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Abstract

In this paper we study a semi-Kolmogorov type of population model, arising
from a predator-prey system with indirect effects. In particular we are inter-
ested in investigating the population dynamics when the indirect effects are
time dependent and periodic. We first prove the existence of a global pullback
attractor. We then estimate the fractal dimension of the attractor, which is
done for a subclass by using Leonov’s theorem and constructing a proper Lya-
punov function. To have more insights about the dynamical behavior of the
system we also study the coexistence of the three species. Numerical examples
are provided to illustrate all the theoretical results.

Key words: nonautonomous dynamical system, population dynamics,
pullback attractor.
2000 MSC: Primary 92D25,Secondary 34C60.

1. Introduction

Indirect effect refers to species interactions which can occur through chains
of direct species interaction, such as predation or interference competition. The
studies of indirect effects are of great importance to biological sciences, as they
can link the population dynamics of species that do not interact directly (see
[3], [5], [7], [14], [27], [37], [39] and references therein). The following system
represents a typical population model (see [11] and [12]) that describes indirect
effects of predation for one predator (zooplankton, denoted by Z) and two preys
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of different sizes (phytoplanjton, denoted by C and G) :







Ż = Z(−e+ ucC + ugG),

Ċ = C[acI0 − (ac + uc)Z − acC − acG] −m1CZ,

Ġ = G[agI0 − (ag + ug)Z − agC − agG] +m2CZ.

(1.1)

The terms −m1CZ and m2CZ in system (1.1) describe the indirect effects
generated by the fact that the predator prefers to predate the preys in the group
with smaller size (C) and the other group (G) takes advantages of it. For the
special case of m1 = m2 = 0, any positive solution leads to the extinction
of at least one of the three species (see [11]). For mj > 0 (j = 1, 2) uniform
persistence has been shown, that there is a large variation of parameter sets
with which any positive solution exhibits coexistence. In particular, sufficient
conditions under which the attractor of the system is a fixed point or a stable
limit cycle are found in [12] by using Hopf bifurcation.

Note that indirect effects can be of seasonal type (see for example [27], [34]),
thus it is natural to consider a non-autonomous counterpart of system (1.1)
where constants mj are replaced by time dependent terms mj(t). A simple
choice of the time dependent terms is:

mj(t) := mj | sin(ωt)|, j = 1, 2. (1.2)

The system is of particular interest when m2 > m1. In fact, summing the second
and third equation of (1.1) with mj(t) as in (1.2) gives

Ċ+Ġ = (acC+aGG)(I0−Z−C−G)−Z(ucC+ugG)+(m2−m1)| sinωt|, (1.3)

for which we expect a more complicated behavior of the solutions as the last
term of (1.3) is nonnegative.

Numerical simulations provided in [12] showed that with non-autonomous
perturbation the system can exhibit not only the periodic orbit but also period
bifurcation phenomena. It has also been observed (see e.g. [34] for a two dimen-
sional example or [4] for a periodically forced system) that if the autonomous
system has a periodic behavior then the non-autonomous system may behave
similarly to forced oscillators ([34]).

In this paper we consider a generalized formulation of system (1.1):







ẋ(t) = x(t)(−b1 + a12y(t) + a13z(t)),
ẏ(t) = y(t)(b2 − a21x(t) − a22y(t) − a23z(t)) − g1(t)x(t)y(t),
ż(t) = z(t)(b3 − a31x(t) − a32y(t) − a33z(t)) + g2(t)x(t)y(t),

(1.4)

in which all the parameters ai,j , bk (i, j, k = 1, 2, 3) are positive.
Here we assume that g1(t) and g2(t) in the periodic forcing terms satisfy

0 ≤ gj(t) ≤ Gj , ∀t ∈ R, j = 1, 2,
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and G2 > G1. A possible choice of gj(t) arising from population models with
indirect effects could be

gj(t) = Gj | sin(ωjt+ φj)|,

with G2 > G1 > 0 and ωj, φj > 0, (j = 1, 2). It is worth mentioning that it is
possible to replace the xy term in the forcing by a more general nonlinear form.

Observe that system (1.4) is not of the exact Kolmogorov type, as the third
equation does not attain the Kolmogorov structure. Therefore this system can
be regarded as a “semi-Kolmogorov-type’’ predator-prey system, which is differ-
ent from traditional Kolmogorov systems, and is of more mathematical interests.

The rest of the paper is organized as follows. In Section 2 we provide some
definitions and preliminary results from the theory of nonautonomous dynamical
systems. In Section 3 we prove the existence of a pullback attractor for proper
choice of the parameters. In Section 4 we estimate the Hausdorff dimension of
the pullback attractor for a class of subsystems of (1.4). In Section 5 we study
the coexistence of the three species, and a conclusion is given in Section 6.

2. Preliminaries

In this section we provide some preliminaries from the general theory of
non-autonomous dynamical systems [20] that we require in the sequel. As this
theory is now well known and developed, we will only recall the necessary results
for our study. The reader can find a nice introduction and motivation in the
aforementioned paper [20] and the bibliography therein.

Consider an initial value problem for a non-autonomous ordinary differential
equation in R

d,
dx(t)

dt
= F (t,x), x(t0) = x0.

The solution usually depends on both the actual time t and the initial time t0
rather than just on the elapsed time t − t0 as in an autonomous system. The
solution mapping x(t, t0,x0) of any initial value problem for which an existence
and uniqueness theorem holds then satisfies (1) the initial value property that
x(t0, t0,x0) = x0, (2) the two-parameter semigroup evolution property that

x(t2, t0,x0) = x (t2, t1,x(t1, t0,x0)) , t0 ≤ t1 ≤ t2,

and (3) the continuity property that (t, t0,x0) 7→ x(t, t0,x0) is continuous on the
state space R

d. These properties of the solution mapping of non-autonomous or-
dinary differential equations motivates the process formulation of a non-autonomous
dynamical system.

Definition 2.1. A process ϕ on space R
d is a family of mappings

ϕ(t, t0, ·) : R
d → R

d, t ≥ t0,

which satisfies
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(i) initial value property: ϕ(t0, t0,x) = x for all x ∈ R
d and any t0 ∈ R;

(ii) two-parameter semigroup property: for all x ∈ R
d and t2 ≥ t1 ≥ t0 it

holds
ϕ(t2, t0,x) = ϕ (t2, t1, ϕ(t1, t0,x)) ,

(iii) continuity property: the mapping (t, t0,x) 7→ ϕ(t, t0,x) is continuous for
any x ∈ R

d and t ≥ t0.

Definition 2.2. Let ϕ be a process on R
d. A family B = {B(t) : t ∈ R} of

nonempty subsets of R
d is said to be ϕ-invariant if ϕ (t, t0, B(t0)) = B(t) for all

t ≥ t0 and ϕ- positively invariant if ϕ (t, t0, B(t0)) ⊆ B(t) for all t ≥ t0.

Definition 2.3. Let ϕ be a process on R
d. A ϕ-invariant family A = {A(t) : t ∈ R}

of nonempty compact subsets of R
d is called a forward attractor of ϕ if it for-

ward attracts all families D = {D(t) : t ∈ R} of nonempty bounded subsets of
R

d, i.e.,
dist (ϕ(t, t0, D(t0)), A(t)) → 0 as t→ ∞ (t0 fixed), (2.1)

and is called a pullback attractor of ϕ if it pullback attracts all families D =
{D(t) : t ∈ R} of nonempty bounded subsets of R

d, i.e.,

dist (ϕ(t, t0, D(t0)), A(t)) → 0 as t0 → −∞ (t fixed). (2.2)

The existence of a pullback attractor follows from that of a pullback absorb-
ing family, which is usually more easily determined.

Definition 2.4. A family B = {B(t) : t ∈ R} of nonempty compact subsets of
R

d is called a pullback absorbing family for a process ϕ if for each t1 ∈ R and
every family D = {D(t) : t ∈ R} of nonempty bounded subsets of R

d there exists
some T = T (t1,D) ∈ R

+ such that

ϕ (t1, t0, D(t0)) ⊆ B(t1) for all t0 ∈ R with t0 ≤ t1 − T.

The proof of the following theorem is well known, see e.g., [20].

Theorem 2.5. Suppose that a process ϕ on R
d has a ϕ-positively invariant

pullback absorbing family B = {B(t) : t ∈ R} of nonempty compact subsets of
R

d.
Then ϕ has a unique global pullback attractor A = {A(t) : t ∈ R} with its

component sets determined by

A(t) =
⋂

t0≤t

ϕ (t, t0, B(t0)) for each t ∈ R. (2.3)

If B is not ϕ-positively invariant, then

A(t) =
⋂

s≥0

⋃

t0≤t−s

ϕ (t, t0, B(t0)) for each t ∈ R.
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3. Existence of pullback attractor

In this section we will show the existence of a pullback attractor for system
(1.4) in R

3. First, thanks to the existence and uniqueness of solutions to (1.4),
we can define a process {ϕ(t, t0)}t≥t0 in R

3 by

ϕ(t, t0,x0) = x(t; t0,x0), ∀x0 ∈ R
3. (3.1)

Moreover, the process defined by (3.1) is continuous in R
3.

Observe that the planes x = 0 and y = 0 are invariant in the sense that
ẋ|x=0,y,z≥0 = 0 and ẏ|y=0,x,z≥0 = 0. Moreover ż|z=0,x,y≥0 ≥ 0. Hence by

the continuity of solutions, any solution trajectory which starts from R
3
+ =

{(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0} will stay there forever, which implies that R
3
+ is

positively invariant. Let

N(t) := x(t) + y(t) + z(t),

and sum the equations of system (1.4) to obtain

Ṅ = x(−b1 + a12y + a13z) + y(b2 − a21x− a22y − a23z)

−g1(t)xy + z(b3 − a31x− a32y − a33z) + g2(t)xy. (3.2)

Next we study the sufficient conditions for the existence of global pullback at-
tractors.

3.1. Existence of pullback attractor

For simplicity, denote

a := min{a21 − a12, a22, a23, a31 − a13, a32, a33}

g := sup
t∈R

[g2(t) − g1(t)], b := max{b2, b3}.

The following theorem provides a sufficient condition for the existence of a global
attractor of system (1.4).

Theorem 3.1. System (1.4) possesses a global pullback attractor provided that

a > g > 0. (3.3)

Proof. By (3.2) we have

Ṅ = −b1x+ b2y + b3z + [g2(t) − g1(t)]xy

−[(a21 − a12)xy + (a31 − a13)xz + a22y
2 + a23yz + a32yz + a33z

2]

≤ −b1x+ b(y + z) + g · xy − a(x+ y + z)(y + z)

≤ (y + z) · [b − (a− g)N ] (3.4)

Now, for any ε ≥ 0, define the set Bε as

Bε :=

{

(x, y, z) ∈ R
3
+ : x+ y + z ≤

b

a− g
+ ε

}

.

We first prove that Bε is positively invariant for any ε ≥ 0.
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(i) For any solution of (1.1) starting from a point inside B0, since R
3
+ is

positively invariant and Ṅ(t) ≤ 0 on x + y + z(= N) =
b

a− g
, we have

b − (a − g)N(t) ≥ 0 for all t ≥ t0. This yields the positive invariance of
B0. In addition, it follows from inequality (3.4) that

Ṅ ≤ N [b− (a− g)N ]. (3.5)

Integrating the Bernoulli type inequality (3.5) easily yields

N(t) ≤
bN(t0)

(a− g)N(t0) + [b− (a− g)N(t0)] · e−b(t−t0)
,

which implies that

lim
t→∞

N(t) ≤
b

a− g
and lim

t0→−∞
N(t) ≤

b

a− g
.

(ii) For any solution starting from a point (x, y, z) in the set Bε \ B0, Eq.
(3.4) implies that Ṅ(t0) ≤ 0 and thus the solution cannot escape from Bε.
Therefore Bε is positively invariant.

We next show that Bε is absorbing for any ε > 0. In fact, given any ε > 0,
let us choose ε̂ such that 0 < ε̂ < ε. Consider the solution of (1.4) starting
at time t0 ∈ R from a point such that N(t0) ≥ b

a−g + ε > b
a−g + ε̂. Provided

that such a solution satisfies N(t) ≥ b
a−g + ε̂ for t ≥ t0, the time derivative of

M(t) := N(t) − ( b
a−g + ε̂) satisfies

Ṁ ≤ −b1x+ (y + z) ·

[

b− (a− g)

(

b

a− g
+ ε̂

)]

≤ −b1x− (y + z)(a− g)ε̂

≤ −min{b1, (a− g)ε̂} ·N

≤ −min{b1, (a− g)ε̂} ·M.

This is a linear inequality and can be integrated to obtain

M(t) ≤M(t0)e
−min{b1,(a−g)ε̂}(t−t0).

Hence there exists a time Tε such that M(t) ≤ ε − ε̂ for t − t0 ≥ Tε, which
implies that N(t) ≤ b

a−g + ε for t− t0 ≥ Tε.
Therefore the set Bε is a compact absorbing set for any ε > 0 and absorbs

(both forwardly and the pullback) all bounded sets of R
3
+. This ensures the

existence of a global pullback attractor

A1 = {A1(t) : t ∈ R} ⊂ Bε for all ε > 0,

and consequently A1 ⊂ B0.
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Note that the hypothesis a > 0 is consistent with our biological model (1.1),
while the hypothesis a > g is not necessarily exact but to restrict the magnitude
of the phase displacement of the periodic forcing terms. In fact we can loosen
the previous hypothesis of a > g and assume instead that

a >
b

b1
· g, (3.6)

which allows larger values of g for b1 > b . For the readers’ convenience we
rewrite the time derivative of N(t) as

Ṅ ≤ −b1x+ b(y + z) + gxy − a(x+ y + z)(y + z)

= bN − aN2 + x(aN + gy − b1 − b)

≤ N(b− aN) − x[(b + b1) − (a+ g)N ].

When (b + b1) − (a+ g)N ≥ 0, we have

Ṅ ≤ N(b− aN). (3.7)

When (b+ b1) − (a+ g)N ≤ 0, noticing that assumption (3.6) implies that

b+ b1

a+ g
>
b

a
and b− aN ≤ b+ b1 − (a+ g)N, ∀N ≥ 0,

we have
Ṅ ≤ N(b− aN) − x(b − aN) = (y + z)(b− aN). (3.8)

Therefore, by using similar arguments to the ones in the proof of Theorem
3.1, it can be proved that for any ε > 0, the set

∆ε :=

{

(x, y, z) ∈ R
3
+ : x+ y + z ≤

b

a
+ ε

}

is positively invariant and attracting (both forwardly and pullback) all bounded
set of R

3
+, which implies the existence of a global pullback attractor

A2 = {A2(t) : t ∈ R} ⊂ ∆0.

In the rest of the paper we refer to Ai = {A(t) : t ∈ R}, i = 1, 2, as the
pullback attractor for the process (3.1) depending on which hypothesis we are
considering, either (3.3) or (3.6).

3.2. Numerical illustration

In this subsection we consider some numerical simulations in order to illus-
trate the results obtained in the previous subsection.
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Figure 1: The Pullback Attractor A1.
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Figure 2: The time series of the functions x, y and z.

Experiment 1. We consider system (1.4) with the following values of the pa-
rameters:

a12 = 0.75, a13 = 0.25, a21 = 0.8, a31 = 0.8,

a22 = a23 = a32 = a33 = b3 = 1,

b1 = 0.2, b2 = 10.6, g1(t) = 0.8| sin t|, g2(t) = 1.4| sin t|,

which satisfy the hypotheses (3.3) for the existence of a global pullback attractor
A1 (see figure 1 for the attractor and figure 2 for x, y, z, as functions of time.).

From figures 1 and 2 we observe that the attractor is not trivial, and the
non-periodicity of the functions x(·), y(·), z(·) suggests a chaotic behavior.

Experiment 2. In the second experiment we chose the values of the parameters
in order to fulfill hypothesis (3.6) instead of (3.3) for the existence of a pullback
attractor. Since larger values of b1 are allowed, it is natural to expect that in
this case the pullback attractor should contain some stable boundary fixed point
leading to the extinction of at least one of the populations (the predator). This
can be demonstrated by many numerical simulations. With the following values
of the parameters we obtain the pullback attractor shown in 3 and x, y, z as
functions of time shown in 4).

a12 = 0.5, a13 = 0.3, a21 = 1, a31 = 1.2,

a22 = 1.2, a23 = 2, a32 = 1.5, a33 = 1.3,

b1 = 99, b2 = 7, b3 = 3 g1(t) = | sin t|, g2(t) = 8| sin t|,

Since extinction of one or more species appears under the condition (3.6), it is
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Figure 3: The Pullback Attractor A2 is trivial for both g and b1 large.
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Figure 4: The time series of the functions x, y, z on the attractor A2.

interesting to study whether it is possible to have a non-trivial pullback attractor
in this case. In the next section we provide an estimate for the dimension of the
pullback attractor.

4. Dimension of the pullback attractor

In order to have more insights about the structure of the pullback attractor,
we next provide an upper estimate for the Hausdorff dimension of the pullback
attractor. This will be done by using a method proposed by Leonov et al. in
[24], which is based on the cocycle generated by nonautonomous differential
equations.

To facilitate a better understanding, we write the nonautonomouns differen-
tial equations (1.4) in the form

ẋ = F (t,x), x(t0) = x0. (4.1)

Define the hull of F with respect to equation (4.1) as

H(F ) := {F (· + t, ·), t ∈ R},

where the closure is taken in the uniform convergence topology (see [10], [20] for
more details). In fact, H(F ) is a compact metric space if F (t,x) is continuous in
x and almost periodic in t. Define the base flow on H(F ) by the shift mapping
σt : H(F ) → H(F )

σtθ(·, ·) := θ(· + t, ·), t ∈ R, θ ∈ H(F ).
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In Section 3 we have proved that the solutions mapping of system (1.4)
defines a process (3.1) which possesses a pullback attractor A = {A(t)}t∈R.
To fit our system into the framework of cocycle dynamical systems, define the
evaluation map F̃ : H(F ) × R

3 → R
3 via

(θ,x) ∈ H(F ) × R
3 7→ F̃ (θ,x) = θ(t0,x).

Then equation (4.1) can be associated with

ẋ = F̃ (σtθ,x), (4.2)

where θ ∈ H(F ) is arbitrary. Note that system (4.2) includes the original system
(4.1) as a special case.

The cocycle generated by (4.2) is given by

ψ(t, θ)x0 = x(t; θ,x0),

where x(t; θ,x0) denotes the solution to (4.2) with initial value x0 = x(0).
Taking θ = F ∈ H(F ) we have

ψ(t, F )x0 = x(t;F,x0),

and hence (4.2) becomes

ẋ = σtF (0,x), i.e., ẋ = F (t,x).

Consequently we have
ψ(t, F )x0 = ϕ(t, t0)x0,

which implies that system (1.4) generates a cocycle ({ψ(t, θ)}t∈R,θ∈H(F ),R
3)

over the base flow ({σt}t∈R,H(F )), with

ψ(t, σsF )x0 = ϕ(t+ s, s)x0. (4.3)

For readers’ convenience we state the main result in [24] as follows:

Theorem 4.1. Suppose that

(i) there exists a family of compact sets {A(θ)}θ∈H(F ) which is negatively

invariant for the cocycle defined by (4.3), i.e.

A(σtθ) ⊂ ψ(t, θ)A(θ), ∀θ ∈ H(F ), t ∈ R;

(ii) there exists a compact set K ⊂ R
3
+ such that

⋃

θ∈H(F )

A(θ) ⊂ K;

10



(iii) there exists a continuous function V : H(F ) × R
3
+ → R with derivatives

d
dtV (σtθ, ψ(t, θ)x0)) along a given trajectory satisfying

d

dt
V (σtθ, ψ(t, θ)x0)) < −λ1(σtθ, ψ(t, θ)x0) − λ2(σtθ, ψ(t, θ)x0)

−sλ3(σtθ, ψ(t, θ)x0) (4.4)

for all t ∈ R, x0 ∈ K, θ ∈ H(F ) and s ∈ (0, 1], where λi, i = 1, 2, 3, are
the eigenvalues of the symmetrized Jacobian of the right hand side (1.4)
ordered as λ1 ≥ λ2 ≥ λ3.

Then the Hausdorff dimension of the attractor for system (1.4) satisfies

DimH(A(t)) ≤ 2 + s.

This result has been widely used to study the Rossler and Lorenz systems
(see [1], [2], [22], [23]). However it has not been applied to the Lotka-Volterra
or Kolmogorov system due to their intrinsic complexity, such as the fully non-
linearity of the Lotka Volterra systems. Next we will verify the three conditions
in Theorem 4.1 for system (1.4) to obtain an upper estimate of the Hausdorff
dimension of the pullback attractor A = {A(t)}t∈R associated with the process
defined in (3.1).

4.1. Upper estimate of Hausdorff dimension of the pullback attractor

First define the family {A(θ)}θ∈H(F ) by

A(θ) =

{

A(s), θ = σsF,

{x ∈ R
3 : x = limtn→∞ xtn

, xtn
∈ A(tn)}, θ 6= σsF,

(4.5)

where s ∈ R and θ ∈ H(F ). Then the set A(θ) is compact for any θ ∈ H(F ).
Morever the family {A(θ)}θ∈H(F ) if negatively invariant. In fact, for θ = σsF , by
using (4.3) and the fact that {A(t)}t∈R is invariant for process ϕ defined by (3.1),
we have ψ(t, θ)A(θ) = ψ(σtθ) for all t ≥ t0. On the other hand for θ 6= σsF , we
have θ = limtn→∞ σtn

F and it follows immediately that ψ(t, θ)A(θ) ⊇ ψ(σtθ)
Second, define the following compact set

K :=
⋃

t∈R

A(t) ∈ R
3,

we then have
⋃

θ∈H(F )

A(θ) ⊂ K.

It then remains to show (4.4). Denote by J the functional Jacobian of system
(1.4), and let

M :=
J + JT

2
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be the symmetrized Jacobian with Tr(M) =Tr(J). Condition (4.4) can be
rewritten by using the trace as

Tr(J) + (s− 1)λ3 + V̇ < 0, (4.6)

where λ3 is the smallest eigenvalue of M .
To construct a proper Lyapunov type function,we start with a heuristic

estimate of (4.6):
Tr(J) + u− λ3 + s(λ3 + v) < 0, (4.7)

where
u = max

∆0

{V̇ }, v = max
∆0

{−V̇ }.

and ∆0 is the smallest absorbing set containing the attractor.

0 1

s

Tr(J) + u - L3

u + v + Tr(J)
v + L3

Figure 5: A graphical representation of inequality (4.7).

It can be seen in Fig. 5 that the inequality (4.7) represents a straight line.
Hence in order to choose the minimum s ∈ (0, 1] satisfying (4.7), the following
conditions need to be fulfilled inside ∆0:

(a) the slope is negative, i.e.,
λ3 + v < 0;

(b) the intersection with the vertical axis is strictly positive, i.e.,

Tr(J) + u− λ3 > 0;

(c) the intersection with the s-axis is in (0, 1), i.e.,

u+ v + Tr(J) < 0.

Conditions (a)-(c) above are rough but can provides useful indication for
sharper estimates. For a better estimate we choose a Lyapunov function which
depends explicitly on the eigenvalues µi of J , the Jacobian of the original system.
To facilitate our analysis we assume that V (x, t) = V (x) and we can choose V
properly such that its total derivative satisfies

V̇ = −(µ1 + µ2 + µ3)(1 − s), (4.8)
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where µi’s are the eigenvalues of J with µ1 ≥ µ2 ≥ µ3. The inequality (4.4)
then becomes:

λ1 + λ2 + λ3 − λ3 + sλ3 − (µ1 + µ2 + µ3)(1 − s) < 0, (4.9)

which implies that

s(µ1 + µ2 + µ3 + λ3) < µ1 + µ2 + µ3 − λ1 − λ2 = λ3.

Now suppose (without loosing generality in the interesting cases) that:

Tr(M) = Tr(J) < 0,

which implies that at least one eigenvalues of M and J is negative and as a
consequence we have

λ3, µ3 < 0.

Hence

s >
λ3

µ1 + µ2 + µ3 + λ3
> 0

and the minimum value of s that satisfies (4.1) is

s∗ = 1 −
µ1 + µ2 + µ3

µ1 + µ2 + µ3 + λ3
= 1 −

Tr(J)

Tr(J) + λ3
= 1 −

Tr(A)

Tr(A) + λ3
.

It is clear that s∗ ∈ (0, 1]. Then by Leonov’s theorem 4.1 we conclude that

DimH(A(t)) ≤ 3 −
Tr(J)

Tr(J) + λ3
, (4.10)

where λ3 is the smallest eigenvalue of the symmetrized matrix M .

Remark 4.2. The above process can be generalized to a more general choice of
V satisfying

V̇ = −(µ1 + µ2 + µ3)(1 − s)δ(x),

where δ(x) > 0. By the same procedure of calculations we obtain

s∗ = 1 −
Tr(J)

Tr(J)δ(x) + λ3
. (4.11)

Note that (4.11) works provided that

Tr(J)

Tr(J)δ(x) + λ3
< 1,

which holds for any δ(x) ≥ 1

An estimate of the smallest eigenvalue λ3 and bounds for the term Tr(J)

Tr(J)δ(x)+λ3

can be obtained by using the following result (see [38]):

13



Theorem 4.3 (Wolkowicz-Styan). Let M be a symmetric n×n matrix. Define
the mean value m, and the variance S, of the eigenvalues of M as

m =
Tr(M)

3
, S2 =

1

n





n
∑

k=1

λ2
k −

1

n

(

n
∑

k=1

λk

)2


 =
Tr(M2)

n
−

[Tr(M)]2

n2
.

Then we have the following upper and lower bounds for the smallest eigenvalue
λmin(M) of A:

m− S(n− 1)1/2 ≤ λmin(M) ≤ m−
S

(n− 1)1/2
.

Note that the above estimates are to be performed on a suitable (the small-
est) absorbing set containing the attractor of the system. In order to apply
Leonov’s theory to the Kolmogorov or Lotka-Volterra system we will need some
modifications of the process described above. For readers’ convenience, we re-
state the system (1.4) as follows

ẋ = xf1(y, z), (4.12)

ẏ = yf2(x, y, z) − g1(t)xy, (4.13)

ż = zf3(x, y, z) + g2(t)xy. (4.14)

where f1(y, z) = −b1 + a12y + a13z, f2(x, y, z) = b2 − a21x − a22y − a23z, and
f3(x, y, z) = b3 − a31x− a32y − a33z. The functional Jacobian is given by

J =







f1 x∂f1

∂y x∂f1

∂z

y ∂f2

∂x − g1(t)y f2 + y ∂f2

∂y − g1(t)x y ∂f2

∂z

z ∂f3

∂x + g2(t)y z ∂f3

∂y + g2(t)x f3 + z ∂f3

∂z






,

where
∂f1

∂xi
> 0,

∂fi

∂xj
< 0, i = 2, 3, j = 1, 2, 3,

and the trace has a simple expression of

Tr(J) = f1 + f2 + f3 + y
∂f2

∂y
+ z

∂f3

∂z
− g1(t)x.

We next construct a Lyapunov type function depending on the trace Tr(J)
in a simple way. To this end, we assume that the set

∆0 :=
{

(x, y, z) ∈ R
3
+ : x+ y + z ≤ β

}

, β > 0

is an absorbing set. Then a possible choice of the Lyapunov function is

V = kz − ln

(

x

β

)

− ln

(

y

β

)

, (4.15)
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where k is a positive parameter to be determined later. This choice is motivated
by the Kolmogorov type equations (4.12) and (4.13) of the non homogeneity of
the equation (4.14).

Notice that V (x) ≥ 0 for x ∈ ∆0. Moreover since x = 0 and y = 0 are invari-
ant planes, V is defined for solutions starting inside R

3
+. The time derivative of

(4.15) along the solution trajectories of the system (4.12) - (4.14) is:

V̇ = k[zf3 + g2(t)xy] − [f1 + f2 − g1(t)x]

= (kz + 1)f3 + kg2(t)xy +

(

y
∂f2

∂y
+ z

∂f3

∂z

)

− Tr(J)

:= νk(x, y, z, t) − Tr(J).

Substitute into the inequality (4.7) we have

Tr(J) + (s− 1)λ3 + νk(x, y, z, t) − Tr(J) < 0,

which implies that

s < 1 −
νk(x, y, z, t)

λ3
. (4.16)

For s to satisfy 0 < s ≤ 1, (4.16) essentially put a restrictions on k as

0 ≤ νk(x, y, z, t) < λ3.

4.2. Numerical Illustration

In this subsection we provide an example by using the ideas of the previous
subsection to estimate the dimension of the attractor for the system (1.4). In
this case we use the following values of the parameters:

a12 =
3

4
, a13 =

1

4
, a21 = 0.8, a22 = 1, a23 = 1,

a31 = 0.8, a32 = 1, a33 = 1, b1 = 0.2, b2 = 8, b3 = 0.41

g1 = 0.8, g2 = 1.4, w1 = w2 = 1

We use a more general Lyapunov type function:

V (x, y, z) = kz −Q ln
x

β
− P ln

y

β
,

with k = 0, Q = −1 and P to be properly chosen later. Then:

V̇ = f1 − P (f2 − g1(t)x)

and the inequality for the dimension satisfies

Tr(J) + (s− 1)λ3 + V̇ < 0.

To estimate the dimension numerically, we first use theorem (4.3) to estimate

λ3. Denote by λ̂3 the lower bound of λ3 on ∆0, then it ought to satisfy

Tr(J) + (s− 1)λ̂3 + V̇ < 0. (4.17)
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for any t ≥ 0 on ∆0. Numerical simulations have shown that for P = 1.2 and
s = 0.4 the inequality (4.17) holds, while for s < 0.4 the inequality (4.17) can
not be verified as the left hand side can take positive values. Hence an estimate
of s ≤ 0.4 can be obtained by calculating the minimum s ∈ (0, 1] to satisfy
(4.17), and therefore

Dim(A) < 2.4.

Note that this estimate can be improved by globally optimizing the choice of P
and s, yet here we demonstrate that the Leonov’s method can be applied.

The following figures 6 and 7 represent the pullback attractor and the time
series for x, y and z, receptively.

4 6 8

x

0.0

0.5

1.0

1.5

y

0.0

0.5

1.0

z

Figure 6: The Pullback Attractor A1 for the choice of the parameters as in subsection 4.2.
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Figure 7: The time series of the functions x, y, z on the attractor A1 for the choice of the
parameters as in section 4.2.

5. Coexistence of the three species

In this section we discuss the coexistence of the three competing species.
However we remark that no general information is available about uniform per-
sistence of the system (see [33]), which is one of the most useful properties from
ecological and biological points of view. In this section we will consider the case
of hypothesis (3.3).

For simplicity, set

ã := max{a21 − a12, a22, a23, a31 − a13, a32, a33},

b̃ := min{b2, b3}, g̃ := inf
t∈R

{g2(t) − g1(t)}.
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Before discussing the coexistence of the species, we first construct a positive
invariant subset of R

3
+ in the next proposition.

Proposition 5.1. System (1.4) possesses a positive invariant set away from
the origin, provided that

b̃

γ
≥
b1

a
. (5.1)

Proof. By (1.4) we have

Ṅ = −b1x+ b2y + b3z + [g2(t) − g1(t)]xy

−[(a21 − a12)xy + (a31 − a13)xz + a22y
2 + a23yz + a32yz + a33z

2]

≥ −b1x+ b̃(y + z) − ã(y + z)N + g̃xy. (5.2)

When g̃ ≥ 0, from (5.2) we obtain

Ṅ ≥ −b1N + b̃(y + z) + ã(y + z)N − 2ã(y + z)N

= N [ã(y + z) − b1] + (y + z)(b̃− 2ãN).

While for g̃ ≤ 0, it also follows from (5.2) that

Ṅ ≥ −b1N + b̃(y + z) − ã(y + z)N + g̃(y + z)N

≥ −b1N + b̃(y + z) + ã(y + z)N − (2ã− g̃)(y + z)N

= N [ã(y + z) − b1] + (y + z)[b̃− (2ã− g̃)N ].

Thus in summary we have

Ṅ ≥ N [ã(y + z) − b1] + (y + z)(b̃− γN), γ := max{2ã, 2ã− g̃}. (5.3)

Define the set ∆̃ ∈ R
3
+ to be

∆̃ :=

{

(x, y, z) ∈ R
3
+ : y + z ≥

b̃

γ
, x+ y + z ≤

b

a− g

}

, (5.4)

then ∆̃ is non-empty, since b̃
γ < b

a−g . Moreover since b̃
γ ≥ b1

a , any points in ∆̃

satisfy y + z ≥ b̃
γ , and consequently

Ṅ ≥
b1

ã
(b̃ − γN). (5.5)

Inequalities (5.5) and (3.5) together give the positive invariance of ∆̃.

5.1. Coexistence analysis

Notice that condition (5.1) implies the smallness of b1. In addition for ∆̃
defined in (5.4) to be non-empty, x needs to be less than the difference between
b̃
γ and b

a−g . These suggest the importance of the predator (x) in order to avoid
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the extinction of species (or collapse) of the system. Next we discuss further
the conditions under which none of the species will extinct. These will be done
by constructing the conditions step by step.

(i) To avoid the extinction of (x). In fact, for any solution starting from
(x0, y0, z0) ∈ ∆̃, from the first equation of (1.4) we have

ẋ ≥ x

(

min{a12, a13} ·
b̃

γ
− b1

)

Thus if it holds that

min{a12, a13}
b̃

γ
> b1, (5.6)

the predator (x) never goes to extinction.

(ii) To avoid the extinction of both (y) and (z). In fact, assume on the
contrary y = z = 0, system (1.4) is reduced to

ẋ = −b1x,

which implies also the extinction of (x). Therefore, assuming conditions (5.1)
and (5.6), the predator (x) and one of the prey (y) or (z) must persist.

(iii) To avoid the extinction of (y), by showing that no invariant subsets of
the plane y = 0 can attract positive solutions. In fact, On the plane y = 0 the
system (1.4) becomes

{

ẋ = x(a13z − b1),
ż = z(b3 − a31x− a33z),

which admits the following fixed points

P = (0, 0, 0), Py =

(

a13b3 − a33b1

a13a31
, 0,

b1

a13

)

, P1 =

(

0, 0,
b3

a33

)

.

Since with hypotheses (5.1) and (5.6), (x) and at least one of (y) and (z) must
survive, then neither P nor P1 can attract positive solutions. On the other side,
if Py does not exist then no periodic solutions exist on y = 0 (see [11]) and the
invariant sets of y = 0 are just the fixed points P and P1. Thus a sufficient
condition to avoid extinction of (y) is (non existence of Py) is

a13b3 − a33b1 < 0. (5.7)

However condition (5.7) is not necessary, as it would be sufficient to show that
Py is unstable directly for the original three dimensional system (1.4). So far
we have that (x) and (y) will survive under hypotheses (5.1) and (5.6).

(iv) To avoid the extinction of (z). First the plane z = 0 is not invariant
and. In addition, when x, y 6= 0, z = 0 gives

ż = g2(t)xy ≥ 0,
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which becomes zero if and only if g2(t) = 0. As a consequence there are no
invariant sets in the plan z = 0.

It is clear that (0, b2
a22

, 0) ∈ ∆̃ is an equilibrium on the y-axis. But this cannot
attract positive solutions as its x component should converge to zero and this
is not possible under hypotheses (5.1) and (5.6). Then no positive solutions
converge to the boundary of R

3
+.

(v) To avoid heteroclinic cycles between the invariant sets of ∂R
3
+ (see [21]),

because it has been observed (see [33]) that such cycles can bring the extinction
of some of the species in real situations subjected to deterministic or random
perturbation. To this end, we check the connections between all the invariant
sets of the boundary of R

3
+. Since we have already analyzed the plane y = 0

and z = 0, it remains to investigate the invariant sets on the plane x = 0, where
(1.4) become

{

ẏ = y(b2 − a22y − a23z),
ż = z(b3 − a32y − a33z),

(5.8)

Equations (5.8) possess the following fixed points

P = (0, 0, 0), P1 =

(

0, 0,
b3

a33

)

, P2 =

(

0,
b2

a22
, 0

)

,

P3 =

(

0,
b2a33 − b3a23

a22a33 − a23a32
,
b3a22 − b2a32

a22a33 − a23a32

)

,

and have no periodic orbits (see [11] and references cited therein).
To facilitate the rest of the analysis we consider a sufficient condition for

which P3 falls outside of R
3
+, i.e., one of the following inequalities is satisfied:

b2a33 − b3a23 < 0, b3a22 − b2a32 < 0. (5.9)

Then together with hypotheses (5.1) and (5.6) we obtain that the invariant sets
contained in the boundary of R

3
+ are the fixed points P , P1 and P2, which are

all contained in the invariant set x = 0. They cannot be approached since they
need the extinction of at least two species, which is not possible according to
part (ii).

(vi) To avoid heteroclinic connections among the fixed points P , P1 and
P2. In fact, the fixed point P1 is on the z-axis which is stable, while the fixed
point P2 is on the y-axis which is also stable. Moreover inside the plane x = 0,
depending on choice of the parameters, all solutions converge to either P1 or P2.
Thus there are no heteroclinic cycles, indeed the unique available connection is

P → P1, P → P2.

In summary we have the following result.

Theorem 5.2. Assume that the hypotheses (5.1), (5.6), and (5.9) are satisfied.
Then the three species coexist.
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5.2. Numerical illustrations

The following numerical simulations are presented to illustrate the results of
the present subsection.

Experiment 3. We consider a case that (5.1), (5.6), (5.7), and (5.9) are all
fulfilled. We choose the parameters to be:

a12 = 1, a13 = 1, a21 = 1.5,

a22 = 1, a23 = 1, a31 = 1.5, a32 = 1, a33 = 1

b1 = 0.4, b2 = 1.5, b3 = 1 g1(t) = | sin t|, g2(t) = 1.2| sin t|,

And we obtain that the attractor A1 is a small limit cycle. In this case we have
coexistence of the three populations that is the existence of a small limit cycle
(see figure 8 below).

x

y

z

Figure 8: The Pullback Attractor A1 is a smal limt cycle.

Experiment 4. In this case we change the values of b1 to 1 and keep all other
parameters as in Experiment 3, then condition (5.7) is not satisfied. We still
have coexistence (see figure 9 below) since (5.7) is not a necessary condition.

x

y

z

Figure 9: The Pullback Attractor A1 is again a smal limit cycle.

However if we further increase the magnitude of b1, for example b1 = 1.5.
Then only populations y and z survive (see figure 10 below).
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x

yz

Figure 10: The Pullback Attractor A1 is a fixed point.

6. Conclusions and final remarks

In this article we have shown the existence of pullback attractors for a semi-
Kolmogorov system (1.4). In addition, by using numerical experiments we have
found scenarios in which the system show a chaotic behavior, and provided an
upper bound for the Hausdorff dimension of the pullback attractor for these
scenarios, by using Leonov theory. We have also discussed the coexistence of
solutions, by constructing the hypotheses for which the invariant sets of the
boundary of R

3
+ are reduced to three fixed points (which cannot be connected

by an heteroclinic cycle) and do not attract solutions. We note that the general
problem of the uniform persistence of the system requires further study.

A possible way to obtain more insights of the coexistence is to consider the
stability of boundary fixed points in the context of non autonomous stability
theory (see [28]). In particular the following theorem of Cetaev (see [28]) can
be used to study the instability of the origin P :

Theorem 6.1. If for any disk D of the phase space centered at the origin there
exists a function V and an open subset Θ ⊂ D, such that, for all t ≥ t0

(i) V is bounded in Θ and assumes positive values in Θ ∩ int(D),

(ii) V vanishes on ∂Θ ∩ int(D),

(iii) the time derivative of V along the solutions is positive definite in Θ,

(iv) P ∈ ∂Θ,

then the null solution is unstable.

The main goal is to find a function V satisfying the above conditions. A
possible choice can be suggested by the work of Rionero ( see [29] ) in which the
stability/instability of the zero solution of the following non autonomous linear
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system is studied:
{

ẋ = a(t)x + b(t)y,
ẏ = c(t)x+ d(t)y,

The author introduced a new Liapunov Function depending on the invariants
of the lineal matrix and apply the general theory of stability and instability
of non autonomous systems. This has been generalized for a bidimensional
Lotka-Volterra system (see [8]).

Remark 6.2. We note that the use of the Cetaev’s theorem is not necessary since
it only gives a sufficient condition of instability. However, it should be useful to
show the instability of the boundary fixed points and then as a consequence to
find a non trivial pullback attractor. This would also suggest the usefulness of
the upper bound estimate of the dimension of the pullback attractor.

Remark 6.3. Again we have to remark that the use of non autonomous stability
theory is not sufficient to obtain the uniform persistence of the system since
it is required a complete study in order to avoid the existence of heteroclinic
connections between the invariant sets of R

3
+.
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