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THE COMBINATORIAL INVARIANCE CONJECTURE FOR
PARABOLIC KAZHDAN–LUSZTIG POLYNOMIALS OF LOWER

INTERVALS

MARIO MARIETTI

Abstract. The aim of this work is to prove a conjecture related to the Combinatorial
Invariance Conjecture of Kazhdan–Lusztig polynomials, in the parabolic setting, for
lower intervals in every arbitrary Coxeter group. This result improves and generalizes,
among other results, the main results of [Advances in Math. 202 (2006), 555-601],
[Trans. Amer. Math. Soc. 368 (2016), no. 7, 5247–5269].

1. Introduction

Kazhdan–Lusztig polynomials play a central role in Lie theory and representation
theory. They are polynomials Pu,v(q), in one variable q, which are associated to pairs
of elements u, v in a Coxeter group W . They were defined by Kazhdan and Lusztig
in [19] in order to introduce the (now called) Kazhdan–Lusztig representations of the
Hecke algebra of W , and soon have found applications in many other contexts.

Among others, the combinatorial aspects of Kazhdan–Lusztig polynomials have re-
ceived much attention from the start, and are still a fascinating field of research. Re-
cently, Elias and Williamson [15] proved the long-standing conjecture about the nonneg-
ativity of the coefficients of Kazhdan–Lusztig polynomials of all Coxeter groups, thus
generalizing the analogous result by Kazhdan and Lusztig on finite and affine Weyl
groups appearing in [20], where Pu,v(q) is shown to be the Poincaré polynomial of the
local intersection cohomology groups of the Schubert variety associated with v at any
point of the Schubert variety associated with u (in the full flag variety).

At present, from a combinatorial point of view, the most intriguing conjecture about
Kazhdan–Lusztig polynomials is arguably what is usually referred to as the Combi-
natorial Invariance Conjecture of Kazhdan–Lusztig polynomials. It was independently
formulated by Lusztig in private and by Dyer in [13].

Conjecture 1.1. The Kazhdan–Lusztig polynomial Pu,v(q) depends only on the iso-
morphism class of the interval [u, v] as a poset.

The Combinatorial Invariance Conjecture of Kazhdan–Lusztig polynomials is equiv-
alent to the analogous conjecture on the combinatorial invariance of Kazhdan–Lusztig
R-polynomials. These also are polynomials Ru,v(q) indexed by a pair of elements u, v
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2 MARIO MARIETTI

in W and were introduced by Kazhdan–Lusztig in the same article [19]. The Kazhdan–
Lusztig R-polynomials are equivalent to the Kazhdan–Lusztig polynomials of W (in a
precise sense, see Remark 2.12).

In [11], for any choice of a subset H ⊆ S, Deodhar introduces two modules of the
Hecke algebra of W , two parabolic analogues {PH,x

u,w (q)}u,w∈WH of the Kazhdan–Lusztig

polynomials, and two parabolic analogues {RH,x
u,w (q)}u,w∈WH of the Kazhdan–Lusztig

R-polynomials, one for x = q and one for x = −1. The parabolic Kazhdan–Lusztig
and R-polynomials have deep algebraic and geometric significance; they are indexed
by pairs of elements in the set WH of minimal coset representatives with respect to
the standard parabolic subgroup WH , and play, in the parabolic setting, a role that
is parallel to the role that the ordinary Kazhdan–Lusztig and R-polynomials play in
the ordinary setting. Moreover, they generalize the ordinary Kazhdan–Lusztig and R-
polynomials since these are obtained in the special trivial case when H = ∅ (for both
x = q and −1). As in the ordinary case, the family of parabolic Kazhdan–Lusztig
polynomials is equivalent to the family of parabolic Kazhdan–Lusztig R-polynomials.

The problem of the combinatorial invariance of parabolic Kazhdan–Lusztig polyno-
mials, which is stronger than the combinatorial invariance of the ordinary Kazhdan–
Lusztig polynomials, has also attracted much attention (see, for instance, [2] and [4]).
Only recently, however, the statement one gets by replacing the ordinary interval with
the parabolic interval in Conjecture 1.1 has been found to be false (see [7] and [21] for
counterexamples). In [21], it is proposed that the right approach to the generalization
of Conjecture 1.1 to the parabolic setting could be studying to what extent the following
conjecture is true.

Conjecture 1.2. Let (W1, S1) and (W2, S2) be two Coxeter systems, H1 ⊆ S1 and
H2 ⊆ S2. Let u1, v1 ∈ WH1

1 and u2, v2 ∈ WH2
2 be such that there exists a poset-

isomorphism from [u1, v1] to [u2, v2] that restricts to a poset-isomorphism from [u1, v1]H1

to [u2, v2]H2. Then PH1,x
u1,v1

(q) = PH2,x
u2,v2

(q) (equivalently, RH1,x
u1,v1

(q) = RH2,x
u2,v2

(q)).

Clearly, Conjecture 1.2 reduces to Conjecture 1.1 for H1 = H2 = ∅.
Conjecture 1.1 and Conjecture 1.2, if true, would have interesting implications in

the many contexts where ordinary and parabolic Kazhdan–Lusztig polynomials have
applications. Among them, one of the most fascinating and (according to many experts
in the field) surprising consequences would be in the topology of Schubert varieties of full
and partial flag varieties. For the full flag variety, we refer the reader to the discussion
in [3, §3]. For its generalization to the partial flag variety, the reader should have
in mind the results by Kashiwara and Tanisaki [18] showing the role of the parabolic
Kazhdan–Lusztig polynomials for the Schubert varieties of the partial flag variety.

In [21], Conjecture 1.2 is proved to hold true for lower intervals (that is, when u1

and u2 are the identity elements), in the case of doubly laced Coxeter groups (and in
the case of dihedral Coxeter groups, which is much easier). The aim of this work is to
prove the following more general result.

Theorem 1.3. Conjecture 1.2 holds true for all lower intervals in every arbitrary Cox-
eter group.
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(Another new piece of evidence in favor of Conjecture 1.2 was recently given by Brenti
in [5]).

Indeed, we prove the following slightly more general result.

Theorem 1.4. Let (W1, S1) and (W2, S2) be two arbitrary Coxeter systems, with iden-
tity elements e1 and e2, and let H1 ⊆ S1 and H2 ⊆ S2. Let v1 ∈ WH1

1 and v2 ∈ WH2
2 be

such that there exists a poset-isomorphism ψ from [e1, v1] to [e2, v2] that restricts to a
poset-isomorphism from [e1, v1]H1 to [e2, v2]H2. Then, for all u,w ∈ [e1, v1]H1, we have

PH1,x
u,w (q) = PH2,x

ψ(u),ψ(w)(q) and RH1,x
u,w (q) = RH2,x

ψ(u),ψ(w)(q).

As a corollary, the parabolic Kazhdan–Lusztig polynomial PH,x
u,w (q) and R-polynomial

RH,x
u,w (q) are determined by the isomorphism class of the interval [e, w] and by how the

parabolic interval [e, w]H = [e, w] ∩WH embeds in [e, w].
Theorem 1.4 is proved by providing an explicit method to compute the parabolic

Kazhdan–Lusztig R-polynomials RH,x
u,w (q) (and so also the parabolic Kazhdan–Lusztig

PH,x
u,w (q)). This method is based on the concept of an H-special matching introduced in

[21]: an H-special matching of w is an involution M : [e, w]→ [e, w] such that

(1) either u�M(u) or u�M(u), for all u ∈ [e, w],
(2) if u1 � u2 then M(u1) ≤M(u2), for all u1, u2 ∈ [e, w] such that M(u1) 6= u2,
(3) if u ≤ w, u ∈ WH , and M(u) � u, then M(u) ∈ WH .

(We denote by ≤ the Bruhat order and write x � y to mean that x is an immediate
predecessor of y).

The set of all H-special matchings of w depends only on the isomorphism class of
the interval [e, w] and on how the parabolic interval [e, w]H embeds in [e, w]. We prove
that H-special matchings may be used in place of left multiplications in the recurrence
formula that computes the parabolic Kazhdan–Lusztig R-polynomials.

Theorem 1.5. If M is an H-special matching of w, then the parabolic Kazhdan–Lusztig
R-polynomial Ru,w(q) satisfies:
(1.1)

RH,x
u,w (q) =


RH,x
M(u),M(w)(q), if M(u) � u,

(q − 1)RH,x
u,M(w)(q) + qRH,x

M(u),M(w)(q), if M(u) � u and M(u) ∈ WH ,

(q − 1− x)RH,x
u,M(w)(q), if M(u) � u and M(u) /∈ WH .

Theorem 1.5 directly implies Theorem 1.4. Indeed, suppose the hypotheses of The-
orem 1.4 are fulfilled: thus M is an H1-special matching of w if and only if M ′ =
ψ ◦M ◦ ψ−1 is an H2-special matching of ψ(w). We choose such a matching M and
apply (1.1) to both M and M ′: in both computations, we fall in the same case. By
iteration, we get the assertion of Theorem 1.4.

Theorems 1.3, 1.4 and 1.5 improve and generalize several results in the literature
such as, for instance, the main results of [6], [12], [21], [23].

Since a special matching M is uniquely determined by its action on the dihedral
intervals containing the Coxeter generator M(e), special matchings of doubly laced
Coxeter groups are more easily controlled than special matchings of arbitrary Coxeter
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groups. Therefore, a deeper analysis on parabolic Kazhdan–Lusztig R-polynomials
is needed to prove the result for arbitrary Coxeter groups. Indeed, we use several
new identities among which, in particular, certain relations relating different parabolic
Kazhdan–Lusztig R-polynomials indexed by elements in the same coset of dihedral
standard parabolic subgroups.

The rest of the paper is devoted to the proof of Theorem 1.5.

2. Notation, definitions and preliminaries

This section reviews the background material that is needed in the rest of this work.
We follow [1] and [22, Chapter 3] for undefined notation and terminology concerning,
respectively, Coxeter groups and partially ordered sets.

2.1. Coxeter groups. We fix our notation on a Coxeter system (W,S) in the following
list:

ms,t the entry of the Coxeter matrix of (W,S) in position (s, t) ∈ S × S,
e identity of W,

` the length function of (W,S),

T = {wsw−1 : w ∈ W, s ∈ S}, the set of reflections of W,

DR(w) = {s ∈ S : `(ws) < `(w)}, the right descent set of w ∈ W,

DL(w) = {s ∈ S : `(sw) < `(w)}, the left descent set of w ∈ W,

WJ the parabolic subgroup of W generated by J ⊆ S,

W J = {w ∈ W : DR(w) ⊆ S \ J}, the set of minimal left coset representatives,
JW = {w ∈ W : DL(w) ⊆ S \ J}, the set of minimal right coset representatives,

≤ Bruhat order on W (as well as usual order on R),

[u, v] = {w ∈ W : u ≤ w ≤ v}, the (Bruhat) interval generated by u, v ∈ W,

w0(J) the unique maximal element of [e, w] ∩WJ , for J ⊆ S,

w0(s, t) = w0({s, t}), for s, t ∈ S,
[u, v]H = {z ∈ WH : u ≤ z ≤ v}, the parabolic interval generated by u, v ∈ WH .

Given u, v ∈ W , we write u · v instead of simply uv when `(uv) = `(u) + `(v) and
we want to stress this additivity. On the other hand, when we write uv, `(uv) can be
either `(u) + `(v) or smaller. We make use of the symbol “-” to separate letters in a
word in the alphabet S when we want to stress the fact that we are considering the
word rather than the element such word represents.

If w ∈ W , then a reduced expression for w is a word s1-s2- · · · -sq such that w =
s1s2 · · · sq and `(w) = q. When no confusion arises, we also write that s1s2 · · · sq is a
reduced expression for w.

The Bruhat graph of W (see [14], or, e.g., [1, §2.1] or [17, §8.6]) is the directed graph
having W as vertex set and having a directed edge from u to v if and only if u−1v ∈ T
and `(u) < `(v). The Bruhat order (see, e.g., [1, §2.1] or [17, §5.9]), sometimes also
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called Bruhat-Chevalley order, is the partial order ≤ on W given by the transitive
closure of the Bruhat graph of W

The following well-known characterization of Bruhat order is usually referred to as
the Subword Property (see [1, §2.2] or [17, §5.10]), and is used repeatedly in the following
sections, often without explicit mention. By a subword of a word s1-s2- · · · -sq, we mean
a word of the form si1-si2- · · · -sik , where 1 ≤ i1 < · · · < ik ≤ q.

Theorem 2.1 (Subword Property). Let u,w ∈ W . The following are equivalent:

• u ≤ w in the Bruhat order,
• every reduced expression for w has a subword that is a reduced expression for u,
• there exists a reduced expression for w having a subword that is a reduced ex-

pression for u.

The following results are well known (see, e.g., [10, Theorem 1.1], [1, Proposi-
tion 2.2.7] or [17, Proposition 5.9] for the first one, [1, §2.4] or [17, §1.10] for the
second one, and [16, Lemma 7] for the third one).

Lemma 2.2 (Lifting Property). Let s ∈ S and u,w ∈ W , u ≤ w.

- If s ∈ DR(w) and s ∈ DR(u), then us ≤ ws.
- If s /∈ DR(w) and s /∈ DR(u), then us ≤ ws.
- If s ∈ DR(w) and s /∈ DR(u), then us ≤ w and u ≤ ws.

Symmetrically, left versions of the three statements hold.

Proposition 2.3. Let J ⊆ S.

(i) Every w ∈ W has a unique factorization w = wJ · wJ with wJ ∈ W J and
wJ ∈ WJ ; for this factorization, `(w) = `(wJ) + `(wJ).

(ii) Every w ∈ W has a unique factorization w = Jw · Jw with Jw ∈ WJ , Jw ∈ JW ;
for this factorization, `(w) = `(Jw) + `(Jw).

Proposition 2.4. Let J ⊆ S and w ∈ W . The set WJ ∩ [e, w] has a unique maximal
element w0(J), so that WJ ∩ [e, w] is the interval [e, w0(J)].

Note that, by the uniqueness of the factorizations of Proposition 2.3, if J ⊆ S and
w ∈ W , then

l ∈ DL( Jw) ⇐⇒ l ∈ DL(w) ∩ J.(2.1)

Furthermore, it is well known (and immediate to prove) that v ≤ w implies both
vJ ≤ wJ and Jv ≤ Jw.

2.2. Special matchings. Let P be a partially ordered set. An element y ∈ P covers
x ∈ P if the interval [x, y] coincides with {x, y}; in this case, we write x� y as well as
y�x. The poset P is graded if P has a minimum and there is a function ρ : P → N (the
rank function of P ) such that ρ(0̂) = 0 and ρ(y) = ρ(x) + 1 for all x, y ∈ P with x� y.
(This definition is slightly different from the one given in [22], but is more convenient
for our purposes.) The Hasse diagram of P is the graph having P as vertex set and
{{x, y} ∈

(
P
2

)
: either x� y or y � x} as edge set.
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A matching of a poset P is an involution M : P → P such that {v,M(v)} is an edge
in the Hasse diagram of P , for all v ∈ V . A matching M of P is special if

u� v =⇒M(u) ≤M(v),

for all u, v ∈ P such that M(u) 6= v.

Now, let (W,S) be a Coxeter system and recall that W is a graded partially ordered
set (under Bruhat order) having ` as its rank function. Given w ∈ W , we say that M is
a matching of w if M is a matching of the lower Bruhat interval [e, w]. For s ∈ DR(w),
we have a matching ρs of w defined by ρs(u) = us, for all u ∈ [e, w]. Symmetrically, for
s ∈ DL(w), we have a matching λs of w defined by λs(u) = su, for all u ∈ [e, w]. By
the Lifting Property (Lemma 2.2), such ρs and λs are special matchings of w. We call
these matchings, respectively, right and left multiplication matchings.

The following two results are used several times in what follows: the first directly
follows from [6, Lemma 4.3], the second is [6, Proposition 5.3]. We call an interval [u, v]
in a poset P dihedral if it is isomorphic to an interval in a Coxeter system of rank 2
ordered by Bruhat order. Moreover, given two matchings M and N , we say that M
and N commute on X if the two compositions M ◦ N(x) and N ◦M(x) are defined
and equal, for all x ∈ X. We say that two matchings of w commute if they commute
everywhere on [e, w].

Lemma 2.5. Let w ∈ W . Two special matchings M and N of w commute if and only
if they commute on the lower dihedral intervals of [e, w] containing M(e) and N(e).

Lemma 2.6. Let J ⊆ S, w ∈ W , and M be a special matching of w. If M(e) ∈ J ,
then M stabilizes [e, w0(J)].

In particular, given two special matchings M and N of w such that M(e) 6= N(e), we
have that M and N commute if and only if they commute on the unique lower dihedral
interval [e, w0(M(e), N(e))], and this lower dihedral interval is stabilized by both M
and N .

The following definitions are taken from [21].

Definition 2.7. A right system for w ∈ W is a quadruple R = (J, s, t,Mst) such that:

R1. J ⊆ S, s ∈ J , t ∈ S \ J , and Mst is a special matching of w0(s, t) such that
Mst(e) = s and Mst(t) = ts;

R2. (uJ){s,t} · Mst

(
(uJ){s,t} · {s}(uJ)

)
· {s}(uJ) ≤ w, for all u ≤ w;

R3. if r ∈ J and r ≤ wJ , then r and s commute;
R4. (a) if s ≤ (wJ){s,t} and t ≤ (wJ){s,t}, then Mst = ρs,

(b) if s ≤ (wJ){s,t} and t 6≤ (wJ){s,t}, then Mst commutes with λs,
(c) if s 6≤ (wJ){s,t} and t ≤ (wJ){s,t}, then Mst commutes with λt;

R5. if s ≤ {s}(wJ), then Mst commutes with ρs on [e, w0(s, t)].

Definition 2.8. A left system for w ∈ W is a quadruple L = (J, s, t,Mst) such that:

L1. J ⊆ S, s ∈ J , t ∈ S \ J , and Mst is a special matching of w0(s, t) such that
Mst(e) = s and Mst(t) = st;
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L2. (Ju){s} · Mst

(
(Ju){s} · {s,t}(Ju)

)
· {s,t}(Ju) ≤ w, for all u ≤ w;

L3. if r ∈ J and r ≤ Jw, then r and s commute;
L4. (a) if s ≤ {s,t}(Jw) and t ≤ {s,t}(Jw), then Mst = λs,

(b) if s ≤ {s,t}(Jw) and t 6≤ {s,t}(Jw), then Mst commutes with ρs,
(c) if s 6≤ {s,t}(Jw) and t ≤ {s,t}(Jw), then Mst commutes with ρt;

L5. if s ≤ (Jw){s}, then Mst commutes with λs on [e, w0(s, t)].

(As shown in [8, Lemma 4.3], Properties R5 and L5 are equivalent to the, a priori,
more restrictive Properties R5 and L5 appearing in [21].)

Given a right system R = (J, s, t,Mst) for w, the matching associated with it is the
map MR sending u ∈ [e, w] to

MR(u) = (uJ){s,t} · Mst

(
(uJ){s,t} · {s}(uJ)

)
· {s}(uJ).

Symmetrically, the matching associated with a left system L for w is the map LM
sending u ∈ [e, w] to

LM(u) = (Ju){s} · Mst

(
(Ju){s} · {s,t}(Ju)

)
· {s,t}(Ju),

i.e., LM(u) =
(
ML(u−1)

)−1
, where ML is the map on [e, w−1] associated to L as a right

system for w−1.
The fact that MR and LM are actually matchings of w and the fact that the lengths

add in these products are shown in [8] (respectively, in Corollary 4.10 and Proposi-
tion 4.9).

Note that MR acts as λs on [e, w0(s, r)] for all r ∈ J , and as ρs on [e, w0(s, r)] for all
r ∈ S \ (J ∪ {t}); symmetrically, LM acts as ρs on [e, w0(s, r)] for all r ∈ J , and as λs
on [e, w0(s, r)] for all r ∈ S \ (J ∪ {t}).

We comment that, if s ∈ DR(w), t ∈ S \{s}, J = {s} and Mst = ρs, then we obtain a
right system whose associated matching is the right multiplication matching ρs (M = ρs
on the entire interval [e, w]). Symmetrically, we obtain left multiplication matchings as
special cases of matchings associated with left systems. On the other hand, we may
obtain matchings that are not multiplication matchings. For example, let W be the
Coxeter group of type A3 with Coxeter generators s1, s2 and s3 numbered as usual
(i.e. ms1,s2 = ms2,s3 = 3 and ms1,s3 = 2), and let w = s1s2s3s1 ∈ W . The quadruple
R = ({s2, s3}, s2, s1,M), with M(e) = s2, M(s1) = s1s2, and M(s2s1) = s1s2s1, is a
right system for w whose associated matching is not a multiplication matching (the
reader may check that the resulting matching is the dashed special matchings in the
first picture of Figure 2).

The main result of [8] is that the matchings arising from systems of w are exactly
the special matchings of w. We only need one side of this characterization (see [8,
Theorem 4.12]).

Theorem 2.9. Every special matching of w ∈ W is associated with a right or a left
system of w.

We refer the reader to [9] for a more compact characterization in terms of only one
self-dual type of systems.
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2.3. Kazhdan–Lusztig polynomials. Given a Coxeter system (W,S) and H ⊆ S,
the Bruhat order induces an ordering on the set of minimal coset representatives WH

and the parabolic intervals [u, v]H , for all u, v ∈ WH .
We introduce the parabolic Kazhdan–LusztigR-polynomials and the parabolic Kazhdan–

Lusztig polynomials through the following theorems-definitions, which are due to De-
odhar (see [11, §§2-3] for their proofs).

Theorem 2.10. Let (W,S) be a Coxeter system, and H ⊆ S. For each x ∈ {−1, q},
there is a unique family of polynomials {RH,x

u,v (q)}u,v∈WH ⊆ Z[q] such that, for all u, v ∈
WH :

(1) RH,x
u,v (q) = 0 if u 6≤ v;

(2) RH,x
u,u (q) = 1;

(3) if u < v and s ∈ DL(v), then

RH,x
u,v (q) =


RH,x
su,sv(q), if s ∈ DL(u),

(q − 1)RH,x
u,sv(q) + qRH,x

su,sv(q), if s /∈ DL(u) and su ∈ WH ,

(q − 1− x)RH,x
u,sv(q), if s /∈ DL(u) and su /∈ WH .

In what follows, we often use the inductive formula of Theorem 2.10 without explicit
mention.

Theorem 2.11. Let (W,S) be a Coxeter system, and H ⊆ S. For each x ∈ {−1, q},
there is a unique family of polynomials {PH,x

u,v (q)}u,v∈WH ⊆ Z[q], such that, for all

u, v ∈ WH :

(1) PH,x
u,v (q) = 0 if u 6≤ v;

(2) PH,x
u,u (q) = 1;

(3) deg(PH,x
u,v (q)) ≤ 1

2
(`(v)− `(u)− 1), if u < v;

(4) q`(v)−`(u) PH,x
u,v

(
1
q

)
=
∑

z∈[u,v]H
RH,x
u,z (q)PH,x

z,v (q).

The polynomialsRH,x
u,v (q) and PH,x

u,v (q) are the parabolic Kazhdan–Lusztig R-polynomials

and parabolic Kazhdan–Lusztig polynomials of WH of type x.

Remark 2.12. For a fixed H ⊂ S, the parabolic Kazhdan–Lusztig R-polynomials and
the parabolic Kazhdan–Lusztig polynomials are equivalent. More precisely, given w ∈
WH , it is possible to compute the family {PH,x

u,v (q)}u,v∈[e,w]H once one knows the family

{RH,x
u,v (q)}u,v∈[e,w]H , and vice versa.

For H = ∅, R∅,−1
u,v (q) = R∅,qu,v(q) and P ∅,−1

u,v (q) = P ∅,qu,v (q) are the ordinary Kazhdan–
Lusztig R-polynomials Ru,v(q) and Kazhdan–Lusztig polynomials Pu,v(q) of W .

The following result gives another relationship between the parabolic Kazhdan–
Lusztig polynomials and their ordinary counterparts (see [11, Proposition 3.4, and
Remark 3.8]).

Proposition 2.13. Let (W,S) be a Coxeter system, H ⊆ S, and u, v ∈ WH . We have

PH,q
u,v (q) =

∑
w∈WH

(−1)`(w)Puw,v(q).
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Furthermore, if WH is finite, then

PH,−1
u,v (q) = PuwH

0 ,vw
H
0

(q),

where wH0 is the longest element of WH .

3. Preliminary results

In this section, we give some preliminary results that are needed to prove the main
result of this work.

For convenience, we state the following straightforward result here for later reference.

Lemma 3.1. The sequence {Ri}i≥1 ⊆ Z[q], defined as

Ri =

(q − 1)
(∑i−1

k=0(−1)kqk
)
, if i is odd,

(q − 1)2
(∑ i−2

2
k=0 q

2k
)
, if i is even,

is the unique sequence satisfying

Ri = (q − 1)Ri−1 + qRi−2 R1 = (q − 1) R2 = (q − 1)2

Proof. Omitted. �

We observe the following fact. Let W be a dihedral Coxeter groups, and u,w ∈ W .
If `(w) − `(u) = i, with i ≥ 1, then the ordinary Kazhdan–Lusztig R-polynomial
Ru,v(q) is the polynomial Ri defined in Lemma 3.1. In particular, as it is well-known,
Conjecture 1.1 holds true for dihedral Coxeter groups since two intervals [u,w] and
[u′, w′] in two dihedral Coxeter groups are isomorphic as posets if and only if `(w) −
`(u) = `(w′)− `(u′).

We fix an arbitrary Coxeter system (W,S), a subset H ⊂ S, and s, t ∈ S. For
notational convenience, from now on we let s̄ = t and t̄ = s. Recall that, for every
x ∈ W , the coset W{s,t} x = {gst x : gst ∈ W{s,t}} is isomorphic, as a poset, to the
dihedral Coxeter group W{s,t}.

Proposition 3.2. Consider an arbitrary coset W{s,t} · x, where (we suppose without

lack of generality) x ∈ {s,t}W . The intersection (W{s,t} ·x)∩WH is one of the following
set:

(1) ∅,
(2) {x},
(3) {gst · x : gst ∈ W{s,t}, t /∈ DR(gst)},
(4) {gst · x : gst ∈ W{s,t}, s /∈ DR(gst)},
(5) W{s,t} · x.

Proof. First of all, recall that if an element w belongs to WH , then rw belongs to WH

for all r ∈ DL(w). Also recall that an element not in WH have at most one coatom
in WH (see [21, Lemma 4.1]); in particular, in the case W{s,t} is finite, the intersection
(W{s,t} · x) ∩WH cannot be (W{s,t} · x) \ {w0 · x}, where w0 is the longest element of
W{s,t}.
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We prove the statement by contradiction and, by what we have just recalled, we
suppose that there exist g ∈ W{s,t} \ {e} and p ∈ {s, t} \DL(g) such that

• g · x ∈ WH ,
• p · g · x /∈ WH ,
• p · g is not the longest element of W{s,t} (if any, i.e. in the case W{s,t} is finite).

Since p · g · x /∈ WH , there exists h ∈ H ∩DR(p · g · x). Since g · x ∈ WH , we have
h /∈ DR(g · x); by the Lifting Property (Lemma 2.2), p · g · x = g · x · h. Hence, both
s and t belong to DL(p · g · x) and thus to DL(p · g); by a well-known fact, this means
that p · g is the longest element of W{s,t}. �

The following three results give formulas expressing some parabolic Kazhdan–Lusztig
R-polynomials as linear combinations of other parabolic Kazhdan–LusztigR-polynomials.
(The choice of the indices could seem unnatural at this point: the reason for this choice
is that, in Section 4, we apply these results in a situation where we have two missing
parts w1 and u1, i.e. two parts w1 and u1 that are both equal to e).

Lemma 3.3. Let w = w2 · w3 ∈ WH and u = u2 · u3 ∈ WH with:

• u ≤ w,
• w2, u2 ∈ W{s,t},
• w3, u3 ∈ {s,t}W .

If (W{s,t} · u3) ∩WH = {u3}, then u = u3 and

RH,x
u,w (q) = (q − 1− x)`(w2)RH,x

u3,w3
(q).

Proof. If w2 = e, the assertions are trivial. Suppose w2 6= e and fix r ∈ {s, t} ∩
DL(w2). By the recursive formula of Theorem 2.10 (with r as left descent of w), we
have RH,x

u,w (q) = (q − 1− x)RH,x
u,rw(q). We get the assertion by iteration. �

Recall that, for r ∈ {s, t}, we denote by r̄ the element in {s, t} \ {r}.

Lemma 3.4. Let w = w2 · w3 ∈ WH and u = u2 · u3 ∈ WH with:

• u ≤ w,
• w2, u2 ∈ W{s,t},
• w3, u3 ∈ {s,t}W ,

and suppose W{s,t}·u3 ⊆ WH . Then there exists a set of polynomials {pgst(q)}gst∈W{s,t} ⊆
Z[q] such that

RH,x
u,w (q) =

∑
gst∈W{s,t}

pgst(q)R
H,x
gst·u3,w3

(q)

Ru,w(q) =
∑

gst∈W{s,t}

pgst(q)Rgst·u3,w3(q)

(in other words, both the parabolic and the ordinary Kazhdan–Lusztig R-polynomials
indexed by u and w can be expressed as a linear combination of, respectively, the para-
bolic and the ordinary Kazhdan–Lusztig R-polynomials indexed by gst · u3 and w3, with
gst ∈ W{s,t}, and the two expressions have the same coefficients).
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If, moreover, |{x ∈ {s, t} : x ≤ w3}| ≤ 1, then `(w2)− `(u2) ≥ −1 and the following
statements hold.

D−1. If `(w2)− `(u2) = −1, then

RH,x
u,w (q) = RH,x

pu3,w3
(q).

D0. If `(w2)− `(u2) = 0, then

RH,x
u,w (q) =

{
RH,x
u3,w3

(q) if u2 = w2

(q − 1)RH,x
pu3,w3

(q) if u2 6= w2.

D1. If `(w2)− `(u2) = 1, then

RH,x
u,w (q) =

{
(q − 1)RH,x

u3,w3
(q) + qRH,x

pu3,w3
(q), if w2 = u2 · p

(q − 1)RH,x
u3,w3

(q), otherwise.

Di. If `(w2)− `(u2) = i ≥ 2, then

RH,x
u,w (q) = Ri ·RH,x

u3,w3
(q) + qRi−1 ·RH,x

pu3,w3
(q)

where the family of polynomials {Rj}j≥1 is as in Lemma 3.1.

In the previous statements, if |{x ∈ {s, t} : x ≤ w3}| ≤ 1 then {p} = {x ∈ {s, t} : x ≤
w3}, if |{x ∈ {s, t} : x ≤ w3}| = 0 then RH,x

pu3,w3
(q) = 0.

Proof. Let us prove the first statement. If w2 = e, it is trivial. Suppose w2 6= e and fix
r ∈ {s, t} ∩DL(w2). We apply the recursive formula of Theorem 2.10 (with r as a left
descent of w) to compute both RH,x

u,w (q) and Ru,w(q). Since W{s,t} ·u3 ⊆ WH , we cannot
fall into the case when the factor (q − 1− x) occurs, and the two computations agree.
We get the assertion by iterating this argument.

Let us prove the second part of the lemma and so suppose {p} ⊇ {x ∈ {s, t} : x ≤
w3}.

In this proof, we use the Subword Property (Theorem 2.1), Property (2.1), and the
recursive formula of Theorem 2.10 several times without explicit mention; when we
apply the recursive formula of Theorem 2.10, we never fall into the case the factor
(q − 1− x) occurs, since W{s,t} · u3 ⊆ WH .

Since |{x ∈ {s, t} : x ≤ w3}| ≤ 1, the longest subword of type s-t-s-t- · · · or
t-s-t-s- · · · of any reduced expression for w has length at most `(w2) + 1, and hence
`(w2)− `(u2) ≥ −1.

Proof of D−1. Since `(w2) − `(u2) = −1, necessarily u2 = w2 · p, as otherwise u
could not be smaller than or equal to w. We have

RH,x
u,w (q) = RH,x

w2pu3,w2w3
(q) = RH,x

pu3,w3
(q).

Proof of D0. If u2 = w2, the assertion is immediate. If u2 6= w2, there exists an
element v ∈ W{s,t}, with `(v) = `(w2)−1 = `(u2)−1, such that u2 = v ·p and w2 = l ·v,
where l ∈ {s, t} \DL(v). We have

RH,x
u,w (q) = RH,x

vpu3,lvw3
(q) = (q−1)RH,x

vpu3,vw3
(q)+qRH,x

lvpu3,vw3
(q) = (q−1)RH,x

pu3,w3
(q)+qRH,x

lvpu3,vw3
(q).
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We cannot have l ·v ·p ·u3 ≤ v ·w3, since all subwords of any reduced expression of v ·w3

of type s-t-s-t- · · · or t-s-t-s- · · · have length at most `(v)+1, while `(l ·v ·p) = `(v)+2.

Hence RH,x
lvpu3,vw3

(q) = 0, as desired.

Proof of D1. Since `(w2)− `(u2) = 1, we have either

(1) w2 = u2 · r, where r ∈ {s, t} \DR(u2), or
(2) w2 = l ·u2, where l ∈ {s, t}\DL(u2), u2 6= e, and l ·u2 is not the longest element

of W{s,t} (if any).

In the first case, we have

RH,x
u,w (q) = RH,x

u2u3,u2rw3
(q) = RH,x

u3,rw3
(q) = (q − 1)RH,x

u3,w3
(q) + qRH,x

ru3,w3
(q).

If r = p, we get the assertion. If r 6= p, then r 6≤ w3; thus ru3 6≤ w3, and we get the
assertion as well.

In the second case, we have

RH,x
u,w (q) = RH,x

u2u3,lu2w3
(q) = (q − 1)RH,x

u2u3,u2w3
(q) + qRH,x

lu2u3,u2w3
(q) = (q − 1)RH,x

u3,w3
(q)

since l · u2 · u3 6≤ u2 · w3.

Proof of Di. Suppose `(w2)− `(u2) = 2; we have either

• w2 = u2 · r · r̄, where r ∈ {s, t} \DR(u2), or
• w2 = l · u2 · r, where l ∈ {s, t} \DL(u2), r ∈ {s, t} \DR(u2), u2 6= e, and l · u2 · r

is not the longest element of W{s,t} (if any).

In the first case, we have

RH,x
u,w (q) = RH,x

u2u3,u2rr̄w3
(q) = RH,x

u3,rr̄w3
(q) = (q − 1)RH,x

u3,r̄w3
(q) + qRH,x

ru3,r̄w3
(q)

= (q − 1)[(q − 1)RH,x
u3,w3

(q) + qRH,x
r̄u3,w3

(q)] + q[(q − 1)RH,x
ru3,w3

(q) + qRH,x
r̄ru3,w3

(q)]

= (q − 1)2RH,x
u3,w3

(q) + q(q − 1)[RH,x
r̄u3,w3

(q) +RH,x
ru3,w3

(q)].

since r̄ru3 6≤ w3. Thus the assertion follows since {r̄u3, ru3}∩{x : x ≤ w3} = {pu3}∩{x :
x ≤ w3}.

In the second case, we have

RH,x
u,w (q) = RH,x

u2u3,lu2rw3
(q) = (q − 1)RH,x

u2u3,u2rw3
(q) + qRH,x

lu2u3,u2rw3
(q)

= (q − 1)RH,x
u3,rw3

(q) + qRH,x
lu2u3,u2rw3

(q)

= (q − 1)[(q − 1)RH,x
u3,w3

(q) + qRH,x
ru3,w3

(q)] + qRH,x
lu2u3,u2rw3

(q).

If r = p, then lu2u3 6≤ u2rw3: thus RH,x
lu2u3,u2rw3

(q) = 0 and we get the assertion. If

r 6= p, then ru3 6≤ w3 and thus RH,x
ru3,w3

(q) = 0; on the other hand, lu2u3 ≤ u2rw3 and

RH,x
lu2u3,u2rw3

(q) = (q − 1)RH,x
pu3,w3

(q) by Statement D0.

Suppose `(w2)− `(u2) = 3; we have either

• w2 = u2 · r · r̄ · r, , where r ∈ {s, t} \DR(u2), or
• w2 = l · u2 · r · r̄, where l ∈ {s, t} \ DL(u2), r ∈ {s, t} \ DR(u2), u2 6= e, and
l · u2 · r · r̄ is not the longest element of W{s,t} (if any).
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In the first case, we have

RH,x
u,w (q) = RH,x

u2u3,u2rr̄rw3
(q) = RH,x

u3,rr̄rw3
(q) = (q − 1)RH,x

u3,r̄rw3
(q) + qRH,x

ru3,r̄rw3
(q)

= (q − 1)[(q − 1)2RH,x
u3,w3

(q) + q(q − 1)RH,x
pu3,w3

(q)] + q(q − 1)RH,x
u3,w3

(q)

= R3 ·RH,x
u3,w3

(q) + qR2 ·RH,x
pu3,w3

(q),

by the assertion (already proved) for when the difference of the length is equal to 2,
and by Statement D1.

In the second case, we have

RH,x
u,w (q) = RH,x

u2u3,lu2rr̄w3
(q) = (q − 1)RH,x

u2u3,u2rr̄w3
(q) + qRH,x

lu2u3,u2rr̄w3
(q)

= (q − 1)[(q − 1)2RH,x
u3,w3

(q) + q(q − 1)RH,x
pu3,w3

(q)] + q(q − 1)RH,x
u3,w3

(q)

= R3 ·RH,x
u3,w3

(q) + qR2 ·RH,x
pu3,w3

(q)

by the assertion (already proved) for when the difference of the length is equal to 2,
and by Statement D1.

Suppose `(w2)− `(u2) = i, with i ≥ 4, and use induction on `(w2). The base of the
induction is u2 = e and w2 ∈ {pp̄pp̄, p̄pp̄p}: the assertion follows by a direct computation
that we omit.

Let `(w2) > 4 and h ∈ DL(w2). If h ∈ DL(u2), then RH,x
u,w (q) = RH,x

u2u3,w2w3
(q) =

RH,x
hu2u3,hw2w3

(q) and we may conclude by the induction hypothesis since `(hw2) < `(w2),
and `(w2)− `(u2) = `(hw2)− `(hu2). If h 6∈ DL(u2), then

RH,x
u,w (q) = RH,x

u2u3,w2w3
(q) = (q − 1)RH,x

u2u3,hw2w3
(q) + qRH,x

hu2u3,hw2w3
(q)

= (q − 1)[Ri−1 ·RH,x
u3,w3

(q) + qRi−2 ·RH,x
pu3,w3

(q)] + q[Ri−2 ·RH,x
u3,w3

(q) + qRi−3 ·RH,x
pu3,w3

(q)]

= [(q − 1)Ri−1 + qRi−2] ·RH,x
u3,w3

(q) + q[(q − 1)Ri−2 + qRi−3 ·RH,x
pu3,w3

(q)]

= Ri ·RH,x
u3,w3

(q) + qRi−1 ·RH,x
pu3,w3

(q)

where the last equation follows by Lemma 3.1. �

Remark 3.5. Lemma 3.3 and the first part of Lemma 3.4 hold more generally (with
the same straightforward proof) if we replace {s, t} with an arbitrary subset J ⊆ S.

In the proof of the following result, as well as in the proof of the main result of this
work, it is essential x ∈ {q,−1}; indeed, we repeatedly use that x satisfies

(q − 1)(q − 1− x) + q = (q − 1− x)2.(3.1)

Lemma 3.6. Let w = w2 · w3 ∈ WH and u = u2 · u3 ∈ WH with:

• u ≤ w,
• w2, u2 ∈ W{s,t},
• w3, u3 ∈ {s,t}W ,
• |{x ∈ {s, t} : x ≤ w3}| ≤ 1.

Suppose that (W{s,t} · u3) ∩WH is a chain (see Proposition 3.2) and let r, r̄ ∈ {s, t} be
such that r · u3 ∈ WH and r̄ · u3 /∈ WH .

Then `(w2)− `(u2) ≥ −1 and the following statements hold.
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D−1. If `(w2)− `(u2) = −1, then

RH,x
u,w (q) = RH,x

ru3,w3
(q).

D0. If `(w2)− `(u2) = 0, then

RH,x
u,w (q) =

{
RH,x
u3,w3

(q) if u2 = w2

(q − 1)RH,x
ru3,w3

(q) if u2 6= w2

D1. If `(w2)− `(u2) = 1, then

RH,x
u,w (q) =


(q − 1− x)RH,x

u3,w3
(q) if r̄ ∈ DR(w2)

(q − 1)RH,x
u3,w3

(q) if r̄ /∈ DR(w2) and u2 6= e

(q − 1)RH,x
u3,w3

(q) + qRH,x
ru3,w3

(q), if r̄ /∈ DR(w2) and u2 = e

D2. If `(w2)− `(u2) = 2, then

RH,x
u,w (q) =

{
(q − 1− x)[(q − 1)RH,x

u3,w3
(q) + qRH,x

ru3,w3
(q)], if r ∈ DR(w2)

(q − 1)[(q − 1− x)RH,x
u3,w3

(q) + qRH,x
ru3,w3

(q)], if r /∈ DR(w2)

Di. If `(w2)− `(u2) ≥ 3, then

RH,x
u,w (q) = (q − 1)(q − 1− x)`(w2)−`(u2)−2[(q − 1− x)RH,x

u3,w3
(q) + qRH,x

ru3,w3
(q)]

Proof. In this proof, we use the Subword Property (Theorem 2.1), Property (2.1), and
the recursive formula of Theorem 2.10 several times without explicit mention.

Note that we have DR(u2) = {r} unless u2 = e; in particular, u2 cannot be the top
element of W{s,t} (if any). If u2 6= e, we let l ∈ {s, t} be such that {l} = DL(u2), so
that u2 has a (unique) reduced expression starting with l and ending with r.

Since |{x ∈ {s, t} : x ≤ w3}| ≤ 1, the longest subword of type s-t-s-t- · · · or
t-s-t-s- · · · of any reduced expression for w has length at most `(w2) + 1, and hence
`(w2)− `(u2) ≥ −1.

Proof of D−1. Since `(w2) − `(u2) = −1, necessarily u2 = w2 · r, as otherwise u
could not be smaller than or equal to w. We have

RH,x
u,w (q) = RH,x

w2ru3,w2w3
(q) = RH,x

ru3,w3
(q).

Proof of D0. If u2 = w2, the assertion is immediate. If u2 6= w2, there exists an
element v ∈ W{s,t}, with `(v) = `(w2)−1 = `(u2)−1, such that u2 = v ·r and w2 = l̄ ·v.
We have

RH,x
u,w (q) = RH,x

vru3,l̄vw3
(q) = (q−1)RH,x

vru3,vw3
(q)+qRH,x

l̄vru3,vw3
(q) = (q−1)RH,x

ru3,w3
(q)+qRH,x

l̄vru3,vw3
(q).

We cannot have l̄ ·v ·r ·u3 ≤ v ·w3, since all subwords of any reduced expression of v ·w3

of type s-t-s-t- · · · or t-s-t-s- · · · have length at most `(v) + 1 while `(l̄ · v · r) = `(v) + 2.

Hence RH,x

l̄vru3,vw3
(q) = 0, as desired.

Proof of D1. Since `(w2)− `(u2) = 1, we have either

(1) w2 = u2 · r̄, or
(2) w2 = l̄ · u2 6= u2 · r̄ and u2 6= e, or
(3) w2 = r and u2 = e.
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In the first case, we have

RH,x
u,w (q) = RH,x

u2u3,u2r̄w3
(q) = RH,x

u3,r̄w3
(q) = (q − 1− x)RH,x

u3,w3
(q).

In the second case, we have

RH,x
u,w (q) = RH,x

u2u3,l̄u2w3
(q) = (q − 1)RH,x

u2u3,u2w3
(q) + qRH,x

l̄u2u3,u2w3
(q) = (q − 1)RH,x

u3,w3
(q)

since l̄ · u2 · u3 6≤ u2 · w3. In the third case, the assertion is immediate.

Proof of D2. Since `(w2)− `(u2) = 2, we have either

• w2 = u2 · r̄ · r, or
• w2 = l̄ · u2 · r̄ 6= u2 · r̄ · r (where we set l̄ = r if u2 = e).

In the first case, we have

RH,x
u,w (q) = RH,x

u2u3,u2r̄rw3
(q) = RH,x

u3,r̄rw3
(q) = (q − 1− x)RH,x

u3,rw3
(q)

= (q − 1− x)[(q − 1)RH,x
u3,w3

(q) + qRH,x
ru3,w3

(q)].

In the second case, we have

RH,x
u,w (q) = RH,x

u2u3,l̄u2r̄w3
(q) = (q − 1)RH,x

u2u3,u2r̄w3
(q) + qRH,x

l̄u2u3,u2r̄w3
(q)

= (q − 1)(q − 1− x)RH,x
u3,w3

(q) + q(q − 1)RH,x
ru3,w3

(q),

where the last equality follows from Statements D1 and D0.

Proof of Di. If `(w2)− `(u2) = 3, we have either

• w2 = u2 · r̄ · r · r̄, or
• w2 = l̄ · u2 · r̄ · r 6= u2 · r̄ · r · r̄ (where we set l̄ = r if u2 = e).

In the first case, we have

RH,x
u,w (q) = RH,x

u2u3,u2r̄rr̄w3
(q) = RH,x

u3,r̄rr̄w3
(q) = (q − 1− x)RH,x

u3,rr̄w3
(q)

= (q − 1− x)(q − 1)[(q − 1− x)RH,x
u3,w3

(q) + qRH,x
ru3,w3

(q)],

by Statement D2. In the second case, we have

RH,x
u,w (q) = RH,x

u2u3,l̄u2r̄pw3
(q) = (q − 1)RH,x

u2u3,u2r̄rw3
(q) + qRH,x

l̄u2u3,u2r̄rw3
(q)

= (q − 1)(q − 1− x)[(q − 1)RH,x
u3,w3

(q) + qRH,x
ru3,w3

(q)] + q(q − 1)RH,x
u3,w3

(q)

= (q − 1)[(q − 1)(q − 1− x) + q]RH,x
u3,w3

(q) + q(q − 1)(q − 1− x)RH,x
ru3,w3

(q)

= (q − 1)(q − 1− x)2RH,x
u3,w3

(q) + q(q − 1)(q − 1− x)RH,x
ru3,w3

(q)

by Statements D2 and D1, and by Eq. (3.1).
If `(w2)− `(u2) = 4, we have either

• w2 = u2 · r̄ · r · r̄ · r, or
• w2 = l̄ · u2 · r̄ · r · r̄ 6= u2 · r̄ · r · r̄ · r (where we set l̄ = r if u2 = e).

In the first case, we have

RH,x
u,w (q) = RH,x

u2u3,u2r̄rr̄rw3
(q) = RH,x

u3,r̄rr̄rw3
(q)

= (q − 1− x)RH,x
u3,rr̄rw3

(q) = (q − 1)(q − 1− x)2[(q − 1− x)RH,x
u3,w3

(q) +

qRH,x
ru3,w3

(q)].
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In the second case, we have

RH,x
u,w (q) = RH,x

u2u3,l̄u2r̄rr̄w3
(q) = (q − 1)RH,x

u2u3,u2r̄rr̄w3
(q) + qRH,x

l̄u2u3,u2r̄rr̄w3
(q)

= (q − 1)2(q − 1− x)[(q − 1− x)RH,x
u3,w3

(q) + qRH,x
ru3,w3

(q)] +

q(q − 1)[(q − 1− x)RH,x
u3,w3

(q) + qRH,x
ru3,w3

(q)]

= (q − 1)(q − 1− x)[(q − 1)(q − 1− x) + q]RH,x
u3,w3

(q) +

q(q − 1)[(q − 1)(q − 1− x) + q]RH,x
ru3,w3

(q)

= (q − 1)(q − 1− x)3RH,x
u3,w3

(q) + q(q − 1)(q − 1− x)2RH,x
ru3,w3

(q)

where the last equality follows by Eq. (3.1). In both cases we have used statements
that we have already proved.

Suppose `(w2)− `(u2) ≥ 5 and use induction on `(w2). The base of the induction is
u2 = e and w2 ∈ {rr̄rr̄r, r̄rr̄rr̄}: the assertion follows by a direct computation that we
omit.

Let `(w2) > 5: if l ∈ DL(w2), then RH,x
u,w (q) = RH,x

u2u3,w2w3
(q) = RH,x

lu2u3,lw2w3
(q) and we

may conclude by the induction hypothesis since `(lw2) < `(w2) and `(w2) − `(u2) =
`(lw2) − `(lu2). If l 6∈ DL(w2), then consider l̄ ∈ DL(w2): we have l̄ /∈ DL(u) since
l̄ /∈ DL(u2), and l̄u ∈ WH since u2 6= e. Hence, using the induction hypothesis, we have

RH,x
u,w (q) = (q − 1)RH,x

u2u3,l̄w2w3
(q) + qRH,x

l̄u2u3,l̄w2w3
(q)

= (q − 1)2(q − 1− x)`(l̄w2)−`(u2)−2[(q − 1− x)RH,x
u3,w3

(q) + qRH,x
ru3,w3

(q)]

+q(q − 1)(q − 1− x)`(l̄w2)−`(l̄u2)−2[(q − 1− x)RH,x
u3,w3

(q) + qRH,x
ru3,w3

(q)]

= (q − 1)(q − 1− x)`(w2)−`(u2)−3[(q − 1)(q − 1− x) + q]RH,x
u3,w3

(q) +

q(q − 1)(q − 1− x)`(w2)−`(u2)−4[(q − 1)(q − 1− x) + q]RH,x
ru3,w3

(q)

= (q − 1)(q − 1− x)`(w2)−`(u2)−2[(q − 1− x)RH,x
u3,w3

(q) + qRH,x
ru3,w3

(q)]

where the last equality follows by Eq. (3.1). �

Remark 3.7. Lemma 3.6 implies that, under its hypotheses, RH,x
u,w is a combination of

RH,x
u3,w3

and RH,x
pu3,w3

with coefficients in Z[q]. Furthermore, if either

• `(w2)− `(u2) ≥ 3, or
• `(w2)− `(u2) = 2 and {x ∈ {s, t} : x ≤ w3} = ∅,

then the coefficients of the combination depend only on `(w2)− `(u2).

4. Main result

In this section, we prove Theorem 1.5, whose implications were discussed in Section 1.
In particular, for any arbitrary Coxeter system (W,S), any arbitrary subset H ⊆ S,
and any arbitrary element w ∈ WH , we give an algorithm for computing the parabolic
Kazhan–Lusztig R-polynomials {RH,x

u,w (q)}u∈WH once one knows the poset-isomorphism

class of the interval [e, w], and which elements of the interval [e, w] belong to WH .
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As an immediate corollary, we have that it is possible to compute also the parabolic
Kazhdan–Lusztig polynomials {PH,x

u,w (q)}u∈WH from the knowledge only of the poset-
isomorphism class of the interval [e, w] and which elements of the interval [e, w] belong
to WH (see Remark 2.12).

First, we give the following general definition.

Definition 4.1. Let P be a poset and T ⊆ P be a subposet of P . A relative special
matching of P with respect to T is a special matching M of P such that, if p ∈ T and
M(p) � p, then M(p) ∈ T .

Now, fix an arbitrary Coxeter system (W,S), a subset H ⊆ S, and an element
w ∈ WH . An H-special matching of w is a relative special matching of [e, w] with
respect to [e, w]H , that is a special matching M of w such that, if u ≤ w, u ∈ WH , and
M(u) � u, then M(u) ∈ WH .

Note that the ∅-special matchings are exactly the special matchings and that all left
multiplication matchings are H-special, for all H ⊆ S.

We say that an H-special matching M of w calculates the parabolic Kazhdan–Lusztig
R-polynomials (or, simply, is calculating) provided
(4.1)

RH,x
u,w (q) =


RH,x
M(u),M(w)(q), if M(u) � u,

(q − 1)RH,x
u,M(w)(q) + qRH,x

M(u),M(w)(q), if M(u) � u and M(u) ∈ WH ,

(q − 1− x)RH,x
u,M(w)(q), if M(u) � u and M(u) /∈ WH .

for all u ∈ WH with u ≤ w. Clearly, all left multiplication matchings are calculating.
Actually, our target is to prove that all H-special matchings are calculating.

We need the following result (see [21, Theorem 4.2]).

Theorem 4.2. Let M be an H-special matching of w. If

• every H-special matching of v is calculating, for all v ∈ WH with v < w, and
• there exists a calculating special matching N of w commuting with M and such

that M(w) 6= N(w),

then M is calculating.

We also need the following easy lemma.

Lemma 4.3. Let s, t ∈ S, gst ∈ W{s,t}, p ∈ DR(gst), and M be a special matching of
the dihedral interval [e, gst]. If

• M commutes with ρp, and
• M(x) 6= ρp(x), for all x ∈ W{s,t} such that `(x) 6= 0, 1 and, if W{s,t} is finite,
`(x) 6= ms,t − 1,ms,t,

then M is a left multiplication matching.

Proof. Without loss of generality, we suppose M(e) = s. We need to show M(x) = sx,
for all x ∈ [e, gst]. By contradiction, let x be minimal such that M(x) 6= sx.

Clearly x /∈ {e, s}. By minimality, x �M(x), and s /∈ DL(x) as otherwise M(sx)
would be x since sx would be smaller than x. Moreover, if W{s,t} is finite and gst is its
longest element w0, then x /∈ {w0, sw0}. The elementM(x) cannot be xp (by hypothesis,
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since at least one among x andM(x) has length not in {0, 1,ms,t−1,ms,t}); M(x) cannot
be sx (by assumption); M(x) cannot be tx (since tx � x). The only possibility left is
M(x) = xp̄ (recall that p̄ is the element in {s, t}\{p} and notice that, if W{s,t} is finite,
xp̄ is not w0 since otherwise w0 would be equal to sx). Hence the element ρpMρp(xp),
which is xp̄p, would have length equal to `(xp) + 3, and so Mρp(xp) 6= ρpM(xp), which
contradicts the fact that M commutes with ρp. �

We now recall and prove Theorem 1.5.

Theorem. Given an arbitrary Coxeter system (W,S) and a subset H ⊂ S, let w be any
element in WH . Then all H-special matchings of w calculate the parabolic Kazhdan–
Lusztig R-polynomials of WH .

Proof. We use induction on `(w), the case `(w) ≤ 1 being trivial. Suppose `(w) > 1.
Let M be an H-special matching of w and u ∈ WH , with u ≤ w. We need to show

RH,x
u,w (q) =


RH,x
M(u),M(w)(q), if M(u) � u,

(q − 1)RH,x
u,M(w)(q) + qRH,x

M(u),M(w)(q), if M(u) � u and M(u) ∈ WH ,

(q − 1− x)RH,x
u,M(w)(q), if M(u) � u and M(u) /∈ WH .

We may suppose that M does not agree with a left multiplication matchings on both
u and w, because otherwise the assertion is clear since left multiplication matchings are
calculating.

If there exists a left multiplication matching λ of w commuting with M such that
λ(w) 6= M(w), then we can conclude by Theorem 4.2.

By Theorem 2.9, M is associated with a system (J, s, t,Mst). Suppose first that
(J, s, t,Mst) is a right system and (wJ){s,t} 6= e. Fix l ∈ DL((wJ){s,t}); thus l ∈ DL(w)
and λl is a special matching of w that satisfies M(w) 6= λl(w) since

M(w) = (wJ){s,t} · Mst

(
(wJ){s,t} · {s}(wJ)

)
· {s}(wJ)

while

λl(w) = l(wJ){s,t} · (wJ){s,t} · {s}(wJ) · {s}(wJ).

We need to show that M and λl commute. In order to apply Lemma 2.5, we distinguish
the following cases.
(a) l /∈ {s, t}.
By Property R3 of the definition of a right system, either l /∈ J or l commutes with s. In
the first case, M acts as ρs on [e, w0(s, l)] and hence commutes with λl on [e, w0(s, l)].
In the second case, M and λl clearly commutes on [e, w0(s, l)] since [e, w0(s, l)] is a
dihedral interval with 4 elements.
(b) l = t.
By Property R4, M commutes with λt on [e, w0(s, t)].
(c) l = s.
We need to show that M and λs commute on every lower dihedral intervals [e, w0(s, r)],
with r ∈ S \ {s}. For r = t, it follows from Property R4. For r 6= t, M acts on
[e, w0(s, r)] as ρs or λs, and in both cases M commutes with λs on [e, w0(s, r)].
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Now suppose that (J, s, t,Mst) is a left system and (Jw){s} 6= e. Fix l ∈ DL((Jw){s});
thus l ∈ DL(w) and λl is a special matching of w that satisfies M(w) 6= λl(w) since

M(w) = (Jw){s} · Mst

(
(Jw){s} · {s,t}(Jw)

)
· {s,t}(Jw)

while

λl(w) = l(Jw){s} · (Jw){s} · {s,t}(Jw) · {s,t}(Jw).

In order to show that M and λl commute, we again apply Lemma 2.5. If l 6= s, then M
acts as ρs on [e, w0(s, l)] and hence commutes with λl. Suppose l = s; we need to show
that M and λs commute on every lower dihedral intervals [e, w0(s, r)], with r ∈ S \{s}.
If r = t, it follows from Property L5. If r 6= t, then M acts on [e, w0(s, r)] as ρs or λs,
and so M commutes with λs.

Hence we may suppose that either

(1) (J, s, t,Mst) is a right system and (wJ){s,t} = e, or
(2) (J, s, t,Mst) is a left system and (Jw){s} = e.

In the first case, we set w2 = (wJ){s,t} · {s}(wJ), w3 = {s}(wJ), u2 = (uJ){s,t} · {s}(uJ),

u3 = {s}(uJ). In the second case, we set w2 = (Jw){s} · {s,t}(Jw), w3 = {s,t}(Jw),

u2 = (Ju){s} · {s,t}(Ju), u3 = {s,t}(Ju). In both cases, we get the W{s,t} × {s,t}W -
factorization of w and u:

w = w2 · w3 u = u2 · u3.

Note:

• u ≤ w,
• w2, u2 ∈ W{s,t},
• w3, u3 ∈ {s,t}W ,
• u3 ≤ w3,
• |{x ∈ {s, t} : x ≤ w3}| ≤ 1 (in the first case, this is trivial since t /∈ J and
w3 ∈ WJ ; in the second case s and t cannot be both smaller than or equal to
w3 since otherwise Mst = λs by Property L4 and hence M = λs) and, if this
cardinality is 1, we let p be such that {p} = {x ∈ {s, t} : x ≤ w3},
• M(w) = M(w2) · w3 and M(u) = M(u2) · u3,
• M acts as λs on [e, w0(s, r)], for all r ∈ S \ {t} such that r ≤ w,
• if {p} = {x ∈ {s, t} : x ≤ w3}, then M commutes with ρp on [e, w0(s, t)] (by

either Property R5 or Property L4).

Recall Proposition 3.2. If (W{s,t} · u3) ∩WH = {u3}, then we may conclude using
Lemma 3.3.

We now suppose W{s,t} · u3 ⊆ WH and apply Lemma 3.4. Suppose `(w2)− `(u2) = i,
i ≥ 2. By Lemma 3.4, we have

RH,x
u,w (q) = Ri ·RH,x

u3,w3
(q) + qRi−1 ·RH,x

pu3,w3
(q).

If M(u) � u, then `(M(w2)) − `(M(u2)) = i and also RH,x
M(u),M(w)(q) is equal to

Ri ·RH,x
u3,w3

(q) + qRi−1 ·RH,x
pu3,w3

, by Lemma 3.4.
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Suppose u�M(u). If `(w2)− `(u2) ≥ 4 then

(q − 1)RH,x
u2u3,M(w2)w3

(q) + qRH,x
M(u2)u3,M(w2)w3

(q)

is equal to

= (q − 1)[Ri−1 ·RH,x
u3,w3

(q) + qRi−2 ·RH,x
pu3,w3

] + q[Ri−2 ·RH,x
u3,w3

(q) + qRi−3 ·RH,x
pu3,w3

]

= [(q − 1)Ri−1 + qRi−2] ·RH,x
u3,w3

(q) + q[(q − 1)Ri−2 + qRi−3] ·RH,x
pu3,w3

= Ri ·RH,x
u3,w3

(q) + qRi−1 ·RH,x
pu3,w3

by Lemmas 3.1 and 3.4, as desired.
If `(w2)− `(u2) = 3, then Lemma 3.4 implies that

(q − 1)RH,x
u2u3,M(w2)w3

(q) + qRH,x
M(u2)u3,M(w2)w3

(q)

is equal to

(q − 1)[R2 ·RH,x
u3,w3

(q) + qR1 ·RH,x
pu3,w3

] + q[(q − 1)RH,x
u3,w3

(q) + qRH,x
pu3,w3

· χ](4.2)

where χ =

{
1 if M(w2) = M(u2) · p
0 otherwise.

The term RH,x
pu3,w3

· χ is always 0: indeed, if p ≤ w3, then M(w2) 6= M(u2) · p since,
otherwise, w2 = M(M(u2) · p) = M ◦ρp (M(u2)) 6= ρp ◦M (M(u2)) = u2p and M would
not commute with ρp on [e, w0(s, t)]. Hence the polynomial in (4.2) is always equal to

= [(q − 1)R2 + q(q − 1)]RH,x
u3,w3

(q) + q(q − 1)R1 ·RH,x
pu3,w3

= R3 ·RH,x
u3,w3

(q) + qR2 ·RH,x
pu3,w3

,

as desired.
Suppose `(w2)− `(u2) = 2. If {x ∈ {s, t} : x ≤ w3} = ∅, then

(q − 1)RH,x
u2u3,M(w2)w3

(q) + qRH,x
M(u2)u3,M(w2)w3

(q)

is equal to (q − 1)2RH,x
u3,w3

(q) and the assertion follows. Suppose {x ∈ {s, t} : x ≤
w3} = {p} and recall that, in this case, M commutes with ρp on [e, w0(s, t)]: in order
to compute

(q − 1)RH,x
u2u3,M(w2)w3

(q) + qRH,x
M(u2)u3,M(w2)w3

(q)(4.3)

we distinguish two cases, according to as whether p is in DR(M(u2)) or not. If p ∈
DR(M(u2)), then there exist r ∈ {s, t} and v ∈ W{s,t} with `(v) = `(u2) such that
M(u2) = v · p and M(w2) = r · v. The polynomial in (4.3) is equal to

= (q − 1)RH,x
u2u3,rvw3

(q) + qRH,x
vpu3,rvw3

(q)

= (q − 1)2RH,x
u3,w3

(q) + q(q − 1)RH,x
pu3,w3

(q)

since Lemma 3.4 implies

• RH,x
u2u3,rvw3

(q) = (q − 1)RH,x
u3,w3

(q) (notice r · v 6= u2p),

• RH,x
vpu3,rvw3

(q) = (q − 1)RH,x
pu3,w3

(q) (notice vpu3 ≤ rvw3 if and only if pu3 ≤ w3).
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If p /∈ DR(M(u2)), then M(u2) · p = M(u2 · p) = w2 and M(w2) = u2 · p, as otherwise
ρp◦M(u2) 6= M ◦ρp(u2). Thus M(u2) 6≤M(w2) > M(w2)p and M(u2)·u3 6≤M(w2)·w3,
and so the polynomial in (4.3) is equal to

= (q − 1)RH,x
u2u3,u2pw3

(q) = (q − 1)[(q − 1)RH,x
u3,w3

(q) + qRH,x
pu3,w3

(q)].

Suppose now `(w2)− `(u2) = 1. By Lemma 3.4, we have

RH,x
u,w (q) =

{
(q − 1)RH,x

u3,w3
(q) + qRH,x

pu3,w3
(q), if w2 = u2 · p

(q − 1)RH,x
u3,w3

(q), otherwise.

If M(u2) � u2, then M(u2) = w2, since M is a special matching, and

(q − 1)RH,x
u2u3,M(w2)w3

(q) + qRH,x
M(u2)u3,M(w2)w3

(q) = (q − 1)RH,x
u2u3,u2w3

(q) + qRH,x
w2u3,u2w3

(q)

= (q − 1)RH,x
u3,w3

(q) + qRH,x
w2u3,u2w3

(q)

where RH,x
w2u3,u2w3

(q) =

{
RH,x
pu3,w3

(q), if w2 = u2 · p
0, otherwise.

If M(u2) � u2, then either {x ∈ {s, t} : x ≤ w3} = ∅, or {x ∈ {s, t} : x ≤ w3} = {p}
and w2 = u2 · p if and only if M(w2) = M(u2) · p since M and ρp commute. Hence

RH,x
u,w (q) = RH,x

M(u),M(w)(q), by Lemma 3.4.

Suppose `(w2) − `(u2) = 0. If w2 = u2 the assertion is trivial. Otherwise, u2 �

M(u2) = w0(s, t), M(w2) � w2 and M(w2) � u2. Since u ≤ w, necessarily p ≤ w3,
p ∈ DR(u2), u2 = (lw2) · p where l ∈ DL(w2) \ DL(u2), w0(s, t) = w2 · p = l · u2 and,
since M ◦ ρp(w0(s, t)) = ρp ◦M(w0(s, t)), we have u2 = M(w2) · p. Thus

(q − 1)RH,x
u2u3,M(w2)w3

(q) + qRH,x
M(u2)u3,M(w2)w3

(q) = (q − 1)RH,x
M(w2)pu3,M(w2)w3

(q)

= (q − 1)RH,x
pu3,w3

(q)

since M(u2)u3 6≤M(w2)w3, and we conclude by Lemma 3.4.
Suppose `(w2)− `(u2) = −1. Thus u2 = w2 · p as otherwise u 6≤ v, and u2 = w0(s, t).

Hence M(u2) � u2 and we conclude by Lemma 3.4.

We are left with the case when (W{s,t} ·u3)∩WH is a chain and we apply Lemma 3.6.
Let r, r̄ ∈ {s, t} be such that ru3 ∈ WH and r̄u3 /∈ WH .

Suppose `(w2)− `(u2) ≥ 4. By Lemma 3.6, we have

RH,x
u,w (q) = (q − 1)(q − 1− x)`(w2)−`(u2)−2[(q − 1− x)RH,x

u3,w3
(q) + qRH,x

ru3,w3
(q)].(4.4)

If M(u) � u, then we can conclude since `(M(w2))− `(M(u2)) = `(w2)− `(u2) (see
Remark 3.7).

If u�M(u) /∈ WH , then

RH,x
u,M(w)(q) = (q − 1)(q − 1− x)`(M(w2))−`(u2)−2[(q − 1− x)RH,x

u3,w3
(q) + qRH,x

ru3,w3
(q)]

= (q − 1)(q − 1− x)`(w2)−`(u2)−3[(q − 1− x)RH,x
u3,w3

(q) + qRH,x
ru3,w3

(q)]

by Lemma 3.6. Hence (q− 1− x)RH,x
u,M(w)(q) is equal to the right side of equation (4.4),

as desired.
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If u �M(u) ∈ WH , we separate two cases. If either `(w2) − `(u2) ≥ 5, or `(w2) −
`(u2) = 4 and {x ∈ {s, t} : x ≤ w3} = ∅, then

(q − 1)RH,x
u2u3,M(w2)w3

(q) + qRH,x
M(u2)u3,M(w2)w3

(q)

is equal to

= (q − 1)(q − 1)(q − 1− x)`(M(w2))−`(u2)−2[(q − 1− x)RH,x
u3,w3

(q) + qRH,x
ru3,w3

(q)] +

q(q − 1)(q − 1− x)`(M(w2))−`(M(u2))−2[(q − 1− x)RH,x
u3,w3

(q) + qRH,x
ru3,w3

(q)]

= (q − 1)(q − 1− x)`(w2)−`(u2)−3[(q − 1)(q − 1− x) + q]RH,x
u3,w3

(q) +

q(q − 1)(q − 1− x)`(w2)−`(u2)−4[(q − 1)(q − 1− x) + q]RH,x
ru3,w3

(q)

= (q − 1)(q − 1− x)`(w2)−`(u2)−2[(q − 1− x)RH,x
u3,w3

(q) + qRH,x
ru3,w3

(q)]

by Lemma 3.6 and Eq. (3.1), as desired.
If `(w2) − `(u2) = 4 and |{x ∈ {s, t} : x ≤ w3}| = 1, then, by Lemma 3.6, (q −

1)RH,x
u2u3,M(w2)w3

(q) + qRH,x
M(u2)u3,M(w2)w3

(q) is equal to

= (q − 1)(q − 1)(q − 1− x)[(q − 1− x)RH,x
u3,w3

(q) + qRH,x
ru3,w3

(q)] +

q[(q − 1)(q − 1− x)RH,x
u3,w3

(q) + qARH,x
ru3,w3

(q)]

= (q − 1)(q − 1− x)[(q − 1)(q − 1− x) + q]RH,x
u3,w3

(q) +

q[(q − 1)2(q − 1− x) + qA]RH,x
ru3,w3

(q)

= (q − 1)(q − 1− x)3RH,x
u3,w3

(q) + q[(q − 1)2(q − 1− x) + qA]RH,x
ru3,w3

(q)

where A =

{
(q − 1− x), if r ∈ DR(w2)

(q − 1), if r /∈ DR(w2)
and the last equation holds by Eq. (3.1).

If r · u3 6≤ w3, we are done. Let us show that r · u3 cannot be smaller than or equal to
w3 by contradiction. We would have r ≤ w3 (so r = p) and M would commute with ρr
on [e, w0(s, t)]: on the other hand, M(x) 6= xr for all x ∈ W{s,t} with `(x) 6= 0, 1,ms,t−
1,ms,t, since M is H-special and M(x · u3) cannot be xr · u3. By Lemma 4.3, these two
facts together would imply that M is a left multiplication matching on [e, w0(s, t)], and
M would be a left multiplication matching on [e, w], which is a contradiction.

Suppose `(w2)− `(u2) = 3. By Lemma 3.6

RH,x
u,w (q) = (q − 1)(q − 1− x)[(q − 1− x)RH,x

u3,w3
(q) + qRH,x

ru3,w3
(q)].

If M(u) � u, then we conclude by Lemma 3.6.
If u�M(u) /∈ WH , then

RH,x
u,M(w)(q) =

{
(q − 1− x)[(q − 1)RH,x

u3,w3
(q) + qRH,x

ru3,w3
(q)], if r ∈ DR(w2)

(q − 1)[(q − 1− x)RH,x
u3,w3

(q) + qRH,x
ru3,w3

(q)], if r /∈ DR(w2)

by Lemma 3.6. If r · u3 6≤ w3, we are done.
Let us show that r · u3 cannot be smaller than or equal to w3 by contradiction.
We would have r = p, and M would commute with ρr on [e, w0(s, t)] since r ·u3 ≤ w3

implies r ≤ w3: on the other hand, M(x) 6= xr for all x ∈ W{s,t} with `(x) 6= 0, 1,ms,t−
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1,ms,t, since M is H-special and M(x · u3) cannot be xr · u3. By Lemma 4.3, these two
facts together would imply that M is a left multiplication matching on [e, w0(s, t)] and
so M would be a left multiplication matching also on [e, w], which is impossible.

If u�M(u) ∈ WH , then

• M(u2) = l · u2, where l ∈ {s, t} \DL(u2) and l · u2 is not the longest element in
W{s,t} (if any),
• M(u2·r̄) = l·u2·r̄ sinceM isH-special (as otherwise we would haveM(u2·r̄·u3) =
l̄ · l · u2 · u3 ∈ WH , with u2 · r̄ · u3 /∈ WH).

Hence the only possibility is M(w2) = l̄ · l · u2 (recall M(w2) � w2) and w2 ∈ {l · l̄ · l ·
u2, l̄ · l · u2 · r̄}. But w2 = l · l̄ · l · u2 is not allowed since M would agree with λl on both
w and u, which is impossible. Thus w2 = l̄ · l · u2 · r̄ 6= l · l̄ · l · u2, and

(q − 1)RH,x
u2u3,M(w2)w3

(q) + qRH,x
M(u2)u3,M(w2)w3

(q)

is equal to

= (q − 1)RH,x

u2u3,l̄lu2w3
(q) + qRH,x

lu2u3,l̄lu2w3
(q)

= (q − 1)(q − 1− x)[(q − 1)RH,x
u3,w3

(q) + qRH,x
ru3,w3

(q)] + q(q − 1)RH,x
u3,w3

(q)

= (q − 1)[(q − 1)(q − 1− x) + q]RH,x
u3,w3

(q) + q(q − 1)(q − 1− x)RH,x
ru3,w3

(q)

= (q − 1)(q − 1− x)2RH,x
u3,w3

(q) + q(q − 1)(q − 1− x)RH,x
ru3,w3

(q)

by Lemma 3.6 and Eq. (3.1), as desired.

Suppose `(w2)− `(u2) = 2.
If M(u) � u, then M(u2) = lu2 with l ∈ DL(u2) (since M is H-special), M(M(u2) ·

r̄) = l · M(u2) · r̄ = u2 · r̄, M(w2) = M(u2) · r̄ · r, and w2 cannot be l · l̄ · u2 since
otherwise M and λl would agree on both w and u. Thus w2 = l̄ · u2 · r̄ 6= l · l̄ · u2,
and w2 = M ◦ ρr(M(u2) · r̄) 6= ρr ◦ M(M(u2) · r̄), which implies r 6≤ w3: hence

RH,x
u,w (q) = RH,x

M(u),M(w)(q) since they are both equal to

(q − 1)(q − 1− x)RH,x
u3,w3

(q)

by Lemma 3.6.
If u�M(u) /∈ WH , then M(u2) = u2 · r̄, w2 ∈ {l · u2 · r̄, l̄ · l · u2}, and M(w2) = l · u2,

where l ∈ {s, t} \DL(u2) if u2 6= e and l = r if u2 = e. We have

RH,x
u,M(w)(q) = RH,x

u2u3,lu2w3
(q) = (q − 1)RH,x

u2u3,u2w3
(q) + qRH,x

lu2u3,u2w3
(q)

= (q − 1)RH,x
u3,w3

(q) + qRH,x
lu2u3,u2w3

(q)

where the last term is 0 unless u2 = e (and so l = r) and r · u3 ≤ w3 (so r = p).
If {x ∈ {s, t} : x ≤ w3} is either empty or {r̄}, we conclude by Lemma 3.6. If
{x ∈ {s, t} : x ≤ w3} = {r}, then M must commute with ρr on [e, w0(s, t)]: this implies
u2 = e (since ρr ◦M(u2) = u2 · r̄ · r while ρr(y)� y for all y ∈ (WH ∩W{s,t}) \ {e}), and
w2 = r̄ · r · u2 = r̄ · r (since r̄ · r must be the element of length 2 in W{s,t} covering its
matched element as otherwise ρr ◦M(e) could not be equal to M ◦ρr(e)). The assertion
then follows.
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If u�M(u) ∈ WH , then M(u2) = l ·u2 with l ∈ {s, t} \DL(u2) (and l = r if u2 = e),
and M(w2) = u2 · r̄. Moreover, w2 6= l · u2 · r̄ (as otherwise M and λl would agree on
both w and u). Hence w2 should be equal to l̄ · l · u2 but also this is not possible since
the element w2 · u3 = l̄ · l · u2 · u3 ∈ WH (which belongs to [e, w] since u3 ≤ w3) would
be matched with u2 · r̄ · u3 /∈ WH , and this contradicts the definition of H-special.

Suppose `(w2)− `(u2) = 1.
If M(u)�u, then M(u2) = lu2 with l ∈ DL(u2) (since M is H-special), and M(w2) =

(lu2) · r̄. Now w2 ∈ {l̄ · u2, u2 · r̄}, but actually both possibilities are not permitted. On
one hand, w2 cannot be u2 · r̄, since otherwise M and λl would agree on both u and w.
On the other hand, w2 6= l̄ ·u2 since otherwise l̄ ·u2 ·u3 �M(l̄ ·u2 ·u3) = M(l̄ ·u2) ·u3 =
lu2 · r̄ · u3 /∈ WH , with l̄u2 · u3 ∈ WH , which is impossible since M is H-special.

If u�M(u), then M(u2) = w2 since M is a special matching. The element w2 cannot
be l ·u2, with l /∈ DL(u), since otherwise M and λl would agree on both u and w. Thus
w2 = u2 · r̄ and

RH,x
u,w (q) = (q − 1− x)RH,x

u3,w3
(q)

by Lemma 3.6: on the other hand, M(u) = w2 · u3 = u2 · r̄ · u3 /∈ WH and

RH,x
u,M(w)(q) = RH,x

u2u3,u2w3
(q) = RH,x

u3,w3
(q),

and the assertion follows.

Suppose `(w2)− `(u2) = 0.
If u2 = w2, then the result is clear. Otherwise r ≤ w3 and M commutes with ρr: we

have (M(w2),M(u2)) = (lw2, lu2), with l ∈ DL(w2) \ DL(u2), and hence M coincides
with λl on both u and w, which is a contradiction.

Suppose `(w2)− `(u2) = −1.
Necessarily u2 = w2 · r = w0(s, t) and Lemma 2.6 implies M(u2) � u2. Clearly, we

also have M(w2) � w2. Hence RH,x
u,w (q) and RH,x

M(u),M(w)(q) coincide, since they are both

equal to RH,x
ru3,w3

(q) by Lemma 3.6.

The proof is completed. �

We illustrate Theorems 1.3, 1.4, and 1.5 with an example. Let W be the Coxeter
group of type A3 with Coxeter generators s1, s2 and s3 numbered as usual (i.e. ms1,s2) =
ms2,s3 = 3 and ms1,s3 = 2). Let H = {s2}, w = s1s2s3s1 ∈ WH , and u = s1 ∈ WH .

Suppose that we want to compute RH,x
u,w (q) but we only know the isomorphism class

of the poset [e, w] and which elements of [e, w] belong to WH and which do not. In
other words, we know the pieces of information that we can detect from Figure 1, where
the elements represented by full (respectively, empty) bullets belong to (respectively,
do not belong to) WH .

In order to compute RH,x
u,w (q) using Theorem 1.5, we need an H-special matching M

of w. There are 3 of them: we choose, for instance, the dashed H-special matching
depicted in the first picture in Figure 2. Hence

RH,x
u,w (q) = (q − 1− x)RH,x

u,M(w)(q).
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e

u

w

Figure 1. The Hasse diagram of [e, w] and how [e, w]H embeds in [e, w].

Now we need an H-special matching N of M(w), and we choose the dashed H-special
matching depicted in the second picture in Figure 2. Hence

RH,x
u,M(w)(q) = qRH,x

N(u),NM(w)(q) + (q − 1)RH,x
u,NM(w)(q) = (q − 1)RH,x

u,NM(w)(q).

Finally, we need an H-special matching of NM(w), and we choose the dashed H-
special matching depicted in the third picture in Figure 2. Hence

RH,x
u,NM(w)(q) = qRH,x

O(u),ONM(w)(q) + (q − 1)RH,x
u,ONM(w)(q) = (q − 1)RH,x

u,ONM(w)(q).

Since u = ONM(w) we have RH,x
u,ONM(w)(q) = 1, and the computation yields

RH,x
u,w (q) = (q − 1− x)(q − 1)2.

Figure 2. H-special matchings.
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of the relative Möbius function, Invent. Math. 39 (1977), 187-198.

[11] V. Deodhar, On some geometric aspects of Bruhat orderings. II. The parabolic analogue of
Kazhdan–Lusztig polynomials, J. Algebra 111 (1987), 483-506.

[12] F. Du Cloux, Rigidity of Schubert closures and invariance of Kazhdan-Lusztig polynomials, Ad-
vances in Math. 180 (2003), 146-175.

[13] M. J. Dyer, Hecke algebras and reflections in Coxeter groups, Ph. D. Thesis, University of Sydney,
1987.

[14] M. Dyer, On the Bruhat graph of a Coxeter system, Compositio Math. 78 (1991), 185-191.
[15] B. Elias, G. Williamson, The Hodge theory of Soergel bimodules, Ann. Math. 180 (2014), 1089-

1136.
[16] A. van den Hombergh, About the automorphisms of the Bruhat-ordering in a Coxeter group, Indag.

Math. 36 (1974), 125-131.
[17] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Math-

ematics, no.29, Cambridge Univ. Press, Cambridge, 1990.
[18] M. Kashiwara, T. Tanisaki, Parabolic Kazhdan–Lusztig polynomials and Schubert varieties, J.

Algebra 249 (2002), 306-325.
[19] D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53

(1979), 165-184.
[20] D. Kazhdan, G. Lusztig, Schubert varieties and Poincaré duality, Geometry of the Laplace op-
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