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HIGHLIGHTS 

 Submarine canyons host abundant and diverse fungal communities
 Fungal abundance, biomass and diversity are driven by carbohydrate concentrations
 Deep-sea sediments can harbour a high number of novel fungal taxa
 Thermohaline and trophic conditions may promote a high turnover diversity of fungi 
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22 Abstract

23 Fungi are ubiquitous components of microbial assemblages in aquatic ecosystems, but their 

24 quantitative relevance, ecological role and diversity in benthic deep-sea ecosystems are still 

25 largely unknown. Here, we investigated patterns and drivers of benthic fungal abundance, 

26 biomass and diversity from 200 to 1000 m depth in three submarine canyons of the 

27 Mediterranean Sea (Tricase, Crotone and Squillace canyons). The Crotone and Squillace 

28 canyons, which are close to the coast and influenced by river inputs, showed significantly 

29 higher fungal abundance, biomass and diversity (as operational taxonomic units, OTUs) 

30 compared with the Tricase canyon that was far from the coast and without nearby estuaries. 

31 Fungal biomass, ranging from 0.17 to 5.78 µgC g-1, and abundance increased with increasing 

32 carbohydrate concentrations in the sediments, suggesting that deep-sea fungi have a role in 

33 the utilisation of this component of the organic matter. A total of 1742 fungal OTUs, 

34 belonging to all fungal phyla known to date, were found and Ascomycota represented the 

35 dominant phylum. However, only 36% of the reads belonged to known genera. In particular, 

36 Tricase and Crotone canyons hosted the highest proportion of unknown fungal taxa, 

37 suggesting that deep-sea sediments can harbour a high number of novel fungal lineages. Our 

38 findings also reveal that fungal assemblage composition in the investigated canyons was 

39 influenced by trophic and thermo-haline conditions, which may promote a high turnover 

40 diversity of benthic deep-sea fungal assemblages. Overall results reported here indicate that 

41 the submarine canyons of the Mediterranean Sea can represent hot-spots of abundant and 

42 highly diversified fungal assemblages and pave the way for a better understanding of the 

43 ecological role of fungi in the largest ecosystem on Earth.

44

45 Key Words: Benthic deep-sea ecosystems, fungal abundance, fungal diversity, submarine 

46 canyons, Mediterranean Sea
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48 1. Introduction

49 Deep-sea ecosystems represent more than 65% of the world’s surface and >95% of the 

50 global biosphere (Herring, 2002), and host yet undiscovered biodiversity and a significant 

51 portion of the world's genetic diversity (Danovaro et al., 2017). In benthic deep-sea 

52 ecosystems, biomass is dominated by bacteria and archaea, followed by unicellular 

53 eukaryotes and small metazoans (<0.5 mm in size, meiofauna). These organisms are 

54 essential for carbon cycling and nutrient regeneration, and thus vital for sustaining 

55 oceanic production (Dell’Anno and Danovaro, 2005; Sogin et al., 2006; Jørgensen and 

56 Boetius, 2007; Danovaro et al., 2015; Danovaro et al., 2017). Recent findings, based on 

57 culture-dependent and independent approaches, revealed that fungi are present in deep-

58 sea environments across a variety of ecosystem types spanning from hypersaline anoxic 

59 basins (Bernhard et al., 2014; Edgcomb et al., 2017) to cold seeps (Nagahama et al., 

60 2011; Thaler et al., 2012), from hydrothermal vents (Burgaud et al., 2009; Burgaud et al., 

61 2010; Xu et al., 2017) to surface and subsurface sediments (Orsi et al., 2013; Pachiadaki 

62 et al., 2016). Fungi have also been reported as the dominant unicellular eukaryotic group 

63 in the marine snow in bathypelagic waters with biomass similar to that of prokaryotes 

64 (Bochdansky et al., 2017). 

65 Theoretical estimates suggest that fungi can be the most diversified component of 

66 unicellular eukaryotes on Earth, with more than 5 million species of which only 5% have 

67 been described (Hawksworth, 1997; Blackwell, 2011). This gap applies in particular to 

68 open ocean ecosystems where a significant fraction of fungal diversity is still unknown 

69 (Jeffries et al., 2016). Recent studies suggest that a variety of environmental factors (e.g. 

70 temperature, salinity, nutrients) can influence the diversity and assemblage composition 

71 of fungi in marine ecosystems (Li et al., 2016; Tisthammer et al., 2016). However, drivers 
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72 controlling the distribution and diversity of fungi in benthic deep-sea ecosystems remain 

73 to date largely unexplored. 

74 Fungi in terrestrial and freshwater ecosystems are among the main decomposers of 

75 organic matter and play a key role in the processing of the most refractory fraction of 

76 organic carbon (Carlile et al. 2001; Clipson et al. 2006; Hwang et al. 2006; Dighton, 

77 2007). Since deep-sea ecosystems can contain relatively high amounts of organic carbon 

78 (Pusceddu et al., 2009), fungi might play a key role in C cycling also in these ecosystems 

79 (Hyde et al., 1998; Burgaud et al., 2009; Cathrine and Raghukumar, 2009; Jebaraj et al., 

80 2010). 

81 In this study, we investigated the abundance, biomass and taxonomic composition of 

82 fungal assemblages along the continental margins of the Central Mediterranean Sea. 

83 Continental margins are characterised by open slopes and submarine canyons, which are 

84 essential for C cycling and nutrient regeneration processes at a global scale (Bousquet et 

85 al., 2000; Dickens, 2003). In particular, submarine canyons can channel large amounts of 

86 organic matter photosynthetically produced from the continental shelf down to deep-sea 

87 ecosystems (Monaco et al., 1999; Sànchez-Vidal et al., 2008; Allen and Durrieu de 

88 Madron, 2009; Puig et al., 2014). For this reason, we selected three submarine canyons 

89 characterised by different environmental conditions and investigated fungal abundance, 

90 biomass and diversity at depths ranging from 200 to 1000 m. To identify the factors 

91 potentially controlling their quantitative importance and diversity in deep-sea sediments, 

92 we explored the role of environmental conditions, including the organic matter quality 

93 and quantity. 

94

95

96 2. Materials and methods
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97 2.1. Study area and sampling design

98 Sediment sampling was carried out in the Ionian Sea (Central Mediterranean Sea) during 

99 the oceanographic cruise “SAND 2016” held on board of the research vessel R/V 

100 Minerva Uno in May 2016. Sediment samples were collected within the main axis of 

101 three canyons located along the SE Italian margin at 200, 500 and 1000 m depths (Figure 

102 1). One of the investigated canyon (hereafter defined “Tricase”) located along the 

103 Apulian margin, is far from any continental freshwater inputs. The other two investigated 

104 canyons are located along the Calabrian margin and were close to river estuaries. The 

105 Northern canyon, extending for about 30 km, is located in front of the Crotone 

106 municipality (canyon “Crotone”) and its head is close to a river mouth. The head of the 

107 canyon “Squillace” is close to the coastline in front of the Squillace municipality and is 

108 characterised by the presence of sporadic, but intense river inputs. Sediment samples 

109 were collected at each benthic site by independent multiple corer deployments.

110 The top 1 cm of each sediment sample was used for the analysis of the quantity and 

111 biochemical composition of organic matter, fungal abundance (based on q-PCR analysis 

112 of 18S rRNA genes), biomass and diversity. At each station, temperature and salinity of 

113 bottom waters were measured using CTD casts.

114

115 2.2. Quantity and biochemical composition of organic matter

116 The three major biochemical classes of organic compounds (proteins, carbohydrates and 

117 lipids) in deep-sea sediments were determined according to previously described 

118 procedures (Danovaro, 2010). Protein, carbohydrate and lipid concentrations were 

119 determined spectrophotometrically and expressed as albumin, glucose and tripalmitin 

120 equivalents, respectively. All analyses were carried out in 3 replicates. Protein, 

121 carbohydrate and lipid concentrations were then converted to carbon equivalents 
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122 (conversion factors: 0.49, 0.40 and 0.75 gC g-1, respectively) to determine biopolymeric C 

123 content (Dell'Anno et al., 2002).

124

125 2.3. Fungal biomass

126 To detect and quantify fungi in the sediment samples, fluorescence in-situ hybridisation 

127 (FISH) coupled with Calcofluor white staining (which targets chitin, cellulose and 

128 carboxylated polysaccharides) have been used following procedures previously described 

129 (Bochdansky et al., 2016). The FISH reaction was performed using the Pan-Fungal probe 

130 PF2 (5’-CTC TGG CTT CAC CCT ATT C-3’) Cy-3 labelled (Kempf et al., 2000).  

131 Briefly, about 1 g of sediment was first treated using 4 ml of a mix containing EDTA, 

132 Tween 80, sodium-pyrophosphate and methanol and ultrasounds treatment to separate 

133 fungi from the sediment matrix. After centrifugation, sediment samples were washed 

134 twice with PBS buffer and then treated with increasing concentrations of ethanol (50, 80 

135 and 96%, for 3 min each). The sediment was then suspended in 500 µl hybridisation 

136 buffer containing 0.9 M NaCl, 0.01% w/v SDS, 20 mM Tris–HCl pH 7.2, 30 %v/v 

137 formamide and 1 µM PF2 (Kempf et al., 2000), then incubated for 3 h at 46°C in the 

138 dark. Samples were then transferred in sterile tubes containing pre-warmed washing 

139 buffer (20 mM Tris–HCl pH 8.0, 0.01% w/v SDS, 5 mM EDTA, 0.112M NaCl) and 

140 incubated for 30 minutes at 48°C. After centrifugation and resuspension of the sediment 

141 samples with 0.2 µm pre-filtered water, aliquots of the slurry (n=3) were filtered on 0.2 

142 μm polycarbonate filters (Millipore) conditions. Filters were then stained with 0.5 mM 

143 Calcofluor white and incubated in the dark for 5 min. Subsequently, slides were washed 

144 with 0.02 µm pre-filtered water and analysed under epifluorescence microscopy. The 

145 whole filter was examined, and length and width measures were taken for each fungal-

146 like structure. Then, the average width and cumulative length were converted to a 
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147 cylinder with half-spheres at ends, and the biovolume was converted into fungal biomass, 

148 assuming 1 µm3 of fungal biovolume equivalent to 1 pg C (Damare and Raghukumar 

149 2008). 

150

151 2.4 DNA extraction and purification for molecular analysis

152 The DNA was extracted and purified from the sediment samples using the PowerSoil 

153 DNA isolation kit (QIAGEN)) following the manufacturer’s instruction with slight 

154 modifications to remove extracellular DNA (based on three subsequent washing steps) 

155 before DNA extraction (Danovaro, 2009; Danovaro et al., 2016). 

156

157 2.5  Quantitative real-time PCR of fungal 18S rRNA gene sequences

158 DNA extracted from two sediment samples collected at each study site by independent 

159 multiple corer deployments was used for quantitative real-time PCR (qPCR) analysis 

160 which was performed as described in Taylor et al. (2016) with slight modifications. 

161 Briefly, fungi-specific primers FR1 5′-AIC CAT TCA ATC GGT AIT-3′ and FF390 5′-

162 CGA TAA CGA ACG AGA CCT-3′ (Prevost-Boure et al., 2011) were used with the 

163 Sensi-FAST SYBR Q-PCR kit (Bioline, London, UK). The 15 μl reactions contained 8 µl 

164 Sensi-FAST master mix, 1 μl of each primer (final concentration 1 μM), 1μl of DNA 

165 template and 5 μl nuclease-free molecular-grade water (Taylor and Cunliffe, 2016). A 

166 Bio-Rad iQ5 was used to perform qPCR. The following qPCR thermal cycles were used: 

167 94°C for 3min, then 40 cycles of 94 °C for 10 s, annealing at 50 °C for 15 s, elongation at 

168 72°C for 20 s and acquisition of fluorescence data at 82°C. Standard curves were 

169 generated using known concentration of Aspergillus niger 18S rDNA. 

170

171 2.6 Fungal diversity 
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172 DNA extracted from two sediment samples collected at each study site by independent 

173 multiple corer deployments was amplified using the primer set ITS1F (5′-

174 GGAAGTAAAAGTCGTAACAAGG-3′) and ITS2 (5′- 

175 GCTGCGTTCTTCATCGATGC-3′) which amplify the internal transcribed spacer-1 

176 (ITS1) region of the fungal rRNA gene  (Walters et al., 2015). Amplicons were 

177 sequenced on an Illumina MiSeq platform by LGC group (Berlin, Germany) following 

178 Earth Microbiome Project protocols (http://www.earthmicrobiome.org/emp-standard-

179 protocols/). Barcodes and ITS1 primer pairs were removed before demultiplexing. Paired-

180 end sequences were then merged with FLASH (Magoč and Salzberg, 2011). Merged 

181 sequences were quality filtered using the SEARCH tool (Edgar, 2010) to remove 

182 sequences with expected error >1.0 and analysed with the QIIME software package 

183 (Caporaso et al., 2010). Operational taxonomic units (OTUs) were assigned with a 

184 threshold of 98.5% pairwise identity as indicated by the UNITE fungal ITS database 

185 (http://unite.ut.ee/). Then, OTUs were classified taxonomically against the UNITE 

186 database (http://unite.ut.ee/, Version 7.1, November 20, 2016). To allow a proper 

187 comparison among samples, we followed the approach by Gihring et al. (2012) with 

188 sample normalisation to 2500 randomly-selected sequences (corresponding to the lowest 

189 read count obtained in our samples). Rarefaction curves highlighted that 2500 sequences 

190 used for the comparison among all samples were generally sufficient to describe the 

191 fungal diversity in the different benthic deep-sea ecosystems investigated (Figure S1).

192

193 2.7 Statistical analyses

194 Two-way analysis of variance (ANOVA) was performed to test for differences in organic 

195 matter content, fungal abundance, biomass and OTU richness among canyons and depths. 

196 When significant differences were encountered, post-hoc tests were also carried out. 
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197 ANOSIM analysis was performed to test for the presence of statistical differences in the 

198 trophic conditions at the seafloor between canyons. Permutational multivariate analysis of 

199 variance (PERMANOVA) was used based on Bray-Curtis similarity matrix and 

200 visualised using cluster analysis to test for differences in fungal community composition 

201 among canyons and depths. Distance-based multivariate analysis for a linear model 

202 (DistLM) forward (Anderson, 2008) was performed to identify potential factors 

203 influencing fungal abundance, biomass, OTU richness and assemblage composition.  P 

204 values were obtained with 9,999 permutations of residuals under the reduced model 

205 (Anderson, 2008). Temperature, salinity and trophic resources (as protein, carbohydrate 

206 and lipid concentrations) were used as predictor variables. Distance-based redundancy 

207 analysis (dbRDA) was finally used to visualise the relationships between fungal 

208 assemblage composition of the different canyon systems and thermo-haline and trophic 

209 variables. All statistical analyses were performed using Primer 6+ software.

210

211
212

213 3. Results and discussion

214 The thermo-haline conditions of bottom waters of the benthic systems investigated in the 

215 present study changed across depths and canyons, with temperature values ranging from 

216 13.77 to 15.20 °C, and salinity values ranging from 38.75 to 38.93 (Table 1). Lowest 

217 temperature and salinity values were generally observed at the greatest depth (i.e. 1000 

218 m). Also, the analysis of organic matter quantity in the sediments revealed differences 

219 among the investigated canyons (Tables 1, TableS1), with concentrations of proteins and 

220 carbohydrates significantly higher in Crotone and Squillace canyons than in Tricase 

221 canyon (p<0.05 and p<0.01, for proteins and carbohydrates, respectively). The highest 

222 organic matter content in the sediments of Crotone and Squillace canyons is likely due to 
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223 their proximity to the coast and the presence of nearby river inputs which amplify the 

224 magnitude of organic matter exported from the water column and settling on the seafloor 

225 (Lopez-Fernandez et al., 2013). 

226 The amount of organic matter in deep-sea sediments represents a significant factor 

227 influencing the abundance and distribution of benthic assemblages (Danovaro et al., 

228 2014). Fungal abundance, expressed as number of fungal 18S rDNA copies ranged from 

229 1.4 × 106 to 5.1 × 107 copies g-1 and was significantly lower in Tricase (0.38 ± 0.04 ×107 

230 copies g-1) than in Crotone and Squillace canyons (2.7 ± 0.5 and 1.3 ± 0.4 × 107 copies   

231 g-1, respectively; p<0.01; Figure 2a). Our results fall within previously reported ranges for 

232 deep-sea sediments of the Pacific Ocean (3.5 × 106 - 5.2 × 107 28S rDNA copies g-1; Xu 

233 et al., 2014), providing the first evidence of the quantitative importance of fungi also in 

234 benthic deep-sea ecosystems of the Mediterranean Sea. In all canyons, the 18S rDNA 

235 copy number changed significantly with water depth, with highest values at the 

236 shallowest depth in Crotone and Squillace canyons and at 500 m depth in Tricase 

237 canyons. 

238 Fungal biomass ranged from 0.17 to 5.78 µgC g-1, with values significantly lower in the 

239 sediments of Tricase (0.63 ± 0. 14 µgC g-1) than in Crotone and Squillace canyons (2.40 ± 

240 0.43 and 2.73 ± 0.49 µgC g-1, respectively; p<0.01) (Figure 2b). The distribution of 

241 fungal biomass along the bathymetric gradients within each canyon was similar to that of 

242 18S rDNA copy number. Data on fungal biomass are practically no existent for deep-sea 

243 surface sediments (Damare and Raghukumar, 2008). However, the fungal biomass values 

244 reported here are similar to those of other benthic components reported at equal depths in 

245 the whole Mediterranean Sea (Gambi et al., 2017) suggesting that fungi can represent a 

246 significant component of benthic biomass in deep-sea sediments. 

247 We found a significant relationship between fungal abundance and biomass (Figure S2). 
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248 From the slope of this relationship, we estimated that 1 µg of fungal biomass could be 

249 equivalent to 7.8 × 106 fungal 18S rDNA copies. Although such relationship should be 

250 view with caution and needs to be better refined with a broader spatial scale investigation, 

251 it can provide useful information on the quantitative relevance of deep-sea fungi based on 

252 copy number determinations (Taylor and Cunliffe, 2016). 

253 Significant positive relationships between carbohydrate concentrations and fungal 

254 abundance and biomass were found (r=0.715 and r =0.893, both p<0.01, for the 

255 abundance and biomass, respectively; Figure 3). Also, multivariate multiple regression 

256 analysis provided evidence that carbohydrate concentration in the sediment was the 

257 primary factor explaining the distribution of the abundance and biomass of fungi in the 

258 benthic deep-sea ecosystems investigated (Table S2). Since fungi are osmotrophic (i.e. 

259 feed by secreting enzymes into the environment to degrade organic matter externally 

260 before taking the resulting metabolites into the cell; Richards and Talbot, 2013; Richards 

261 et al., 2015), our results suggest that they could be highly specialized in the utilisation of 

262 carbohydrates which are typically characterised by a highly recalcitrant fraction, 

263 especially in benthic deep-sea ecosystems (Dell'Anno et al., 2000; Dell'Anno et al., 

264 2013). 

265 Our results also show that the clustering of the 1203476 fungal ITS sequences (obtained 

266 after quality check) allowed us to identify a total of 1742 fungal OTUs, belonging to all 

267 fungal phyla known to date. Ascomycota represented the dominant phylum (accounting 

268 for 68% of the total reads), followed by Basidiomycota (10%) and Chytridiomycota (4%). 

269 The dominance of such phyla has been consistently reported in other benthic deep-sea 

270 ecosystems (Zhang et al., 2016). 

271 The number of fungal OTUs we found in the sediments of the different canyons was 

272 similar compared with that reported in other deep-sea ecosystems (Zhang et al., 2016). 
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273 The Tricase canyon displayed a significantly lower OTU number (range: 64-71 OTUs) 

274 compared to Crotone and Squillace canyons (range: 113-325 and 173-221 OTUs, 

275 respectively; p<0.01; Figure 4). 

276 In our dataset, the OTUs affiliating to currently known fungal families were represented 

277 by only 19-38% of the total reads (Figure 5). The classified fungal OTUs affiliated to 206 

278 genera belonging to 132 families, 66 orders and 27 classes. 

279 At all benthic sites, Pleosporales was the most represented fungal order (accounting for 

280 ca. 20% of the total reads in each sample). This group is commonly present in marine 

281 environment and can account for a relevant fraction of the fungal diversity (up to 18% of 

282 all OTUs and sequences) in benthic deep-sea ecosystems (Li et al., 2016). Moreover, 

283 members belonging to the Pleosporales order are known to be adapted to high hydrostatic 

284 pressure (Nagano and Nagahama, 2012), possibly contributing to the ecological success 

285 of such taxon in deep-sea ecosystems.

286 Most of the fungi that we successfully classified were affiliated to genera such as 

287 Aspergillus, Penicillium, Epicoccum, Cryptococcus and Candida previously encountered 

288 in other deep-sea environments (Nagahama et al., 2003; Edgcomb et al., 2011; Rédou et 

289 al., 2014). However, these genera represented overall only ca. 36% of the total reads, 

290 indicating that the majority of fungal taxa belonged to genera not represented in UNITE 

291 database (Kõljalg et al., 2013).

292 The majority of fungal OTUs were unclassified below the order level and overall 

293 represented up to 69% of the total sequences. The quantitative relevance of unclassified 

294 sequences in our study was much higher than that reported for coastal sediments (Picard, 

295 2017), indicating that deep-sea ecosystems might harbour a higher richness of novel 

296 fungal lineages compared with shallow benthic ecosystems. 

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720



12

297 The composition of fungal assemblage in the sediments of the Tricase canyon was 

298 significantly different (p<0.01) from that of the other canyons, which otherwise showed 

299 no significant differences (Figure 5). These results suggest that submarine canyons far 

300 from the coastline and lacking river inputs can host distinct fungal assemblages from 

301 those close to river estuaries.

302 The analysis of the turnover (β-)diversity highlighted that the similarity of the fungal 

303 assemblage composition among different sites was very low (Table S3 and Figure 6). 

304 Indeed, the within-canyon similarity (i.e., the similarity of fungal assemblage 

305 composition among samples collected at a different depth within the same canyon) was 

306 on average 11%, while the inter-canyon comparisons resulted in an average similarity of 

307 7% (Table S3). Moreover, the Tricase canyon showed the highest percentage of unique 

308 OTUs (i.e., OTUs found in Tricase but not in Squillace nor Crotone canyons; Table S4). 

309 Overall, the three canyons shared only 46 out of 1742 OTUs, that cumulatively accounted 

310 for only 22% of the total sequences. Twenty-seven of these 46 shared OTUs (overall 

311 accounting for 14% of the total sequences) were not classified, while the others shared 

312 OTUs (each of them contributing for ≤0.45% of the total sequences) included taxa 

313 belonging to Epicoccum nigrum, Illyonectria robusta, Trichoderma bissettii, 

314 Cryptococcus victoriae, Aspergillus sydowii, Fusarium sp, Penicillum halotolearns and 

315 Thermomyces lanuginosus. 

316 Distance-based redundancy analysis highlighted that the fungal assemblage composition 

317 in the sediments of the different canyons was related to an array of factors including 

318 organic matter content (as carbohydrates and lipid concentrations, r= -0.624 and r= 0.434, 

319 respectively) and temperature (r= 0.980) and salinity (r= -0.560; Figure 7). These results 

320 confirm that also in the deep-sea sediments investigated trophic availability and thermo-

321 haline conditions are important drivers of fungal assemblage composition (Hanson et al., 
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322 2008; McGuire et al., 2010; Li et al., 2016; Taylor and Cunliffe, 2016; Tisthammer et al., 

323 2016). Our findings also suggest that changes in the thermo-haline and trophic conditions 

324 among submarine canyons may promote a high turnover diversity of benthic deep-sea 

325 fungal assemblages.

326 Overall results of the present study indicate that the submarine canyons of the 

327 Mediterranean Sea host abundant and highly diversified fungal assemblages most of 

328 which still unidentified and pave the way for a better understanding of the ecological role 

329 of fungi in the largest ecosystem on Earth.
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556 Captions of figures

557

558 Figure 1. Study area and sampling location (a). Details of benthic sites investigated within 

559 Tricase (a), Crotone (b) and Squillace (c) canyons. Bathymetry has been obtained from 

560 EMODnet (http://portal.emodnet-bathymetry.eu). Maps elaborated with QGIS. 

561 Figure 2. Fungal abundance, expressed as 18S rDNA copy number (a), and biomass (b) in 

562 the different benthic sites of the Tricase, Crotone and Squillace canyons. Mean values 

563 and standard deviations are reported.

564 Figure 3. Relationships between carbohydrate concentrations in the sediments of the 

565 different canyons investigated and fungal abundance (a) and biomass (b) 

566 Figure 4. OTU number in the different benthic sites within Tricase, Crotone and Squillace 

567 canyons. Mean values and standard deviations are reported. 

568 Figure 5. Taxonomic composition (at the family level on data normalized to 2500 sequences) 

569 of the benthic fungal assemblages in the different canyons investigated. To better 

570 visualise differences among the investigated sites the output of cluster analysis is also 

571 reported.

572 Figure 6. Network visualisation based on the output of SIMPER analysis carried out on 

573 fungal community composition among the nine sites investigated. Line width is 

574 proportional to similarity values.

575 Figure 7. Output of the distance-based redundancy analysis (dbRDA) carried out on fungal 

576 community composition in the different benthic deep-sea sites in relation with thermo-

577 haline and trophic conditions.

578   

1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440



24

580 Table 1. Temperature, salinity and protein (PRT), carbohydrate (CHO), lipid (LIP) and 
581 biopolymeric C concentrations in the different sites of the Tricase, Crotone and Squillace 
582 canyons. Mean values and standard deviations (±) are reported.

583

Canyon Water 
depth Temperature Salinity PRT CHO LIP Biopolymeric C

m °C mg g-1 mg g-1 mg g-1 mg g-1

Tricase 200 m 14.58±0.01 38.8±0.01 1.91±0.55 2.21±0.59 0.82±0.28 2.43±0.72
500 m 14.23±0.05 38.75±0.01 2.42±0.73 2.37±0.29 1.22±0.4 3.05±0.78
1000 m 13.85±0.01 38.8±0.01 0.77±0.52 2.1±0.25 1.72±0.68 2.51±0.87

Crotone 200 m 15.07±0.12 38.91±0.01 2.87±0.24 3.56±0.23 1.61±0.76 4.04±0.78
500 m 14.4±0.03 38.88±0.01 2.09±0.48 2.44±0.23 0.48±0.19 2.36±0.47
1000 m 13.77±0.02 38.76±0.01 2.22±0.29 2.18±0.11 0.3±0.1 2.19±0.26

Squillace 200 m 14.78±0.06 38.82±0.01 2.21±0.36 3.77±0.59 0.6±0.31 3.04±0.64
500 m 14.64±0.05 38.92±0.01 3.5±0.78 3.08±0.22 0.28±0.05 3.16±0.5

 1000 m 13.78±0.01 38.76±0.01 2.96±0.34 2.61±0.21 0.66±0.58 2.99±0.68
584
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681
682 Table S1. Reported are the outputs of the ANOSIM and SIMPER analyses carried out to test 
683 for the differences and dissimilarity in sediment organic matter contents between the different 
684 canyons investigated and the variables responsible for the estimated differences. Reported are 
685 R which represents the sample statistic (global R) and P which is the probability level. **=P 
686 <0.01; ns = not significant

687
ANOSIM SIMPER

R P Dissimilarity Explanatory 
variable

Explained
variance (%)

Cumulative explained
variance (%)

Proteins 40.78 40.78
Lipids 33.48 74.26Tricase vs. 

Crotone 0.153 ** 22.35
Carbohydrates 25.74 100

Proteins 43.85 43.85
Carbohydrates 30.74 74.59Tricase vs. 

Squillace 0.449 ** 27.02
Lipids 25.41 100

Proteins n.s n.s
Lipids n.s n.s

Crotone 
vs. 

Squillace
0.12 n.s. 16.82

Carbohydrates n.s n.s
688
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691 Table S2. Output of the multivariate multiple regression analysis carried out for testing the 
692 effects of organic matter content (proteins, carbohydrates and lipids), temperature and salinity 
693 on fungal abundance (as 18S rDNA copies) and biomass. Reported are Pseudo-F and P 
694 values (*<0.05; **<0.01; ***<0.001; ns>0.05) and the cumulative variance explained by the 
695 significant variables. 

Fungal abundance (18S rDNA copies)
Variable Pseudo-F P Cumulative variance

%
Carbohydrates 11.556 *** 31.6

Lipids 3.814 * 41.0
Proteins 1.771 ns -
Salinity 1.654 ns -

Temperature 0.667 ns -

Fungal biomass
Carbohydrates 98.421 *** 79.7

Lipids 4.249 ns -
Proteins 2.275 ns -

Temperature 0.82 ns -
Salinity 2.196 ns -
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698 Table S3. Output of SIMPER showing the dissimilarity (turnover diversity) of fungal 
699 assemblage composition within the canyon and between the canyons investigated

700

Type of comparison

Turnover diversity
(% Bray-Curtis 

dissimilarity)
within canyon Tricase 200 m vs. 500 m 86.19

200 m vs. 1000 m 91.97
500 m vs. 1000 m 91.12

Crotone 200 m vs. 500 m 89.03
200 m vs. 1000 m 94.3
500 m vs. 1000 m 87.88

Squillace 200 m vs. 500 m 85.22
200 m vs. 1000 m 88.92
500 m vs. 1000 m 88.45

between canyons 200 m Tricase vs. Crotone 97.01
Tricase vs. Squillace 94.23
Crotone vs. Squillace 88.7

500 m Tricase vs. Crotone 91.5
Tricase vs. Squillace 95.42
Crotone vs. Squillace 88.89

1000 m Tricase vs. Crotone 92.2
Tricase vs. Squillace 94.52
Crotone vs. Squillace 90.65
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702 Table S4. Percentage of unique and shared OTUs between replicates of the same site, within 
703 the canyon and between the canyons
704

Type of comparison Shared Unique
% %

between replicates of the 
same site Tricase 200 m 9.4 90.6

500 m 15.7 84.3
1000 m 10.2 89.8

Crotone 200 m 12.5 87.5
500 m 14.6 85.4
1000 m 7.6 92.4

Squillace 200 m 12.2 87.8
500 m 7.0 93.0
1000 m 6.8 93.2

Average 10.7 89.3
within canyon Tricase 200 vs. 500 m 18.8 90.0

200 vs. 1000 m 14.0 93.9
500 vs. 1000 m 13.8 92.5

Crotone 200 vs. 500 m 12.2 91.1
200 vs. 1000 m 19.8 94.8
500 vs. 1000 m 19.9 91.2

Squillace 200 vs. 500 m 29.3 86.3
200 vs. 1000 m 18.6 89.2
500 vs 1000 m 26.9 88.0

Average 19.2 90.8

between canyons Tricase vs. 
Crotone 200 m 3.8 96.2

500 m 7.9 92.1
1000 m 7.6 92.4

Tricase vs. 
Squillace 200 m 6.6 93.4

500 m 5.6 94.4
1000 m 5.9 94.1

Crotone vs. 
Squillace 200 m 10.3 89.7

500 m 10.9 89.1
1000 m 8.1 91.9

Average 7.4 92.6
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706 Figure S1. Rarefaction curves calculated for each of the two independent replicates (dashed 
707 lines, 2500 sequences each) analysed in all benthic deep-sea sites of the canyons investigated. 
708
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721 Figure S2. Relationship between benthic fungal abundance (as 18S rDNA copies) and 

722 biomass in the sediments of the three canyons
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