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Global dynamics and integrity of a micro-plate pressure sensor

P. Belardinellia,b,∗, B. Sajadia, S. Lencib, F. Alijania

aPrecision and Microsystems Engineering, TU Delft, Delft, The Netherlands
bDICEA, Polytechnic University of Marche, Ancona, Italy

Abstract

This paper investigates the complex bifurcation scenario of electrically-actuated circular micro-
plates subjected to differential pressure. Our analysis deals with the primary, secondary and ul-
timate saddle-node bifurcation points responsible for the device snap-through and addresses the
pressure range in which the robustness of the two main stable configurations is undermined by
minor coexisting attractors. By making use of basins of attraction and integrity profiles, safe dy-
namical regions of motion are evaluated with respect to the applied DC voltage. It is found that
period-doubling bifurcations are accountable for a sensible reduction in the dynamical integrity,
small variations of the DC voltage largely modify the response of the pressure sensor.

Keywords: Basins of attraction, micro-plate, dynamical integrity, bifurcations

1. Introduction

Micro-Electro-Mechanical Systems (MEMS) are being vastly developed as sensors and actuators
for various engineering applications [1, 2]. Proper device fabrication is always in search of new
design tools that minimize the trial and error steps involved in realization of the device. Because
of the nonlinear nature of these devices, many applications require cancellation of nonlinearities
since they can affect the efficiency and may lead to failure. In turn, nonlinearities are often used
for achieving better performances, an example is the electrostatic instability that is exploited for
trigging switches and sensors [3, 4]. Irrespective of the application at hand, mastering the overall
dynamical behavior represents the vital step towards the functionality of MEMS [5, 6, 7].

Mechanisms relying on nonlinear dynamics demonstrate great potentiality for bifurcation-based
sensors with high sensitivity that exploit the multi-stability of the response. Exemplary applica-
tions are detection of gas molecules [8, 9] and labelling of particles by using fully-clamped/cantilever
microresonators [10, 11].

In order to unveil instability regions and their relative extensions with respect to the governing
parameters, a global analysis has to be fulfilled. By studying the evolution of the response, as
time goes to infinity, towards special solutions, namely, attracting sets, it is possible to label the
behaviour of dynamical systems. This assumes vital importance in nonlinear systems that may be
characterized by multistable behaviour, i.e. possess a variety of attractors. [12].

Basins of attraction are maps that show all the possible outcomes of a dynamical system, by
definition, subsets of the phase space (sets of initial conditions) bringing the system to converge to
a specific attractor. These maps allow to asses the real stability of the system, theoretically fully
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bounded in the classical, or Lyapunov, sense [13]. Indeed, it is evident that only if the system is
able to accommodate finite perturbations it can be considered safe from a practical point of view.
Thus, the determination of attractors, unstable orbits (e.g. saddles, homo-heteroclinic), and their
bifurcations, within a local point of view does not suffice. Theoretically stable solutions may be
not visible in practice [14], when their basins of attractions are not large enough, thus being not
robust and practically unstable. All of this, call for an in-depth global analysis of the dynamic
system at hand. Surprisingly, despite the usefulness and the great potential of the approach, its
implementation in MEMS devices is still essentially rather scant.

Determination of domains of attraction, beside few and paradigmatic cases, is based on nu-
merical techniques computationally expensive with large time consumption, especially for high-
dimensional systems in which a system reduction greatly deprecate the reliability of results [15].
Remarkable improvement in computational algorithm have thus been proposed [16, 17]. These
approaches permit to analyze in reasonable computational time, a large set of initial conditions
with sufficient resolution to determine properly basins of attraction of the system.

In this paper we obtain basins of attraction for a circular parallel-plate pressure sensor that ex-
hibits intricate dynamics upon electrical actuation. An electric potential is applied between the
lower, fixed, and the upper flexible electrode. The deformation of the flexible plate are detected by
capacitive changes of the system [18, 19] and can be exploited for sensing operations. Conversely,
in the actuation mode, the output of the device is induced by the electric potential.

The electrostatic load comprises an applied bias (DC voltage) and an alternating (AC voltage)
component that introduces nonlinearity in the system, i.e. the electrical force is a nonlinear func-
tion of the distance between the two electrodes. An additional source of nonlinearity is geomet-
rical. Within the elastic potential, a nonlinear term accounts for finite defections of the electrode.
The combination of these two nonlinearities eventually results in a softening or hardening nonlin-
ear dynamic behaviour [20].

Particular combinations of DC and AC voltages lead the motion of the plate to become unstable
and yield pull-in (or snap-through) phenomenon [21, 22]. The static pull-in phenomenon has been
the subject of many studies, based on analytical [23, 19] or numerical [24, 25, 26] approaches.
These methods have already been comprehensively reviewed in Ref. [18]. Although depending on
geometry and gap-size, the static pull-in often occurs at 51-71% of the initial gap [27, 28].

The global stability in presence of AC component is more involved. Dynamic pull-in phe-
nomenon as well has been tackled with analytical and numerical methods [22]. Dynamical insta-
bility can be observed at much lower voltages with respect to the static pull-in [21]. Furthermore,
the pull-in threshold (the critical deflection at which the device collapses) is largely influenced by
additional mechanical loads.

The inclusion of a differential pressure results common practice in MEMS applications [29],
such as differential pressure in the case of MEMS pressure sensors. To date, though, the overall
dynamics of such systems close to bifurcation points has not received much attention, and the non-
linear dynamical integrity of MEMS pressure sensors has been elusive. However, actual researches
pay inadequate attention to the overall dynamical behavior of micro-plate close to instability and
relative triggering factors.

This paper is meant to investigate the global nonlinear dynamics of an electrically-actuated circu-
lar micro-plate subjected to differential pressure. The governing equations of motion are obtained
by using a Lagrangian approach accounting for the nonlinear stretching, and electrostatic load. A
reduced order model developed in the previous studies is used to study the nonlinear dynamics of
the device [23, 30, 31]. Periodic solutions and instability points are detected by making use of a
pseudo arc-length continuation and collocation technique [32]. A parametric study is undertaken,
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varying DC driving voltage and the differential pressure close to the bifurcation points. Basins of
attraction are analysed in order to evaluate the practical stability of the system. Integrity measures
are accordingly evaluated [33].

2. Problem formulation

In this section, we propose a reduced order model for dynamics of a clamped micro-plate, as the
flexible electrode in a capacitive pressure sensor. A schematic illustration of the device is shown
in Figure 1. The micro-plate is circular, with a radius R and thickness h, and it is assumed to be
isotropic and homogeneous. Moreover, the initial gap separating the two electrodes is d. When
such a device is in operation, the flexible electrode is subjected to a differential pressure (P), posi-
tive outward, and an electric potential (V ) inducing an electrostatic load in the opposing direction.
As a result, the micro-plate deflects from its initial flat configuration. Clearly, if the electric field
has an AC component, a forced dynamic motion will be induced in the system.

Figure 1: (a) The capacitor with upper flexible, circular electrode. (b) Plate in its undeformed configuration. (c)
Deformed configuration under electrostatic load and differential pressure.

In order to obtain the equations of motion, a Lagrangian approach is utilized. Due to the radial
symmetry in both geometry and the applied loads, we assume the problem to be axisymmetric [34].
In fact, if the plate is excited around its fundamental frequency without occurrence of internal res-
onances, even if other modes (including the anti-symmetric modes) are accidentally excited, they
will decay with time due to the presence of damping. Therefore, the only contributing displace-
ment components, are in the radial (u) and transverse (w) directions, and are functions of the radial
coordinate (r), only. Consequently, the displacement field can be approximated by:

w = q(t)dΦ0(ρ), (1)

u =
N

∑
i=1

ξi(t)RΦi(ρ), (2)

where, ρ = r/R is the normalized radial coordinate. The functions q(t) and ξi(t) are dimensionless,
time-dependent generalized coordinates. The function Φ0(ρ) and Φi(ρ) are the basis functions
satisfying the clamped boundary conditions, and are defined as:

Φ0(ρ) = (1−ρ
2)2, (3)

and
Φi(ρ) = ρ

i(1−ρ), (i = 1, ...,N). (4)

Note that Φ0(ρ) is a 4th order polynomial representation of the first linear mode shape of the
plate [20]. Next, the total potential of the system can be obtained as a function of the displacement
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components and their derivatives. The total potential energy consists of three terms: (i) the poten-
tials related to the elastic deformation in the micro-plate (Us), (ii) the electrostatic potential (Ue),
(iii) and the potential associated with the differential pressure (W ).

Assuming von Kármán plate theory, the elastic potential (Us) can be approximated by [35]:

Us =
πD
R2

∫ 1

0

((
∂ 2w
∂ρ2

)2

+

(
1
ρ

∂w
∂ρ

)2

+

(
2ν

ρ

∂w
∂ρ

∂ 2w
∂ρ2

))
ρdρ+

πEh
(1−ν2)

∫ 1

0

((
u
ρ

)2

+

(
∂u
∂ρ

+
1

2R

(
∂w
∂ρ

)2
)2

+
2νu
ρ

(
∂u
∂ρ

+
1

2R

(
∂w
∂ρ

)2))
ρdρ,

(5)

where, E, ν and µ are the Young’s modulus, Poisson’s ratio and density, respectively. Moreover,
D = Eh3

12(1−ν2)
is the bending stiffness of the flexible plate. Assuming that the loads associated with

the electrostatic field and pressure maintain perpendicular to the un-deformed surface [36], the
electrostatic potential reads as [18]:

Ue =−πεV 2R2
∫ 1

0

ρdρ

d +w
, (6)

with ε the electric permittivity of the dielectric between the plate and the ground, while, the elec-
tric potential V (t) consists of a DC bias voltage VDC, and an alternating AC voltage VAC with an
excitation frequency of Ω, i.e. V = VDC +VAC sin(Ωt). Finally, the potential associated with the
pressure is given by:

W = 2πPR2
∫ 1

0
wρdρ. (7)

The kinetic energy, neglecting the contribution of the in-plane inertia, can be expressed as:

T = πµR2h
∫ 1

0
ẇ2

ρdρ. (8)

Consequently, the Lagrangian of the system (L = T − (Ue +Ub +Us−W )) can be obtained as
a function of the displacement components and their derivatives. Using the Lagrange equations
yields to a set of N + 1 equations of motion, consisting of N algebraic equations in terms of ξi
(i = 1, ...,N) and one nonlinear differential equation in terms of q. One can solve the N algebraic
equations analytically and obtain a single transverse equation of motion as [37]:

q̈(t)+2ζ ω0q̇(t)+ω
2
0 q(t) =−α1Dq(t)3 +α2V (t)2

(
1− (q+1)z(q)

2q(1+q)

)
−α3P, (9)

where, the parameter ω0 =
10.32

R2

√
D
µh is the natural frequency of the circular clamped plate. More-

over, an energy dissipation term with a modal damping ζ has been implemented in this equation.
In addition, α1 is the coefficient of geometric nonlinearity and its accuracy is defined by the num-
ber of in-plane degrees of freedom. The parameter α2 represents the coefficient of the nonlinear
electrostatic force, while α3 is the projection of the pressure onto the assumed mode shape in
transverse direction:

α2 = 2.50
ε

µhd3 ,

α3 = 1.67
1

µhd
.

(10)
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The term F(q) in Equation (9) derives from the analytical integration of the electrostatic potential
in Equation (6) as:

z(q(t)) =
atanh

√
−q(t)√

−q(t)
if q(t)< 0,

z(q(t)) = 1 if q(t) = 0,

z(q(t)) =
atan

√
q(t)√

q(t)
if q(t)> 0.

(11)

Equation (9) describes the nonlinear axi-symmetric motion of a circular clamped micro-plate,
loaded with a uniform differential pressure and electrically actuated by its fundamental mode and
can be numerically solved for the bifurcation analysis.

3. Numerical analysis

The procedure outlined in previous sections is used in this section to numerically study a silicon
micro-plate with the following properties: E = 169GPa, ν = 0.17, µ = 2328kgm−3, h = 0.6µm,
R = 100µm and d = 2µm. The electric permittivity of air ε = 8.854×10−12 F/m has been
considered for the gap between the electrodes. Hence, the coefficients in Equation (9) are ob-
tained as: α1 = 4.139× 1021, α2 = 1.981× 109, α3 = 5.978× 108, ω0 = 1.545× 106 rad/sec,
D = 3.132×10−9 Nm. Moreover, a damping ratio of ζ = 0.004 is used.

3.1. Bifurcations scenario
In order to perform the bifurcation analysis, it is assumed that the plate is under the action of both

AC and DC voltages. Moreover, the solution branches are obtained for a range of DC voltages for
a fixed AC voltage and Ω/ω0 = 1.
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Figure 2: a) The maximum normalized deflection of the micro-plate as function of the applied DC voltage. P =
{0,2800,3400,4000,4444.5}Pa , VDC ∈ [45,61]V . b) Limit points of the primary resonance (LP1, LP2) of the micro-
plate, VDC ∈ [44,61]V . c) Bifurcation map of the limit points of the primary resonance (LP1, LP2) and of the primary
(LP3), secondary (LP4) and ultimate (LP5) instability limit point (P ∈ [2000,4600]Pa). Parameters: VDC ∈ [45,61]V ,
VAC = 0.1V , Ω/ω0 = 1.

Figure 2(a) shows the normalized deflection of the center of the plate (w/d) as a function of the
applied DC voltage. Different values of the differential pressure P are also considered, namely
P = {0,2800,3400,4000,4444.5}Pa. Low pressurized systems (e.g. P = {0,2800}Pa) are distin-
guished by the presence of only one critical saddle-node bifurcation point, i.e. LP5. At this point,
a slight increase of the actuation voltage brings the system to instability. The micro-plate collapses
towards the reference electrode through the so-called pull-in. This configuration is highlighted in
Figure 2(a) with a shaded pink area. For larger pressure values (e.g. P= {3400,4000,4444.5}Pa),
the system presents an additional unstable configuration. The values at which this instability oc-
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curs are depicted in Figure 2(a) by means of a shaded blue area. Depending on the shape of the
normalized deflection curve, after the primary saddle-node LP3, the system can: i) collapse to the
fixed electrode snapping through the pull-in (e.g. curve at P = 4000Pa); ii) recover the stability in
the lower stable branch between the saddle-nodes LP4 and LP5 (e.g. curve at P = 3400Pa).

The quantitative thresholds for the first (LP3), secondary (LP4) and ultimate (LP5) instability
points are reported in Figure 2(c) with the use of a pressure/voltage bifurcation chart. The two
cusps at {VDC,P} = {60.54V,4444.5Pa} and {52.21V,3011.7Pa} represent the lower and upper
boundaries for the existence of a double snap-through of the micro-plate, otherwise characterized
by a unique instability. In addition, Figure 2(c) maps the lower (LP1) and upper (LP2) saddle-
node points of the primary resonance. Indeed, the alternating voltage VAC introduces a nonlinear
resonance in the upper stable branch of the response as shown in Figure 2(b). The response is
characterized by a softening behaviour. The variation of the saddle-node points LP1 and LP2 with
respect to VDC highlights an increment in the amplitude of the resonance peak with the applied
pressure.

Between the primary resonance and the first snap-through point LP3, the system manifests a
subcritical period-doubling bifurcation as shown in Figure 3(a). The stable motion is recovered
only at the limit point LP6 where a new stable period-2 branch is generated. The supercritical point
PD2 returns the motion to the main branch.

The micro-plate shows an additional couple of flip bifurcations, named as PD3/4 and reported
in Figure 3(b). They can lie: i) on the sole stable main branch in the absence of the primary and
secondary instability points LP3 and LP4 (see P = 2800Pa in Figure 3(b)), ii) on the secondary
stable branch before the pull-in otherwise (see P = 3400Pa in Figure 3(b)).

Similar to the first flip bifurcation, PD1, where a unique stable branch exists between PD2 and
LP6, the period doubling bifurcation PD3 evolves through an unstable branch to the limit point
LP7. Here, the new stable branch with period-2 motion terminates at the supercritical bifurcation
PD4 as can be observed in the curve with P = 3400Pa in Figure 3(b). This scenario holds only for
specific differential pressure. Based on the complexity of the behaviour, it can be argued that the
system response becomes more intricate with large values of the differential pressure.
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Figure 3: The maximum normalized deflection of the micro-plate as function of applied DC voltage. Saddle-node and
period-doubling bifurcation points are tracked by means of blue and red lines, respectively. a) First period-doubling
bifurcation (PD1, PD2) on the upper branch of the normalized deflection of the micro-plate, VDC ∈ [48,62]V . P =
{2800,3400,4000}Pa , VAC = 0.1V , Ω/ω0 = 1. The inner plots show the analysed area with respect to Figure2(a) b)
Second period-doubling bifurcation (PD3, PD4) of the normalized deflection of the micro-plate. P = {2800,3400}Pa,
VDC ∈ [44,60]V . c) The maximum normalized deflection of the micro-plate as function of applied DC voltage. P =
{2800,3400}Pa, VDC ∈ [53.5,55.5]V . Third period-doubling bifurcation (PD5, PD6) of the normalized deflection of
the micro-plate. d) Bifurcation diagram zoom-in of Fig. 3(c), VAC = 0.1V , Ω/ω0 = 1.

Of particular importance, is the flip bifurcation occurring close to the limit point LP5 as illus-
trated in Figure 3(c). Subcritical/supercritical symmetry-breaking bifurcations PD5/PD6 interrupt
the stability of the main branch. The stability is recovered only in a limited extended branch (LP8
to PD7) in the upper part of the loop generated by PD5/PD6 (see Figure 3(d)). An additional pe-
riod doubling is generated in PD9 which unstable branch connects to PD8. The latter is responsible
for the interruption of the stable period-2 motion in PD6.
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Figures 2 and 3 provide a good understanding of the number and type of bifurcations taking place
in the system. In order to provide the numerical thresholds at which they occur, the bifurcation
loci are summarized in Figure 4 by means of DC-voltage versus pressure charts. A multitudinous
intersection of locus can be observed. Instability and change in the device motion can be also
reached in several regions.
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Figure 4: a) Maps of bifurcation points for the normalized maximum deflection of the micro-plate. Range of parame-
ters: P ∈ [2000,4600]Pa, VDC ∈ [45,61]V . VAC = 0.1V , Ω/ω0 = 1. b) Bifurcation maps zoom-in P ∈ [3400,4000]Pa,
VDC ∈ [57,59]V . c) Bifurcation maps zoom-in P ∈ [2800,3500]Pa, VDC ∈ [53,56]V , VAC = 0.1V .

Period-doubling bifurcations PD3/4 and PD1/2 appear only for a combination of {Voltage, Pres-
sure} greater than {46.02V,2277.1Pa} and {48.95V,2679.9Pa}, at these configurations they col-
lapse to LP9 and LP6, respectively. Figures 4(c) zoom on a particularly dense region of bifur-
cations. Figures 4(b) highlights configurations above 3400Pa, the vanish of the important flips
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PD5/6 happens at {58.62V,3888.2Pa} whereas PD1/2 persist in a larger range of voltages.

3.2. Transition between the primary and the secondary stable branch
In view of the aforementioned bifurcations scenario, the dynamical response cannot be properly

assessed only by observing the local behaviour. In particular, the presence of the period-doubling
bifurcations close to the primary instability modifies the global dynamic of the system. For this
reason, this section presents basins of attraction for the electrically-actuated micro-plate around the
saddle-node points LP3 and LP4 (limit points that separate the two main stable branches). In what
follows, the attractors before LP3 and after LP4 are referred as primary and secondary. Figure 5
reports the normalized deflection of the center of the plate for the configuration P = 3300Pa,
Vac = 0.1V , in which the two distinct branches of period-1 motion can be observed.
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Figure 5: The maximum normalized deflection of the micro-plate as function of applied DC voltage. P = 3300Pa,
Vac = 0.1V , Ω/ω0 = 1.

In this layout, domains of attraction are built in the transition between the first and the second
branches by fixing the value of the DC voltage as illustrated in Figure 5 with vertical lines.
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Figure 6: Basins of attraction for the configurations a)- f ) highlighted in Figure 5. P = 3300Pa, Vac = 0.1, Ω/ω0 = 1.

The phase-space for VDC = 54.2 (Figure 6(a)) is primarily governed by the the period-1 attractor
of the primary branch and the period-2 attractor from the PD2 bifurcation (blue and ocher basins).
Increasing the voltage, the basin of the period-2 attractor becomes predominant at VDC = 54.4V .
Figure 6(c) highlights the born of the second period-1 stable region (yellow basin). The basin
extends as shown in Figure 6(c−d− e) as the area of the primary basin recedes. The system
shows the coexistence of minor attractors that do not have particular interest under the practical
point of view since they lie outside the compact part of the main basins and present a relative small
amplitude. Examples are the period-3 attractor in Figure 6(a) whose basins are green-coloured, or
the period-4 motion (orange basin) present at VDC = 54.7V and illustrated in Figure 6( f ). On the
contrary, other attractors are responsible for the homogeneity disruption of basins, i.e. a period-3
attractor (basin of attraction in red in Figure 6(d)) lies inside the basin of the primary snap-in.
A further period-3 attractor, visible in Figure 6(e) and spreading in Figure 6( f ) for VDC = 54.7V
affects the secondary basin. The windows of existence of additional attractors demand a reduced
step size in the variation of the inspected parameter. Moreover, the topological extension of rare
attractors requires a dense grid in order not to overlook the actual shape of the basins [38]. Figure 7
presents the domain for a rare period-9 solution at VDC = 54.35V . Appearance and disappearance
of the rare attractor are within a small windows of the DC voltage parameter, 54.25 <Vdc < 54.4.
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Figure 7: Period-9 rare attractor. a) The full basin of attraction for the configuration P = 3300Pa, Vdc = 54.35,
Vac = 0.1. b),c),d) zoom of the basin around the period-3 attractor (light green). A grid of 5000× 5000 cells for the
couple {q, q̇} has been considered.

The presence of all the explained bifurcations and additional attractors imposes an investigation
on the dynamical integrity of the system. This would then require the computation of a multi-
tude of basins of attraction for different set of parameters. The confidence in the analysis of the
compactness of the basins is guaranteed by the high resolution and the small steps used for the
parametric variation.

3.3. Dynamical integrity
A dynamical integrity analysis is reported in this section in order to investigate the robustness of

the primary and secondary attractors before the pull-in in view of all bifurcations occurring in the
system. All the basins computed in this section has been built with square grid of 20002 cells, fine
enough to evaluate the system topology.

The Local Integrity Measures (LIM) of the attractors of the system is shown in Figure 8. Al-
though the LIM is the largest hyper-sphere (circle in 2D basins) entirely centered at the attractor
of reference, for multiperiodic attractors the minimum of the measure is reported as well by using
dashed lines for the sake of completeness. Figure 8(a) displays the variation of the LIM as a func-
tion of the VDC voltage for the attractors coexisting in the system. Moreover the spatial distribution
of LIMs is shown in Figure 8(b). Three-dimensional sweeps do not only allow for a magnitude
evaluation of the measure, but also for the actual space localization with respect to the governing
parameters [39]. With blue and yellow lines we refer to the primary and secondary main attractors,
respectively. The system monostability on the primary basin persists up to VDC = 53.71V where
the period doubling greatly decreases the extensions of the safe basin measured by the LIM. The
basin progressively shrinks due to the positions of the PD2 attractor converging toward the period-
1 attractor as shown by the integrity manifolds in Figure 8(b). The magnitude of the measure for
the basin of the period-doubled attractor remains almost constant. In coincidence with a sudden
increase of the extension of the LIM for the period-2 attractor (ocher line), the primary basin com-
pletely vanishes in 54.39V < VDC < 54.43V . The recovered LIM then starts to decrease with the
born of the secondary basin (yellow line). Similarly as the primary basin, the secondary LIM dis-
appears due to PD3. It can be noted that the LIM of the PD1 and PD3 presents a qualitative similar
behaviour. With reference to Figure 5, for an increasing DC voltage, the PD1 branch encounters the
saddle LP6, contrarily PD3 enters in the system with the base of branch in which the basin has max-
imum extension. Although, persistent over a large range of voltages (54.15V < VDC < 55.05V ),
the period-3 solution depicted by purple color in Figure 6(d− f ), does not affect the integrity of
the main domains of system lying always outside without intertwining tongues. The sudden de-
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crease of the LIM (purple line in Figure 8(a)) around VDC = 55V is determined by the born of an
additional attractor inside its compact part, resulting in its disappearance.

53 54 55 56 57
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Figure 8: Local integrity measure. Fixed parameters P = 3300Pa, Vac = 0.1, Ω/ω0 = 1. a) Integrity profile for the
local integrity measure for VDC ∈ [53,57]. : primary basin, : secondary basin, : basin of period-doubled
attractor, : basin of period-3 attractor. b) Evolution of the local integrity measures in the 3D phase-parameter space
for the primary and secondary basin and period-double attractors. VDC ∈ [53,55]

The Integrity Factor (IF) considers the compact part of the basin, being the largest hyper-sphere
within the basin (circle in 2D cases). It is a less conservative measure with respect to the LIM since
it is not focused on the attractor. This is confirmed by a comparison of the magnitude of the IF in
Figure 9 and the LIM in Figure 8. The integrity factor globally reflects the LIM behaviour on both
integrity profile (Figure 9(a)) and spatial dislocation (Figure 9(b)). Except for an intermediate
shift towards negative value of velocity (VDC = 53.9V ), the primary basis confirms the compact
safe manifold with positive velocity of the phase-space. For large voltages, the IF of the secondary
basin presents a concave parabolic shape with the maximum extension at VDC = 55.81V .

The integrity measures presented in Figures 8 and 9 highlight the non-robustness of the system
in the range 54.2V <VDC < 55.05V . However, these delicate thresholds also represent instability
configurations to be exploited for sensing application, thus their precise evaluation is of great
importance.
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Figure 9: Integrity factor measure. Fixed parameters P = 3300Pa, Vac = 0.1, Ω/ω0 = 1. a) Integrity profile for the
integrity factor measure for VDC ∈ [53,57]. : primary basin, : secondary basin, : basin of period-doubled
attractor, : basin of period-3 attractor. b) Evolution of the integrity factor measure in the 3D phase-parameter space
for the primary and secondary basin and period-double attractors. VDC ∈ [53,55].

As discussed in Section 3.1, in the secondary branch additional flip bifurcations (PD3 and PD4)
are observed. The basins of attraction, coexisting with the period-doubled attractor, are shown in
Figures 10. Integrity measures are calculated for all the attractors and reported in black/red circles
for the LIM/IF. The conics reshape as an ellipse since the different step size in the two dimension
of the phase-space. Figures 10(a,b) report the formation of other minor basins at the boundaries of
the compact period-doubled basin (blue-coloured basin in Figures 10(a)). This additional period-2
attractor is confined between 55V and 55.3158V , as illustrated in Figures 10(c).
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Figure 10: Basins of attraction for the secondary branch in presence of the bifurcated attractor. Integrity measures are
reported within the picture. Black/red circles reports the LIM/IF measure. Fixed parameters P = 3300Pa, Vac = 0.1,
Ω/ω0 = 1

The topology in proximity of the ultimate saddle-node point LP5 is illustrated with a sequence
of basins of attraction in Figure 11. Approaching the ultimate snap-through point, the basin of the
secondary branch progressively erodes (Figures 11(a,b)). Figures 11(c,d) show the grow of the
basin of the period-2 attractor (PD5/6) until the maximum extension at (Figure 11(e)) where the
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secondary basin is completely absent. The recovered basin at VDC = 56.89V shrinks towards null
extension after VDC = 56.91V .
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Figure 11: Basins of attraction in proximity of the ultimate saddle-node point LP5. Fixed parameters P = 3300Pa,
Vac = 0.1, Ω/ω0 = 1

4. Conclusions

We investigated the global dynamics of an electrically-actuated micro pressure sensor. The com-
bination of applied voltage and pressure depict bi-stable/multi-stable configurations, with the si-
multaneous presence of multiple instability events. The introduction of an alternating component
in the electric actuation entails complex scenarios of bifurcation in which symmetry-breaking bi-
furcations undermines the stability of the micro-plate. By making use of basins of attraction the
robustness of the motion close to instability has been unveiled. Integrity profiles show drastic
unsafe windows in which small variation of the DC voltage greatly modifies the system response.

The present bifurcation analysis, performed by varying the DC voltage, is useful for the design
of sensing devices. By exploiting sudden changes in the motion, coexisting attractors can be at the
base of sensing mechanism and electrical actuators.
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