

UNIVERSITÀ POLITECNICA DELLE MARCHE Repository ISTITUZIONALE

Benthic deep-sea fungi in submarine canyons of the Mediterranean Sea

This is a pre print version of the following article:

Original

Benthic deep-sea fungi in submarine canyons of the Mediterranean Sea / Barone, G.; Rastelli, E.; Corinaldesi, C.; Tangherlini, M.; Danovaro, R.; Dell'Anno, A.. - In: PROGRESS IN OCEANOGRAPHY. - ISSN 0079-6611. - 168:(2018), pp. 57-64.

Availability:

This version is available at: 11566/266051 since: 2022-05-31T16:50:39Z

Publisher:

Published DOI:

Terms of use:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of copyrighted works requires the consent of the rights' holder (author or publisher). Works made available under a Creative Commons license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor's website for further information and terms and conditions. This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the published version.

Manuscript Details

Manuscript number	PROOCE_2018_117
Title	Benthic deep-sea fungi in submarine canyons of the Mediterranean Sea
Article type	Full Length Article

Abstract

Fungi are ubiquitous components of microbial assemblages in aquatic ecosystems, but their quantitative relevance, ecological role and diversity in benthic deep-sea ecosystems are still largely unknown. Here, we investigated patterns and drivers of benthic fungal abundance, biomass and diversity from 200 to 1000 m depth in three submarine canyons of the Mediterranean Sea (Tricase, Crotone and Squillace canyons). The Crotone and Squillace canyons, which are close to the coast and influenced by river inputs, showed significantly higher fungal abundance, biomass and diversity (as operational taxonomic units, OTUs) compared with the Tricase canyon that was far from the coast and without nearby estuaries. Fungal biomass, ranging from 0.17 to 5.78 µgC g-1, and abundance increased with increasing carbohydrate concentrations in the sediments, suggesting that deep-sea fungi have a role in the utilisation of this component of the organic matter. A total of 1742 fungal OTUs, belonging to all fungal phyla known to date, were found and Ascomycota represented the dominant phylum. However, only 36% of the reads belonged to known genera. In particular. Tricase and Crotone canyons hosted the highest proportion of unknown fungal taxa, suggesting that deepsea sediments can harbour a high number of novel fungal lineages. Our findings also reveal that fungal assemblage composition in the investigated canyons was influenced by trophic and thermo-haline conditions, which may promote a high turnover diversity of benthic deep-sea fungal assemblages. Overall results reported here indicate that the submarine canyons of the Mediterranean Sea can represent hot-spots of abundant and highly diversified fungal assemblages and pave the way for a better understanding of the ecological role of fungi in the largest ecosystem on Earth.

Keywords	Benthic deep-sea ecosystems; fungal abundance; fungal diversity; submarine canyons; Mediterranean Sea
Manuscript category	Biological Oceanography
Corresponding Author	Antonio Dell'Anno
Corresponding Author's Institution	Università Politecnica delle Marche
Order of Authors	Giulio Barone, Eugenio Rastelli, cinzia corinaldesi, Michael Tangherlini, Roberto Danovaro, Antonio Dell'Anno
Suggested reviewers	Gaëtan Burgaud, Jan Pawlowski, Takuro Nunoura, Lucia Bongiorni
Opposed reviewers	Virginia Edgcomb

Submission Files Included in this PDF

File Name [File Type]

Barone et alii_Cover Letter.doc [Cover Letter]

Barone et alii_highlights.doc [Highlights]

Barone_et alii_main text_final.doc [Manuscript File]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE Homepage, then click 'Download zip file'.

Research Data Related to this Submission

There are no linked research data sets for this submission. The following reason is given: All data are included in the text

Dipartimento di Scienze della Vita e dell'Ambiente **DISVA**

Ancona, 08.05.2018

Dear Editor,

please find enclosed the main text and figures of the manuscript entitled: "Benthic deepsea fungi in submarine canyons of the Mediterranean Sea" by Giulio Barone et alii, submitted for consideration to Progress in Oceanopgraphy within the special issue "Ecology and functioning of Mediterranean submarine canyons".

This is an original manuscript not submitted or presented elsewhere in which we investigated, for the first time, the quantitative relevance and diversity of fungi in deepsea sediments of submarine canyons of the Mediterranean Sea. In this study, we show that fungi are an important component within the benthic deep-sea food webs and that they are highly diversified. Our results also indicate that different environmental characteristics encountered in the different canyons investigated can have a major role in influencing fungal diversity and assemblage composition. We think that this work expands our knowledge on the ecology and diversity of fungi inhabiting Mediterranean submarine canyons and we hope that it might be of interest for your journal.

For any requests, please do not hesitate to contact me at the address and numbers reported here below.

Looking forward to hearing from you soon, we remain.

Best regards

On behalf of all co-authors

Antonio Dell'Anno

Prof. Antonio Dell'Anno Department of Life and Environmental Sciences (DISVA) Università Politecnica delle Marche, 60131, Ancona, Italy. Phone number: +39 0712204328 E-mail: a.dellanno@univpm.it

HIGHLIGHTS

- > Submarine canyons host abundant and diverse fungal communities
- > Fungal abundance, biomass and diversity are driven by carbohydrate concentrations
- Deep-sea sediments can harbour a high number of novel fungal taxa
 Thermohaline and trophic conditions may promote a high turnover diversity of fungi

1	Benthic deep-sea fungi in submarine canyons of the Mediterranean Sea
2	
3	Giulio Barone ¹ , Eugenio Rastelli ² , Cinzia Corinaldesi ³ , Michael Tangherlini ² , Roberto
4	Danovaro ^{1,2} , Antonio Dell'Anno ^{1*}
5	
6	
7	¹ Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131
8	Ancona Italy
9	² Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
10	³ Department of Sciences and Engineering of Materials, Environment and Urbanistics,
11	Polytechnic University of Marche, 60131 Ancona, Italy
12	
13	
14	
15	*Addrage for correspondences a dellenne Qunivrom it
10	Address for correspondence. <u>a.denanno@univpin.n</u>
18	
19	
20	Running title : Fungal abundance and diversity in Mediterranean canyons

Abstract

Fungi are ubiquitous components of microbial assemblages in aquatic ecosystems, but their quantitative relevance, ecological role and diversity in benthic deep-sea ecosystems are still largely unknown. Here, we investigated patterns and drivers of benthic fungal abundance, biomass and diversity from 200 to 1000 m depth in three submarine canyons of the Mediterranean Sea (Tricase, Crotone and Squillace canyons). The Crotone and Squillace canyons, which are close to the coast and influenced by river inputs, showed significantly higher fungal abundance, biomass and diversity (as operational taxonomic units, OTUs) compared with the Tricase canyon that was far from the coast and without nearby estuaries. Fungal biomass, ranging from 0.17 to 5.78 μ gC g⁻¹, and abundance increased with increasing carbohydrate concentrations in the sediments, suggesting that deep-sea fungi have a role in the utilisation of this component of the organic matter. A total of 1742 fungal OTUs, belonging to all fungal phyla known to date, were found and Ascomycota represented the dominant phylum. However, only 36% of the reads belonged to known genera. In particular, Tricase and Crotone canvons hosted the highest proportion of unknown fungal taxa, suggesting that deep-sea sediments can harbour a high number of novel fungal lineages. Our findings also reveal that fungal assemblage composition in the investigated canyons was influenced by trophic and thermo-haline conditions, which may promote a high turnover diversity of benthic deep-sea fungal assemblages. Overall results reported here indicate that the submarine canyons of the Mediterranean Sea can represent hot-spots of abundant and highly diversified fungal assemblages and pave the way for a better understanding of the ecological role of fungi in the largest ecosystem on Earth. Key Words: Benthic deep-sea ecosystems, fungal abundance, fungal diversity, submarine

- canyons, Mediterranean Sea

1. Introduction

Deep-sea ecosystems represent more than 65% of the world's surface and >95% of the global biosphere (Herring, 2002), and host yet undiscovered biodiversity and a significant portion of the world's genetic diversity (Danovaro et al., 2017). In benthic deep-sea ecosystems, biomass is dominated by bacteria and archaea, followed by unicellular eukaryotes and small metazoans (<0.5 mm in size, meiofauna). These organisms are essential for carbon cycling and nutrient regeneration, and thus vital for sustaining oceanic production (Dell'Anno and Danovaro, 2005; Sogin et al., 2006; Jørgensen and Boetius, 2007; Danovaro et al., 2015; Danovaro et al., 2017). Recent findings, based on culture-dependent and independent approaches, revealed that fungi are present in deep-sea environments across a variety of ecosystem types spanning from hypersaline anoxic basins (Bernhard et al., 2014; Edgcomb et al., 2017) to cold seeps (Nagahama et al., 2011; Thaler et al., 2012), from hydrothermal vents (Burgaud et al., 2009; Burgaud et al., 2010; Xu et al., 2017) to surface and subsurface sediments (Orsi et al., 2013; Pachiadaki et al., 2016). Fungi have also been reported as the dominant unicellular eukarvotic group in the marine snow in bathypelagic waters with biomass similar to that of prokaryotes (Bochdansky et al., 2017).

Theoretical estimates suggest that fungi can be the most diversified component of unicellular eukaryotes on Earth, with more than 5 million species of which only 5% have been described (Hawksworth, 1997; Blackwell, 2011). This gap applies in particular to open ocean ecosystems where a significant fraction of fungal diversity is still unknown (Jeffries et al., 2016). Recent studies suggest that a variety of environmental factors (e.g. temperature, salinity, nutrients) can influence the diversity and assemblage composition of fungi in marine ecosystems (Li et al., 2016; Tisthammer et al., 2016). However, drivers

181		
182		
183	72	controlling the distribution and diversity of fungi in benthic deen-sea ecosystems remain
184	12	controlling the distribution and diversity of fungi in bentile deep sed ecosystems femali
185	72	to date largely unexplored
186	75	to dute furgery unexplored.
187	74	Fungi in terrestrial and freshwater ecosystems are among the main decomposers of
188	74	I ungi in terrestriar and reshwater ceosystems are among the main decomposers of
109	75	organic matter and play a key role in the processing of the most refractory fraction of
190	75	organic matter and play a key role in the processing of the most reflactory fraction of
192	76	organic carbon (Carlile et al. 2001: Clinson et al. 2006: Hwang et al. 2006: Dighton
193	70	organie euroon (eurnie et ul. 2001, empson et ul. 2000, riwung et ul. 2000, Dighton,
194	77	2007) Since deen-sea ecosystems can contain relatively high amounts of organic carbon
195	//	2007). Since deep sed eeosystems can contain relatively men amounts of organic carbon
196	78	(Pusceddu et al. 2009) fungi might play a key role in C cycling also in these ecosystems
197	70	(1 useeduu et al., 2007), tungt might play a key tote m e cycling also m these ecosystems
198	70	(Hyde et al. 1008: Burgaud et al. 2009: Cathrine and Raghukumar. 2009: Jeharai et al.
199	/7	(Tryde et al., 1996, Durgaud et al., 2009, Cathrine and Raghukumar, 2009, Jeoaraj et al.,
200	<u>00</u>	2010)
201	00	2010).
202	01	In this study, we investigated the abundance, biomass and taxonomic composition of
203	01	In this study, we investigated the abundance, biomass and taxonomic composition of
204	00	fungal assemblages along the continental margins of the Central Mediterranean Sea
205	02	rungai assemblages along the continental margins of the Central Mediterranean Sea.
206	00	Continental marging are characterized by open clones and submarine canyons, which are
207	03	Continental margins are characterised by open slopes and submarine earlyons, when are
200	Q 1	essential for C cycling and nutrient regeneration processes at a global scale (Bousquet et
209	04	essential for C cycling and nutrent regeneration processes at a global scale (Bousquet et
210	05	al 2000: Dickens 2003). In particular submarine canvons can channel large amounts of
212	00	al., 2000, Dickens, 2005). In particular, submarine earlyons can enamer large amounts of
213	04	organic matter photosynthetically produced from the continental shelf down to deep sea
214	00	organic matter photosyntheticany produced nom the continental sheri down to deep-sea
215	97	ecosystems (Monaco et al. 1990: Sànchez-Vidal et al. 2008: Allen and Durrieu de
216	07	cosystems (wonaco et al., 1999, Sanchez-Vidar et al., 2008, Anen and Durred de
217	88	Madron 2000: Puig et al. 2014) For this reason, we selected three submarine canyons
218	00	Madron, 2009, 1 dig et al., 2014). For this reason, we selected three submarine earlyons
219	80	characterised by different environmental conditions and investigated fungal abundance
220	07	characterised by unificient environmental conditions and investigated fungal abundance,
221	00	biomass and diversity at depths ranging from 200 to 1000 m. To identify the factors
222	70	bioinass and diversity at depuis ranging from 200 to 1000 m. To identify the factors
223	01	notantially controlling their quantitative importance and diversity in deep see sediments
224	71	potentiarry controlling then quantitative importance and diversity in deep-sea sediments,
220	02	we explored the role of environmental conditions, including the organic matter quality
220	12	we explored the fole of environmental conditions, meruding the organic matter quanty
228	02	and quantity
229	75	
230	04	
231	74	
232	95	
233	7.J	
234	96	2 Materials and methods
235	70	2. Mathais and memous
236		

97 2.1. Study area and sampling design

Sediment sampling was carried out in the Ionian Sea (Central Mediterranean Sea) during the oceanographic cruise "SAND 2016" held on board of the research vessel R/V Minerva Uno in May 2016. Sediment samples were collected within the main axis of three canyons located along the SE Italian margin at 200, 500 and 1000 m depths (Figure 1). One of the investigated canyon (hereafter defined "Tricase") located along the Apulian margin, is far from any continental freshwater inputs. The other two investigated canyons are located along the Calabrian margin and were close to river estuaries. The Northern canyon, extending for about 30 km, is located in front of the Crotone municipality (canyon "Crotone") and its head is close to a river mouth. The head of the canyon "Squillace" is close to the coastline in front of the Squillace municipality and is characterised by the presence of sporadic, but intense river inputs. Sediment samples were collected at each benthic site by independent multiple corer deployments. The top 1 cm of each sediment sample was used for the analysis of the quantity and biochemical composition of organic matter, fungal abundance (based on q-PCR analysis of 18S rRNA genes), biomass and diversity. At each station, temperature and salinity of bottom waters were measured using CTD casts.

114

2.2. Quantity and biochemical composition of organic matter

The three major biochemical classes of organic compounds (proteins, carbohydrates and
lipids) in deep-sea sediments were determined according to previously described
procedures (Danovaro, 2010). Protein, carbohydrate and lipid concentrations were
determined spectrophotometrically and expressed as albumin, glucose and tripalmitin
equivalents, respectively. All analyses were carried out in 3 replicates. Protein,
carbohydrate and lipid concentrations were then converted to carbon equivalents

301		
302		
303 304	122	(conversion factors: 0.49, 0.40 and 0.75 gC g^{-1} , respectively) to determine biopolymeric C
305 306	123	content (Dell'Anno et al., 2002).
307 308	124	
309 310 311	125	2.3. Fungal biomass
312 313	126	To detect and quantify fungi in the sediment samples, fluorescence in-situ hybridisation
314 315	127	(FISH) coupled with Calcofluor white staining (which targets chitin, cellulose and
316 317	128	carboxylated polysaccharides) have been used following procedures previously described
318 319	129	(Bochdansky et al., 2016). The FISH reaction was performed using the Pan-Fungal probe
320 321	130	PF2 (5'-CTC TGG CTT CAC CCT ATT C-3') Cy-3 labelled (Kempf et al., 2000).
322 323	131	Briefly, about 1 g of sediment was first treated using 4 ml of a mix containing EDTA,
324 325 326	132	Tween 80, sodium-pyrophosphate and methanol and ultrasounds treatment to separate
327 328	133	fungi from the sediment matrix. After centrifugation, sediment samples were washed
329 330	134	twice with PBS buffer and then treated with increasing concentrations of ethanol (50, 80
331 332	135	and 96%, for 3 min each). The sediment was then suspended in 500 μl hybridisation
333 334	136	buffer containing 0.9 M NaCl, 0.01% w/v SDS, 20 mM Tris-HCl pH 7.2, 30 %v/v
335 336	137	formamide and 1 μM PF2 (Kempf et al., 2000), then incubated for 3 h at 46°C in the
337 338	138	dark. Samples were then transferred in sterile tubes containing pre-warmed washing
339 340 341	139	buffer (20 mM Tris-HCl pH 8.0, 0.01% w/v SDS, 5 mM EDTA, 0.112M NaCl) and
342 343	140	incubated for 30 minutes at 48°C. After centrifugation and resuspension of the sediment
344 345	141	samples with 0.2 μ m pre-filtered water, aliquots of the slurry (n=3) were filtered on 0.2
346 347	142	μ m polycarbonate filters (Millipore) conditions. Filters were then stained with 0.5 mM
348 349	143	Calcofluor white and incubated in the dark for 5 min. Subsequently, slides were washed
350 351	144	with 0.02 μ m pre-filtered water and analysed under epifluorescence microscopy. The
352 353	145	whole filter was examined, and length and width measures were taken for each fungal-
354 355 356 357	146	like structure. Then, the average width and cumulative length were converted to a
358		

361		
362		
363 364	147	cylinder with half-spheres at ends, and the biovolume was converted into fungal biomass,
365		
366	148	assuming 1 µm3 of fungal biovolume equivalent to 1 pg C (Damare and Raghukumar
367		2000)
368	149	2008).
369	150	
370	150	
372	151	2.4 DNA extraction and purification for molecular analysis
373		
374	152	The DNA was extracted and purified from the sediment samples using the PowerSoil
375		
376	153	DNA isolation kit (QIAGEN)) following the manufacturer's instruction with slight
377		
370	154	modifications to remove extracellular DNA (based on three subsequent washing steps)
380		
381	155	before DNA extraction (Danovaro, 2009; Danovaro et al., 2016).
382	451	
383	150	
384	157	2.5 Quantitative real-time PCR of fungal 18S rRNA gene sequences
385	157	2.5 Quantitutive real time 1 err of fungul 105 minn gene sequences
387	158	DNA extracted from two sediment samples collected at each study site by independent
388		
389	159	multiple corer deployments was used for quantitative real-time PCR (qPCR) analysis
390		
391	160	which was performed as described in Taylor et al. (2016) with slight modifications.
392		
393 394	161	Briefly, fungi-specific primers FR1 5'-AIC CAT TCA ATC GGT AIT-3' and FF390 5'-
395	4/0	CCATAACCAACCACACCT 2' (Provest Deurs et al. 2011) were used with the
396	102	COA TAA COA ACO AOA CCT-5 (Flevost-Boule et al., 2011) were used with the
397	163	Sensi-FAST SYBR O-PCR kit (Bioline London UK) The 15 ul reactions contained 8 ul
398	100	Sensi Trist STBR & Tercki (Dionne, Dondon, Otc). The 15 µ reactions contained o µ
399	164	Sensi-FAST master mix, 1 µl of each primer (final concentration 1 µM), 1µl of DNA
400		
402	165	template and 5 µl nuclease-free molecular-grade water (Taylor and Cunliffe, 2016). A
403		
404	166	Bio-Rad iQ5 was used to perform qPCR. The following qPCR thermal cycles were used:
405		
406	16/	94°C for 3min, then 40 cycles of 94°C for 10 s, annealing at 50°C for 15 s, elongation at
407	160	72°C for 20 s and acquisition of fluorescence data at 82°C. Standard curves were
409	100	72 C for 20 s and acquisition of hubrescence data at 62 C. Standard curves were
410	169	generated using known concentration of Aspergillus niger 18S rDNA.
411		
412	170	
413		
414	171	2.6 Fungal diversity
416		
417		
418		
419		6
420		

DNA extracted from two sediment samples collected at each study site by independent multiple corer deployments was amplified using the primer set ITS1F (5'-GGAAGTAAAAGTCGTAACAAGG-3') and ITS2 (5'-GCTGCGTTCTTCATCGATGC-3') which amplify the internal transcribed spacer-1 (ITS1) region of the fungal rRNA gene (Walters et al., 2015). Amplicons were sequenced on an Illumina MiSeq platform by LGC group (Berlin, Germany) following Earth Microbiome Project protocols (http://www.earthmicrobiome.org/emp-standard-protocols/). Barcodes and ITS1 primer pairs were removed before demultiplexing. Paired-end sequences were then merged with FLASH (Magoč and Salzberg, 2011). Merged sequences were quality filtered using the SEARCH tool (Edgar, 2010) to remove sequences with expected error >1.0 and analysed with the QIIME software package (Caporaso et al., 2010). Operational taxonomic units (OTUs) were assigned with a threshold of 98.5% pairwise identity as indicated by the UNITE fungal ITS database (http://unite.ut.ee/). Then, OTUs were classified taxonomically against the UNITE database (http://unite.ut.ee/, Version 7.1, November 20, 2016). To allow a proper comparison among samples, we followed the approach by Gihring et al. (2012) with sample normalisation to 2500 randomly-selected sequences (corresponding to the lowest read count obtained in our samples). Rarefaction curves highlighted that 2500 sequences used for the comparison among all samples were generally sufficient to describe the fungal diversity in the different benthic deep-sea ecosystems investigated (Figure S1). 2.7 Statistical analyses Two-way analysis of variance (ANOVA) was performed to test for differences in organic matter content, fungal abundance, biomass and OTU richness among canyons and depths. When significant differences were encountered, post-hoc tests were also carried out.

ANOSIM analysis was performed to test for the presence of statistical differences in the trophic conditions at the seafloor between canyons. Permutational multivariate analysis of variance (PERMANOVA) was used based on Bray-Curtis similarity matrix and visualised using cluster analysis to test for differences in fungal community composition among canyons and depths. Distance-based multivariate analysis for a linear model (DistLM) forward (Anderson, 2008) was performed to identify potential factors influencing fungal abundance, biomass, OTU richness and assemblage composition. P values were obtained with 9,999 permutations of residuals under the reduced model (Anderson, 2008). Temperature, salinity and trophic resources (as protein, carbohydrate and lipid concentrations) were used as predictor variables. Distance-based redundancy analysis (dbRDA) was finally used to visualise the relationships between fungal assemblage composition of the different canyon systems and thermo-haline and trophic variables. All statistical analyses were performed using Primer 6+ software.

 3. Results and discussion

The thermo-haline conditions of bottom waters of the benthic systems investigated in the present study changed across depths and canyons, with temperature values ranging from 13.77 to 15.20 °C, and salinity values ranging from 38.75 to 38.93 (Table 1). Lowest temperature and salinity values were generally observed at the greatest depth (i.e. 1000 m). Also, the analysis of organic matter quantity in the sediments revealed differences among the investigated canyons (Tables 1, TableS1), with concentrations of proteins and carbohydrates significantly higher in Crotone and Squillace canyons than in Tricase canyon (p<0.05 and p<0.01, for proteins and carbohydrates, respectively). The highest organic matter content in the sediments of Crotone and Squillace canyons is likely due to

their proximity to the coast and the presence of nearby river inputs which amplify the
their proximity to the coast and the presence of nearby river inputs which amplify the
magnitude of organic matter exported from the water column and settling on the seafloor
(Lopez-Fernandez et al., 2013).

The amount of organic matter in deep-sea sediments represents a significant factor influencing the abundance and distribution of benthic assemblages (Danovaro et al., 2014). Fungal abundance, expressed as number of fungal 18S rDNA copies ranged from 1.4×10^6 to 5.1×10^7 copies g-1 and was significantly lower in Tricase ($0.38 \pm 0.04 \times 10^7$ copies g⁻¹) than in Crotone and Squillace canvons $(2.7 \pm 0.5 \text{ and } 1.3 \pm 0.4 \times 10^7 \text{ copies})$ g^{-1} , respectively; p<0.01; Figure 2a). Our results fall within previously reported ranges for deep-sea sediments of the Pacific Ocean (3.5×10^6 - 5.2×10^7 28S rDNA copies g⁻¹; Xu et al., 2014), providing the first evidence of the quantitative importance of fungi also in benthic deep-sea ecosystems of the Mediterranean Sea. In all canyons, the 18S rDNA copy number changed significantly with water depth, with highest values at the shallowest depth in Crotone and Squillace canyons and at 500 m depth in Tricase canyons.

Fungal biomass ranged from 0.17 to 5.78 μ gC g⁻¹, with values significantly lower in the sediments of Tricase $(0.63 \pm 0.14 \mu \text{gC g}^{-1})$ than in Crotone and Squillace canyons $(2.40 \pm$ 0.43 and $2.73 \pm 0.49 \ \mu gC \ g^{-1}$, respectively; p<0.01) (Figure 2b). The distribution of fungal biomass along the bathymetric gradients within each canyon was similar to that of 18S rDNA copy number. Data on fungal biomass are practically no existent for deep-sea surface sediments (Damare and Raghukumar, 2008). However, the fungal biomass values reported here are similar to those of other benthic components reported at equal depths in the whole Mediterranean Sea (Gambi et al., 2017) suggesting that fungi can represent a significant component of benthic biomass in deep-sea sediments.

247 We found a significant relationship between fungal abundance and biomass (Figure S2).

From the slope of this relationship, we estimated that 1 µg of fungal biomass could be equivalent to 7.8×10^6 fungal 18S rDNA copies. Although such relationship should be view with caution and needs to be better refined with a broader spatial scale investigation, it can provide useful information on the quantitative relevance of deep-sea fungi based on copy number determinations (Taylor and Cunliffe, 2016). Significant positive relationships between carbohydrate concentrations and fungal abundance and biomass were found (r=0.715 and r =0.893, both p<0.01, for the abundance and biomass, respectively; Figure 3). Also, multivariate multiple regression analysis provided evidence that carbohydrate concentration in the sediment was the primary factor explaining the distribution of the abundance and biomass of fungi in the benthic deep-sea ecosystems investigated (Table S2). Since fungi are osmotrophic (i.e. feed by secreting enzymes into the environment to degrade organic matter externally before taking the resulting metabolites into the cell; Richards and Talbot, 2013; Richards et al., 2015), our results suggest that they could be highly specialized in the utilisation of carbohydrates which are typically characterised by a highly recalcitrant fraction, especially in benthic deep-sea ecosystems (Dell'Anno et al., 2000; Dell'Anno et al., 2013). Our results also show that the clustering of the 1203476 fungal ITS sequences (obtained after quality check) allowed us to identify a total of 1742 fungal OTUs, belonging to all fungal phyla known to date. Ascomycota represented the dominant phylum (accounting for 68% of the total reads), followed by Basidiomycota (10%) and Chytridiomycota (4%). The dominance of such phyla has been consistently reported in other benthic deep-sea ecosystems (Zhang et al., 2016). The number of fungal OTUs we found in the sediments of the different canyons was similar compared with that reported in other deep-sea ecosystems (Zhang et al., 2016).

661 662		
663 664	273	The Tricase canyon displayed a significantly lower OTU number (range: 64-71 OTUs)
665 666	274	compared to Crotone and Squillace canyons (range: 113-325 and 173-221 OTUs,
667 668	275	respectively; p<0.01; Figure 4).
670 671	276	In our dataset, the OTUs affiliating to currently known fungal families were represented
672 673	277	by only 19-38% of the total reads (Figure 5). The classified fungal OTUs affiliated to 206
674 675	278	genera belonging to 132 families, 66 orders and 27 classes.
676 677	279	At all benthic sites, Pleosporales was the most represented fungal order (accounting for
678 679	280	ca. 20% of the total reads in each sample). This group is commonly present in marine
680 681	281	environment and can account for a relevant fraction of the fungal diversity (up to 18% of
682 683	282	all OTUs and sequences) in benthic deep-sea ecosystems (Li et al., 2016). Moreover,
685 686	283	members belonging to the Pleosporales order are known to be adapted to high hydrostatic
687 688	284	pressure (Nagano and Nagahama, 2012), possibly contributing to the ecological success
689 690	285	of such taxon in deep-sea ecosystems.
691 692	286	Most of the fungi that we successfully classified were affiliated to genera such as
693 694	287	Aspergillus, Penicillium, Epicoccum, Cryptococcus and Candida previously encountered
695 696	288	in other deep-sea environments (Nagahama et al., 2003; Edgcomb et al., 2011; Rédou et
697 698	289	al., 2014). However, these genera represented overall only ca. 36% of the total reads,
700 701	290	indicating that the majority of fungal taxa belonged to genera not represented in UNITE
702 703	291	database (Kõljalg et al., 2013).
704 705	292	The majority of fungal OTUs were unclassified below the order level and overall
706 707	293	represented up to 69% of the total sequences. The quantitative relevance of unclassified
708 709	294	sequences in our study was much higher than that reported for coastal sediments (Picard,
710 711	295	2017), indicating that deep-sea ecosystems might harbour a higher richness of novel
712 713 714 715	296	fungal lineages compared with shallow benthic ecosystems.

The composition of fungal assemblage in the sediments of the Tricase canyon was significantly different (p<0.01) from that of the other canyons, which otherwise showed no significant differences (Figure 5). These results suggest that submarine canyons far from the coastline and lacking river inputs can host distinct fungal assemblages from those close to river estuaries. The analysis of the turnover $(\beta$ -)diversity highlighted that the similarity of the fungal assemblage composition among different sites was very low (Table S3 and Figure 6). Indeed, the within-canyon similarity (i.e., the similarity of fungal assemblage composition among samples collected at a different depth within the same canyon) was on average 11%, while the inter-canyon comparisons resulted in an average similarity of 7% (Table S3). Moreover, the Tricase canyon showed the highest percentage of unique OTUs (i.e., OTUs found in Tricase but not in Squillace nor Crotone canyons; Table S4). Overall, the three canyons shared only 46 out of 1742 OTUs, that cumulatively accounted for only 22% of the total sequences. Twenty-seven of these 46 shared OTUs (overall accounting for 14% of the total sequences) were not classified, while the others shared OTUs (each of them contributing for $\leq 0.45\%$ of the total sequences) included taxa belonging to Epicoccum nigrum, Illvonectria robusta, Trichoderma bissettii, Cryptococcus victoriae, Aspergillus sydowii, Fusarium sp, Penicillum halotolearns and Thermomyces lanuginosus. Distance-based redundancy analysis highlighted that the fungal assemblage composition in the sediments of the different canyons was related to an array of factors including organic matter content (as carbohydrates and lipid concentrations, r = -0.624 and r = 0.434, respectively) and temperature (r= 0.980) and salinity (r= -0.560; Figure 7). These results confirm that also in the deep-sea sediments investigated trophic availability and thermo-haline conditions are important drivers of fungal assemblage composition (Hanson et al.,

781		
782		
783	322	2008; McGuire et al., 2010; Li et al., 2016; Taylor and Cunliffe, 2016; Tisthammer et al.,
785		
786	323	2016). Our findings also suggest that changes in the thermo-haline and trophic conditions
787		
788	324	among submarine canyons may promote a high turnover diversity of benthic deep-sea
789	225	fungal assemblages
790 791	323	Tungai assemblages.
792	326	Overall results of the present study indicate that the submarine canyons of the
793		
794	327	Mediterranean Sea host abundant and highly diversified fungal assemblages most of
795		
796 797	328	which still unidentified and pave the way for a better understanding of the ecological role
798	220	of fungi in the largest accesssion on Earth
799	329	of funge in the targest ecosystem on Earth.
800	330	
801		
803	331	Acknowledgments: This study has been conducted in the framework of the National Flag
804		
805	332	Project RITMARE (Marine Italian Research, www.ritmare.it) and supported by the EU
806	222	H2020 MEDCES (Marina Ecosystem Posteration in Changing European Sees) project (Grant
808	333	112020 WERCES (Warnie Ecosystem Restoration in Changing European Seas) project (Orant
809	334	Agreement No. 689518) and DG ENV project IDEM (Implementation of the MSFD to the
810		
811	335	Deep Mediterranean Sea; contract EU No 11.0661/2017/750680/SUB/EN V.C2).
812		
814	336	
815	227	Author Contributions: R.D. C.C. and A.D. conceived the study G.B. participated in the
816	337	Author Contributions. R.D., C.C., and A.D. concerved the study. G.D. participated in the
817	338	oceanographic cruise for collecting sediment samples and performed laboratory analyses.
818		
820	339	G.B., E.R., M.T. and A.D. contributed to data elaboration and interpretation. G.B., E.R., and
821		
822	340	A.D. wrote the first draft of the manuscript. All authors contributed to results discussion and
823	2/1	finalization of the manuscript
825	941	munzation of the manuscript.
826	342	
827		
828	343	Conflict of interest: All the other authors declare no competing financial interests.
829		
831	344	
832		
833		
834 825		
030 836		
837		
838		
839		13
040		

841		
842		
843	346	References
844	010	
845	347	Allen, S.E., Durrieu de Madron, X., 2009. A review of the role of submarine canvons in
840 947	•	
047 878	348	deep-ocean exchange with the shelf. Ocean Science 5, 607–620, doi:10.5194/os-5-607-
840 840		
850	349	2009
851		
852	350	Anderson, D.R., 2008. Model based inference in the life sciences: A primer on evidence,
853		
854	351	Model Based Inference in the Life Sciences: A Primer on Evidence. Springer New York,
855		
856	352	New York, NY. doi:10.1007/978-0-387-74075-1
857		
858	353	Bernhard, J.M., Kormas, K., Pachiadaki, M.G., Rocke, E., Beaudoin, D.J., Morrison, C.,
859		
000 861	354	Visscher, P.T., Cobban, A., Starczak, V.R., Edgcomb, V.P., 2014. Benthic protists and
862		
863	355	fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments. Frontiers in
864		
865	356	Microbiology 5, 360. doi:10.3389/fmicb.2014.00605
866		
867	357	Blackwell, M., 2011. The Fungi: 1, 2, 3 5.1 million species? American Journal of Botany
868		
869	358	98, 426–438. doi:10.3732/ajb.1000298
870		
07 I 872	359	Bochdansky, A.B., Clouse, M.A., Herndl, G.J., 2016. Eukaryotic microbes, principally fungi
873		and the ministration of a ministration of a statement of the maximum and the ICME
874	360	and labyrinthulomycetes, dominate biomass on bathypelagic marine show. The ISME
875	0/4	Journal 11, 262, 272, doi:10.1029/jamoi.2016.112
876	301	Jouinal 11, 302–375. doi.10.1056/isinej.2010.115
877	262	Bousquet P. Pevlin P. Ciais P. Le Quere C. Friedlingstein P. Tans P.P. 2000 Regional
878	302	Bousquet, I., Teynn, I., Clais, I., Le Quele, C., Friedningstein, I., Tans, I.I., 2000. Regional
879	363	changes in carbon dioxide fluxes of land and oceans since 1980 Science 290 1342–1346
880	505	changes in earbon dioxide nuxes of land and oceans since 1760. Science 270, 1342–1340.
881	364	doi:10.1126/science.290.5495.1342
882 002	004	
884	365	Burgaud G Arzur D Durand L Cambon-Bonavita M-A Barbier G 2010 Marine
885		
886	366	culturable yeasts in deep-sea hydrothermal yents: species richness and association with
887		
888	367	fauna. FEMS Microbiology Ecology 73, 121–133. doi:10.1111/j.1574-
889		
890	368	6941.2010.00881.x
891		
892		
893		
094 805		
896		
897		
898		
899		14
900		

902		
903 904	369	Burgaud, G., Le Calvez, T., Arzur, D., Vandenkoornhuyse, P., Barbier, G., 2009. Diversity of
905 906	370	culturable marine filamentous fungi from deep-sea hydrothermal vents. Environmental
907 908	371	Microbiology 11, 1588–1600. doi:10.1111/j.1462-2920.2009.01886.x
909 910 911	372	Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K.,
912 913	373	Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights,
914 915	374	D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M.,
916 917	375	Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T.,
918 919	376	Zaneveld, J., Knight, R., 2010. QIIME allows analysis of high-throughput community
920 921	377	sequencing data. Nature Methods 7, 335-336. doi:10.1038/nmeth.f.303
922 923	378	Carlile MJ, Watkinson SC, Gooday GW (2001) The fungi, 2nd edn. Academic Press, San
924 925 926	379	Diego
927 928	380	Cathrine, S.J., Raghukumar, C., 2009. Anaerobic denitrification in fungi from the coastal
929 930	381	marine sediments off Goa, India. Mycological Research 113, 100-109.
931 932	382	doi:10.1016/j.mycres.2008.08.009
933 934	383	Clipson, N., Otte, M., Landy E., 2006. Biogeochemical roles of fungi in the marine and
935 936	384	estuarine habitats. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge
937 938	385	university press, New York, pp 436–461
939 940 941	386	Damare, S., Raghukumar, C., 2008. Fungi and macroaggregation in deep-sea sediments.
941 942 943	387	Microb Ecol 56, 168–177. doi:10.1007/s00248-007-9334-y
944 945	388	Danovaro, R., 2009. Methods for the Study of Deep-Sea Sediments, Their Functioning and
946 947	389	Biodiversity. CRC Press.
948 949	390	Danovaro, R., Carugati, L., Berzano, M., Cahill, A.E., Carvalho, S., Chenuil, A., Corinaldesi,
950 951	391	C., Cristina, S., David, R., Dell'Anno, A., Dzhembekova, N., Garcés, E., Gasol, J.M.,
952 953	392	Goela, P., Féral, JP., Ferrera, I., Forster, R.M., Kurekin, A.A., Rastelli, E., Marinova,
954 955 956 957	393	V., Miller, P.I., Moncheva, S., Newton, A., Pearman, J.K., Pitois, S.G., Reñé, A.,
958 959 960		15

961		
962		
963	394	Rodríguez-Ezpeleta, N., Saggiomo, V., Simis, S.G.H., Stefanova, K., Wilson, C., Martire,
964 965		
966	395	Lo, M., Greco, S., Cochrane, S.K.J., Mangoni, O., Borja, A., 2016. Implementing and
967		
968	396	Innovating Marine Monitoring Approaches for Assessing Marine Environmental Status.
969	007	Frontian in Marina Saisnas 2, 222, 25, dai:10.2280/fmars 2016.00212
970 071	397	Frontier in Marine Science 3, 255–25. doi:10.5389/imars.2010.00215
972	398	Danovaro R Corinaldesi C Dell'Anno A Snelgrove PVR 2017 The deep-sea under
973		
974	399	global change. Curr. Biol. 27, R461-R465. doi:10.1016/j.cub.2017.02.046
975		
976	400	Danovaro, R., Corinaldesi, C., Rastelli, E., Dell'Anno, A., 2015. Towards a better
978	40.4	
979	401	quantitative assessment of the relevance of deep-sea viruses, Bacteria and Archaea in the
980	402	functioning of the ocean seafloor. Aquatic Microbial Ecolology, 75, 81–90
981	402	functioning of the occur scanool. Aquate microbial Deolology. 75, 61-90.
982	403	doi:10.3354/ame01747
984		
985	404	Danovaro, R., Snelgrove, P.V.R., Tyler, P., 2014. Challenging the paradigms of deep-sea
986		
987	405	ecology. Trends in Ecology & Evolution 29, $465-475$. doi:10.1016/j.tree.2014.06.002
989	406	Dell'Anno A Fabiano M Mei M L Danovaro R 2000 Enzymatically hydrolysed
990		
991	407	protein and carbohydrate pools in deep-sea sediments: estimates of the potentially
992		
993 994	408	bioavailable fraction and methodological considerations. Marine Ecology Progress Series
995	400	$106 \ 15 \ 23 \ doi: 10 \ 2354/mons 106015$
996	409	190, 15–25. doi:10.5554/meps190015
997	410	Dell'Anno, A., Mei, M.L., Pusceddu, A., Danovaro, R., 2002. Assessing the trophic state and
998		
1000	411	eutrophication of coastal marine systems: a new approach based on the biochemical
1001		
1002	412	composition of sediment organic matter. Marine Pollution Bulletin 44, 611–622.
1003	/13	Dell'Anno A Danovaro R 2005 Ecology: Extracellular DNA plays a key role in deen-sea
1004	415	Den Anno, A., Danovaro, R., 2005. Leology. Extracential DIVA plays a key fore in deep-sea
1006	414	ecosystem functioning. Science 309, 2179. doi:10.1126/science.1117475
1007		
1008	415	Dell'Anno, A., Pusceddu, A., Corinaldesi, C., Canals, M., Heussner, S., Thomsen, L.,
1009		
1010	416	Danovaro, R., 2013. Trophic state of benthic deep-sea ecosystems from two different
1012	417	continental margins off Iberia Biogeosciences 10 2945–2957 doi:10.5194/bg-10-2945-
1013		
1014	418	2013
1016		
1017		
1018		
1019		16
1020		

1021		
1022		
1023	419	Dickens, G.R., 2003. Rethinking the global carbon cycle with a large, dynamic and
1025 1026	420	microbially mediated gas hydrate capacitor. Earth and Planetary Science Letters 213,
1027	421	169–183. doi:10.1016/S0012-821X(03)00325-X
1029 1030 1031	422	Dighton J., 2007. Nutrient cycling by saprotrophic fungi in terrestrial habitats. In: Kubicek
1032 1033	423	CP, Druzhinina IS (eds) The Mycota IV, environmental and microbial relationships, 2nd
1034 1035	424	edn. Springer, Berlin, pp 287–300
1036 1037	425	Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST.
1038 1039	426	Bioinformatics 26, 2460–2461. doi:10.1093/bioinformatics/btq461
1040 1041	427	Edgcomb, V.P., Beaudoin, D., Gast, R., Biddle, J.F., Teske, A., 2011. Marine subsurface
1042 1043	428	eukaryotes: the fungal majority. Environmental Microbiology 13, 172-183.
1044 1045 1046	429	doi:10.1111/j.1462-2920.2010.02318.x
1047 1048	430	Edgcomb, V.P., Pachiadaki, M.G., Mara, P., Kormas, K.A., Leadbetter, E.R., Bernhard, J.M.,
1049 1050	431	2017. Gene expression profiling of microbial activities and interactions in sediments
1051 1052	432	under haloclines of E. Mediterranean deep hypersaline anoxic basins. The ISME Journal
1053 1054	433	1–15. doi:10.1038/ismej.2016.58
1055 1056	434	Fernandez-Arcaya, U., Ramirez-Llodra, E., Aguzzi, J., Allcock, A.L., Davies, J.S.,
1057 1058 1059	435	Dissanayake, A., Harris, P., Howell, K., Huvenne, V.A.I., Macmillan-Lawler, M., Martín,
1060 1060	436	J., Menot, L., Nizinski, M., Puig, P., Rowden, A.A., Sanchez, F., Van den Beld, I.M.J.,
1062 1063	437	2017. Ecological Role of Submarine Canyons and Need for Canyon Conservation: A
1064 1065	438	Review. Frontiers in Marine Science. 4, 69–26. doi:10.3389/fmars.2017.00005
1066 1067	439	Gihring, T.M., Green, S.J., Schadt, C.W., 2012. Massively parallel rRNA gene sequencing
1068 1069	440	exacerbates the potential for biased community diversity comparisons due to variable
1070 1071	441	library sizes. Environmental Microbiology 14, 285–290. doi:10.1111/j.1462-
1072 1073 1074	442	2920.2011.02550.x
1074 1075 1076		
1077		
1078		17
1079 1080		1 /

1081		
1082		
1083 1084	443	Hanson, C.A., Allison, S.D., Bradford, M.A., Wallenstein, M.D., Treseder, K.K., 2008.
1085 1086	444	Fungal Taxa Target Different Carbon Sources in Forest Soil. Ecosystems 11, 1157–1167.
1087	445	doi:10.1007/s10021-008-9186-4
1009 1090 1091	446	Hawksworth, D.L., 1997. The fascination of fungi: Exploring fungal diversity. Mycologist
1092 1093	447	11, 18–22. doi:10.1016/S0269-915X(97)80062-6
1094 1095	448	Hwang, J., Druffel, E.R.M., Bauer, J.E., 2006. Incorporation of aged dissolved organic
1096 1097	449	carbon (DOC) by oceanic particulate organic carbon (POC): An experimental approach
1098 1099	450	using natural carbon isotopes. Marine Chemistry 98, 315-322.
1100 1101	451	doi:10.1016/j.marchem.2005.10.008
1102 1103 1104	452	Hyde, K.D., Jones, E.B.G., Leaño, E., Pointing, S.B., Poonyth, A.D., Vrijmoed, L.L.P., 1998.
1104 1105 1106	453	Role of fungi in marine ecosystems. Biodiversity and Conservation 7, 1147–1161.
1107 1108	454	doi:10.1023/A:1008823515157
1109 1110	455	Jebaraj, C.S., Raghukumar, C., Behnke, A., Stoeck, T., 2010. Fungal diversity in oxygen-
1111 1112	456	depleted regions of the Arabian Sea revealed by targeted environmental sequencing
1113 1114 1115	457	combined with cultivation. FEMS Microbiology Ecology 71, 399–412.
1115 1116 1117	458	doi:10.1111/j.1574-6941.2009.00804.x
1118 1119	459	Jeffries, T.C., Curlevski, N.J., Brown, M.V., Harrison, D.P., Doblin, M.A., Petrou, K., Ralph,
1120 1121	460	P.J., Seymour, J.R., 2016. Partitioning of fungal assemblages across different marine
1122 1123	461	habitats. Environmental Microbiology Reports 8, 235–238. doi:10.1111/1758-2229.12373
1124 1125	462	Jørgensen, B.B., Boetius, A., 2007. Feast and famine — microbial life in the deep-sea bed.
1126 1127	463	Nature Reviews Microbiology 5, 7/0–781. doi:10.1038/nrmicro1745
1128 1129 1130	464	Kempf, V.A.J., Trebesius, K., Autenrieth, I.B., 2000. Fluorescent in situ hybridization allows
1130 1131 1132	465	rapid identification of microorganisms in blood cultures. Journal of Clinical Microbiology
1133 1134	466	38, 830–838.
1135 1136		
1137		
1138		1 Q
1140		10

1142		
1143 1144	467	Kõljalg, U., Nilsson, R.H., Abarenkov, K., Tedersoo, L., Taylor, A.F.S., Bahram, M., Bates,
1145 1146	468	S.T., Bruns, T.D., Bengtsson-Palme, J., Callaghan, T.M., Douglas, B., Drenkhan, T.,
1147 1148	469	Eberhardt, U., Dueñas, M., Grebenc, T., Griffith, G.W., Hartmann, M., Kirk, P.M.,
1149 1150	470	Kohout, P., Larsson, E., Lindahl, B.D., Lücking, R., Martín, M.P., Matheny, P.B.,
1151 1152	471	Nguyen N.H. Niskanen T. Oia I. Peav K.G. Peintner IJ. Peterson M. Põldmaa K.
1153	-,, 1	
1154	472	Saag, L., Saar, I., Schüßler, A., Scott, J.A., Senes, C., Smith, M.E., Suija, A., Taylor,
1156 1157	473	D.L., Telleria, M.T., Weiss, M., Larsson, KH., 2013. Towards a unified paradigm for
1158 1159	474	sequence-based identification of fungi. Molecular Ecology 22, 5271-5277.
1160 1161	475	doi:10.1111/mec.12481
1162 1163	476	Li, W., Wang, M.M., Wang, X.G., Cheng, X.L., Guo, J.J., Bian, X.M., Cai, L., 2016. Fungal
1164 1165	477	communities in sediments of subtropical Chinese seas as estimated by DNA
1166 1167	478	metabarcoding. Nature Publishing Group 1–9. doi:10.1038/srep26528
1168 1169	479	Lopez-Fernandez, P., Calafat, A., Sanchez-Vidal, A., Canals, M., Flexas, M.M., Cateura, J.,
1170 1171	490	Ioan B. Company 2013 Multiple drivers of particle fluxes in the Blanes submarine
1172	400	Joan D. Company, 2013. Multiple drivers of particle nuxes in the Dianes submarine
1173	481	canyon and southern open slope: Results of a year round experiment. Progress in
1175 1176	482	Oceanography 118, 95–107. doi:10.1016/j.pocean.2013.07.029
1177 1178	483	Magoč, T., Salzberg, S.L., 2011. FLASH: fast length adjustment of short reads to improve
1179 1180	484	genome assemblies. Bioinformatics 27, 2957–2963. doi:10.1093/bioinformatics/btr507
1181 1182	485	McGuire, K.L., Bent, E., Borneman, J., Majumder, A., Allison, S.D., Treseder, K.K., 2010.
1183 1184	486	Functional diversity in resource use by fungi. Ecology 91, 2324–2332. doi:10.1890/09-
1185 1186	487	0654.1
1187 1188	488	Monaco A Durrieu de Madron X Radakovitch O Heussner S Carbonne I 1999
1189 1190	100	Origin and variability of downward biogooghamical fluwog on the Dhone continental
1191	489	Origin and variability of downward biogeochemical nuxes on the Knone continental
1192	490	margin (NW mediterranean). Deep-Sea Research Part I 46, 1483–1511.
1194	491	doi:10.1016/S0967-0637(99)00014-X
1196 1197		
1198 1199		19
1200		

1201		
1202		
1203 1204	492	Nagahama, T., Hamamoto, M., Nakase, T., Takaki, Y., Horikoshi, K., 2003. Cryptococcus
1205 1206	493	surugaensis sp. nov., a novel yeast species from sediment collected on the deep-sea floor
1207 1208	494	of Suruga Bay. International Journal of Systematic and Evolutionary Microbiology 53,
1209 1210	495	2095–2098. doi:10.1099/ijs.0.02712-0
1211 1212 1212	496	Nagahama, T., Takahashi, E., Nagano, Y., Abdel-Wahab, M.A., Miyazaki, M., 2011.
1213 1214 1215	497	Molecular evidence that deep-branching fungi are major fungal components in deep-sea
1216 1216 1217	498	methane cold-seep sediments. Environmental Microbiology 13, 2359-2370.
1218 1219	499	doi:10.1111/j.1462-2920.2011.02507.x
1220 1221	500	Nagano, Y., Nagahama, T., 2012. Fungal diversity in deep-sea extreme environments. Fungal
1222 1223	501	Ecology 5, 463-471. doi:10.1016/j.funeco.2012.01.004
1224 1225	502	Orsi, W., Biddle, J.F., Edgcomb, V.P., 2013. Deep Sequencing of Subseafloor Eukaryotic
1226	503	rRNA Reveals Active Fungi across Marine Subsurface Provinces. PLoS ONE 8, e56335-
1220 1229 1230	504	10. doi:10.1371/journal.pone.0056335
1231 1232	505	Pachiadaki, M.G., Rédou, V., Beaudoin, D.J., Burgaud, G., Edgcomb, V.P., 2016. Fungal and
1233 1234	506	Prokaryotic Activities in the Marine Subsurface Biosphere at Peru Margin and
1235 1236	507	Canterbury Basin Inferred from RNA-Based Analyses and Microscopy. Frontiers in
1237 1238	508	Microbiology 7, 364–17. doi:10.3389/fmicb.2016.00846
1239 1240	509	Puig, P., Palanques, A., Martín, J., 2014. Contemporary Sediment-Transport Processes in
1241 1242 1243	510	Submarine Canyons. Annual Review of Marine Scince 6, 53-77. doi:10.1146/annurev-
1243 1244 1245	511	marine-010213-135037
1246 1247	512	Pusceddu, A., Dell'Anno, A., Fabiano M., Danovaro R., 2009. Quantity and bioavailability of
1248 1249	513	sediment organic matter as signatures of benthic trophic status. Marine Ecology Progress
1250 1251	514	Series, 375, 41–52. doi:10.3354/meps07735
1252 1253	515	Rédou, V., Ciobanu, MC., Pachiadaki, M.G., Edgcomb, V.P., Alain, K., Barbier, G.,
1254 1255	516	Burgaud, G., 2014. In-depth analyses of deep subsurface sediments using 454-
1256		
1257		
1259		20
1260		-~

1261		
1262		
1263 1264	517	pyrosequencing reveals a reservoir of buried fungal communities at record-breaking
1265 1266	518	depths. FEMS Microbiology Ecology 90, 908-921. doi:10.1111/1574-6941.12447
1267 1268	519	Richards, T.A., Leonard, G., Mahé, F., del Campo, J., Romac, S., Jones, M.D.M., Maguire,
1269 1270	520	F., Dunthorn, M., de Vargas, C., Massana, R., Chambouvet, A., 2015. Molecular diversity
1271 1272 1273	521	and distribution of marine fungi across 130 European environmental samples. Proc. R.
1276 1274 1275	522	Soc. B 282, 20152243–10. doi:10.1098/rspb.2015.2243
1276 1277	523	Richards, T.A., Talbot, N.J., 2013. Horizontal gene transfer in osmotrophs: playing with
1278 1279	524	public goods. Nature Reviews Microbiology 11, 720-727. doi:10.1038/nrmicro3108
1280 1281	525	Sànchez-Vidal, A., Pasqual, C., Kerhervé, P., Calafat, A., Heussner, S., Palanques, A.,
1282 1283	526	Durrieu de Madron, X., Canals, M., Puig, P., 2008. Impact of dense shelf water cascading
1285 1285	527	on the transfer of organic matter to the deep western Mediterranean basin. Geophysical
1287 1288	528	Research Letters 35, 117–125. doi:10.1029/2007GL032825
1289 1290	529	Sogin, M.L., Morrison, H.G., Huber, J.A., Welch, D.M., Huse, S.M., Neal, P.R., Arrieta,
1291 1292	530	J.M., Herndl, G.J., 2006. Microbial diversity in the deep sea and the underexplored "rare
1293 1294	531	biosphere." Proceedings of the National Academy of Sciences of the United States of
1295 1296	532	America 103, 12115–12120. doi:10.1073/pnas.0605127103
1297 1298 1200	533	Taylor, J.D., Cunliffe, M., 2016. Multi-year assessment of coastal planktonic fungi reveals
1299 1300 1301	534	environmental drivers of diversity and abundance. The ISME Journal 10, 2118-2128.
1302 1303	535	doi:10.1038/ismej.2016.24
1304 1305	536	Thaler, A.D., Van Dover, C.L., Vilgalys, R., 2012. Ascomycete phylotypes recovered from a
1306 1307	537	Gulf of Mexico methane seep are identical to an uncultured deep-sea fungal clade from
1308 1309	538	the Pacific. Fungal Ecology 5, 270–273. doi:10.1016/j.funeco.2011.07.002
1310 1311	539	Tisthammer, K.H., Cobian, G.M., Amend, A.S., 2016. Global biogeography of marine fungi
1312 1313 1314	540	is shaped by the environment. Fungal Ecology 19, 39–46.
1315 1316 1317	541	doi:10.1016/j.funeco.2015.09.003
1318 1319		21

1321		
1322		
1323 1324	542	Walters, W., Hyde, E.R., Berg-Lyons, D., Ackermann, G., Humphrey, G., Parada, A.,
1325 1326	543	Gilbert, J.A., Jansson, J.K., Caporaso, J.G., Fuhrman, J.A., Apprill, A., Knight, R., 2015.
1327 1328	544	Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed
1329 1330 1331	545	Spacer Marker Gene Primers for Microbial Community Surveys. mSystems 1, e00009-
1332 1333	546	15-11. doi:10.1128/mSystems.00009-15
1334 1335	547	Xu, W., Guo, S., Pang, KL., Luo, ZH., 2017. Fungi associated with chimney and sulfide
1336 1337	548	samples from a South Mid-Atlantic Ridge hydrothermal site: Distribution, diversity and
1338 1339	549	abundance. Deep-Sea Research Part I 123, 48-55. doi:10.1016/j.dsr.2017.03.004
1340 1341	550	Zhang, XY., Wang, GH., Xu, XY., Nong, XH., Wang, J., Amin, M., Qi, SH., 2016.
1342 1343 1344	551	Exploring fungal diversity in deep-sea sediments from Okinawa Trough using high-
1345 1346	552	throughput Illumina sequencing. Deep-Sea Research Part I 116, 99–105.
1347 1348	553	doi:10.1016/j.dsr.2016.08.004
1349 1350	554	
1351		
1352		
1353		
1354		
1356		
1357		
1358		
1359		
1360		
1361		
1362		
1363		
1365		
1366		
1367		
1368		
1369		
1370		
13/1		
1373		
1374		
1375		
1376		
1377		
1378		22
1379		

1381		
1382		
1383	556	Captions of figures
1385		
1386	557	
1387	E E 0	Figure 1 Study area and compling location (a) Datails of banthic sites investigated within
1388	220	Figure 1. Study area and sampling location (a). Details of benuite sites investigated within
1390	559	Tricase (a), Crotone (b) and Squillace (c) canyons. Bathymetry has been obtained from
1391		
1392	560	EMODnet (http://portal.emodnet-bathymetry.eu). Maps elaborated with QGIS.
1393 1304	F / A	Figure 2 Europel abundance expressed as 195 pDNA convergence (a) and biomass (b) in
1395	201	Figure 2. Fungar abundance, expressed as 185 IDIVA copy number (a), and biomass (b) in
1396	562	the different benthic sites of the Tricase, Crotone and Squillace canyons. Mean values
1397		
1398	563	and standard deviations are reported.
1400	F ()	Figure 3 Deletionships between corrective concentrations in the sediments of the
1401	504	Figure 5. Relationships between carbonyurate concentrations in the sediments of the
1402	565	different canyons investigated and fungal abundance (a) and biomass (b)
1404		
1405	566	Figure 4. OTU number in the different benthic sites within Tricase, Crotone and Squillace
1406	567	canyons. Mean values and standard deviations are reported
1407	507	earlyons. Wear values and standard deviations are reported.
1409	568	Figure 5. Taxonomic composition (at the family level on data normalized to 2500 sequences)
1410		
1411 1412	569	of the benthic fungal assemblages in the different canyons investigated. To better
1413	570	visualise differences among the investigated sites the output of cluster analysis is also
1414		
1415	571	reported.
1417	570	Figure 6 Natwork visualization based on the output of SIMPEP analysis carried out on
1418	572	Figure 6. Network visualisation based on the output of Shvir ER analysis carried out on
1419	573	fungal community composition among the nine sites investigated. Line width is
1421		
1422	574	proportional to similarity values.
1423 1424	575	Figure 7. Output of the distance-based redundancy analysis (dbRDA) carried out on fungal
1425		
1426	576	community composition in the different benthic deep-sea sites in relation with thermo-
1427		haling and tranking and itigan
1429	5//	name and trophic conditions.
1430	578	
1431		
1432 1433		
1434		
1435		
1436		
1438		
1439		23
1440		

1443
1444580**Table 1**. Temperature, salinity and protein (PRT), carbohydrate (CHO), lipid (LIP) and
biopolymeric C concentrations in the different sites of the Tricase, Crotone and Squillace
canyons. Mean values and standard deviations (±) are reported.

Hade Carryon Water mh 'C mg g' 1 Mathematica 150 Tricase 200 m 1438-0.01 388-0.01 2.42-0.73 2.37-0.29 1.22-0.48 2.434-0.72 2.434-0.72 2.434-0.72 2.434-0.72 1.22-0.68 2.51-0.85 1.55 1.050 m 1.432-0.05 38.750-01 2.71-0.29 1.22-0.68 2.51-0.85 1.52-0.68 2.31-0.85 1.52-0.68 2.31-0.85 1.50-0.68 2.11-0.35 1.72-0.68 2.31-0.85 1.50-0.68 1.21-0.06 1.22-0.04 3.05-0.03 1.83-0.01 2.89-0.01 2.35-0.02 2.88-0.01 3.80-0.22 0.28-0.04 2.19-0.06 3.83-0.01 3.83-0.01 3.90-0.02 2.88-0.01 3.3-0.01 3.83-72-0.01 3.83-0.02 2.18-0.26 1.03-0.01 3.94-0.01 3.94-0.02 2.88-0.01 3.94-0.03 3.94-0.03 3.94-0.03 3.94-0.03 3.94-0.03 3.94-0.03 3.94-0.03 3.94-0.03 3.94-0.03 <td< th=""><th>447</th><th>583</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	447	583								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	448 449	500	Canyon	Water	Temperature	Salinity	PRT	СНО	LIP	Biopolymeric C
Treese 200 m 14354001 3854001 2214039 0832032 2434023 152 1000 m 13354001 3854001 224701 224924 354023 2349029 122-04 354023 153 Centone 200 m 15374012 3884001 2294048 2444023 044078 154 Soo m 1444033 38858001 2294048 2444023 0484019 2356047 156 Soo m 1444033 38824001 2240404 244023 04840.91 234049 156 Soo m 144403 38824001 2240434 244023 0480.91 234199 2364041 157 Sou m 144403 38824001 2240434 244023 0480.91 344064 158 Sou m 144806 38.824001 224003 354078 04603.11 044064 160 m 137840.01 38.7640.01 29640.34 2.0140.21 0.6640.58 2.9940.08 1610 m 137840.01 38.7640.01 2.9640.34 2.0140.21 0.6640.58 2.9940.08	450			m	°C		mg g ⁻¹	mg g ⁻¹	mg g ⁻¹	mg g ⁻¹
500 m 142240.05 38.754.00 274.22.073 2.3740.29 1.224.08 3.554.08 Crotone 200 m 15.0740.12 38.9140.0 2774.02 3.5640.23 1.642.07 4.4444.07 500 m 14.464.03 38.8540.01 2.924-0.23 1.642.07 4.4444.07 500 m 14.74.002 38.764.00 2.224.0.29 2.184.01 0.340.19 2.3564.07 1000 m 13.774.02 38.764.00 2.324.02 2.14.0.25 1.0434.0.19 2.3564.07 500 m 14.644.03 53.88.244.00 2.344.02 2.0.640.31 3.3044.06 500 m 14.644.00 53.88.244.00 2.344.02 2.0.640.31 3.3044.06 500 m 14.74.00 38.87.64.00 2.346.02 2.14.0.25 1.0.03.05 3.31.640.05 1000 m 13.778.00 38.764.00 2.346.02 2.14.0.21 0.664.03 2.349.05 3.164.05 500 m 14.644.01 53.87.64.00 2.964.03 4.2.61.021 0.664.03 2.349.06 500 m 14.74.00 38.87.64.00 2.964.03 4.2.61.021 0.664.03 2.994.06 500 m 14.74.04 53.87.64.00 2.964.03 4.2.61.021 0.664.03 2.994.06 500 m 14.74.04 53.87.64.00 2.946.03 4.2.61.021 0.664.03 2.994.06 500 m 13.7284.01 3.87.64.00 2.946.03 4.2.61.021 0.664.03 2.994.06 500 m 13.7284.01 3.87.64.00 2.946.03 4.2.61.021 0.664.03 2.994.06 500 m 13.7284.01 3.87.64.00 2.966.03 4.2.61.021 0.664.03 2.994.06 500 m 13.7284.01 3.87.64.00 2.966.03 4.2.61.021 0.664.03 4.2.994.06 500 m 10.100 m 13.748.00 1.37.740.00 3.87.64.00 2.966.03 4.2.61.021 0.664.03 4.2.994.06 500 m 10.100 m 10.100 m 10.1000	451		Tricase	200 m	14.58±0.01	38.8±0.01	1.91±0.55	2.21±0.59	0.82±0.28	2.43±0.72
1000 m 1385-0.01 388-0.01 0.77-0.52 2.1-0.23 1.72-0.68 2.51-0.83 155 500 m 1.44-0.03 38.88.001 2.29-0.48 2.44-0.23 0.48-0.78 156 500 m 1.44-0.03 38.88.001 2.29-0.48 2.44-0.23 0.48-0.78 0.44-0.78 156 500 m 1.44-0.03 38.88.001 2.29-0.04 2.24-0.31 0.340.01 2.21-0.36 0.44-0.78 157 500 m 1.44-0.06 38.82-0.01 2.24-0.33 0.44-0.05 3.81-0.01 0.340.01 0.340.01 2.21-0.36 0.340.05 3.16-0.05 3.92-0.08 0.44-0.05 3.81-0.01 0.44-0.78 <	452			500 m	14.23 ± 0.05	38.75±0.01	2.42 ± 0.73	2.37 ± 0.29	1.22 ± 0.4	3.05 ± 0.78
Crotone 200 m 15.0740.12 38.9140.01 2.8740.24 3.5461.23 1.0140.05 4.0440.05 155 1000 m 13.774.00.2 38.7660.01 2.2240.29 2.1840.11 0.340.11 2.1940.26 156 Squillace 200 m 14.774.00.2 38.7660.01 2.2140.29 2.1840.11 0.340.11 2.1940.26 157 Squillace 200 m 14.774.00.6 38.3720.01 3.3540.78 3.0840.22 0.2840.03 3.1640.3 158 S94 1000 m 13.778-0.01 38.7640.01 2.9640.34 2.6140.21 0.6640.38 2.9994.68 161 1000 m 13.778-0.01 38.7640.01 2.9640.34 2.6140.21 0.6640.38 2.9994.68 162 14.0440.04 13.778-0.01 38.7640.01 2.9640.34 2.6140.21 0.6640.38 2.9994.68 161 162 16.7840.94 16.140.04 16.140.04 16.140.04 16.140.04 16.140.04 16.140.04 16.140.04 16.140.04 16.140.04 16.140.04 16.1	453			1000 m	13.85±0.01	38.8±0.01	0.77±0.52	2.1±0.25	1.72±0.68	2.51±0.87
0000 m 1377-002 3876-001 22240.39 2378-01 0.3611 2.2040.35 1000 m 1472-1006 3882-2001 22240.39 3778-105 0.040.31 3.0420.04 1000 m 1472-1006 3882-2001 2.2540.35 3.788-10 0.043.31 3.0420.04 1000 m 1378-1006 3882-2001 2.9640.34 2.01-0.21 0.6640.35 2.9940.68 1000 m 1378-1001 387.6-0.01 2.9640.34 2.01-0.21 0.6640.35 2.9940.68 101 1378-1001 3.940.04 1.940.04 1.940.04 1.940.04 1.940.04 1.940.04	453 151		Crotone	200 m 500 m	$15.0^{7}\pm0.12$ 14.4 ±0.03	38.91 ± 0.01	2.87 ± 0.24 2.09±0.48	3.56 ± 0.23	1.61 ± 0.76	4.04 ± 0.78 2.36±0.47
Squillace 200 m 14 78±0 06 38 82±0.01 3.21±0.36 3.72±0.59 0.0±0.31 3.0±0.04 157 584 584 58	454			1000 m	13.77 ± 0.02	38.88 ± 0.01 38.76 ± 0.01	2.09 ± 0.48 2.22 ±0.29	2.44 ± 0.23 2.18±0.11	0.43 ± 0.19 0.3±0.1	2.30 ± 0.47 2.19 ±0.26
500 m 14.6440.05 38.9240.01 3.540.78 3.0840.02 0.2240.05 3.1.640.5 584 584 584	455		Squillace	200 m	14.78±0.06	38.82±0.01	2.21±0.36	3.77±0.59	0.6±0.31	3.04±0.64
1000 m 13.78+0.01 38.76+0.01 2.96+0.34 2.61+0.21 0.66+0.58 2.99+0.68 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 177 178 179 180 181 187 188 189 199 199 199 199 199 199	430			500 m	14.64 ± 0.05	38.92±0.01	3.5±0.78	3.08 ± 0.22	0.28 ± 0.05	3.16±0.5
584 159 1400 1401 1401 1402 1403 1404 1404 1405 1406 1407 1408 1409 1417 1427 1429 1431 1441 1452 1453 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1491 1492 1493 1494 1494 1495 1494 1495 1495 1496 1497 1498 1499 1491 1492 1493 1494 1495 1495 1496 1497 1498 1499 1490 1491 1491 1492 1493 1494 1494	437			1000 m	13.78±0.01	38.76±0.01	2.96±0.34	2.61±0.21	0.66 ± 0.58	2.99±0.68
³⁵⁹ ⁴⁵⁰ 461 462 463 464 465 466 466 467 468 469 470 470 471 472 473 474 475 475 476 477 478 480 481 482 483 484 484 485 486 487 488 489 489 490 54	458	584								
Handi Han	459									
Note of the second s	460									
hb2 hb2 hb3 hb43 hb44 hb43 hb44 hb5 hb5 hb6 hb7 hb7<	461									
	462									
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 494 495 495 496 497 498 499 490 491 492 493 494 495 495 496 497 498 499 490 491 492 493 494 495 496 497 498 499 490 491 492 493 </td <td>463</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	463									
486 467 488 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 495 496 497 498 499 490 491 492 493 494 495 496 497 498 499 490 491 492 493 494 495 496 497 4	464									
466 467 468 469 470 470 471 472 473 474 475 476 4778 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 495 496 497 498 499 490 491 492 493 494 495 496 497 498 499 490 491 492 493 494 495 496 497	465									
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 495 496 497 498 499 490 491 492 493 494 495 496 497 498 499 490 491 492 493 494 495 496 497 498 4	466									
448 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 491 492 493 494 495 496 497 498 499 491 492 493 494 495 496 497 498 499 491 492 493 4	467									
1499 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1499 1491 1492 1493 1494 1495 1496 1497 1498 1499 1491 1492 1493 1494 1495 1496 1497 1498 1499 1491 1492 1493 1494 1495 1496 1497 1498 1499 1499 1490 1491 1492 <t< td=""><td>468</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	468									
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 499 490 491 492 493 494 495 496 497 498 499 499 490 491 492 493 494 495 496 497 498 499 491 4	469									
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 490 491 492 493 494 495 496 497 498 499 490 491 492 493 494 495 496 497 498 499 490 491 492 493 4	470									
4/2 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 491 492 493 494 495 496 497 498 499 491 492 493 494 495 496 497 498 499 490 491 492 493 494 495 496 4	4/1									
4/3 4/4 4/7 4/7 4/7 4/7 4/7 4/7 4/7	472									
4/4 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 490 491 492 493 493 494 495 493 494 495	473									
475 476 477 478 479 480 481 482 483 484 485 486 487 488 499 490 491 492 493 494 495 496 497 498 499 490 490 74	474									
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 490 201 202 203 490 204	475									
4/7 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 499 499 404 499 404 405 407 407 408 409 409 404 405 407 407 407 407 407 407 407 407	476									
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 24	477									
	478									
	479									
461 482 483 484 485 486 487 488 489 490 491 492 493 494 495 499 24	480									
462 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 24	401									
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 24	402									
Ho4 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499	403 101									
	404 105									
487 488 489 490 491 492 493 494 495 496 497 498 499 24	400									
487 488 489 490 491 492 493 494 495 496 497 498 499 24	400 107									
+00 490 491 492 493 494 495 496 497 498 499 24	407 700									
499 490 491 492 493 494 495 496 497 498 499	400									
491 492 493 494 495 496 497 498 499	409									
492 493 494 495 496 497 498 499	490 101									
493 494 495 496 497 498 499	102 102									
494 495 496 497 498 499	102									
495 496 497 498 499 24	490									
496 497 498 499 24	405									
497 498 499 24	496									
498 499 2 4	497									
199 24	198									
	499						24			

1741																						
1742																						
1743			^{0%} т																			unclassified
1744																						others (<1% each)
1745			20%											1	[-	1		7		Mortierellaceae
1746			2070															<u> </u>				Glomeraceae Rhizophydiaceae
1747		(%)																				Wallemiaceae
1748		ity (40%+					L F	ı ۲	E	E	E	ا ح	ا ح	ו ב	ا ح	E	ш	ш	Ε	Ε	Trichosporonaceae
1749		ilar		0 m	ш 0	ш 0	0 m	00 L	00 r	200	500	200	00 r	00	00 r	00 r	200	000	000	000	000	Cystofilobasidiaceae
1750		Sim	60%-	20	20	50	50	100	10(Ce J	Ce	Ce	e 5(e 5(e 2(e 2(Ce 5	ce 1	ce 1	e 1(e 1(Symmetrosporaceae
1751				ase	case	case	ase	ase	ase	uilla	uilla	uilla	ton	ton	ton	ton	Jilla	uilla	lilla	ton	ton	Thelephoraceae
1752			80%	Tric	Tric	Tric	Tric	Trio	Trio	SqL	SqL	SqL	S	5	CD	S	SqL	Squ	Squ	CD	CC	Ganodermataceae
1753																						
1754			100%																			
1755																						Entolomataceae
1756																						Agaricaceae
1757																						Xylariaceae Amphisphaeriaceae
1758			80%-																			Lasiosphaeriaceae
1759		c																				Microascaceae
1760		tior																				Plectosphaerellaceae Nectriaceae
1761		osi																				Hypocreaceae
1762		dmg ds)	60%-																			Togniniaceae
1763		e co rea																				
1764		lag(otal																				
1765		of tc																				Myxotrichaceae
1/66		sse % c	40%-																			Phacidiaceae
1/6/		al a																				Verrucariaceae
1/68		bur																				Onygenaceae Ajellomycetaceae
1769		ц																				Trichocomaceae Herpotrichiellaceae
1770			20%-																			Sporormiaceae Pleosporaceae
1//1																						Pleomassariaceae
1772																						Didymellaceae
1773																						Botryosphaeriaceae
1774	638		0%																			
1776	(00																					
1777	639																					
1770																						
1770	640																					
1720																						
1781	641																					
1782																						
1783	642																					
1784																						
1785	643	Figure	5																			
1786																						
1787																						
1788																						
1789																						
1790																						
1791																						
1792																						
1793																						
1794																						
1795																						
1796																						
1797																						
1798																						
1799													20)								
1800																						

1921		
1922		
1923	666	Supplementary materials
1924		
1926		
1927	667	
1928		
1929	668	Benthic deep-sea fungi in submarine canyons of the Mediterranean Sea
1930		
1931	669	
1932	007	
1934	670	Giulio Barone, Eugenio Rastelli, Cinzia Corinaldesi, Michael Tangherlini, Roberto
1935	671	Danovaro, Antonio Dell'Anno
1936	(70	
1937	672	
1938	673	
1939	674	
1941	675	
1942	676	
1943	6//	Supplementary table S1-S4
1944	0/0 670	Supplementary figures \$1 and \$2
1945	077	Supplementary rightes 51 and 52
1946		
1947		
1949		
1950		
1951		
1952		
1953		
1954		
1956		
1957		
1958		
1959		
1960		
1962		
1963		
1964		
1965		
1966		
1967		
1969		
1970		
1971		
1972		
1973		
1974		
1976		
1977		
1978		
1979		32
1980		

Table S1. Reported are the outputs of the ANOSIM and SIMPER analyses carried out to test683for the differences and dissimilarity in sediment organic matter contents between the different684canyons investigated and the variables responsible for the estimated differences. Reported are685R which represents the sample statistic (global R) and P which is the probability level. **=P686<0.01; ns = not significant</th>

1001	687							
1002			ANO	SIM			SIMPER	
1992			R	Р	Dissimilarity	Explanatory variable	Explained variance (%)	Cumulative explained variance (%)
1994 1995 1996		Tricase vs. Crotone	0.153	**	22.35	Proteins Lipids Carbohydrates	40.78 33.48 25.74	40.78 74.26 100
1997 1998 1999		Tricase vs. Squillace	0.449	**	27.02	Proteins Carbohydrates Lipids	43.85 30.74 25.41	43.85 74.59 100
2000 2001 2002	(00	Crotone vs. Squillace	0.12	n.s.	16.82	Proteins Lipids Carbohydrates	n.s n.s n.s	n.s n.s n.s

Table S2. Output of the multivariate multiple regression analysis carried out for testing the effects of organic matter content (proteins, carbohydrates and lipids), temperature and salinity on fungal abundance (as 18S rDNA copies) and biomass. Reported are Pseudo-F and P values (*<0.05; **<0.01; ***<0.001; ns>0.05) and the cumulative variance explained by the significant variables.

2049				(100	
2050		Fungal	abundance	e (18S	rDNA copies)
2051		Variable	Pseudo-F	Р	Cumulative variance
2052					%
2053		Carbohydrates	11.556	***	31.6
2054		Lipids	3.814	*	41.0
2055		Proteins	1.771	ns	-
2056		Salinity	1.654	ns	-
2057		Temperature	0.667	ns	-
2058		1			
2059			Fungal	biom	ass
2060		Carbohvdrates	98.421	***	79.7
2061		Lipids	4.249	ns	-
2062		Proteins	2.275	ns	-
2063		Temperature	0.82	ns	-
2064		Salinity	2 196	ns	-
2065		2 •••••••	, 0	110	
2066	696				
2067	070				
2068					
2069					
2070					
2071					

Table S3. Output of SIMPER showing the dissimilarity (turnover diversity) of fungal
 assemblage composition within the canyon and between the canyons investigated

	Type of compa	rison	Turnover diversity (% Bray-Curtis dissimilarity)
within canyon	Tricase	200 m vs. 500 m	86.19
		200 m vs. 1000 m	91.97
		500 m vs. 1000 m	91.12
	Crotone	200 m vs. 500 m	89.03
		200 m vs. 1000 m	94.3
		500 m vs. 1000 m	87.88
	Squillace	200 m vs. 500 m	85.22
		200 m vs. 1000 m	88.92
		500 m vs. 1000 m	88.45
between canyons	200 m	Tricase vs. Crotone	97.01
		Tricase vs. Squillace	94.23
		Crotone vs. Squillace	88.7
	500 m	Tricase vs. Crotone	91.5
		Tricase vs. Squillace	95.42
		Crotone vs. Squillace	88.89
	1000 m	Tricase vs. Crotone	92.2
		Tricase vs. Squillace	94.52
		Crotone vs. Squillace	90.65

702	Table S4. Percentage of unique and shared OTUs between replicates of the same site, within
703	the canyon and between the canyons

210

, 70 4	Type of comparison			Sharad	Unique
/ 3	Type of comparison				%
9	between replicates of the			/0	70
C	same site	Tricase	200 m	9.4	90.6
1			500 m	15.7	84.3
2 3			1000 m	10.2	89.8
4		Crotone	200 m	12.5	87.5
5			500 m	14.6	85.4
6			1000 m	7.6	92.4
7		Squillace	200 m	12.2	87.8
3		-	500 m	7.0	93.0
9)			1000 m	6.8	93.2
1		Average		10.7	89.3
2	within canyon	Tricase	200 vs. 500 m	18.8	90.0
3			200 vs. 1000 m	14.0	93.9
4 5			500 vs. 1000 m	13.8	92.5
5		Crotone	200 vs. 500 m	12.2	91.1
7			200 vs. 1000 m	19.8	94.8
3			500 vs. 1000 m	19.9	91.2
9		Squillace	200 vs. 500 m	29.3	86.3
)		1	200 vs. 1000 m	18.6	89.2
2			500 vs 1000 m	26.9	88.0
3		Average		19.2	90.8
4 5	between canyons	Tricase vs. Crotone	200 m	3.8	96.2
6			500 m	7.9	92.1
7			1000 m	7.6	92.4
9		Tricase <i>vs.</i> Squillace	200 m	6.6	93.4
1		1	500 m	5.6	94.4
2			1000 m	5.9	94.1
3 4		Crotone <i>vs.</i> Squillace	200 m	10.3	89.7
5		L	500 m	10.9	89.1
2 7			1000 m	8.1	91.9
, 3		Average		7.4	92.6

Figure S2. Relationship between benthic fungal abundance (as 18S rDNA copies) and biomass in the sediments of the three canyons

