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Abstract 19 

Accrual of carbon (C) in soil is a significant and realizable management option to mitigate 20 

the relentless increase in atmospheric CO2. A clear understanding of the mechanisms 21 

controlling the persistence of carbon (C) and nitrogen (N) in soil organic matter (SOM), 22 

and how they differ across different ecosystems, has never been more needed. Soil 23 

organic C accrual requires nitrogen (N); thus understanding of N distribution in soil is 24 

equally important. Here we investigated SOM distribution between physical and chemical 25 

stabilized fractions in soils from a variety of ecosystems (i.e., coniferous and broadleaved 26 

forest soils, grassland soils, technosols and agricultural soils). Using elemental and 27 

thermal analyses, we examined changes in the quantity and quality of physically-28 

fractionated SOM pools characterized by different mechanisms of protection from 29 

decomposition. Independently of ecosystem type, the majoritymost of the organic C and 30 

total N were found in the mineral-associated SOM pool, known to be protected mainly 31 

by chemical mechanisms. Indexes of thermal stability and C/N ratio of this heavy SOM 32 

fraction were lower (especially in agricultural soils) compared to light SOM fractions 33 

found free or occluded in aggregates, and suggested a marked presence of inherently 34 

labile compounds. Our results confirm that the association of labile organic molecules 35 

with soil minerals is a major stabilization mechanism of SOM, and demonstrate that this 36 

is a generalizable finding occurring across different mineral soils and ecosystems. 37 

 38 

Keywords: soil organic matter; soil N; physical fractionation; C sequestration; TGA; 39 

technosols40 
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Introduction 41 

Soils represent the largest terrestrial organic carbon (C) reservoir (Jobbágy and Jackson, 42 

2000) with the potential to accrue enough additional C to halt the relentless increase in 43 

atmospheric CO2, as proposed by the recently lounged 4 per mill initiative (Chabbi et al., 44 

2017). Achieving this challenging objective requires a clear and generalizable 45 

understanding, across different soils and ecosystem types, of the mechanisms responsible 46 

for the buildup and persistence of soil organic matter (SOM). 47 

The notion of recalcitrance as a key factor controlling SOM stability has been 48 

questioned during the last decades. More specifically, biochemical recalcitrance, an 49 

inherent molecular property of resistance to decomposition, has been usually associated 50 

with humified SOM or complex aromatic structures, such as lignin, cutin and pyrogenic 51 

organic matter (Stevenson, 1994: Sollins et al., 1996; Krull et al., 2003). However, recent 52 

works presented evidence against this concept, and stressed the importance of physical 53 

protection and mineral association as one of the most significant mechanisms responsible 54 

for SOM persistence on the long term in mineral soils (Kögel-Knabner et al., 2008; 55 

Marschner et al., 2008; Kleber, 2010; Schmidt et al., 2011; Dungait et al., 2012; Lehmann 56 

and Kleber, 2015). Thus, SOM in particulate form, such as the light fraction (LF), is 57 

generally prone to fast decomposition unless physically protected in soil aggregates. 58 

Aggregates are composite secondary SOM structures (Christensen, 2001) and therefore 59 

are not clearly distinguished by turnover times (Poeplau et al. submitted). Yet the organic 60 

matter protected within aggregates, and in particular within micro-aggregates (<250 µm), 61 

is considered among the most persistent form of SOM (Six et al., 2000), a. Although the 62 

longest turnover times are assigned to heavy, fine organic matter associated with minerals 63 

(von Lutzow et al., 2006; Poeplau et al., submitted). 64 

Microbial biomass is considered to be turned over much faster than plant residues 65 
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(Kästner 2000), thus suggesting that the molecular imprint of SOM by molecules and 66 

fragments derived from microbial biomass is probably much more important than 67 

previously considered (Miltner et al. 2012). When microorganisms degrade plant 68 

residues, they use low-molecular-weight compounds from the plant biomass to build their 69 

own biomass, and the majority of this material is then incorporated into non-living SOM 70 

(Kindler et al. 2006; Miltner et al. 2012, and ref. therein). Cotrufo et al. (2013) 71 

hypothesized that labile plant constituents are the main source of microbial by-products, 72 

and these in turn are the main precursors of SOM stabilized by the soil matrix, through 73 

the formation of physically or chemically realized organo-mineral associations (Vogel et 74 

al., 2014). For example, McGill and Paul (1976) and Turchenek and Oades (1979) 75 

observed that microbial cell wall materials were a major component of SOM accumulated 76 

in the coarse clay fraction, while Ladd et al. (1996, and ref. therein) reported that clay-77 

size fractions were enriched of organic nitrogen (N) of microbial origin. Moreover, 78 

particle size fractionation after ultrasonic dispersion and subsequent dating showed young 79 

radiocarbon ages of the fine clay-associated organic C, indicating that this organic C was 80 

more active than that associated with the coarse clay (Anderson and Paul, 1984). 81 

Several other studies have suggested that thermally labile, microbial derived 82 

materials and easily metabolizable compounds (e.g., carbohydrates and amino acids) are 83 

dominant in the mineral-associated organic matter (MAOM) pool, whereas the LF free 84 

(LF_free) or occluded within macro- (LF_M) and especially micro-aggregates (LF_m) 85 

are believed to be mainly of plant origin and characterized by an increasing degree of 86 

persistence (Kleber et al., 2011; Hatton et al., 2012; Keiluweit et al., 2012; Plaza et al., 87 

2013, 2016). Given its chemical nature, the MAOM pool is also the richest in N among 88 

SOM pools, i.e., with the lowest C/N (Christensen, 2001), pointing to the need of a better 89 

understanding of N distribution in the soil. In fact, despite the importance of N 90 
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sequestration to ecosystem functioning, to date there has not been a comprehensive 91 

examination of the implications of SOM stabilization in ecologically meaningful fractions 92 

for long-term N sequestration in different soils and ecosystems (Bingham and Cotrufo, 93 

2016). 94 

Soil C stock and sink capacity were recently described as “ecosystem properties” 95 

(Schmidt et al., 2011), sharply affected by several factors including land use (e.g., 96 

undisturbed versus agricultural soils subjected to aggressive human imprints) (Amundson 97 

et al., 2015). Besides climate, vVegetation and parent material are main drivers of soil 98 

formation (Jenny, 1941), and their role in SOM stocks and persistence has been 99 

investigated in different ecosystems, spanning from spruce and deciduous forests to 100 

grasses and arable soils (Guggenberger et al., 1994, 1995; Leifeld and Kögel-Knabner, 101 

2005; Simpson et al., 2007; Clemente et al., 2011; Wieismeier et al., 2012; Denef et al., 102 

2013; Catoni et al., 2016). Despite all these research efforts, an accurate assessment of 103 

soil organic C and total N distribution across pools with different mechanisms of physical 104 

and chemical protection is still needed to improve our knowledge of the response of soil 105 

properties, including C stocks, to land management and/or changes in land use and cover 106 

(Guo and Gifford, 2002; Wieismeier et al., 2012; Wei et al., 2017). This would help better 107 

understand if SOM persistence, and therefore the distribution among fractions, is an 108 

ecosystem property rather than the main common denominator across different soils and 109 

ecosystems. In addition, technosols, i.e. man-made soils, are widely distributed 110 

throughout the world as they are found where human activity has led to the construction 111 

of artificial soils, sealing of natural soil, or extraction of material normally not affected 112 

by surface processes (e.g., mines, dumps, oil spills, earth movements, coal fly ash 113 

deposits) (IUSS Working Group WRB, 2006). Many technosols, in particular those in 114 

dumps, are originated covering man-made substrate with a layer of natural soil in order 115 
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to permit revegetation. Although technosols have been recently included in soil 116 

classifications, often associated with other soil groups in a complex pattern, here they are 117 

considered as a “modern form” of soil in anthropogenic ecosystems. Only few attempts 118 

to understand SOM stabilization dynamics in technosols are reported in literature 119 

(Chaudhuri et al., 2013; Rodríguez-Vila et al., 2016; Moreno-Barriga et al., 2017), 120 

pointing to the need of including them when contrasting different ecosystems, for a 121 

generalizable understanding of the characteristic of SOM pools protected by different 122 

mechanisms of stabilization. 123 

In this study, we measured: (1) the organic C and total N contents of bulk soils under 124 

five different ecosystems, including coniferous and broadleaved forests, grasslands, 125 

technosols in anthropogenic systems and agroecosystems; and (2) their distribution in 126 

ecologically meaningful SOM fractions, namely: a light fraction (LF < 1.85 g cm-3), found 127 

free or occluded in macro- (2000-250 µm), and micro-aggregates (>250 µm), thus 128 

stabilized by either inherent recalcitrance and/or an increasing strength of physical 129 

protection, and the heavy (> 1.85 g cm-3) MAOM fraction, mostly stabilized by chemical 130 

association to minerals. The main objectives of this work were to: (a) elucidate SOM 131 

distribution among primary fractions characterized by different mechanisms of 132 

protection, in a variety of soils from different ecosystems; and (b) investigate if the 133 

thermal fingerprint of SOM fractions (possibly mirroring their “inherent recalcitrance”) 134 

is an ecosystem property or can be generalized across different soils and ecosystems. 135 

Finally, including technosols in this study would improve our understanding of the kind 136 

and rate of stabilization mechanisms taking place during the initial phases of pedogenetic 137 

processes (Zaccone et al., 2014), being technosols young soils that develop in technogenic 138 

man-made parent materials. 139 

 140 
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 141 

Materials and methods 142 

Study sites and soil sampling 143 

Five ecosystem types, known to have contrasting climatic and edaphic conditions, were 144 

considered in this study. To achieve a broad range of soils, we collected samples from 4 145 

to 5 different sites for each of the five ecosystem types (Table 1). Five coniferous forests 146 

(CF), five broadleaved forests (BF), five grassland soils (GL) and five technosols (TS) 147 

were sampled between May and June 2016 in different sites of the Marche Region (Italy). 148 

The coniferous forests consisted mainly of Pinus nigra woodlands occurring between 350 149 

and 1400 m a.s.l., the broadleaved forests woodlands in stands of different species (e.g., 150 

Fagus sylvatica, Orno-Ostrya carpinifoliaetum associations with, Quercus pubescens) 151 

growing between 320 and 1300 m a.s.l., the grassland soils in meadows and pastures 152 

characterized by meso- to xerophilous species (e.g., Bromus erectus) and Medicago sativa 153 

and developing between 890 and 1700 m a.s.l.. The technosols included two open-pit 154 

mines, filled and then reclaimed with Helianthus annuus (since 2010) and with Triticum 155 

(since 2000), respectively, two dumps, reclaimed in 2000 and in 2011, respectively, and 156 

a site of disposal of compost and other non-hazardous waste materials (all TS sites <300 157 

m a.s.l.). Mean annual temperature of sampling sites ranged from 7.3 and 15.0 °C, 158 

whereas mean annual precipitation ranged between 810 and 1570 mm. Four agricultural 159 

soils (AG) cropped with barley and collected in Arganda del Rey (Madrid, Spain) were 160 

also included in this study; t. These soils were located at 530 m a.s.l. and characterized 161 

by a mean annual precipitation of about 440 mm and a mean annual temperature of 14 ºC 162 

(Plaza et al., 2016). More details about the sampling sites are reported in Table 1. 163 

At each location, 3 to 10 soil samples were collected randomly from several points, 164 

depending on site surface and homogeneity separated 50 to 100 cm apart, using a soil 165 
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auger and mixed to obtain a composite sample. The depth of sampling varied from 10 to 166 

25 cm, and corresponded to the top soil horizon (Table 1). 167 

 168 

Bulk soil characterization 169 

Prior to analysis, soil samples were gently crushed and passed through a 2-mm sieve. Soil 170 

reaction (pH units) was measured on suspensions of 1:2.5 sample:water and sample:KCl 171 

(1M) (Thomas 1996), whereas electrical conductivity (EC) was measured on water 172 

extracts obtained at a sample-to-water ratio of 1:5 (RoadesSparks, 1996). All soils were 173 

also analyzed for texture by the pipette method, whereas C and N elemental composition 174 

was determined as described in section below. Soil properties averaged by ecosystem type 175 

are reported in Table 2. 176 

 177 

Physical fractionation of SOM 178 

The physical fractionation of SOM was carried out using the method described by Plaza 179 

et al. (2012) with modifications detailed by Plaza et al. (2013), with the aim to separate 180 

the heavy MAOM fraction from the light particulater organic matter (LF) fraction, and 181 

distinguish the latter into free LF and LF occluded in aggregates of different sizes. 182 

Specifically, we separated four fractions: (a) free LF, located between aggregates 183 

(unprotected C pool; LF_free); (b) LF occluded within macroaggregates (SOM pool 184 

weakly protected by physical mechanisms; LF_M); (c) LF occluded within 185 

microaggregates (SOM pool strongly protected by physical mechanisms; LF_m); and (d) 186 

a heavy SOM pool associated with the minerals (highly persistent mostly chemically-187 

protected; MAOM). This method is based on the densimetric procedure by Golchin et al. 188 

(1994) and Sohi et al. (2001) for the fractionation of free and occluded LF, and on the 189 

method by Six et al. (2000, 2002) for the breakup of macroaggregates preserving 190 
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microaggregates. First, 148 g of NaI at a density of 1.85 g mL-1 werewas added to 10 g 191 

of 2-mm sieved, air-dried soil in a 100-mL polycarbonate centrifuge tube. Free LF was 192 

separated from the heavy fraction by density flotation in the NaI solution and subsequent 193 

suction, filtration through a glass fiber filter and scrupulous washings with deionized 194 

water. Macroaggregates remaining in the heavy fraction were broken up, using the 195 

microaggregate isolator device designed by Six et al. (2000, 2002), into stable 196 

microaggregates, MAOM and LF_M, which was collected after a second density 197 

separation. Another density separation after an ultrasonic disruption at an energy input of 198 

1500 J g-1 allowed the LF_m isolation from the MAOM. The recovered LF_free, LF_M, 199 

LF_m and MAOM fractions were oven-dried at 60ºC, weighed and ground with a ball 200 

mill for further analyses. 201 

 202 

Organic C and total N analysis 203 

Organic C and total N contents of both bulk soil samples and SOM fractions were 204 

determined by dry combustion using a Thermo Flash 2000 NC Soil Analyzer. For organic 205 

C determination, the whole soil samples and mineral-associated SOM fractions were 206 

subject to acid fumigation before analysis to remove carbonates (Harris et al., 2001). All 207 

analyses were carried out in triplicate. 208 

 209 

Thermogravimetric analysis 210 

Thermogravimetric analysis (TGA) was carried out on all SOM fractions using a Perkin 211 

Elmer Thermogravimetric Analyzer TGA 4000. An aliquot (ca. 20 mg) of each sample 212 

was placed in a ceramic crucible and heated from 30 to 850 °C at 20 °C min-1 under an 213 

oxidizing atmosphere of air at a flow rate of 30 mL min-1. Two indexes of overall thermal 214 

stability were calculated: T50 (°C), representing the temperature at which 50% of the SOM 215 
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mass is lost, and the thermal stability index (H), here defined as the ratio between the 216 

weight losses within 400-550 °C and 250-400 °C temperature ranges. These thermal 217 

indexes are reported on a moisture- and ash-free basis. 218 

 219 

Data analysis 220 

Data were analyzed with the Kruskal-Wallis testsubjected to one-way analysis of variance 221 

(ANOVA), with ecosystem type or SOM fraction as factors. The Dunn’sTukey’s honest 222 

significant difference (HSD) test at the 0.05 level was used for multiple mean comparison. 223 

All statistical analyses were performed using R, version 3.4.1 (R Core Team, 2017) and 224 

the R package agricolae, version 1.2.8 (De Mendiburu, 2017). 225 

 226 

 227 

Results and discussion 228 

Organic C and total N concentrations in soils 229 

Organic C and total N contents of the soils examined soils span a broad range, as expected 230 

(Table 2). Grassland soils show the highest average values for both organic C (86 g kg-1) 231 

and total N (9 g kg-1), whereas the lowest are found in AG (11.8 g C kg-1 and 1.1 g N kg-232 

1) (Table 2). In particular, both the organic C and total N average contents follow the 233 

orderrank as GL > CF > BF > TS > AG (Table 2), thus mirroring the link between organic 234 

C and total N dynamics. As a result, C/N across land uses vary in the order CF > BF ~ 235 

AG > GL ~ TS (Table 2). 236 

The conversion of grassland or forest soils to agricultural soils is well-known to cause 237 

reductions of SOM contents, due to decreased inputs of plant-derived materials and 238 

increased decomposition rates through tillage (Matson et al., 1997; Post and Kwon, 2000). 239 

Wieismeier et al. (2012) reported that grassland and forest ecosystems showed ca. 40% 240 
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higher SOC content compared to croplands depending on soil properties. Some studies 241 

have found that SOM tends to increases with as the clay content increases (e.g., Magdoff 242 

and Weil, 2004). However, in our work, neither organic C nor total N are significantly 243 

correlated with clay or clay + silt contents. 244 

 245 

Organic C and total N distribution 246 

Independently of ecosystem, most soil organic C is accumulated in the MAOM fraction, 247 

with average concentrations ranging from 6.1 g kg-1 in AG up to 49.3 g kg-1 in GL (Table 248 

3). In particular, the proportion percentage of organic C accumulated in MAOM ranges 249 

between 44% for CF and 64% for TS, although these values are not significantly different 250 

from each other (Table 3). This finding suggests that different ecosystems, and thus SOM 251 

inputs, do not significantly affect this pool. Nonetheless, it is particular noteworthy that 252 

TS exhibit the highest percentage of organic C in the MAOM fraction (Tables 3), in spite 253 

of their low SOM contents (Table 2). 254 

The second most abundant organic C pool is LF_free, with mean concentration values 255 

ranging from 1.8 g kg-1 in AG up to 26.2 g kg-1 in GL (Table 3). The LF occluded in 256 

macro- (LF_M) and micro-aggregates (LF_m) represent comparatively minor soil C 257 

pools, with no significant differences between them. The highest proportion percentage 258 

of C stabilized in LF_free is found in CF (38%), followed by GL (30%), BF (25%), TS 259 

(19%) and AG (16%) (Table 3). An opposite trend is observed for the LF_M and LF_m 260 

fractions, where the relatively highest C accumulation in LF_M and LF_m is found in 261 

AG (8.8% and 9.0%, respectively) and TS (8.2% and 11.5%, respectively) (Table 3). 262 

Total N relative distribution among SOM fractions also follows the trend MAOM > 263 

LF_free ≥ LF_m ~ LF_M (Table 3). In particular, up to 5.3 and 2.1 g N kg-1 of soil are 264 

found in the MAOM and LF_free pools of GL, respectively, whereas contents detected 265 
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in the LF_M and LF_m fractions are much lower (always ≤0.2 g kg-1). As for organic C, 266 

no significant differences among ecosystem types are found for the percentage of N 267 

stabilized in the MAOM (58% in CF to 69% in AG) and LF_free pools (9% in AG to 268 

23% in GL). On the opposite, significant differences among land uses are observed in the 269 

LF_M and LF_m fractions, with relatively highest N accumulation in LF_M and LF_m 270 

found in AG (6% and 7%, respectively) and TS (4% and 8%, respectively) (Table 3). 271 

Plant litter decomposability is thought to strongly affect the accumulation of organic 272 

matter in soils within different ecosystems. According to Castellano et al. (2015), 273 

recalcitrant C compounds, characteristic of coniferous needles, may confer to litter a low 274 

decomposition rate and microbial use efficiency (Kooch et al., 2012; Cotrufo et al., 2013), 275 

leading to a relatively higher C accumulation in LF_free. We thus hypothesized a 276 

different distribution of organic C and total N among SOM pools under forests and 277 

grasses as compared to the more heavily managed agricultural soils and technosols, due 278 

to different mineralization rates of surface litter and roots. In agricultural soils and 279 

especially in technosols, an increased aggregate disruption and aeration might have been 280 

expected to lead to SOM accumulation mainly in MAOM. As a whole, however, our 281 

results indicate that, although soils under different ecosystems exhibit markedly different 282 

total organic C and N contents, the relative distribution of organic C and total N among 283 

SOM pools is pretty consistent, in spite of their different vulnerability to anthropogenic 284 

management. 285 

 286 

C/N ratio of SOM fractions 287 

Organic matter in bulk soils shows C/N ratios ranging from 9 in TS to 14 in CF (Table 288 

2). The C/N ratios of all the fractions are significantly higher for CF that for the other 289 

ecosystems (Table 4), consistently with the relatively lower decomposition degree of 290 
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SOM in CF compared to the other ecosystems (Castellano et al., 2015). On the opposite, 291 

AG soils generally show the lowest C/N ratios for all fractions, with the exception of 292 

LF_free (Table 4). 293 

For all ecosystems, the C/N ratio of the MAOM pool is significantly lower than those 294 

of the other fractions (Table 4). A number of studies have reported a decrease in the C/N 295 

ratio from coarse to fine fractions suggesting both an increase of the decomposition 296 

degree of the SOM and a relative accumulation of microbial-derived materials (Kiem et 297 

al., 2002; Chen et al., 2014). Thus, the low C/N ratio of MAOM fractions is probably 298 

indicative of a depletion in lignin and plant-derived components and of an enrichment in 299 

materials of prevailing microbial origin (Paul and Clark, 1989; Golchin et al., 1994; 300 

Guggenberger et al., 1995; Kögel-Knabner et al., 2008; Cotrufo et al., 2013; Courtier-301 

Murias et al., 2013; Plaza et al., 2013, 2016). In a parallel work, Zaccone et al. (submitted) 302 

reported the MAOM fraction to be characterized by high total DNA contents and very low 303 

C/N ratios at the same time. According to the Microbial Efficiency Mineral Stabilization 304 

(MEMS) framework, high quality N litter may lead to greater accumulation of microbial 305 

products and concomitant formation of MAOM in soils with a high soil matrix capacity 306 

(Cotrufo et al., 2013). Moreno-Barriga et al. (2017), studying the evolution of C and N 307 

pools following the addition of different materials to mine tailings, concluded that easily-308 

available organic compounds triggered microbial growth during the first days of 309 

incubation and enhanced the formation of aggregates. This phenomenon probably 310 

occurred in TS, mirroring the early stage of pedogenic evolution, and suggested that 311 

aggregate stability may increase following a decrease of labile C forms, being then either 312 

used as fuel by microorganisms or stabilized by association with mineral particles. The 313 

accumulation of organic C and total N in the MAOM fraction confirms that these pools 314 

are less susceptible to further mineralization and offer a longer-term storage (Courtier-315 
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Murias et al., 2013). 316 

The low C/N of MAOM recorded for all the land uses is also consistent with the 317 

adsorption of nitrogenous compounds (e.g., amino acids, amino sugars, proteins, cell wall 318 

constituents), possibly of microbial origin (Stevenson 1994; Ladd et al. 1996; Knicker, 319 

2004; Sollins et al., 2006; Nannipieri and Paul, 2009), possibly of microbial origin, onto 320 

mineral surfaces.  321 

In fact, clay strongly affects stabilization of organic N directly (Ladd et al. 1996; 322 

Nielsen et al. 2006; Sollins et al. 2006) and through the formation of aggregate-protected 323 

particulate and non-particulate organic matter (e.g., Yoo and Wander 2008), although 324 

most of these studies have been carried out in vitro using purified clay particles and 325 

purified proteins (Nannipieri and Paul 2009). By means of a 14-month laboratory 326 

incubation of a sandy loam soil amended with 15N-clover, DiCosty et al. (2003) showed 327 

that both in whole soil and particle-size fractions, the clover-derived N was always 85–328 

90% amide. Simpson et al. (2007) estimated that 88%, 86% and 82% of organic N in the 329 

soil humic fractions from grasses, mixed-aspen dominated forests and pine forests 330 

respectively was of microbial origin, in the form of amide in peptides and proteins. On 331 

the opposite, according to Rasmussen et al. (2005), the high C/N ratio found in LF_free 332 

and occluded LF fractions suggests a relatively high occurrence of slightly-to-partially 333 

decomposed plant materials in these fractions. 334 

 335 

Thermal stability of SOM pools 336 

Being the thermal stability of any material related to its chemistry and surface properties, 337 

the thermal stability of SOM may serve as a proxy for biogeochemical stability and 338 

provide insight about the energy of interaction between SOM and soil minerals (Plante et 339 

al. 2009). At the same time, thermal analysis does not provide information at molecular 340 
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level, and is affected by several operational parameters, including arrangement and type 341 

of sample holder, packing density and grain size of sample, heating rate, initial sample 342 

mass, crucible material, and furnace atmosphere (Plante et al. 2009 and ref. therein). 343 

Thermogravimetric (TG) curves of all SOM fractions generally show two main steps 344 

of weight loss in the range of temperature 100-550 °C. The first, between 250 and -350 345 

°C, is associated with more easily oxidizable compounds, including polysaccharides (e.g., 346 

cellulosic material) and aliphatic structures (Plante et al., 2009). The second, between 347 

350- and 550 °C, due to the thermal degradation of recalcitrant, aromatic structures 348 

including lignin and non-hydrolyzable compounds (Schnitzer and Hoffman, 1966; Lopez-349 

Capel et al., 2005) (Fig. 1). The ratio between these two weight losses, here defined as H, 350 

as well as the T50 value, i.e. the temperature at which 50% of the SOM mass is lost, are 351 

thus generally used to describe the SOM stability and/or recalcitrance (e.g., Rovira and 352 

Vallejo, 2000). In fact, within each fraction, the H and T50 values found are significantly 353 

correlated to each other (R=0.666-0.981, p≤0.001, n=24), independently of the land use. 354 

Differences in H and T50 among pools in CF, BF and GL soils are not statistically 355 

significant, while TS and AG the LF_free and MAOM fractions showed lower values of 356 

both thermal indexes compared to LF_M and LF_m (Table 4), being these latter fractions 357 

the result of residual plant material depleted in labile compounds. Technosols generally 358 

show the highest values of both H and T50 in all SOM fractions (Table 4). Moreover, TS 359 

is the only soil group in which a significant correlation was found between C/N ratios and 360 

both H (R=0.463, p=0.040, n=20) and T50 (R=0.630, p=0.003, n=20). 361 

When the weight loss (%) between 150 and -250 °C is considered (Fig. 2), the 362 

occurrence of more labile molecules in the MAOM fraction becomes evident, in 363 

accordance with the low C/N ratios characterizing this pool. In fact, the percentage of 364 

weight loss in the MAOM fraction is always higher than in the other fractions (Fig. 2). 365 
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The interaction of labile molecules (e.g., sugars, amino acids, proteins) with mineral 366 

surfaces has been reported to be a key mechanism for the long-term stabilization of 367 

organic C (Lynch and Cotnoir, 1956; Baldock and Skjemstad, 2000; Kiem and Kögel-368 

Knabner, 2003), allowing low molecular weight metabolic compounds to be stored in 369 

relatively “passive” pools for up to millennia (Paustian et al., 1992). For example, 370 

Schulten and Leinweber (1999), analyzing the Ah horizon of a Gleysol, found pyrolysis-371 

field ionization mass spectra and thermograms of the light SOM fraction (< 2.0 g cm-3) 372 

to be similar to those of primary plant materials while the corresponding heavy fraction 373 

(> 2.0 g cm-3) characterized by larger abundances of carbohydrates, lignin decomposition 374 

products, N-containing compounds and peptides. 375 

Finally, the comparatively small variation in both H and T50 values characterizing the 376 

MAOM fraction (<16% and <3%, respectively) regardless of the ecosystem from each it 377 

is derived (Table 4) are indicative of new molecules resulting from a common microbial 378 

transformation process rather than highly degraded litter inputs. This finding is in 379 

agreement with Kallenbach et al. (2016) who provided evidences about the influence of 380 

substrate–microbe interactions on the synthesis of novel SOM constituents that become 381 

stabilized by clay minerals. 382 

 383 

 384 

Conclusions 385 

We provide evidence that physical fractionation coupled with thermal analysis and C/N 386 

ratios allow obtaining new insights about SOM sequestration in mineral soils across 387 

different ecosystems. We found that MAOM, followed by the LF_free fraction, represents 388 

the major pool of both organic C (44-64% of the whole SOC stock) and total N (58-70% 389 

of the whole N stock) independently of ecosystem type. The lowest C/N ratios and the 390 
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highest percentage of weight loss recorded between 150-250 °C, both characterizing the 391 

MAOM fraction, indicate that this pool is comparatively richer in labile compounds. At 392 

the same time, the very small variability observed for these proxies (H, T50 and C/N), 393 

independently of land use and SOM inputs, is indicative of new molecules resulting from 394 

a common microbial transformation process. Technosols store two-third of the whole 395 

organic C and TN in the MAOM fraction, and show the highest values of both H and T50 396 

in all SOM fractions. Moreover, the significant correlation found between C/N ratio and 397 

both H and T50 exclusively in TS underlines how, in this young, man-made soils, 398 

mechanisms of SOM sequestration probably mirror processes taking place during the first 399 

phases of the pedogenetic processes. As a whole, different ecosystems may differ in terms 400 

of absolute SOM content among fractions; however, our results suggest a common 401 

mechanism of SOM dynamics, where plant input and their inherent recalcitrance control 402 

LF quality and distribution, while microbial by-products, largely independent of 403 

ecosystem type, govern SOM accumulation in the MAOM fraction. Further studies are 404 

needed to better understand not only the mechanisms of SOM stabilization at the 405 

molecular lever by state-of-the-art tools currently available, but also the implications of 406 

the molecular mechanisms at larger scales and the ecological functions of the different 407 

SOM pools in the environment. 408 

 409 
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Figure caption 648 

 649 

Figure 1. Thermogravimetric curves of free light fraction (LF_free), intra-650 

macroaggregate light fraction (LF_M), intra-microaggregate light fraction (LF_m) and 651 

mineral-associated organic matter fraction (MAOM) of a representative sample for each 652 

soil group (coniferous forest soils, CF; broadleaved forest soils, BF; grassland soils, GL; 653 

technosols, TS; agricultural soils, AG). 654 

 655 

Figure 2. Percentage of weight loss (mean ± st. dev.) occurring in the temperature range 656 

150-250 °C for each SOM fraction and within each ecosystem type (coniferous forest 657 

soils, CF; broadleaved forest soils, BF; grassland soils, GL; technosols, TS; agricultural 658 

soils, AG).  659 
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