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Abstract9

Active Demand Response (ADR) can contribute to a more cost-efficient operation of, and investment in,
the electric power system as it may provide the needed flexibility to cope with the intermittent character
of some forms of renewables, such as wind. One possibly promising group of demand side technologies in
terms of ADR are electric heating systems. These systems could allow to modify their electrical load pattern
without affecting the final, thermal energy service they deliver, thanks to the thermal inertia in the system.
One of the major remaining obstacles for a large scale roll-out of ADR schemes is the lack of a thorough
understanding of interactions between the demand and supply side of the electric power system and the
related possible benefits for consumers and producers. Therefore, in this paper, an integrated system model
of the electric power system, including electric heating systems subjected to an ADR scheme, is developed,
taking into account the dynamics and constraints on both the supply and demand side of the electric power
system. This paper shows that only these integrated system models are able to simultaneously consider all
technical and comfort constraints present in the overall system. This allows to accurately assess the benefits
for, and interactions of, demand and supply under ADR schemes. Furthermore, we illustrate the effects
not captured by traditional, simplified approaches used to represent the demand side (e.g., price elasticity
models and virtual generator models) and the supply side (e.g., electricity price profiles and merit order
models). Based on these results, we formulate some conclusions which may help modelers in selecting the
approach most suited for the problem they would like to study, weighing the complexity and detail of the
model.
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1. Introduction12

Demand side management (DSM), in the broad sense, entails all those actions aimed at modifying the13

electricity demand to increase customer’s satisfaction and coincidentally produce the desired changes in the14

electric utilities load in magnitude and shape [1]. If applied correctly, DSM could come with a variety of15

benefits, such as, but not limited to, (1) a reduced electric power generation margin commonly used to deal16

with peak demands; (2) a higher operational efficiency in production, transmission and distribution of electric17

power; (3) more effective investments; (4) lower price volatility; (5) lower electricity costs and (6) a more cost-18

effective integration of highly intermittent renewables [2–4]. In the literature, three broad categories of DSM19

are identified: energy efficiency and conservation, on-site back up through local generation or storage and20

demand response [3]. Active Demand Response (ADR) is defined as ‘changes in electric usage implemented21

directly or indirectly by end-use customers/prosumers from their current/normal consumption/injection22

patterns in response to certain signals’ [5]. In this paper, the focus is on ADR, and particularly on short-23

term load shifting, by means of thermal storage in the building stock.24

ADR can be facilitated by incentive-based programs (direct load control, curtailable load, demand bid-25

ding) and/or price-based programs (real-time pricing, time-of-use pricing, peak pricing), each with its own26

opportunities and drawbacks [6]. Gils has identified a large potential for ADR of flexible loads in Europe,27

mainly in countries with significant amounts of electric heating and air conditioning [7]. However, residential28

consumers are generally not willing to forfeit the foreseen end-use of the electrical energy as the benefits29

they perceive (e.g., a lower electricity bill) do not outweigh the drawbacks. Fortunately, some of these30

demand side technologies contain various forms of storage, which can be used to affect the electrical load31

pattern seen by the electric power system without compromising the quality of the energy services provided32

to the end-consumer. Typical residential examples are thermostatically controlled loads (such as boilers,33

heat pumps, refrigerators and air conditioners), plug-in electric vehicles and deferrable loads, namely laun-34

dry machines and dish washers [8]. Their inherent ‘energy storage’1 allows these loads to simultaneously35

be fully responsive and non-disruptive in terms of the perceived energy service. In this setting, the role of36

thermal energy storage (TES) as an ADR enabling technology is often investigated. As denoted by Arteconi37

et al. [9] a large range of TES technologies exists and is in use for ADR purposes. The built environment38

can even allow for thermal storage without installing specific TES [10]. Small scale electric heating systems39

can be installed in large numbers in the built environment and control access to these loads could be very40

inexpensive with the advent of communication platforms; so they are good candidates for ADR [8, 11].41

However, many challenges remain to be overcome before a large scale roll-out of flexible demand side42

technologies will emerge. One of these challenges is related to the technical obstacles preventing price43

signals from being properly transferred to the customers [12], while others are related to the quantification44

of the benefits for consumer and producers under ADR programs [2]. In order to quantify the effects45

of introducing such programs, the assessment of the interaction between supply and demand side is of46

paramount importance. Many models however still fail to incorporate the interactions between demand and47

supply in ADR programs. In Fig. 1 a conceptual schematic of the interdependence of the demand side and48

the supply side (models) is shown: the electricity price profile, typically the result of a supply side model, is49

a necessary input to the demand side model, while the demand for electric power, output of the demand side50

model, is a necessary input of the supply side model. In short: the electricity prices change with the demand51

for electric power and vice-versa. In light of this challenge, we develop integrated system models that tackle52

this issue. As we will show later in this paper, this is the only way one can capture this interaction to its53

full extent.54

Nevertheless, even though many studies deal with, or even model, ADR, often the supply side or the55

demand side are represented simplistically. When the focus is on electric power generation, most researchers56

employ typical unit commitment (UC) models and economic dispatch (ED) models2, extended with an57

1In the strict sense, no energy is stored. One can only shift the load of these appliances in time, decoupling the energy
service (e.g. heating) and the load as seen by the electric power system in time.

2A UC model aims to schedule the most cost-effective combination of power plants to meet the demand for electric power.
The ED model determines the production levels of each unit on the basis of the least cost usage of the committed assets.
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Figure 1: Conceptual schematic of the interaction between the supply side (i.e., the electric power system, typically represented
via unit commitment and economic dispatch models) and the demand side (here electric heating systems, typically studied via
building simulation models with optimal control systems).

aggregated representation of the flexibility in demand. Two typical representations of the flexible demand58

side are considered in this paper: price-elasticity models [13–17] (Section 2.1) and so-called virtual generator59

models (VGM) [18–21] (Section 2.1). In contrast, in studies which are focused on the energy demand of60

buildings, researchers often take the supply side of electricity into account by considering a (fluctuating)61

electricity price [22–27]. This is discussed in Section 2.2. Although all of these modeling techniques have62

proven their merits, they are inadequate to study the true interaction between the demand side and the63

supply side under ADR, especially when storage-type customers are involved. Recently, some authors64

[11, 28–35] proposed integrated models of both the supply of, and demand for, electric power, as discussed65

in Section 2.3. The reference model presented in this paper falls in this last category.66

The purpose of this paper is to illustrate the relevance of using an integrated model to study ADR,67

involving the interaction between the supply side and the demand side, building further on the work presented68

in [36]. To this end, a modeling framework based on a system approach is introduced: a physical model of69

the demand side technology, considering flexible electric heating systems, is integrated in a traditional unit70

commitment model. Then, in a methodological case study, the results from the proposed integrated model71

are compared to those from models with focus on the supply side or on the demand side. In that way, we72

show the advantages and disadvantages of the integrated modeling approach. Results show that neither73

a price-elasticity, nor a virtual generator model can fully describe the effects of flexible electric heating74

systems on the electric power system. Furthermore, results based on a demand side model considering a75

fixed price profile cannot be extrapolated to calculate system-wide effects as they fail to describe the feedback76

of demand response on the supply side. These conclusions hold especially for storage-type customers where77

the storage losses are hard to model, such as thermal loads. These results indicate that the effect of the78

elastic demand on the electricity price must be take into account when scheduling e.g. thermal loads under79

ADR schemes. Integrated models take into account all the above mentioned effects, but are difficult to80

set up due to the needed detail and are computationally expensive to solve. Merit order (MO) models for81

the electric power system, combined with a detailed demand side model, are capable of approximating the82

results of the integrated system model, but are significantly faster to solve. Based on these results, we83

formulate some conclusions for modelers to select the modeling approach suited for their problem, weighing84

the detail enclosed in the model formulation and computational efforts.85

The remainder of the paper is organized as follows. Before moving to the integrated model developed for86

this paper and the corresponding results, we present a brief literature review on ADR modeling approaches.87

We focus on the literature in which thermostatically controlled loads are subjected to ADR measures. In88

Section 3 we present the integrated model developed for this paper and the methodological case study for89

which we obtain our results. Results are first presented for the integrated model (Section 4.1) in order to90

facilitate the interpretation of the shortcomings of other models. Subsequently, the challenges in modeling91

ADR via price-elasticity models and virtual generator models for the demand side or price profile and92

merit order models for the supply side are illustrated. Based on these results, we formulate some general93

conclusions for the use of these modeling approaches (Section 4.6). In each application, the integrated model94

remains the reference model, used to validate other approaches.95
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2. Literature review96

As mentioned before, different modeling techniques for studying the effects of price-responsive or flexible97

users are used in the literature. Thus, in order to show main characteristics and performance of the existing98

operational tools, a review of the state-of-the-art models is presented showing models with a focus on99

the supply side (Section 2.1), models with a focus on the demand side (Section 2.2) and models with an100

integrated approach, taking into account the physical behavior of demand side technologies together with101

the techno-economic characteristics of the electric power system (Section 2.3).102

2.1. Models with focus on the supply side103

To study electric power system-wide effects of flexible consumers, most researchers employ typical unit104

commitment and economic dispatch models, extended with an aggregated representation of the flexibility105

in demand. As indicated above, two main representations of the flexible demand side can be identified:106

price-elasticities and so-called virtual generator models (VGM).107

The price-elasticity is a measure of the change in demand in response to a change in the price of electricity.108

The assumed range of elasticities used in these models typically stem from analyses of historical data [14, 37],109

sometimes combined with a simulation model [38]. Among others, De Jonghe et al. [13, 14] developed an110

elasticity-based operational and investment model to determine the optimal generation mix. Sioshansi and111

Short [15] employed an elasticity-based model, comparable to that proposed in [14], to study the effect112

of real-time pricing on the usage of wind power. Kirschen and Strbac [16] proposed a general scheme to113

incorporate the short-term elasticity in generation scheduling and price setting. Bompard et al. [17] studied114

the effect of demand elasticity on congestion and market clearing prices via a linear price-elasticity model115

combined with an optimal power flow formulation.116

Virtual generator models are typically used when a modeler wants to include the technical limitations117

of the demand side technology. The demand is modeled as an electricity generating or storage unit with a118

negative output. Demand reductions and shifts can be constrained in e.g. amount, time and ramping rate.119

Energy storage and possible losses can be incorporated (e.g. via a demand recovery ratio; see Section 4.3).120

The constraints can be based on observations or detailed physical models. The VGM is dispatched similarly121

as a conventional power plant and therefore often used in the setting of direct load control [14]. These122

VGM have been used in various studies, e.g. to investigate the impact of ADR on the marginal benefit for123

consumers [18], the effect of ADR on reserve markets [19], the impact of ADR in electric power systems124

with large wind power penetrations [20] and the benefits of demand side participation in the provision of125

ancillary services [21].126

However, in both cases a modeler cannot assess the benefit of the studied ADR scheme for the consumer127

based on these aggregated representations. Moreover, the feasibility of the resulting demand can be ques-128

tioned, as one has no guarantee that the resulting electric power demand profile will be sufficient to ensure129

the required thermal comfort for the end-consumer.130

2.2. Models with focus on the demand side131

Kosek et al. [39] give an overview of the possibilities of implementing ADR. The approach taken in that132

paper is that of predictive and direct load control. Assuming perfect predictions and no model mismatch,133

this is the best case scenario for ADR, and hence ideal for impact studies. Thermal energy storage as an134

ADR technology is often investigated in the literature as a demand side technology. E.g., Hewitt [40] studied135

the use of the built environment - i.e., its thermal inertia - as a TES, in the case of a heat pump delivering136

space heating and domestic hot water (DHW). Hewitt found that both the building and the hot water tank137

are possible candidates for ADR and, in order to assess the benefits for the consumers and generators under138

ADR, he highlighted the necessity of taking into account the dynamics of both the demand and supply139

side. However, when assessing the potential of a thermal system for ADR, most authors start from a fixed140

electricity price profile [22–27] to determine the electrical load pattern modification. The authors typically141

conclude how much the electricity cost can be reduced for the owner of the system, but do not consider a142

feedback of the shifted electrical load pattern on the electricity price.143
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Figure 2: Schematic representation of the various modeling options, in order of ascending complexity and detail, in demand
and supply side representations, and the combinations discussed in this paper.

Based on such models, one can only draw conclusions for a single, small consumer. As of a certain number144

of consumers participating in the studied ADR program, their modified behavior would start affecting the145

price. This feedback of user behavior on the price of electricity is not taken into account in these models.146

2.3. Integrated operational models147

Recently, a number of authors have developed integrated models. Both the demand side and the supply148

side are represented by physical models and jointly optimized. A group of researchers at the university of149

Victoria (Canada) have recently published a number of papers [28–33], inspired by the model of Callaway150

[34],closely related to the objective of this work. They studied comfort-constrained distributed heat pump151

management and intelligent charging of electric vehicles (1) as balancing services, with a particular focus152

on balancing wind power, (2) as a spinning reserve resource and (3) as a voltage stabilizing measure. The153

physical models of the heat pumps and electric vehicles are integrated in a linear programming representation154

of the electric power system. Hedegaard et al. [11, 35] developed an integrated model, including different155

types of TES and emission systems, to assess the potential of ADR to balance wind power. However, some156

aspects of the thermal system were represented too simplistically in the model. E.g., the heat pump COP157

(coefficient of performance) is not temperature dependent and the solar transmission through the windows158

is not taken into account. Dallinger and Wietschel [41] assessed the electric vehicles potential for balancing159

the fluctuations of renewable energy sources (RES), while representing the generation side by a MO model.160

Those integrated models incorporate in some way both the dynamic behavior of the supply side of the161

electric power system and the flexible electricity demand (represented by electric heating systems for the162

purposes of this study)3. Such an approach offers a number of advantages when a sufficiently detailed163

representation of the overall energy system is used. First, the electricity demand from the thermal systems164

is closer to reality, since the occupants behavior is taken into account, as well as the weather conditions and165

the thermal behavior of the considered heating systems and dwellings. Second, all feedback effects of the166

redistribution of the electrical load - on demand and supply side - are represented correctly. For example,167

the losses (electrical and thermal) associated with load shifting can be precisely determined. Third, it allows168

3Note that the difference between a VGM-like model and an integrated model is not strictly defined, but depends on the
level of detail of the demand side representation required by the demand side technology at hand.
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identifying the technology that was used to perform the electric load shifting, thus comparing the impact169

of multiple flexible demand side technologies. Last, it ensures the end-use functionality of the demand side170

technology, while simultaneously guaranteeing the availability of the balancing services provided by ADR on171

the supply side. However, those models are not devoid of disadvantages. First, the representation of e.g. a172

realistic building stock and the stochastic behavior of the occupants requires a detailed demand side model,173

which is difficult to set up and calibrate. Second, these models are typically difficult to solve numerically,174

with a high computational cost as a consequence.175

The reference model presented in this paper belongs to that category of integrated optimization mod-176

els. However, in terms of modeling, it improves the approach by Williams et al. [28] by incorporating a177

more detailed representation of the demand side (occupant behavior, demand side technologies and thermal178

behavior of the dwellings) and by expanding the linear programming model of the electric power system179

to a more realistic mixed integer linear programming model. The latter allows to incorporate start-up and180

shut-down costs and certain techno-economical constraints with regard to on- and off-times of electric power181

plants, while the former allows to incorporate solar and internal gains, which form a non-negligible part of182

the thermal power supplied to the dwellings as shown later.183

3. Methodology184

In this section, we first present an integrated operational model of a typical electric power system and185

a variable electricity demand from buildings using electric heating systems, composed of heat pumps and186

auxiliary electric resistance heaters. These heating systems provide both domestic hot water (DHW) and187

space heating (SH) via radiators. Thermal energy storage – allowing the model to shift demand for electric188

power in time – is provided via the hot water storage tank and the thermal mass of the building. As will be189

shown later, the model minimizes the total operational cost for simultaneously (1) satisfying a certain fixed190

demand for electric power and (2) providing a certain degree of thermal comfort for the occupants of the191

modeled dwellings.192

Afterwards, with the aim of showing the importance of integrated tools for representing ADR, a com-193

parison among several models with a different level of complexity is presented. Fig. 2 shows schematically194

how the model detail and computational cost depend on the complexity of the supply side model and the195

demand side model. The analysis is performed starting from the integrated model, representing in detail196

both the supply side and the demand side, and then reducing step by step the complexity of the supply and197

the demand side representations respectively. The integrated model represents the supply side by means of198

a unit commitment and economic dispatch model and the demand side by means of a physical state space199

model of the building and its heating system. Moving along the reduced complexity of the demand side, the200

latter can be represented by a VGM or by a price elasticity based model, while the supply side is still repre-201

sented via the unit commitment and economic dispatch model. Vice versa going toward a simplification of202

the supply side model, a MO model or an electricity price profile can simulate the supply side of the electric203

power system, keeping the physical state space model for the flexible demand. In every case the resulting204

model is used in an optimization problem, with the purpose of minimizing the overall operational costs.205

The models mentioned above were selected because they are widely used in the literature. Note however206

that other models and combinations of models may exist. To facilitate the interpretation of the presented207

discussion, the results obtained for a methodological case study with the IM are presented first as reference208

in Section 4.1. Second, it was checked whether the simplified models could reproduce the same behavior of209

the overall system and whether the necessary inputs were available to the modeler. These results can be210

found in Sections 4.2 to 4.5.211

The proposed integrated model for the demand side and the supply side212

The integrated model is used in an optimization problem, in which the overall operational cost of the213

electricity generation is minimized, subject to techno-economic and comfort constraints of both the supply214

side and the demand side of the electric power system. This mixed integer linear programming (MILP) model215

combines a unit commitment and economic dispatch model on the supply side with a detailed representation216
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of the physical (thermal and electrical) behavior of the dwellings and their electric heating systems. The217

model is implemented in GAMS 23.7 and MATLAB 2011b, using the MATLAB–GAMS coupling as described218

by Ferris [42]. CPLEX 12.5 is used as solver. A full description of this model and the data used is available219

online [43].220

Via the UC and ED model, the commitment status (binary variable z, the on/off status of the power221

plant) and the hourly output of each power plant (g) are determined so that the electricity demand is met222

at the lowest overall operational cost, taking into account the technical constraints of the power plants.223

These constraints include the minimum and maximum output, the ramping rates and minimum on and off224

times of each power plant. The operational cost, c(g, z), consists of fuel costs (FC), emission costs (CO2T ),225

ramping costs (RC) and start-up (SC) costs:226

min c(g, z) =
∑

i

∑

j

SCi,j + FCi,j +RCi,j + CO2Ti,j (1)

where i represents the power plant and j the time step, equal to one hour in this study. The fuel costs and227

carbon emission costs depend on the output and the (part-load) efficiency of the power plant. Start-up costs228

are due whenever a power plant starts up, while ramping costs reflect the degradation of the plant due to229

changes in output.230

In the integrated model, the demand for electricity that needs to be met consists of two parts: a fixed231

electricity demand profile (dfixj ) and the electricity demand from the flexible demand side technology (dvarj ),232

characterized by a certain market penetration, mp. In this integrated model, it has been assumed that233

demand and supply are controlled centrally (direct load control). The demand for electricity at each time234

step j needs to be met by generation of electric power by conventional power plants i (gij) plus the electric235

power generated from RES (gRES
j ):236

∀j : dfix
j +mp · dvar

j =
∑

i gi,j + curj · gRES
j (2)

∀j : 0 ≤ curj ≤ 1 (3)

In this equation the decision variable curj stands for the relative curtailment of RES-based electricity237

generation and has a value that varies between 0 (full curtailment) and 1 (no curtailment). Curtailment238

costs are assumed to be internal transfers within the model and are thus not explicitly modeled. The only239

net cost perceived by the system is the opportunity cost of not using the zero-cost RES power available.240

Likewise, the redistribution of the operational costs and benefits of ADR among producers and consumers241

occurs internally and is thus not modeled explicitly. The fixed demand and RES-based electricity production242

profiles used are based on hourly demand data for Belgium for 2010 [44]. The variable electricity demand,243

instead, is a decision variable, determined by the comfort constraints of the occupants of the considered244

dwellings, calculated via the demand side model. This demand side model describes the physical behavior245

of the electric heating systems, which deliver heat for domestic hot water production and space heating by246

means of a heat pump and an auxiliary electric heater. The thermal behavior of the house, radiator and247

domestic hot water storage tank is modeled through a linear state space model, that allows converting the248

thermal comfort demand in a demand for thermal power for each dwelling, which needs to be satisfied by249

the electric heating systems. The state space model that describes the thermal behavior of the building and250

its heat emission system can be summarized as251

∀s, j : T SH
s,j+1 = A · T SH

s,j +B · USH
s,j (4)

The symbol T SH
s,j stands for five states considered in this model, consisting of the indoor operative tem-252

perature, along with temperatures representing the thermal behavior of the inner and outer walls, the roof253

and the floor slab. Likewise, we have retained five inputs USH
s,j : the ambient air and ground temperature,254

the solar and internal heat gains and the heating input of the radiators. The state space matrices A and255

B make up a linear model describing the thermal conductances and capacities in the system, along with256

linear approximations of the convective and radiative heat transfer coefficients. As thermal comfort must257

be achieved, the temperatures in the heated zones are constrained to temperatures that are perceived as258
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comfortable. If the occupants are present in residence s at time step j, the temperature in the heated zone259

(T z
s,j) should neither exceed Tmax, nor fall below Tmin

p (occupants present and awake, occs,j=1) or Tmin
np260

(occupants absent or sleeping, occs,j=0):261

∀s, j : Tmin
p · occs,j + Tmin

np · (1− occs,j) ≤ T z
s,j ≤ Tmax (5)

These constraints will impose limits on the thermal inputs of the building USH
s,j , and hence on the electric262

power consumed by the heating systems. As the electricity demand of each residence is the sum of the263

electricity demand of the heat pump (PHP
j ) and the auxiliary heaters (PAUX1

j , PAUX2
j ), the total variable264

electricity demand (P el
j,s) in residence s on time step j and the total variable demand on system level dvar

j265

become:266

∀j : dvar
j =

∑

s

P el
j,s =

∑

s

(
PHP

s,j + PAUX1
s,j + PAUX2

s,j

)
(6)

Both the supply side and demand side models were validated separately which proved the accuracy of267

their results [45–49] , thus it is reasonable to assume the same reliability for their coupling. In particular, the268

model structure of the demand side model is very similar to that proposed by Širokỳ et al. [46], Oldewurtel269

et al. [47] and Henze et al. [48]. The accuracy of the heating system model is tested against a detailed270

physical simulation model using the IDEAS library [50] in Modelica, as described in [49].271

The performance of this integrated model will be studied in a methodological case study. The supply272

side of the electric power system considered consists of 1 nuclear power plant (1200 MW), 5 coal-fired steam273

power plants (4000 MW), 10 gas-fired combined cycle power plants (CCGT, 4000 MW) and 10 peaking274

units (open cycle gas turbines and oil-fired power plants, 1000 MW). We assume that RES-based electrical275

energy accounts for 20% of the generated electrical energy over the simulated period (48 hours, see below).276

A carbon price of 30 EUR
ton CO2

is assumed. Note that this high carbon price increases the variable cost of277

coal-based generation above that of gas-based generation with CCGTs. Twenty five identical buildings,278

with a different user behavior and number of users based on the demographic structure of Belgium [51], are279

considered. Their demand is summed and scaled on the basis of the market penetration (mp) to represent280

the total variable electricity demand profile. Unless otherwise specified, the electric heating systems consume281

25% of the total electrical energy produced over the simulated period. The fixed demand profile is scaled282

(1) to represent a certain fraction of the total demand for electrical energy on the considered optimization283

horizon and (2) to ensure that the peak demand does not exceed 90% of the installed conventional capacity.284

The parameters for the building model were derived by Reynders et al. [52] by performing model reduction285

on a detailed model of a typical Belgian building built between 2005 and 2010. The building considered has286

a floor surface of 270 m2 and a protected volume of 741 m3. Infiltration and ventilation combined cause 1.5287

air changes per hour. The exterior walls, roof and windows respectively have a U-value of 0.4 W
m2K , 0.5 W

m2K288

and 1.4 W
m2K . The building has an average of about 10 m2 of window surface in each cardinal direction.289

Flexibility is available via thermal energy storage in the building shell and the hot water storage tank. The290

constraints on the thermal comfort required by the occupants (e.g. temperature constraints [53] and the291

availability of hot water [54]) result in constraints on the electrical power demand and on the flexibility292

offered to the supply side. 48 hours of a typical winter period are retained in the evaluation in order to limit293

the calculation time. This period is sufficient to illustrate the advantages and disadvantages of the various294

models. Cyclic boundary conditions are enforced on the optimization.295

All alternative models, as discussed in Section 2.1 and 2.2, are simplifications of the presented integrated296

model. For example, the use of a virtual generator model to represent the demand side flexibility would297

abolish the need for the linear state-space model, while leaving the supply side model unaffected. The linear298

state-space model could be replaced by a (simpler) generic model of a storage unit, with some constraints299

that ensure that sufficient electric power is ‘consumed’ to guarantee thermal comfort. Likewise, reducing the300

supply side model to a merit order model would strongly simplify the unit commitment model, while leaving301

the linear state-space model at the demand side unchanged. In the subsequent section we will further detail302

these simplified models where needed.303
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4. Results and discussion304

In this section, we will show that (1) the price-elasticity of storage-type customers is difficult to estimate305

ex-ante, limiting the usability of price-elasticity-based models (Section 4.2); (2) thermal energy storage losses,306

which are typically non-linearly dependent on e.g. the state of charge, are difficult to capture in VGM-like307

models (Section 4.3) (3) price profile-representations of the electric power supply neglect the possible effect308

a changed demand profile may have on the electricity price (Section 4.4) and (4) merit order models, in309

combination with a physical model of the demand side, allow to approximate the operational performance310

of the integrated model at a reasonable computational cost (Section 4.5). To facilitate the interpretation of311

these results, the starting point of the presented analysis will be the results obtained with the integrated312

model (Section 4.1). The integrated model (IM) is the most detailed in both supply (unit commitment313

and economic dispatch) and demand (physical models of buildings and heating systems) and will act as314

a reference. To conclude this section, we discuss the most important results and differences between the315

various models in Section 4.6.316

4.1. Integrated model results317

As pointed out previously, the interaction between the supply side and demand side (models) can be318

observed in the mutual changes in the residual electricity demand and the electricity price profile (as will319

be recalled from Fig. 1). Fig. 3a shows the residual electricity demand obtained from the integrated model,320

calculated as the total electricity demand minus the RES-based generation. The controllable demand from321

the electric heating systems was assumed to participate to the ADR program fully (100% ADR), partly322

(50%) or not at all (0% ADR). In the last two cases, (part of) the consumers (is) are not exposed to323

the hour-to-hour variations of the electricity price. This triggers the minimum electrical energy use at324

the demand side: each consumer minimizes his own energy cost by minimizing his energy use. When the325

customers adhere to the ADR program, the demand is shifted to the hours of lower consumption, hence326

lower electricity costs, and so-called ‘valley filling’ occurs. Load shifting however leads to additional thermal327

losses, hence an increased overall energy use.328

Fig. 3b shows the electricity price profile obtained from the IM. For the minimum energy demand329

scenario (0% ADR), the price shows some peaks, corresponding to the peaks in demand, which leads to the330

activation of expensive peaking units (Fig. 4). Increasing the participation of the electric heating systems331

to the ADR program flattens the price profile. The difference between the case with no participation to the332

ADR (0% ADR) and the case with a partial participation to the program (50% ADR) is very evident, while333

the difference is less pronounced between the latter and the case with total participation to ADR (100%334

ADR). This illustrates that after a certain threshold the marginal effect of ADR on the production side is335

reduced. These observations are confirmed by the corresponding dispatch, shown in Fig. 4, and the residual336

electricity demand profile, Fig. 3. Moving from a 0% ADR participation to a 50% ADR participation,337

the need for expensive peaking units disappears completely due to the flattened demand. The same units,338

being the combined cycle gas turbines, set the price throughout the optimization period. As such, large339

price differences between hours – the driving force behind the demand redistribution under ADR programs340

– disappear. Therefore, additional controllable heating systems will not result in significant changes in341

demand, nor electricity prices, on the level of the power system. Note however that, to obtain the same342

flexibility on a system level, each individual consumer needs to shift his demand less and the resulting343

thermal losses, thus additional consumption, per consumer will be lower (see further).344
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Figure 3: The residual electricity demand (left) and electricity price (right) in three cases of ADR participation (0%, 50%,
100%). RES-based generation is assumed to cover 20% of total demand for electrical energy.
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Figure 4: Output of the committed power plants in case of 0% (left) and 50% (right) ADR participation. RES cover 20% of
the electrical energy demand, while electric heating systems account for 25% of the total electrical energy demand.
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Figure 5: The thermal and electrical power supplied to one of the dwellings on the two simulated days under different ADR
participation scenarios (0%, 50%, 100%).
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Figure 6: Building indoor temperature (Fig. 6a) and DHW temperature (Fig. 6b) over the two simulated days under different
ADR participation scenarios (0%, 50%, 100%).

As to the demand side, Fig. 5a shows the trend of the demand for space heating and domestic hot water345

of a building and its breakdown in the principal contributions, being the thermal power provided by the346

electric heating system (‘heating’ in Fig. 5a) and the internal and solar gains due to the interaction of the347

building with users and surrounding (‘gains’ in Fig.5a). Fig. 5a shows that the contribution of the internal348

and solar gains, especially in the afternoon hours of the day, represents an important share of the thermal349

energy demand, reducing the thermal energy to be provided by the heating system. It is therefore relevant350
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to take these gains into account and neglecting them would lead to a considerable error in assessing the351

thermal load of the heating system. Moreover, these gains are dependent on the outside temperature and352

solar irradiation, as well as on the user behavior.353

Fig. 5b instead shows the electricity consumption pattern of the heating system of a single building354

in different ADR cases. With ADR, the overall operational system costs are minimized by exploiting the355

flexibility of the electric power demand of the heating systems, due to the storage capability of the thermal356

loads, both in the building envelope and in the DHW storage tank. Due to the availability of cheap generation357

capacity during the night, the building is preheated compared to the case of no ADR participation (0% ADR)358

(Fig. 5b). In fact, the electricity consumption is shifted to low price periods and the energy is stored in the359

thermal mass of the building (Fig. 6a) or in the storage tank (Fig. 6b). This causes more thermal losses360

and hence a higher energy use, though the overall operational system cost is lower. As a consequence, the361

inside temperature of whatever ADR case, even if the thermal comfort is maintained, can be higher than362

the minimum energy case, in which the temperature is as low as possible while maintaining thermal comfort363

(Fig. 6).364

The importance of a correct representation of the thermal losses at the demand side technology is365

illustrated by the demand recovery ratio (DRR). The DRR is defined as the ratio between the observed366

electrical energy used by the flexible electric heating systems and the minimum electrical energy use of those367

heating systems [14, 36]. DRR is therefore always greater than or equal to 100%. Results obtained with368

the integrated model indicate that the DRR behaves erratic with respect to the share of variable demand369

and renewable energy in the system. At a 50% ADR participation, it varies between 105% and 109%, while370

this range reduces to 102 to 105% at a 100% ADR participation rate. The DRR is lower for a 100% ADR371

participation, since less load shifting per house is necessary when more customers are involved. Thus, the372

behavior of the flexible electric heating systems is not only dependent on the consumers themselves, but373

also on the boundary conditions under which they operate: the amount of renewable energy in the system374

and the behavior of the other consumers.375

Although the presented results highlight many advantages of the integrated modeling approach, it is not376

devoid of disadvantages. The most serious concern is the computational cost of solving such an integrated377

model. In this particular setting, solving the integrated model for 48 hours takes about 30 minutes on a 2.8378

GHz quad-core machine with 4 GB of RAM. Therefore, modelers often resort to simplified models on the379

supply or demand side. This will be discussed below.380

4.2. Unit commitment models with a price elasticity model on the demand side381

As outlined in Section 2.1, many studies on demand side flexibility use a price elasticity model to describe382

the price responsiveness of flexible customers. This elasticity is defined as383

εu,k =
∂du

∂pk
· p0,k

d0,u
(7)

with pk the price of electrical energy in hour k, and du the demand for electrical energy in hour u. The index384

0 indicates the initial or anchor electricity demand and price levels, i.e. the reference demand and price385

levels to which the elasticity will be related. If k equals u, the elasticity is referred to as the own-elasticity386

of the demand. Cross-elasticities (k 6= u) indicate the change in demand for electricity in hour u in response387

to a change in the price of electricity in hour k. Cross-elasticities are needed as consumers are generally not388

willing to solely reduce their demand, but are more likely to redistribute some of their demand, shifting it389

away from peak price to low price periods. For example, as shown above, the redistribution of demand may390

yield a higher overall electricity consumption, which cannot be captured by own-elasticities alone. Price391

elasticities are a powerful tool to capture the price responsiveness of many customers. However, as shown392

below, these elasticities may not be suited to describe the responsiveness of storage type customers when393

storage is accompanied by losses not linearly dependent on the energy stored or on the power supplied, such394

as thermal systems.395

When a modeler seeks to use price-elasticities to model the behavior of price-responsive consumers, he396

needs to estimate these elasticities ex-ante. I.e., the modeler needs to assume a certain (range of) price-397

elasticity values before observing the reaction of the price-responsive customers. However, this is not a398
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Figure 7: Schematic representation of the partly elastic, partly inelastic demand, simulated in this paper. The intersection of
the demand and supply curves yields the anchor points (p0, d0) for the elasticity calculation [18].

trivial task for new types of consumers, such as electric heating systems. Moreover, one might observe399

behavior that cannot be captured via a linear relationship between price and demand. To illustrate this, we400

used the integrated model to assess the mutual change of price and demand induced by the modification401

of the RES profile. This is equivalent to shifting the supply curve along the demand axis (Fig. 7 and 8).402

180 RES profiles were considered (wind power profiles, obtained from the Belgian TSO, Elia, for the year403

2013). Each of these profiles covers 20% of the demand. Due to a change in the RES profile, the consumers404

will see different electricity price levels as the supply curve changes. The thermal heating demand (i.e. the405

thermal comfort) remains unchanged in these simulations. The electricity reference price as seen by the406

electric heating systems is here calculated as the marginal value of the market clearing condition (Eq. (2))407

in the integrated model (Fig. 7).408

From these simulations, one can obtain the price-demand couples for each of the respective hours. Fig. 8409

shows the resulting price-demand couples for hour 30, in which the demand for thermal services is significant410

(Fig. 5b). Similar effects are observed at other time steps. If a price-elasticity could describe the change411

in demand in response to changes in the cost or price of electricity, the price-demand couples would form412

a straight, downward sloping line, as schematically illustrated in Fig. 7. However, as shown in Fig. 8,413

this is not the case. First, one can observe some atypical increases in demand in response to an increase414

in the marginal cost of electricity generation. This would correspond to a positive own-elasticity, which is415

uncommon in the electricity sector [14]. Second, different demand levels appear optimal for the same price416

level. A(n) (own) price-elasticity does not allow capturing these effects. These results show the difficulty417

of correctly predicting the elasticity ex-ante, needed to study ADR via an elasticity-based model, when418

storage-type customers are involved.419

4.3. Unit commitment models with virtual generator models on the demand side420

A flexible demand can be modeled through a virtual generator model (see Section 2.1). In essence, the421

demand is described as a generating or storage unit with a negative output and a set of constraints on this422

output. A generic description of any storage unit can be formulated as follows:423

Et = Et−1 − L̇t ·∆t− Ḋt ·∆t+ İt ·∆t+ Ġt ·∆t (8)

The state of charge of any storage system at a certain time step t (Et), is typically modeled based on the424

energy content at the previous time step t−1 (Et−1), and the withdrawal and the addition of energy during425

that time step t. In this equation, Et stands for the energy content of the virtual storage unit, ∆t for the426

considered time step, L̇t for the (thermal) losses of this unit, Ḋt ·∆t for the energy demand (i.e. the amount427

of energy one extracts from the storage, the output), İt for the power supplied to the storage and Ġt for any428
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Figure 8: The resulting price-demand couples in hour 30, indicated by the black dots in the figure above, indicate that the price-
responsiveness of thermal systems cannot be captured via an own-price elasticity. The solid line shows the supply curve, the
dashed line indicates the inelastic part of the demand. The supply curve shown above is a simplified merit order-representation
of the supply side of the electric power system. For illustrative purposes, the dotted line shows a demand curve characterized
by an own elasticity of −1. The RES-based generation in hour 30 varies between 346 and 4,099 MW.

other gains. Constraints on each term in Eq. (8) can be imposed to ensure that the technical constraints429

of the demand side technology and the comfort constraints of the consumers are respected. Again, the430

constraints and interaction terms, such as the loss term L, must be quantified by the modeler ex-ante.431

When this modeling approach is used to simulate a flexible storage type customer with electric heating432

system as demand side technology, the limits on the output of the virtual generating unit (electrical power433

demand) can easily be deducted from the nameplate capacity of all electric heating systems involved on the434

demand side. Ramping limits are not required in this case as the demand side technologies (heat pumps)435

can ramp up and down well within the time step (1 hour). A similar reasoning applies to the limits of436

on and off-times. Constraints are also required on the size of the ‘storage’ unit, which typically consist of437

minimum and maximum energy limits for the storage capacity combined with a loss term (or efficiency, L).438

The thermal losses, L, and the gains, G, in Eq. (8) capture the interaction of such a thermal system with439

its surroundings. These parameters, which can usually be easily quantified for some flexible loads such as440

electric vehicles, become rapidly more complex to estimate for thermal energy storage systems. Indeed, the441

thermal losses and gains are not only temperature and time dependent, but they are also dependent on442

user behavior (consumption of hot water, occupancy profiles), weather conditions (ambient air temperature,443

solar heat gains) and the building structure (wall thickness, ventilation rate [10]) . The importance of444

solar and internal heat gains has been highlighted previously in Section 4.1 (Fig. 5a), where it has been445

shown that they represent a considerable share of the building thermal demand. Neglecting to model these446

gains would yield a significantly lower state of charge, which in turn may result in an overestimation of the447

electricity demand via a VGM. Thus, in reality, this may lead to a violation of the comfort constraints on448

the consumers side. In addition, the DRR, which by its definition can be interpreted as a measure for the449

loss term L, shows an erratic behavior with varying the RES and ADR share, that is clearly difficult to450

be estimated ex-ante. Likewise, time-dependent limits on the state of charge of the storage system could451

be used to represent the thermal comfort requirements of the occupants. Similar to the thermal losses and452

gains, these limits are highly dependent on the user behavior and weather conditions. In conclusion, the453

representation of a demand side thermal energy storage system and its interaction with the supply side of454

the electric power system requires detailed knowledge of the temperatures and disturbances imposed on455

that storage system. In a VGM it is necessary to estimate these interactions ex-ante, which can affect the456
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reliability of the results.457

4.4. State-space models with a price profile-model on the supply side458

A price profile is often considered as a possible way of representing the electricity wholesale market459

in an ADR model focused on demand responsive consumers. Typically a fixed electricity price profile is460

assumed to represent the supply side, while a detailed physically based model is used for the demand side461

in order to determine the electricity demand profile that yields the minimum energy cost for the customer.462

This approach however fails to identify the feedback or reaction of the supply side of the electric power463

system to a change in the demand side behavior. In fact, if one consumer shifts his electricity demand to a464

moment with lower electricity price, this will not affect the electricity price at that moment. If thousands465

of consumers shift their electricity demand to that moment, this can increase the electricity price at that466

moment, making load shifting less interesting.467

Since in the reference case presented above, the flexible electricity demand has a market penetration468

assumed to be 25% of the total electricity demand, it is likely that changes in the demand profile of these469

electric heating systems have an impact on the electricity price. Neglecting this interaction between demand470

and supply side may have a severe effect on the validity of the obtained results, as we will show below using471

the context of the methodological case study. Towards that end, we use the state-space demand side model472

and the unit commitment supply side model separately, as illustrated in Fig. 1. In a first iteration, the473

demand side model starts from a flat electricity price profile and determines the electricity demand resulting474

in minimal total energy cost for the owners. This corresponds to minimizing the energy use on the demand475

side. The supply side model starts from the fixed electricity demand profile, augmented with the demand476

profile of the electric heating systems determined by the demand side model in the previous iteration. With477

this model, we determine unit commitment and dispatch that minimizes the total operational cost for the478

system. The resulting price profile is then passed on to the demand side model. Iteratively, the demand side479

model is used to calculate a new electricity demand in response to this new electricity price profile, which480

then is used as an input for the supply side model.481

When this iterative process was performed, it soon diverged. The demand side model tends to overreact482

to differences in electricity price. This results in large peak demands, which can be higher than the generation483

capacity, when the price is low. A possible way of fixing this issue is by putting an extra constraint on the484

possible changes in the resulting electricity demand profile between iterations, e.g. by limiting the changes in485

the electricity demand in each hour to a certain percentage of the electricity demand profile in the previous486

iteration. Fig. 9 shows the trajectory of the total operational cost of the electric power system in case of487

a maximum 10% deviation of the demand profile from the previous iteration. The operational costs shown488

in Fig. 9 are the total operational costs obtained with the unit commitment model, considering the fixed489

demand and the demand profile from the electric heating systems as obtained from the demand side model.490

In the first iteration, the model yields the same result as if the electric heating systems would not adhere491

to any ADR program. The following iterations show the reaction of the demand side model to a changing492

electricity price profile. The resulting decrease in operational costs is about one third of the total possible493

operational cost reduction due to ADR as calculated with the IM (about 1.8% 4, to be compared with the494

0.1% optimality gap imposed on the optimization).495

However, 25 iterations result in a total calculation time in the same order of magnitude as the integrated496

model. Similarly, when looking at the costs for the building owners, we note an erratic oscillation of the497

solution compared to the corresponding solution of the IM. The energy costs for the building owner are498

calculated as the demand profile of the electric heating systems times the electricity price profile used in the499

demand side optimization.500

In conclusion, these results show that conclusions based on models in which the supply side is represented501

via a (fixed) price profile are biased if changes in demand affect those electricity price profiles. This inter-502

action can be integrated in such a modeling approach to some extent. However, such an iterative approach503

4Note that these figures account only for operational costs and were obtained for this particular setting. E.g., investment
costs are not taken into account. These numbers should not be interpreted as a comprehensive evaluation of the full possible
benefits of ADR.
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Figure 9: Evaluation of the total electricity production cost with the price profile demand model using the iterative procedure.
The integrated model (IM) values for ADR 0% and 100% are indicated as reference (dashed lines).

may not yield results of the same quality as an integrated model, but will require the same computational504

effort. Moreover, the same level of detail is needed in both models.505

4.5. State-space models with a merit order model on the supply side506

As an alternative to the iterative approach suggested above, a modeler focusing on demand side results507

could consider a merit order representation of the supply side of the electric power system, in combination508

with a physical model of the demand side. As explained below, this model allows to take into account509

the effect of a change in the demand profile on the electricity price profile directly, abolishing the need510

for iterative procedures. This MO model is computationally less intensive than a unit commitment model.511

Moreover, it requires far less detail on the supply side and is thus easier to set up.512

This simplified model consists of a mere ranking of the different power plants in an ascending order513

of (average) operational production costs (Fig. 8). These costs consist of fuel and carbon costs. The514

intersection of the demand and the merit order curve yields the electricity price in each hour. The objective515

function of this model is similar as in the IM, namely minimize the total operational costs. Furthermore, it516

couples the demand side model and the merit order model via a (simplified) market clearing condition (Eq.517

(2)). As such, it is possible to consider the effect of the energy demand variation on the electricity price,518

even if in a simplified manner. This MO model however only considers the maximum output of each power519

plant and hence neglects ramping constraints, minimum operating points, minimum on- and off-times and520

start-up costs, which are considered in a unit commitment model. As a consequence, power plants may521

be switched on/off in an unrealistic way in the merit order model. E.g., coal power plants are switched522

on and off within one hour, while in reality it takes multiple hours for such a power plant to start up.523

Results obtained with such a merit order model should thus always be interpreted with caution, e.g. via a524

re-evaluation of the resulting demand profile with a UC & ED model as discussed below. Fig. 8 shows the525

ranking of the different power plants. Fuel costs and CO2 costs are the same as those assumed for the unit526

commitment model in Section 3.527

The costs from the MO model have been compared to those from the IM for 18 scenarios for the RES-528

based generation, namely three different RES profiles that cover 5%, 10%, 15%, 20%, 25%, 30% of the total529

electricity demand (energy basis) in the considered optimization period. Fig. 10a shows (1) the ratio of the530

total operational system costs as obtained with the MO model and the IM and (2) the ratio of the energy531

costs for the building owners as obtained with the MO model compared to the IM. In the upper part of532

the figure, the costs of the MO model are directly compared to the results of the IM. In the bottom part533
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Figure 10: Relative difference in total system costs and building owners costs between the merit order model and the integrated
model. The upper figures show the relative difference when considering the costs as obtained directly from the MO. The lower
part of the figure contains the same results, but shows the costs after re-evaluation with the unit commitment model. The box
plot shows four quartiles in the data, with the middle line being the median of the values.

of the figure, the demand profiles of the electric heating systems, as obtained from the MO, are used as an534

input of the unit commitment model, in order to recalculate the costs, taking into account all operational535

constraints and costs of the power plants. With regard to the total operational cost, the merit order model536

yields a cost between 1 to 3.5% lower than in the case of the integrated model (Fig. 10a). In this case, a537

modeler thus takes 96.5% to 99% of all operational costs into account when he employs a merit order model.538

Furthermore, this percentage increases with the share of ADR. ADR has the effect of flattening the residual539

demand, which makes it less likely that the solution of the MO model violates any dynamic constraint of540

the power plants. In addition, start-up costs become relatively less important in the IM solution as less541

start-ups are required. Looking at Fig. 10c, showing the re-evaluated operational cost for the system, one is542
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able to judge the quality of the solution obtained from the MO model. This re-evaluated total operational543

cost is obtained by solving the UC & ED considering the electricity demand profile as obtained from the544

merit order-state space model. Total operational costs deviate as little as 0.4% to 2% from the solution545

obtained with the IM.546

Fig 10b and 10d show the energy cost for building owners. The results from the MO model yield cost547

differences within a range of -12% to +3% compared to the IM solution. After re-evaluation this range548

changes to -7% to +10%. However, one should be careful in the interpretation of these results. Indeed,549

the objective of the optimization is to minimize total operational system cost, not the owners cost. The550

demand profile that yields the minimal operational system cost might not be unique. E.g., a change in the551

demand profile may lead to a significant difference in the cost for the building owner, but the effect of this552

change on the total operational cost might fall within the optimality gap of the optimization. From a system553

perspective, large variations may exist in the owners cost, while system costs remain unaffected.554

To conclude, the merit order model successfully takes into account the interaction of electricity prices555

and the demand profile, especially if one is looking at ADR from a system perspective. Results that are556

close to those of the integrated model can be obtained, especially after re-evaluation of the solution with557

the unit commitment model. Solving the MO model takes about 30 seconds, compared to 30 minutes for558

the IM. Re-evaluating the MO model with the UC & ED model additionally requires 30 seconds.559

4.6. Model comparison560

The analysis performed above allows us to state the following conclusions from using the different ap-561

proaches for modeling active demand response when storage-type customers, such as electric heating systems562

coupled to any form of thermal storage, are involved. We presented an integrated model, which employs563

a unit commitment and economic dispatch model for the supply side of the electric power system and a564

physical state space model to represent the demand side, as a benchmark. This model allows a modeler to565

correctly asses the effect of ADR on the supply and demand side of an electric power system, but requires566

a significant computational effort and detailed information to set up the model. It can for example be567

employed to assess the quality of other modeling techniques.568

If a modeler seeks to simplify the demand side model, price-elasticity and virtual generator models569

are often encountered in the literature due to their simplicity and low computational cost. However, in the570

setting of storage-type customers, in both cases it will be very difficult to estimate the models’ parameters571

ex-ante. We have shown that e.g. price-elasticities and demand recovery ratios, as a measure for the losses572

in a system, fluctuate erratically with the share of ADR and RES in the system. However, the assumptions573

on the various parameters will drastically affect the obtained results.574

Likewise, if the modeler employs simpler models on the supply side, he should proceed cautiously. If575

one neglects the effect of a change in demand on the electricity price profile, results will only hold for a576

small group of consumers. Iterative price profile approaches will to some extent allow to take into account577

this feedback and are simple to implement, but results remain sub-optimal and become computationally578

intensive to solve.579

In addition, not taking into account the limitations of the considered power plant portfolio might lead to580

demand profiles that cannot be met. Merit order models consist of a ranking of the power plants according581

to their operational costs. Although they do not take into account any operational constraints, nor all costs,582

they allow to approximate the solution of the integrated model in about 1/60th of the calculation time.583

However, one should take caution in interpreting the results, as the resulting dispatch might violate the584

constraints of the power plants and not all costs, such as start-up costs are taken into account.585

5. Conclusion586

Active demand response or ADR, a particular form of demand side management, refers to all changes587

in electricity usage implemented directly by end-use consumers, thereby deviating from their normal con-588

sumption patterns, in response to certain signals, such as electricity prices. If these signals are timely and589

sufficiently strong, this could lead to, among other effects, a higher operational efficiency in production,590
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transmission and distribution of electric power. Although there is a large potential for ADR identified in591

the literature, especially for ADR considering electric heating systems and thermal loads, there are still a592

number of obstacles to be overcome before a large scale roll-out of ADR technologies can take place. Not593

in the least, researchers are not able to accurately quantify the benefits of ADR and to fully describe the594

interactions between the supply and demand side of the electric power system under ADR.595

In order to quantify the operational effects of introducing such programs, we developed an integrated596

modeling approach in this paper. This model allows to capture the full integrated effect of ADR on the supply597

and demand side, as well as to quantify the benefits for the system. However, this comes at a significant598

computational cost. In order to reduce the computational effort, several simplified approaches have been599

investigated, such as price-elasticity-based models, virtual generator models, price-profile models and merit600

order models. In particular, the difficulty of representing storage type customers’ behavior by means of price601

elasticity based models was demonstrated, together with the complexity of a proper estimation of all terms602

contained in a virtual generator model. Furthermore, fixed electricity price profile demand side models,603

that neglect the interaction between supply side and demand side, can be misleading for the determination604

of the flexible demand behavior. Merit order models, instead, provide good results in terms of operational605

cost estimates, even if the supply side is represented in a simplified manner with respect to the integrated606

approach. Solving such a merit model takes about 30 seconds, compared to 30 minutes for the integrated607

model. A merit order model may thus be a good candidate for full year simulations.608

The presented models may be used by other researchers who investigate the effect of ADR on the electric609

power system and the presented results may guide others in the development of their own models. Especially610

if one is interested in the effect of the market penetration of an ADR technology, the presented model could611

be useful. In addition, demand aggregators may use this work to develop operational models to schedule612

and optimize their use of thermostatically controlled loads in ADR programs.613
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