150 0.044 0.041 9.52 

S 
CoV 0.036 0.036 0.124 0.232 0.278 0.243 

G250_ Lap150 
Average 3.52 1270 0.0117 - 0.027 41.27 

F 
CoV 0.057 0.057 0.071 - 0.156 0.077 

G250_ Lap200 
Average 3.43 1239 0.0118 - 0.021 44.05 

F 
CoV 0.091 0.091 0.128 - 0.158 0.182 

S) Slippage of the fabric within the matrix 16 
F) Fabric breakage 17 

 18 
Experimental stress-strain curves are reported in Fig.7, together with curves obtained from 19 
numerical simulations, which will be discussed in Section 6.  20 
The first segment of the curve represents the uncracked state, where the composite properties 21 
depend on the matrix characteristics. The load drop after the formation of the first crack is mainly 22 
due to the modest fabric volume. After this phase, once the transfer of stress from the matrix to 23 
the fabric has occurred, the load starts to increase again, with an evident post-cracking hardening 24 
phase. This phase is mainly governed by the fabric properties and bond properties at the interface 25 
between fabric and mortar. The presence of ‘jumps’ on the second part of the stress-strain curve is 26 
due to the formation of further small cracks within the mortar, which however do not significantly 27 
affect the FRCM hardening behavior. 28 
Results show that a fabrics’ overlap length of 100 mm (G250_Lap100) is not enough to guarantee 29 
the complete transfer of tensile stresses from one fabric to another. Fabrics slip on each other and 30 
the maximum load reached is almost half of that obtained with a single fabric layer (G250). 31 
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Increasing the overlap length up to 150 mm allows to restore the specimen integrity and to reach 1 
an ultimate stress equal to that of the specimen with continuous fabric.  2 
Longitudinal strains measured by extensometer (εu,Ext) and DIC (εu,DIC) of specimens G250 and 3 
G250_Lap100 are in good agreement, and thus demonstrate that the two measurement methods 4 
are reliable and both can be used. 5 
Specimens with fabrics’ overlap equal or greater than 150 mm showed higher stiffness with respect 6 
to specimens with continuous fabric (G250). The stiffness modulus of the cracked phase (Eu) for 7 
specimens G250_lap150 and G250_lap200 is about 45% greater than that of specimens G250. The 8 
higher stiffness is due to the presence of two layers of fabrics over the free length of the specimen. 9 
However, the failure of the specimens with fabrics’ overlap always occurs for stress values equal 10 
or slightly lower to those of specimens with continuous fabric. This is due to the failure mode that 11 
always involves only one layer of fabric, at the end of the overlap and close to the metal tabs (see 12 
Fig. 8c,d).  13 
 14 
 15 
 16 

 17 

Fig. 7 – Experimental and numerical stress-strain curves of Glass-FRCM with a single 18 
fabric reinforcement layer (a), and two layers with a lap splice overlap of 100, 150 and 200 19 

mm (b,c,d) 20 
 21 

 22 
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Displacement and strain fields over the free length of the FRCM and the evolution of cracks 1 
formation under increasing loads have been recorded by DIC and reported in Fig. 8. It can be 2 
clearly observed that maximum deformations are recorded in correspondence with the formation 3 
of two or three major cracks, which evolve as the load increases, while the portion of mortar 4 
between the cracks remains almost undeformed. 5 
Strain peaks are smaller for specimens with fabrics’ overlap length of 150 and 200 mm, thus 6 
indicating the formation of smaller cracks within the mortar.  7 

 8 
(a) 9 

 10 

 11 



 13

(b) 1 

 2 

(c) 3 

 4 

 5 

(d) 6 

Fig. 8 – Evolution of the strain field during tensile tests on glass FRCM specimens, acquired 7 
with DIC, for different lengths of fabric overlapping. 8 
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 1 

 2 
4.2 Failure modes 3 

Different failure modes have been observed depending on the configuration of the glass fabric 4 
reinforcement. FRCM specimens reinforced with a continuous layer of fabric failed after the 5 
formation of two or three cracks within the mortar matrix. Usually, after the formation of cracks, 6 
one or two of them propagate and their opening increases up to reach the specimen failure. Even 7 
after the formation of cracks, the load carried by the specimen increases, until reaching the 8 
breakage of the yarns close to one of the cracks. 9 
In the case of G250_Lap100, the formation of a longitudinal cracks is clearly observed at the 10 
interface between the fabrics’ overlap (Fig. 9).  This effect is caused by the slippage of the fabrics 11 
along the overlay interface, until the specimen is broken.   12 
For longer overlap lengths (G250_lap150, G250_lap200), the formation of longitudinal cracks and 13 
the slippage between fabrics is prevented. The failure mode observed is similar to that of 14 
specimens with a single fabric layer. However, it can be observed that the cracks width of 15 
specimens with overlapped fabrics is smaller than that of specimens with single layer. The 16 
presence of a double layer of fabric limits the cracks opening by increasing the stiffness of the 17 
composite. 18 
 19 

 20 

Fig. 9 – Failure modes of FRCM specimens: (a,c,d) fabric breakage, (b) slippage at the 21 
fabric-to-matrix interface 22 

 23 
 24 

5. Variational Model 25 
 26 

5.1 Model assumptions and governing equations 27 
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FRCM specimens are modeled as series of layers of mortar and reinforcement fabrics, connected 1 
to each other by elastic interfaces, as illustrated in the geometrical scheme of Fig. 10(a). The 2 
kinematical descriptors of each layer are the longitudinal displacement ui= ui(x) and the damage 3 
parameter i=i(x), with x the longitudinal coordinate, and the index i referring to the i-th layer. 4 
Damage i assumes values in the interval [0,1]: i=0 means that the material is sound, and i=1 5 
means that it is completely broken. In the following, a prime will be used for derivative with 6 
respect to x, and a dot for derivation with respect to the evolution parameter t, called time for 7 
simplicity and introduced in the following.  8 
To avoid damage healing, the irreversibility condition 9 

0i            (1) 10 

is assumed. 11 

For each layer of length ˆ2l l , with l the free length and l̂  the anchor length, the internal energy 12 
is 13 

ˆ2 2
2 2 2 2

,

0

1
( , ) (1 ) ' '

2 16

l l
i i

i i i i i i i e i i i
i

A l
u AE u dx

E
    

   
     

  
 .    (2) 14 

As usually assumed in phase-field approaches [38], the energy is sum of two terms: an elastic 15 
energy (first term of the integral), which is a quadratic function of the strain 'iu , and a fracture 16 

energy (second term of the integral), which has a local contribution, linear with respect to i, and 17 
a non-local contribution, depending on the gradient of i. Geometrical and material parameters to 18 
be assigned within the energy (2) are the cross-section area Ai, the Young’s modulus Ei, the 19 
maximum tensile stress e,i that material can sustain before breaking, and the size li of the process 20 
zone where damage localizes and coalesces into fracture.  21 
Interfaces between adjacent layers are linearly elastic. The energy between the j-th and the (j+1)-22 
th layer is 23 

ˆ2
2

1 1 1 1

0

1
( , ) ( )

2

l l

j, j j j j, j j ju u h k u u dx


     ,     (3) 24 

where 1j, jk   is the elastic coefficient, and h is the width of the interface. The total internal energy 25 

of the system is  26 
1

1 1
1 1

( , ) ( , )
N N

i i i j, j j j
i j

u u u


 
 

   ,      (4) 27 

where N=3 and N=4 in the cases of single ply and lap-spliced plies samples, respectively. The 28 
constitutive parameters Ei, e,i and li in (2), and 1j, jk   in (3) are assumed constant at least in each  29 

part of the samples (central part or ending reinforced parts), according to the schemes drawn in 30 
Fig. 10(a,b) for the one ply specimen and the lap splice overlap  specimen, respectively. Different 31 
colors are used in Fig. 10(a,b) to distinguish the different materials and interfaces. Parameters of 32 
the mortar layers are the Young’s modulus Em, the peak elastic stress e,m and the internal length 33 
lm. The ending parts of the mortar layers are assumed to be unbreakable. The constitutive 34 
parameters of the fabric layers are Ef, e,f and lf. 35 
Three different interfaces are considered. The fabric-to-mortar interface is linearly elastic with 36 
elastic modulus kfm. Indeed, according to [54], the shear stress leading to fabric slippage is larger 37 
than 1 MPa, value never attained in simulations. A bilinear shear stress-displacement law is 38 
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assumed for the fabric-to-fabric interface, as drawn in Fig. 11, where the softening branch account 1 
for debonding and slippage. Mortar-to-mortar interface, which is present in the geometrical 2 
scheme of the lap-spliced sample of Fig. 10(c), is supposed to be rigid to guarantee continuity 3 
among adjacent layers. Criterions to calibrate all the above-mentioned parameters and values used 4 
in simulations are given in the next Subsect. 5.2. 5 
Longitudinal stresses i  in the layers and shear stresses , 1j j   at interfaces are obtained by 6 

differentiating (2) with respect to the strain 'iu , and (3) with respect to the relative displacement 7 

1( )j ju u   respectively,  8 
2 2

, 1 1 1(1 ) ' ,     ( )i i i i j j j, j j jE u k u u         .    (5) 9 

In experiments, tensile displacement is imposed at the upper extremity of the specimen, where a 10 
clevis joint connects the sample to the testing frame. To reproduce this situation, the bottom ends 11 
of the mortar layers are fixed, and the displacement 12 

ˆ( 2 ),u t l l           (6) 13 
is imposed at the upper ends (see Fig. 10(b,c)). The assigned deformation t is positive and 14 
increasing. It represents the evolution parameter, called time for brevity. Since the clevis-grip 15 
method allows for the slippage of the fabric from the inorganic matrix, boundaries of the fabric 16 
layers are left free to move. 17 
Since external loads are not considered, and body loads (as weight loads) are neglected, the internal 18 
energy (4) coincides with the total energy of the system. By following a standard variational 19 
procedure, balance equations are obtained by requiring the first variation of energy (4) to be non-20 
negative for any admissible perturbation, and they read  21 
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   (7) 22 

The first equation is the i-th macroscopic balance equation, which is coupled with the (i-1)-th and 23 
(i+1)-th equations through the shear stresses 1,i i   and , 1i i  . The second equation is the yielding 24 

condition for damage i, which has the form of an inequality because of the constrain (1). Using 25 
(4)1, it rewrites 26 

 
2

3

, ,1 1 '' ( ),
16
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     (8) 27 

which states that the stress i in the i-th layer can never exceed the yield stress y,i, and, when it is 28 
equal to the yield stress, damage can develop.  29 
In an evolution process of increasing stretching, starting from an initial unstretched state, the 30 
system experiences elastic deformation, which develops as long as , ,(0) .i y i e i     When i 31 

reaches the limit value e,i, damage forms and coalesces into a fracture. Accordingly, e,i is the 32 
maximum elastic stress that the i-th layer can sustain before failure. 33 
The evolution problem is formulated as a constrained quadratic programming problem solved at 34 
each time increment. Hereinafter, the problem is briefly presented, and the reader is referred to 35 
[48-50] for an in-depth description. Time t is discretized into finite intervals of size , and, within 36 
each time step t t   , variables are approximated by the linear expressions 37 
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( ) ( ) ( ),      ( ) ( ) ( ),i i i i i iu x,t u x,t u x,t x,t x,t x,t              (9) 1 

and the energy (4) is developed up to the second order, around the configuration at time t, 2 
21

( ) ( ) ( ) ( ),
2

t t t t             (10) 3 

which can be rewritten as sum of a constant term and a quadratic functional of iu  and i  in the 4 

following form 5 
( ) const ( , ),    1,..., .i it u i N           (11) 6 

If ( )iu x,t  and ( )i x,t , i=1,…,N, are known at the instant t, the solution (9) at the instant t   is 7 

determined by (9), where the rates iu  and i  solve the constrained programming problem 8 

 ( , ) arg min ( , ),   0,   1,..., ,   . .i i i i iu u i N b c            (12) 9 

This minimum problem is numerically solved by means of a finite element code which implements 10 
an alternate iterative minimization procedure, consisting in minimizing the energy functional with 11 
respect to the unknown fields separately.   12 
 13 

 14 

Fig. 10 – Geometrical schemes: (a) generic multilayer beam, (b) sample with a single fabric 15 
reinforcement layer, (c) sample with two overlapped layers. 16 

 17 
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 1 

Fig. 11 Constitutive laws of fiber-to-matrix and fiber-to-fiber interfaces. 2 
 3 

5.2 Parameters calibration and setting 4 

Specimens geometrical schemes are drawn in Fig. 10. The anchor length is ˆ 150l   mm. For 5 
the one ply specimen (G250), the free length is l=100 mm, and, for the lap-spliced samples, 6 
three different lengths l=100, 150 and 200 mm are considered. The thickness of mortar layers 7 
is 5 mm, and the thickness of fabric layer is 0.04 mm, which is obtained by distributing the 8 
cross-section area of the fabric (Af=2.77 mm2, corresponding to the cross-section areas of three 9 
yarns) through the layer width h=70 mm.  10 
Concerning the constitutive parameters, Young’s moduli of Glass 250 fabric and mortar are 11 
given in Table 1, and they are Ef=57.1 GPa, and Em=9.5 GPa, respectively. Also the yarns peak 12 
stress e,f=1405 MPa is reported in Table 1. The matrix ultimate tensile stress e,m=2.4 MPa is 13 
the average stress that leads to the opening of the first crack in the matrix recorded during 14 
tensile tests on one-ply specimens. Values of internal lengths are lm=0.6 mm, as acquired with 15 
DIC, and lf=0.1 mm. 16 
The elastic coefficient of yarn-to-matrix interface has been estimated in [54], where the value 17 
k=3.10 MPa has been found. Since the interface area per unit length of the fabric is 15 mm2 18 
(three longitudinal yarns are considered), and the multilayer geometrical scheme of the model 19 
accounts for an interface area per unit length equal to 140 mm2, the equivalent elastic 20 
coefficient is (15 / 140) 0.33fmk k   MPa.  21 

A piecewise linear law has been chosen for the fiber-to-fiber interface, as shown in Fig. 11, 22 
the slope of the first increasing branch is kfm. The value of the maximum shear stress is 23 
max=0.39 MPa, which allows to reproduce failure by slippage and failure by fabric breakage 24 
when the lap splice overlap is 100 and 150 mm, respectively, as found in experiments. The 25 
slope of the softening branch has been fixed by curve fitting. 26 

 27 
6. Numerical results 28 

 29 
Numerical stress-strain curves are compared to the experimental curves in Fig.7. Numerical 30 
curves accurately fit the experimental ones. Only in cases of G250_Lap150 and G250_Lap200, 31 
strains are slightly overestimated. Each stress drop of the numerical curves corresponds to the 32 
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opening of a fracture. Failure by reinforcement breakage is observed in specimens G250, 1 
G250_Lap150 and G250_Lap200. In these cases, fabric failure leads to brutal stress drop to 2 
zero. Failure by interface slippage is registered in G250_Lap100, and the slippage process is 3 
associated to the softening branch of Fig. 7(b). 4 
 5 
The tensile test of G250 sample is simulated for first. Fig. 12 shows profiles of u and  at 6 
different strains  in the central part of the upper and lower mortar layers. Initially, the 7 
stretching process is linearly elastic, and stresses homogeneously grow in the layers. When the 8 
stress on the mortar reaches the peak limit value e,m, two cracks form simultaneously, one in 9 
each mortar layer. In simulations, the value e,m=2.4 MPa is perturbed with a random function 10 
of amplitude equal to 2% of e,m. Looking to Fig. 12(a,c), where cracks correspond to 11 
displacement jumps, the first two cracks forms at x=26 mm in the upper layer and x=90 mm in 12 
the lower one. Their openings correspond to the first jump of the response curve of Fig. 7(a). 13 
From this point on, displacements and stresses evolve according to the solid line profiles of 14 
Fig. 12. Notice that stresses nullify at crack, and they progressively increase away from it. At 15 

21 10   ,  reaches e,m at the left endpoint of the lower layer, and, consequently, a crack 16 
opens there. It corresponds to the second drop of the stress-strain curve. In the upper layer, the 17 
second fracture forms later, at 21.6 10   , when the peak stress is reached at the right 18 
endpoint (third drop of the stress-strain curve). Dashed profiles in Fig. 12 refer to the evolution 19 
with two cracks in each mortar layer. Profiles of  in the reinforcement layer are plotted in 20 
Fig. 13 for different values of the imposed strain . In those points where mortar layers are 21 
cracked, stresses attain the maximum values, because of stresses transfer from the matrix to 22 
the reinforcement. At 24.6 10   , the yield stress e,f=1405 MPa is attained on the right side 23 
of the reinforcement layer, close to the right endpoint, where both the upper and lower mortar 24 
layers are fractured. At this point the fabric layer breaks and a passing crack leads the sample 25 
to failure. Damage fields i in each layer at the final failure stage are plotted in Fig. 14, using 26 
different colors. Numbers indicate the sequence of cracks opening in the evolution process. A 27 
sketch of the broken sample is also drawn in Fig. 14. 28 
Finally, notice the large similarity between the profiles of u of Fig. 8(a) and the displacement 29 
evolution in the lower layer found by simulations, plotted in Fig. 12c. In both the cases, a first 30 
crack opens in a point close to the right endpoint, and, later, a second crack forms at the left 31 
endpoint. This sequence of two cracks formation in the mortar layer, the first in an arbitrary 32 
point, often close to one endpoint, and the second at the most distant endpoint from the first 33 
crack, has been observed in experiments and found in simulations. 34 
Results of tensile tests on lap-spliced specimens are described in Figs. 15 and 16. First, the 35 
overlap length l=100 mm is considered. Fig. 15 shows the displacement profiles in the four 36 
layers of the specimen at instants which correspond to the opening of cracks and to the final 37 
interfacial slippage. Initially, two cracks open simultaneously in the mortar layers in 38 
correspondence of the fabrics’ extremities, where strength is reduced by the pre-cracks 39 
introduced to separate fabrics from mortar (Fig. 15a). The opening of these fractures 40 
corresponds to the first deep drop of the stress-strain curve of Fig. 7b. The next two fractures 41 
open in the mortar layers at sides opposite to those of the first two cracks. They form at 42 
different instants, first in the upper layer (Fig. 15b) and then in the lower one (Fig. 15c), 43 
corresponding to the second and third drops of the response curve. At this point, stresses are 44 
basically transferred from one side of the sample to the other by the two overlapped 45 
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reinforcements and thus large amount of shear stresses develop at the interface between them. 1 
When the shear stress reaches the maximum value max (see Fig. 11), then slippage initiates 2 
and evolves. This phase corresponds to the softening branch of the response curve. The 3 
slipping displacement  at the end of the slippage stage is reported in Fig. 15d. 4 
Notice that cracks open at the extremities of the specimens also in experiments. An example 5 
is shown in Fig. 8(b), where displacement profiles given by DIC are plotted at different strains. 6 
In this case, the first fracture forms on the right side, and the second one opens close to the left 7 
boundary. 8 
In case of larger overlap lengths (l=150, 200 mm), shear stresses distribute on larger interface 9 
surfaces and thus smaller values of  are attained. As a result, slippage does not activate, and 10 
failure occurs by fabric breaking. Fig. 16a shows the displacement profiles of the four layers 11 
of the system right before failure, when the overlapping length l=150 mm is chosen. Even now, 12 
four cracks forms in the mortar at the boundaries of the specimen free area, two in each side 13 
(Fig. 16c). Stresses in the two fabrics before failure are plotted in Fig. 16b. They decrease 14 
going toward the ending sections. In the right side of the upper fabric, the fracture stress 15 
e,f=1405 MPa is approached, and, as a result, a crack forms therein, leading the specimen to 16 
failure (Fig. 16d). In this case, the limit shear stress max is never reached at the interface 17 
between fabrics, and, accordingly, slippage does not activate. 18 

 19 

 20 

Fig. 12 – Specimen with a single fabric reinforcement layer. Profiles of u at different strains 21 
 in the upper (a) and lower (c) mortar layers; profiles of stress  in the upper (b) and lower 22 

(d) mortar layers. 23 

 24 
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 1 

Fig. 13 – Specimen with a single fabric reinforcement layer. Profiles of stress  at different 2 
strains  in the fiber reinforcement layer. 3 

 4 

Fig. 14 – Specimen with a single fabric reinforcement layer. Damage fields in the different 5 
layers at failure. Numbers refer to the sequence of crack opening. 6 

 7 

 8 
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 1 

Fig. 15 – Specimen with overlapped fabric layers with lap splice overlap of 100 mm. Profiles 2 
of u in the four layers at different strains , and sketches of fracture positions in the 3 

multilayer system. 4 

 5 

 6 
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Fig. 16 – Specimen with overlapped fabric layers with lap splice overlap of 150 mm. Profiles 1 
of u in the four layers (a), cracks positions in the specimen (b), and profiles of  in the 2 

reinforcement layers (b) at =0.04, before failure. 3 
 4 

 5 
7. Conclusions 6 

 7 
Tensile characterization of FRCM specimens with continuous and overlapped glass fabrics has 8 
been carried out by using a clevis type gripping method. Deformations and failure modes of FRCM 9 
specimens have been deeply investigated by means of DIC and compared with numerical 10 
simulations.  11 
 12 

 Different failure modes have been observed in tensile tests, depending on the overlap 13 
length. Specimens reinforced with a single layer of glass fabric failed due to fabric rupture 14 
within the free length of the specimen, after the formation of two or three cracks. FRCM 15 
specimens with fabrics’ overlap length of 100 mm failed due to slippage at the overlay 16 
interface. Increasing the overlap length to 150 and 200 mm led to the breakage of one of 17 
the glass fabric layers.  18 

 The minimum glass fabrics’ overlap length, which allows to restore the specimen’s 19 
integrity and the complete transfer of tensile stresses from one fabric to another, is about 20 
150 mm. With this overlap length, the maximum stress attained at failure is almost the 21 
same of that of specimens with continuous fabric, while the stiffness is greatly increased. 22 
In case of smaller overlap lengths, the maximum tensile stress to which the fabric is 23 
subjected is much lower and the failure occurs at the interface between the two layers of 24 
fabrics. 25 

 DIC was able to provide important information about the mechanical behaviour of FRCM 26 
specimens during tensile tests. It allowed to detect the number and width of the cracks at 27 
any load value and the strain field on the whole surface of the specimen.  28 

 A variational model has been developed to provide a thorough understanding of failure 29 
mechanisms of the different FRCM systems, subjected to tensile loads. Specimens have 30 
been schematized as a sequence of one-dimensional brittle bars, coupled by non-linear 31 
elastic connections. Different stiffnesses and strengths were given to the central and side 32 
parts of the mortar bars to take into account the clevis type anchoring system, and different 33 
constitutive laws were assigned to fiber-to-matrix and fiber-to-fiber interfaces to simulate 34 
the FRCM behaviour with continuous and overlapped fabrics. The evolution problem, 35 
formulated as an incremental constrained minimum problem, has been implemented in a 36 
finite element code. 37 

 The model, despite its simplicity, has accurately captured all the evolution stages leading 38 
to specimens’ failure modes that have been observed in experiments. The evolution of 39 
crack patterning in the mortar layers has been carefully described, and the two different 40 
mechanisms of failure, breakage of the reinforcement and slippage at fiber-to-fiber 41 
interface, have been reproduced. Finally, the stress-strain curves obtained from simulations 42 
have been compared with the experimental ones providing a great predictive capability. 43 

 44 
 45 
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Data availability 3 

The raw/processed data required to reproduce these findings cannot be shared at this time as the 4 
data also forms part of an ongoing study 5 
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