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SUMMARY 

This paper deals with the seismic protection of building frames by means of external dissipative systems. Dampers and 

external framing system can be arranged in several configurations, involving different kinematic behaviours and seismic 

performances. This study analyses a recently-developed solution called "dissipative tower", which exploits the rocking motion 

of a steel braced frame, hinged at the foundation level, for activating the dampers. This system aims at controlling both the 

global response and the local storey deformation of the frame, by using a reduced number of viscous dampers. A state space 

formulation of the dynamic problem is presented in general terms, together with the solution of the seismic problem via the 

modal decomposition method. 

A parametric study is carried out to evaluate the influence of the added damping and of the braced frame stiffness on the 

modal properties and seismic response of a benchmark reinforced concrete frame retrofitted with the external dissipative 

towers. It is shown that the addition of the towers yields a regularization and reduction of the drift demand along the building 

height, but it may induce significant changes, not always beneficial, in the distribution of internal actions of the frame and in 

the absolute storey accelerations. 
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1 INTRODUCTION 

Passive damping systems have proven to be very efficient solutions for the seismic protection of new constructions and 

retrofitting of existing structures [1]-[4]. Dampers are traditionally installed within a building frame in either diagonal 

or chevron brace configurations connecting adjacent storeys. This type of damping system, whose effectiveness has 

been investigated in numerous studies (e.g. [5]-[11]), presents some disadvantages, particularly when employed for 

retrofitting existing buildings. Usually, the addition of dissipative diagonal in existing frames provides an increment of 

axial forces in the columns and this may lead to premature local failures, as observed numerically in the case of moment 

resisting frames equipped with nonlinear hysteretic dampers [12], [13] as well as with linear viscous dampers [14]. In 

order to avoid this, column strengthening may be required, in the case of existing frames [12], or application of specific 

capacity design rules, in the case of newly designed moment resisting frames [14]. Furthermore, there may be some 

feasibility limits on the strengthening of the existing foundations at the base of the bracing system. Also, the indirect 

costs related to the interruption of the building utilization during the installation of the retrofit system can be very high, 

particularly for strategic buildings, hospitals or schools. 

These problems could be solved efficiently by using external damper configurations, where the dissipative bracings and 

the relevant foundations are placed outside the construction [15]. External dampers and bracing components can be 

arranged in very different configurations and the possible solutions can be grouped into three main categories, 

characterized by substantially different kinematic behaviours, but all permitting the control of both the total amount of 

the dissipated energy and the frame deformation at the various storeys. In the first arrangement (Fig. 1 a), the dampers 

are placed horizontally at floor level, between the frame and an external stiff structure [16]-[18]. This way, the links are 

activated by the relative displacements between the frame and the external structure. A similar configuration can be 

obtained by placing the dampers between adjacent buildings, though this solution is efficient if the two buildings have 

strongly different dynamic properties [19]-[22]. An alternative arrangement consists in coupling the frame with an 

external shear deformable bracing structure (Fig. 1 b). The new and existing structures are connected at the storey level 

and the dissipative devices, incorporated in diagonal braces within the new structure, are activated by the relative 

displacements between adjacent floors, as in the more traditional case of dissipative braces placed within the existing 

structure [3]. A third arrangement, denoted as “dissipative tower” consists in external stiff bracings linked to the frame 
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at the storey level and connected at the foundations by a hinge (Fig. 1 c). The energy dissipation is provided by dampers 

placed at the external frame base and activated by its rocking motion. The high stiffness of the braced frame promotes a 

uniform distribution of the inter-storey drift of the protected frame. Recently, this system has been employed for the 

seismic design of new constructions and for retrofitting existing buildings [23], [24] and a patent covering a 

technological solution was registered [25]. A theoretical study [26], in the field of the stochastic dynamic, has compared 

the performance of this system with that of the system of Fig. 1 a). 

 
 

a) b) c) 
 

Fig. 1. Illustration of three categories of external dissipative systems: a) dampers placed horizontally at the storey level 

between the frame and an external stiff contrasting structure; b) dampers incorporated within a new shear deformable 

structure; c) pinned rocking bracing with dampers located at the base 

The rocking motion of structures has emerged in the last few years as an efficient way to reduce seismic damage [27]-

[29], and some studies have also investigated the coupling of existing frames with external rocking structures [30], [31]. 

It is noteworthy that in the literature the term “rocking” is used to describe various configurations, exhibiting different 

types of behaviour. In general, it is possible to distinguish between "stepping rocking" and "pinned rocking" [32], [33]. 

The first type of rocking denotes structures characterized by an alternation of pivot points, capable of recentering thanks 

to their self-weight, whereas the second denotes structures rotating about a hinge placed at the foundation level. For 

example, the dissipative tower of Fig. 1, which is considered in this paper, can be classified as a "pinned rocking" 

configuration enhanced with linear fluid viscous dampers. The work of [27] shows that moment-resisting frame can be 

effectively protected against near-fault ground motion effects by coupling them with pinned rocking walls rather than 

with fixed-based walls. In [28], rocking wall-frame structures with supplemental draped tendons enhanced with 

dampers and fuse elements are proposed for the seismic protection of existing buildings. In [29], the results of dynamic 

tests performed on precast, post-tensioned rocking walls equipped with external dissipative devices are reported. The 

external devices, located in parallel to post-tensioned tendons, which guarantee recentering, can be fluid viscous 

dampers, tension-compression yielding steel dampers or a combination of both of them. In [30], external pin-supported 

walls are used for the seismic retrofit of an eleven-storey steel reinforced concrete frames. Pinned-walls allow to control 

the displacements distribution, while the seismic performance of the coupled system is enhanced by employing energy 

dissipative devices. These devices are activated by the rocking motion of the walls and are arranged throughout the 

building height, between the pinned-wall and the existing column. In [31], the coupling of an existing r.c. frame 

structure with a light-weight rocking frame equipped with a self-centering energy dissipative steel brace is presented, 

together with a design method for controlling the story stiffness demand. Dissipative braces located at the base of the 

rocking frame provide energy dissipation only for moderate or severe seismic actions, whereas for small actions the 

light-weight rocking frame adds stiffness but no damping to the existing structure. 

This study focuses on the coupling of buildings with external dissipative rocking braced frames, centrally pinned at the 

foundation level, and equipped with dampers activated by the rocking motion. Similarly to pinned-rocking walls [32], 

[33], the proposed system is characterized by a high stiffness, allowing to linearize the displacement distribution along 

the height of the building and thus enforcing uniform interstorey drifts at the various storeys [34]. However, differently 

from pinned-rocking walls, it has an enhanced dissipation capacity, thanks to the added viscous dampers, and lower 

weight, due to the use of steel braces. This is a very important feature, as the self-weight of pinned rocking systems 

works against stability, thus resulting in large permanent displacements [32], [33]. 

The aim of this study is to investigate the effectiveness of dissipative towers for seismic retrofit of building frames. In 

particular, complex modal analysis is carried out to study the modal properties of the frame-tower coupled system, and 

the non-classical damping arising due to the concentration of the viscous dampers at the base of the tower, whereas a 

modal decomposition technique is employed to evaluate the seismic response of various response parameters while 

accounting for the contribution of higher order modes. For this purpose, a linear elastic assumption for both the tower 

and the frame is introduced, which however is accurate only in the case of enhanced performance levels and not very 

high seismic hazard levels. 

This paper is organized in three sections. In the first one, the balance equations governing the linear problem are 

presented and a state space formulation is adopted to handle the non-classical damping and to obtain a solution of the 

seismic problem based on the modal decomposition method. The limit solution corresponding to the case of infinitely 

stiff tower is also discussed, and the properties of a single degree-of-freedom (SDOF) system equivalent to the multi-

degree-of-freedom (MDOF) coupled systems are derived, providing an insight into the system vibration and dissipative 

properties. In particular, the SDOF system properties are obtained by introducing a displacement constraint in the 



general formulation and they describe the limit case of rigid bracing and rigid floors. The section ends with a 

indications on a procedure that can be applied for the preliminary design of the dissipative devices. The second part of 

the paper focuses on the modal properties of the coupled system. A benchmark reinforced concrete frame widely 

analysed in the literature [35]-[39] is considered to illustrate the system structural properties, and different retrofit 

configurations are investigated. Two non-dimensional parameters are introduced: the former describes the relative 

stiffness of the external and protected frame and the latter depicts the added damping. They are used to evaluate the 

influence of the dissipative bracing characteristics on the dynamic properties of the non-classically damped system at 

hand. In the last part of the paper, the seismic response of the systems corresponding to the different retrofit scenarios is 

analysed by using the proposed formulation. The demand parameters considered in the analyses permit to evaluate the 

effect of the retrofit on the performance of the structural and non-structural building components, as well as of the 

dampers and the foundations. 

2 PROBLEM FORMULATION 

The system investigated in this study (Fig. 1 c) consists of a building frame connected at each floor level with one or 

more external braced frames. The external frame is supported by a spherical hinge and exhibits a rocking motion, which 

activates the vertical fluid viscous dampers (FVDs), located at the external frame base. This configuration is mainly 

oriented to make the inter-storey drift, and the relevant seismic damage, uniform along the building height, while the 

amplitude of the global response is controlled by a small number of dampers placed at the base only. 

In the first part of this section, the equation of motion of the problem at hand is presented by assuming that both the 

building and the external damping system exhibit a linear response. The case of infinitely stiff tower is also presented, 

and the relevant balance equations of the reduced single-degree-of-freedom (SDOF) system are obtained by introducing 

a constraint in the structures’ motion. Finally, the design procedure for the preliminary design of the dampers is 

presented. The reported formulation refers to the plane problem, and only the horizontal ground motion component is 

taken into account. A single equivalent external damping structure, representative of all the rocking frames activated 

along the monitored direction, is considered. 

 

2.1 Equation of motion 

The equation of motion of the system of Fig. 1c) can be expressed as follows: 

        tattt gMpKuuCuM    ( 1 ) 

where   lRt u , is the vector of nodal displacements, the dot (∙) denotes time-derivative; lRp  is the load 

distribution vector, l denotes the total number of degrees-of-freedom, and ag(t) is the external scalar loading function 

describing the seismic base acceleration. The time invariant matrices M , K , C  describe the mass, stiffness and 

damping operators ll RR  ; they result from the sum of the contributions of the existing frame and the external 

dissipative bracing system. Generally, the external bracing system significantly influences the stiffness and damping 

operators while it contributes only marginally to the mass operator. In order to shed light on this aspect, some 

simplifying assumptions are introduced to obtain a condensed system in which only the degrees of freedom of interest 

are made explicit [40]. The mass associated to the external bracing is considered null and the vector of the total 

displacement  tu  is split into the vector   mRt x  and the vector   nRt y , with ( nml  ). The first one collects the 

active components of the displacements, namely related to inertia forces acting on the frame; the second, instead, 

describes the components connected to the internal degrees of freedom, including the bracing deformations providing 

the dampers displacements. 

The matrices describing the linear operators and the load distribution vector can be accordingly partitioned as follows: 
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where xxM  is a diagonal mass matrix, containing the lumped floor masses. 

In the following, the plane problem is considered, the floor diaphragms as well as tower-frame connections are assumed 

to be rigid, and inertia forces are associated only with lateral degrees of freedom. This way, the dimension m of the 

vector  tx  coincides with the number of storeys of the building to protect, while the additional n degrees of freedom 

of the vector  ty , describe the vertical displacements of the devices due to the rocking motion of the bracing base. 

Furthermore, the tower base motion described by  ty  induces an elastic deformation of the bracing and a set of 

reactions at the different levels of the building, collected into the submatrix Kxy. Similarly, the displacements of the 



frame floors result in reactions at the bracing base, described by the submatrix T

yx xyK K . Finally, the damper reactions 

due to the rocking motion of the external structure are collected into the matrix Cyy. 

The distribution of the damping in the structure and, in particular, the dampers concentrated at the base of the external 

bracing system, lead to a non-classically damped system, and the relevant problem solution can be conveniently found 

by resorting to a state-space approach. For this purpose, the vector  tz  is introduced, collecting the displacements and 

velocities of the active displacements, respectively  tx  and    tt xv  , and the displacements of the internal nodes 

 ty : 
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Eqn. ( 1 ) can be reduced to the first order differential system of equations: 

      tatt gpAzz ~  ( 4 ) 

where: 
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and where vector p~  is defined as: 
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2.2 Free vibrations and modal properties 

The free vibration problem, corresponding to posing 0p ~  in Eqn.( 4 ), can be solved by assuming a solution of the 

form   tet 
φz  , where φ,  is a generic eigenvalue-eigenvector pair of the (2m+n)-dimensional state matrix A , such 

that: 

 φAφ   ( 7 ) 

In general, a complex eigenvalue has the following form 

 2

0 0 1i i i i ii         ( 8 ) 

and contains information regarding both the damping ratio ξi and the corresponding circular frequency ω0i of the i-th 

mode. These information can be extrapolated as follows: 
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where  Re i =
0i i  and   2

0Im 1i i i     denote respectively the real and imaginary part of i . 

It is noteworthy that the eigenvalues are (2m+n) in total: 2m of these are complex conjugates, and the remaining n are 

real-valued and correspond to the motion of the degrees of freedom with no associated mass. 

2.3 Seismic response via modal decomposition method 

Having determined the modal properties, the problem solution can be obtained as a linear combination of the modal 

contributions. Let Λ  be the diagonal matrix containing the complex eigenvalues and nm 221 ,...,, φφφΦ  the 

complex eigenmatrix containing the eigenvectors, such that the orthogonality property AΦΦΛ
1  holds. 

The motion can be expressed as: 

    tt Φqz   ( 10 ) 

where  tq  is a vector collecting the modal coordinates. The orthogonality property leads to the diagonal problem: 



      tatt gΓΛqq   ( 11 ) 

where pΦΓ
1~  is the vector collecting the complex-valued modal participation factors. 

Introducing the normalized complex modal response vector  ts  such that:    tstq iii  , the problem can be written in 

the following normalized form: 

      tatt gIΛss   ( 12 ) 

Assuming that the system is initially at rest, the solution is given by the Duhamel integral: 

      datt g

t

)(

0

 hs  ( 13 ) 

where the components   t
i

ieth


  are the modal responses to an impulsive unitary input. 

2.4 Limit case of infinitely stiff tower 

In the case of an infinitely stiff tower (Fig. 2), all the degrees of freedom of the system, i.e., the horizontal floor 

displacements  tx , and the bracings motion  ty , are governed by a single parameter, identified as the base rotation . 

This is equivalent to introducing a constraint to the displacement field, and the displacement vector  tu  reduces to 

  t u h  ( 14 ) 

in which h  is a vector collecting both the heights of the frame ( ih , where ni ,...,1  are the number of floors) and the 

width of the external bracing frame (i.e., 2/b  in Fig. 2). The D'Alembert Principle for the problem at hand can be 

expressed by introducing a virtual velocity field ˆ ˆ  h , in which ̂  is an arbitrary base rotation. Eqn. ( 1 ) can be 

rewritten for any time instant t as 

 gDF a ˆˆˆˆˆ  MpKuuCuCuM      ̂,t  ( 15 ) 

where the matrix M collects masses of rigid floors, K  is the stiffness matrix of the frame, 
F

C  describes the damping 

of the frame and where 
D

C  is the dissipative contribution of the dampers located at the tower base. Eqn. ( 15 ) can be 

rewritten as 

   *

F D gm c c k m a       ( 16 ) 

where hMh m~ , hhC  FFc~ , hhC  DDc~ , hKh k
~

, hMp *m  are the scalar parameters describing the 

properties of the system reduced to a SDOF, and   denotes the scalar product. By solving Eqn. ( 16 ), the time-history 

of the base rotation is known, and the vector of nodal displacements of the MDOF system is determined via Eqn. ( 14 ). 
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Fig. 2. Constrained motion of the system in the case of an infinitely rigid dissipative tower 

The corresponding circular vibration frequency and added damping ratio due to the dampers located at the tower’s base 

are: 
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where cd is the viscous constant of the Nd dampers located at the tower base. Eqn. ( 17 ) and ( 18 ) provide closed-form 

estimates of the changes of the dynamic properties of the system due to the dissipative towers and can be quite useful as 

very often the external towers are quite rigid. In the next section, the approximation of rigid tower behaviour is 

evaluated by considering different retrofit configurations. 

2.5 Preliminary design of the dissipative system 

The preliminary design of the linear FVDs, located at tower base, can be carried out by assuming that the coupled 

frame-tower system, which is non classically-damped, vibrates according to the first undamped mode of vibration. The 

results of the following parametric analyses, described in Section 3.2 and subsequent ones, provide some useful 

suggestions about the optimal stiffness value of the added tower. First of all, a modal analysis is performed to determine 

both the first natural frequency 
01  and the corresponding modal shape 

1ψ . Then, a design value of the target 

displacement of the system can be fixed, and the required added damping ratio add  due to the viscous dampers can be 

evaluated, e.g. by employing the capacity spectrum method [41]. The viscous damping constants corresponding to the 

required value of add  can then be evaluated by using the general expression of ASCE 41-13 [42]: 
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where Ej is the work done by j-th device in one complete vibration cycle at the fundamental frequency of the coupled 

system, and Ef  is the maximum strain energy attained by the system in the cycle. 

This expression can be specialized to the case of dampers having the same properties, and can be rearranged to provide 

the viscous constant dc  of the dampers in function of add  as follows: 
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where im  denotes the i-th floor lumped mass, and j  the modal displacement of the j-th viscous damper. 

3 STRUCTURAL RESPONSE 

3.1 Benchmark structure 

In this section, the formulation presented above is employed to analyse the influence of the rocking tower on the 

seismic performance of a building structure which has been extensively studied in the literature [35]-[39]. This 

benchmark case study is a 7-storey reinforced-concrete frame (Fig. 3) located in Van Nuys, California; it consists of 

perimeter moment frames and interior slab-column frames (3 bays-by-8 bays), with non ductile behaviour, having been 

designed in 1965 in compliance to the lateral force requirements of 1964 Los Angeles City Building Code. Detailed 

descriptions including dimensions and member sizes are provided in many other works [35]-[39]. 

The original state of the building before the upgrading works carried out after 1994 Northridge earthquake is 

considered. Different retrofit configurations are evaluated in the following, with the steel towers arranged as reported in 

Fig. 3 a). The number of towers derives from feasibility issues and it is related to the total amount of stiffness required. 

In accordance to the proposed formulation, the plane problem described in Fig. 3 b) is considered. 

Under the assumptions discussed in the previous section, only the seven floor displacements need to be considered in 

the vector of active degrees of freedom   mRt x , while the vector   nRt y  collects the displacements of the FVDs 

along the vertical direction. The damping matrix C is built by assuming a Rayleigh damping model, providing an 

inherent damping ratio ξ=0.05 at the first two vibration modes of the coupled system. 

Having determined the terms of Eqn. ( 1 ), the numerical solution to the dynamic and seismic problem for the coupled 

system is evaluated by employing MATLAB [43]. 
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Fig. 3. Planar view a) and horizontal section b) of the building in one of the analysed retrofit configurations 

3.2 Parametric analysis and hazard scenario description 

In order to understand how the added stiffness and damping due to the tower influence the seismic performance of the 

coupled system, a parametric study is carried out by varying the tower stiffness and damper viscous constant and by 

evaluating the corresponding changes in the dynamic properties and seismic response. 

Two non-dimensional parameters are used to synthetically describe the contribution of the tower to the stiffness and 

damping. The first one is 
T FK K  , denoting the tower-to-frame stiffness ratio, where the stiffness measures for 

the frame and the tower, respectively 
FK  and TK , are evaluated by imposing a unit horizontal displacement at their 

top and by evaluating the corresponding base reaction. In the case of the tower, a fixed base condition is considered, in 

order to cut off the rigid motion due to the rocking displacements. The second parameter is add , an estimate of the 

damping added to the first mode of vibration of the coupled system, evaluated according to Eqn. ( 19 ). 

In the analyses, different configurations are considered, corresponding to values of  =1 and  =0.5. In addition, also 

the case   corresponding to an infinitely stiff tower (denoted as Stiff) is considered for comparison purposes. The 

two retrofit configurations considered, corresponding to  =1 and  =0.5, are obtained with a different number of 

towers having the same size and equal members, that is four towers for  =1 and two towers for  =0.5. Table 1 

reports the cross-section properties employed for the braces forming the towers. The members’ cross-sections satisfy 

the EC3 code requirements [44] for the buckling resistance of members subjected to uniform compression. The safety 

checks have been carried out by considering the mean values of the maxima evaluated for the various ground motion 

records representing the seismic input, as described below. The values considered for the added damping add  span in 

the range between 0 and 0.3. The case of the bare existing frame (denoted to as Uncontrolled configuration) correspond 

to =0; add =0. 

Table 1. Bracing geometrical properties for the investigated configurations 
 

Floor 1 2 3 4 5 6 Roof 

column HE300B HE200B HE180B HE160B HE160B HE160B HE160B 

brace HE300B HE200B HE180B HE160B HE160B HE160B HE160B 

 
 

The seismic scenario is described by 20 ground motions taken from those employed in the SAC project from the joint 

venture of the Structural Engineers Association of California, the Applied Technology Council and California 

Universities for Research in Earthquake Engineering [45], representative of the Los Angeles area, and characterized by 

a probability of exceedance of 10% in 50 years. The selected ground motions exhibit different seismic intensity, 

frequency content and duration. Fig. 4 reports the pseudo-acceleration response spectra of these 20 records together 

with the mean response spectrum. In the same figure, the spectral value at the first vibration period of the bare frame in 

the horizontal direction is also highlighted by a circle. 
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Fig. 4. Pseudo-acceleration response spectra describing the seismic scenario 

3.3 Modal properties of the undamped coupled system 

This section analyses the influence of the bracings stiffness on the modal properties of the coupled system. For this 

purpose, three values of the parameter   are considered: 0  (Uncontrolled case), 5.0  and 1 . The influence 

of the added damping is studied in the following and the results presented in this section concern the case ( add =0). 

Table 2 reports the vibration periods, the undamped natural frequencies and the participant mass ratios 
*

iM  of the bare 

building and of two retrofit configurations corresponding to  =1 and  =0.5. The participant mass ratio is defined as 

  iiiiM ψMψψMp 
2* where iψ  are the eigenvectors of the undamped system. 

Table 2. Modal analysis results of the bare building and of the retrofitted building 
 

Uncontrolled ( =0)  Retrofit ( =0.5)  Retrofit ( =1) 

Ti [s] ω0 [rad/s] Mi
*[-] ΣMi

*[-]  Ti [s] ω0 [rad/s] Mi
* ΣMi

*  Ti [s] ω0 [rad/s] Mi
* ΣMi

* 

1.204 5.22 0.831 0.831  1.182 5.32 0.833 0.833  1.177 5.34 0.832 0.832 

0.391 16.06 0.118 0.949  0.302 20.77 0.120 0.953  0.257 24.46 0.122 0.954 

0.218 28.86 0.035 0.984  0.151 41.62 0.032 0.985  0.123 51.11 0.031 0.985 

0.138 45.61 0.011 0.995  0.097 64.85 0.010 0.995  0.079 79.31 0.010 0.995 

0.093 67.34 0.003 0.998  0.07 89.48 0.003 0.998  0.059 106.8 0.003 0.999 

0.068 91.94 0.001 1  0.054 115.4 0.001 1  0.047 134.3 0.001 1 

0.056 112.42 0 1  0.046 135.3 0 1  0.041 154.6 0 1 

  
In general, it can be observed that the coupling with the tower does not affect significantly the first vibration period. In 

fact, its reduction, with respect to the bare frame case, is of about 2.2% in the case of the towers with stiffness ratio 

 =1 and of about 1.9% in the case of the towers with stiffness ratio  =0.5. The variation of the second vibration 

period is higher, in fact in the case of  =1 the reduction, with respect to the bare frame, is nearly 34.3%, while in the 

case of  =0.5 the reduction is nearly 22.7%. Similar notable variations are observed in the successive modes. In all the 

cases, the first two vibration modes involve more than 95% of the total participating mass, with minor variations due to 

the addition of the towers. The case of the existing frame coupled with an infinitely stiff tower yields a fundamental 

period of T=1.149s, corresponding to the highest reduction (4.8%) with respect to the other cases. 

Fig. 5 reports the values of the interstorey drifts along the building height for the first three vibration modes. The results 

obtained for the bare building are compared with results obtained for the coupled system with  =1 and  =0.5 and 

  , only for the first mode. The interstorey drift values are derived from the displacements distribution along the 

height, with the maximum top displacement normalized to unity. It can be observed that the addition of the towers 

yields a regularization of the first mode drift distribution along the building height, corresponding to an increase of the 

drift at some levels and a decrease at the other levels with respect to the case of the bare frame. The case    yields 

the best result in terms of uniform distribution of interstorey drifts, and the case corresponding to 1   provides quite 

similar results. 

Fig. 6 reports the distribution of the shear force resisted by the frame in the Uncontrolled and in the retrofit cases, for 

the first three vibration modes. These modal results are normalized by posing the base shear equal to 1.0. Also in this 

case, the coupling results in a more uniform distribution of the storey shear of the first mode, with an increase at some 

storey levels and a decrease at the others. As already seen for the interstorey drifts, the case corresponding to    

provides similar results with respect to the case of 1  . 
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Fig. 5. Interstorey drifts along the building height for different values of  : (a) mode 1, (b) mode 2 and (c) mode 3 
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Fig. 6. Frame shear forces along the building height for different values of  : (a) mode 1, (b) mode 2 and (c) mode 3 

Fig. 7 compares the total storey shear distribution with the separate contribution due to the frame and the bracing. 

Reported results concern the retrofit case with  =1, which is the reference configuration for the retrofit. It is worth to 

note that the shear contribution of the existing frame and of the tower have different signs at some levels and the frame 

storey shear can be larger than the total storey shear. This might constitute a drawback in the seismic response. 
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Fig. 7. Shear force distribution for mode 1 (a), mode 2 (b) and 3 (c) – 1  case 

3.4 Modal properties of the coupled damped system 

In this section, the influence of non-classical added damping on the dynamic properties of the system is studied. The 

variation of the modal properties at different damping levels is evaluated via complex modal analysis by considering 

values of the added damping factor add  in the range between 0 and 0.9. 

Fig. 8 (a) and (b) show the influence of add  on the vibration periods of the first three modes of two retrofit 

configurations corresponding, respectively, to  =1 and to  =0.5. These periods are obtained from the expression 



02 / i   for i=1, 2, 3, where 0i  is evaluated via Eqn. ( 9 ). In the same figures, the vibration periods corresponding 

to the classically-damped system with no added dampers (referred to as “undamped” in the legend) are shown for 

comparison purposes. In general, the vibration periods of the coupled system decrease by increasing the damping level 

but, on both the two cases, only the first vibration period of the system is significantly affected by the added damping. 

For add =0.9, in the retrofit  =1 case, the first period attains the value 0.731 s (62% of the value observed for 

undamped case), the second 0.222 s (86% of the related undamped period), and a negligible variation is observed in the 

third period, which is equal to 0.118 s (96% of the related undamped period). Similar considerations can be done for the 

case  =0.5. Fig. 8 (a) and (b) show also the results obtained for   . It is observed that the assumption of 

infinitely stiff tower provides quite accurate estimates of the fundamental period for low added damping values. 

Fig. 9 (a) and (b) report the variation of the damping ratio of the first, second and third vibration modes of the same two 

retrofit configurations ( =1 and to  =0.5). The trends of the damping ratios are very similar for the two retrofit 

configurations, with higher variations observed for the first two modes, and negligible variation for the third one. In 

both cases, the first modal damping ratio (ξ1) is well approximated by the design formula of Eqn. ( 19 ) for value of 

add  up to 0.3 in the case of  =1 and up to 0.15 in the case of  =0.5. For values increasing beyond these limits, the 

amount of the effective damping decreases. As already observed for the periods, the influence of the damper dimensions 

on the second and third mode is less notable; for the  =1 configuration the damping ratio varies in the range 0.050-

0.089 with a maximum of 0.135 when add  reaches the value of 0.25 for the second mode, while for the third mode the 

range is 0.090-0.099 with a maximum value of 0.110 when add =0.15. For the  =0.5 case the trend is very similar, 

the second mode has its maximum, 0.111, for the design value of add =0.15, while the damping ratio varies in the 

range 0.050-0.085. Finally, the range of variation of the third mode is 0.085-0.092 with a maximum value of 0.100 at 

add =0.1. The results obtained by considering    are also reported in Fig. 9, showing that the assumption of 

infinitely stiff tower provides accurate estimates of the added damping of the fundamental mode for both the 

configurations ( =1 and to  =0.5). 
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Fig. 8. Variation with add of the first three periods obtained in the undamped and the damped case for  =0.5 (a) and 

 =1 (b) 
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Due to the fact that all the dampers are concentrated at the tower base the system is non-classical damped and the extent 

of non-classical damping can be synthetically quantified by the coupling index ρ [46], expressed as: 

 

2

, 1.. ,i j
max

ij

i j m
ii jj


 




 
 ( 21 ) 

where j

T

iij Cψψ  (i, j=1, 2,…, m) represents the coupling between the responses of mode i and j, and 
i

ψ are the 

eigenvectors of the undamped system. 

In general,  assumes values in the interval [0, 1] and it is equal to zero for a classically damped system. Fig. 10 (a) 

reports the values assumed by the coupling index for the two different retrofit configurations for increasing damping 

levels. It can be seen that   increases less than linearly for increasing values of add  and that the two retrofit cases 

provide nearly the same values of the index. Fig. 10 (b) shows the values of ij  obtained for the case  =1 and 

add =0.3. In particular, for add =0.3, 
12 =0.68 and it coincides with the coupling index ρ, i.e., the coupling is highest 

between the first and the second mode of vibration with respect to the other modes. 

Fig. 11 shows the first three modal shapes of the coupled system with  =1, for different levels of add . The real and 

imaginary components of the complex eigenvectors iφ  are plotted separately and normalized in such a way that the 

first component of the real part of the eigenvector iφ  is equal to one, while the corresponding imaginary part is equal to 

zero. In the case of add = 0, the system is classically damped, and the eigenvectors are real. Increasing the damping 

level affects significantly the first mode, while the higher modes are less influenced by add . 
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3.5 Seismic Response 

This section compares the seismic response of the bare frame with the seismic response of a set of retrofit 

configurations involving different values of the relative stiffness   and added damping add . The reported results 

concern the engineering demand parameters (EDPs) of major interest for the performance assessment of the frame and 

the tower (i.e., displacements, inter-storey drifts, storey shear actions, absolute accelerations) and of the viscous 

dampers (displacements, velocities, forces). The values of EDPs reported below are the mean of the maximum values 

obtained for each of the twenty time-histories considered. The following five configurations are studied: the case  =0 

and add =0, denoted as Uncontrolled case, the case  =0.5 and add =0.15, the case  =1 and add =0.15, the case 

 =1 and add =0.3, the S-DOF limit case with stiff bracings and add =0.3, denoted as Stiff case. 

Table 3 reports the floor displacements ix  and the inter-storey drift (IDR) i  for the five configurations analysed. 

Displacement values are normalized with respect to the maximum displacement at the top of the bare frame that is equal 

to 30.6 cm. The frame undergoes significant displacements with a maximum interstorey drift ratio (IDR) of 2.07% 

attained at the third storey. The deformation values observed for the bare frame is usually associated with a large 

structural damage. The retrofit reference configuration corresponding to  =1 and add =0.3 leads to a notable 

reduction of the global deformation and the maximum displacements demand is equal to 15.8 cm, corresponding to the 

52% of the bare frame maximum displacement. A more evident reduction can be observed in the local deformation at 

storey level: the maximum IDR demand is equal to 0.89%, corresponding to 43% of the bare frame IDR. The maximum 

reduction is observed in the limit case Stiff providing a maximum IDR equal to 0.72%. It is noteworthy that these IDR 

values are associated to a moderate damage of the non-structural components [47] and are below the elastic limit of the 

structural components [35], which justifies a linear elastic model for the frame. 

Fig. 12 (a) and (b) depicts the distribution of the previous results and gives evidence to the more regular distribution of 

IDRs at storeys. 

 

Table 3. Floor displacements and drifts for the various configurations analysed 
 

level 
Uncontrolled  =0.5; add =0.15  =1; add =0.15  =1; add =0.3 Stiff; add =0.3 

xi [m] i [%] xi [m] i [%] xi [m] i [%] xi [m] i [%] xi [m] i [%] 

1 0.063 1.52 0.040 0.96 0.040 0.97 0.031 0.75 0.030 0.72 

2 0.113 1.90 0.069 1.11 0.068 1.06 0.053 0.84 0.049 0.72 

3 0.165 2.07 0.099 1.17 0.096 1.09 0.076 0.88 0.068 0.72 

4 0.213 1.98 0.129 1.16 0.124 1.07 0.098 0.89 0.087 0.72 

5 0.253 1.72 0.156 1.10 0.150 1.03 0.120 0.88 0.106 0.72 

6 0.285 1.35 0.180 0.99 0.174 0.96 0.141 0.84 0.125 0.72 

7 0.306 0.91 0.201 0.83 0.195 0.85 0.158 0.74 0.144 0.72 
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Fig. 12. Displacements (a) and interstorey drifts (b) distributions for the for the various configurations analysed 

In order to analyse the contribution of the first vibration mode with respect to the contribution of the higher modes in 

the seismic response, the full response, considering all the vibration modes, is compared with the response obtained by 

the first mode only. Table 4 reports the displacement response for the Uncontrolled case and different retrofit 

configurations. As expected, the displacements are mainly controlled by the first mode, but the contributions of higher 

modes become almost negligible in all the retrofit cases. 



Table 4. Higher order modes contribution to floor displacements for the various configurations analysed 
 

level 
Uncontrolled  =0.5; add =0.15  =1; add =0.15  =1; add =0.3 

xfull [m] x1 [m] xfull [m] x1 [m] xfull [m] x1 [m] xfull [m] x1 [m] 

1 0.063 0.059 0.040 0.040 0.040 0.040 0.031 0.032 

2 0.113 0.109 0.069 0.069 0.068 0.068 0.053 0.053 

3 0.165 0.163 0.099 0.100 0.096 0.097 0.076 0.076 

4 0.213 0.213 0.129 0.129 0.124 0.124 0.098 0.098 

5 0.253 0.253 0.156 0.156 0.150 0.150 0.120 0.120 

6 0.285 0.283 0.180 0.180 0.174 0.174 0.141 0.140 

7 0.306 0.301 0.201 0.199 0.195 0.195 0.158 0.157 

  
In general, the base shear of the frame is reduced in all the retrofit scenarios with respect to the bare-frame case, and the 

base shear of the tower is lower than that of the frame. However, in some cases ( =1; add =0.30 and Stiff), the base 

shear resisted by the tower is very high and similar in value to the one of the frame. This may have an impact on the 

cost of the foundations of the tower. 

The addition of the towers generally results in a reduction of the global shear demand at all the levels. A quite more 

complex behaviour can be observed for the shear forces in the frame, where two opposite contributions acts: on one 

hand, the increasing of the damping globally reduces the storey shear, on the other hand the interaction with the bracing 

stiffness increases the storey shear at some levels, mainly at the top levels, as already observed in the modal analysis. 

As a consequence, the frame storey shear is increased in the retrofit cases at the top levels with respect to the bare frame 

case, and the maximum increments are observed for the case combining the highest stiffness  =1 and the lowest 

damping add =0.15, and in the Stiff case. 

 

Table 5 reports the shear actions resisted by the frame and by the tower, together with the total shear, for the five 

different configurations. It is noteworthy that the maximum shear for the tower and the frame do not necessarily occur 

at the same instant and the two values may have opposite signs, as already pointed out in the previous section. Thus, the 

value of the total shear may notably differ from the sum of the two contributions. In general, the base shear of the frame 

is reduced in all the retrofit scenarios with respect to the bare-frame case, and the base shear of the tower is lower than 

that of the frame. However, in some cases ( =1; add =0.30 and Stiff), the base shear resisted by the tower is very high 

and similar in value to the one of the frame. This may have an impact on the cost of the foundations of the tower. 

The addition of the towers generally results in a reduction of the global shear demand at all the levels. A quite more 

complex behaviour can be observed for the shear forces in the frame, where two opposite contributions acts: on one 

hand, the increasing of the damping globally reduces the storey shear, on the other hand the interaction with the bracing 

stiffness increases the storey shear at some levels, mainly at the top levels, as already observed in the modal analysis. 

As a consequence, the frame storey shear is increased in the retrofit cases at the top levels with respect to the bare frame 

case, and the maximum increments are observed for the case combining the highest stiffness  =1 and the lowest 

damping add =0.15, and in the Stiff case. 

 

Table 5. Shear actions results for the various configurations analysed  

level 

Uncontrolled  =0.5; add =0.15  =1; add =0.15  =1; add =0.3 Stiff; add =0.3 

Vi,frame 

[kN] 

Vi,frame 

[kN] 

Vi,tower 

[kN] 

Vi,total 

[kN] 

Vi,frame 

[kN] 

Vi,tower 

[kN] 

Vi,total 

[kN] 

Vi,frame 

[kN] 

Vi,tower 

[kN] 

Vi,total 

[kN] 

Vi,frame 

[kN] 

Vi,tower 

[kN] 

Vi,total 

[kN] 

1 25498 16796 8900 19970 17214 9379 19417 13129 12972 19547 13126 11008 15511 

2 22910 12523 6598 17750 11590 7156 16950 9237 9575 16882 7197 8846 13350 

3 20925 11206 5338 15907 10145 5994 15360 8292 7769 14944 6575 7505 11965 

4 19136 10954 3649 14012 9954 4284 13496 8346 5667 12866 6425 6261 10586 

5 16472 10165 2876 12219 9408 3556 11953 8105 4475 11700 6514 4703 8828 

6 12621 9154 2483 9960 8636 3406 9730 7614 3702 9688 6018 3513 6481 

7 7145 8177 3570 5948 8843 5096 5826 7707 4109 5898 8234 5869 3486 

 
 

 

Fig. 13 (a) reports the distribution of the shear actions along the height of the frame, normalized by dividing them by the 

value of the base shear in the Uncontrolled configuration. 
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Fig. 13. Shear actions resisted by the frame (a) and by the tower (b) for the various configurations analysed 

As observed for the displacements, similar performances are achieved for  =0.5; add =0.15 and for 

 =1; add =0.15. Fig. 13 (b) reports the distribution of the shear action in the tower along its height; the values are 

normalized by dividing them by the values of the base shear in the bracing for the case of infinitely stiff tower. From the 

analysis of Fig. 13 (a) and (b) it is observed that the configuration with  =1 is a good approximation of the case of 

infinitely stiff tower, for the same given value of added damping ( add =0.3). It is also worth to point out that the shear 

demand at the top storey of the existing frame is increased for all the retrofit configurations analysed because of the 

mutual interaction with the external dissipative bracing system, while it is reduced at intermediate storeys. 

The complex mode superposition approach is also employed to estimate the contribution of the higher modes of 

vibration on the shear actions before and after the retrofit. Table 6-7 report the distribution of the shear actions in the 

frame and the tower (Table 6) and of the global shear ( 

Table 7) for the Uncontrolled case and for the different retrofit configurations, obtained by considering the contribution 

of the first mode only and of all the modes of vibration. Differently from the case of the displacements, the contribution 

of higher order modes is important as the values of both the frame and tower shear responses and the total shear 

response are significantly higher than the corresponding values obtained by considering the first mode only. Moreover, 

the contribution of the first mode to the total response of the frame increases due to the coupling with the dissipative 

tower, compared to the Uncontrolled configuration. In any case, the building response is dominated by the first mode of 

vibration also in the coupled case, especially for configurations with  =1. 

Table 6. Higher order modes influence on the shear actions resisted by the frame and the tower 
 

level 

Uncontrolled  =0.5; add =0.15  =1; add =0.15  =1; add =0.3 

Vfull 

[kN] 

V1 

[kN] 

Vframe_full 

[kN] 

Vframe1 

[kN] 

Vtower_full 

[kN] 

Vtower1 

[kN] 

Vframe_full 

[kN] 

Vframe1 

[kN] 

Vtower_full 

[kN] 

Vtower1 

[kN] 

Vframe_full 

[kN] 

Vframe1 

[kN] 

Vtower_full 

[kN] 

Vtower1 

[kN] 

1 25498 23620 16796 16773 8900 9024 17214 17247 9379 7731 13129 13619 12972 16898 

2 22910 22340 12523 12449 6598 6656 11590 11505 7156 6530 9237 9099 9575 12594 

3 20925 20490 11206 11039 5338 5688 10145 10036 5994 5929 8292 8168 7769 10624 

4 19136 17722 10954 10642 3649 3734 9954 9745 4284 4094 8346 8297 5667 7817 

5 16472 14113 10165 9454 2876 2254 9408 8914 3556 2590 8105 7750 4475 5492 

6 12621 9815 9154 8042 2483 1291 8636 7922 3406 1730 7614 6944 3702 3202 

7 7145 5022 8177 7183 3570 3325 8843 8196 5096 4565 7707 7029 4109 3595 

 
 

Table 7. Higher order modes influence on the total shear actions 



 

level 

 =0.5; add =0.15  =1; add =0.15  =1; add =0.3 

Vtotal_full 

[kN] 

Vtotal_1 

[kN] 

Vtotal_full 

[kN] 

Vtotal_1 

[kN] 

Vtotal_full 

[kN] 

Vtotal_1 

[kN] 

1 19970 18130 19417 17259 19547 19160 

2 17750 17099 16950 16220 16882 18065 

3 15907 15688 15360 14845 14944 16591 

4 14012 13641 13496 12895 12866 14466 

5 12219 10977 11953 10388 11700 11691 

6 9960 7748 9730 7354 9688 8299 

7 5948 4033 5826 3843 5898 4346 

  
 

Table 8 reports the maximum values of the exchange forces ( ieF , ) observed at the various levels of the building, for the 

different retrofit configurations investigated; these actions are the result of the mutual actions between the tower and the 

existing building during the seismic event and they control the design of the connections between the tower and the 

frame. Fig. 14 shows the values of the exchange forces distribution, normalized by the value attained at the first floor 

for the Stiff case. The highest values of these exchange forces are observed at the first and at the last two floors for all 

the configurations and they are the result of the different signs of the shear action resisted by the frame and by the 

tower, as explained previously. 

 

 

 

 

 

 

 

Table 8. Exchange forces results between frame and tower 
 

level 
 =0.5; add =0.15  =1; add =0.15  =1; add =0.3 Stiff; add =0.3 

ieF ,  [kN] ieF ,  [kN] ieF ,  [kN] ieF ,  [kN] 

1 5111 6312 5671 7042 

2 2658 2868 3328 2239 

3 2678 2989 3409 2115 

4 2034 2472 2723 2248 

5 2102 2427 2562 2017 

6 3196 4273 4039 5041 

7 3570 5096 4109 5869 
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Fig. 14. Tower-frame exchange forces distribution along the height of the building for the various configurations 

analysed 

Table 9 reports the values of the absolute acceleration observed at the various levels of the building for the 

configurations investigated. The coupling of the building with the external dissipative system induces a relative 



reduction of the maximum absolute acceleration values with respect to those observed in the Uncontrolled case. This 

result is of interest because the floor accelerations are significant for the performance evaluation of acceleration-

sensitive non-structural components, and often control the design of strategic buildings. Nevertheless, the reduction 

achieved for the acceleration is lower compared to that of the displacements, and this may impair the benefits of the 

retrofit. Fig. 15 shows the values of the floor absolute accelerations normalized by the value observed at the 7th floor in 

the Uncontrolled case. The relative reduction of accelerations, measured at the last elevation, is nearly 49% for the Stiff 

configuration and about 17-19% for all the other cases involving a more realistic finite stiff tower (18% for the 

 =1; add =0.3 case, and 17% and 19%, respectively, for the cases corresponding to  =0.5; add =0.15 and for 

 =1; add =0.15). 

Table 9. Absolute accelerations for the various configurations analysed 
 

level 
Uncontrolled  =0.5; add =0.15  =1; add =0.15  =1; add =0.3 Stiff; add =0.3 

ix  [m/s2] ix  [m/s2] ix  [m/s2] ix  [m/s2] ix  [m/s2] 

1 6.239 5.658 5.299 5.457 4.487 

2 7.742 6.795 6.109 6.443 3.959 

3 8.321 6.857 6.272 6.581 3.640 

4 8.286 6.523 6.161 6.356 3.642 

5 7.879 6.201 5.814 5.724 4.047 

6 9.336 6.829 6.609 6.536 4.950 

7 11.772 9.770 9.535 9.618 5.986 
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Fig. 15. Absolute acceleration distribution along the height for the various configurations analysed 

 

Table 10 highlights the displacements ( iy ), velocities ( iy ), axial forces (N) and base viscous bending moment, related 

to damper axial actions ( vM ), for all the retrofit configurations considered. These quantities are strictly related to the 

added damping value. In fact, the Stiff and Retrofit configurations corresponding to add =0.30, give very similar 

results. It is noteworthy that also the case of  =0.5; add =0.15, provides similar results, despite the lower added 

damping. Finally, the case of  =1; add =0.15 provides the lowest value of the axial action on the FVDs, and thus also 

the lowest value of the viscous bending moment. This result is of interest in the design, since the bending moment 

transmitted by the tower controls the design of the tower’s foundations. Normally, the foundation of the tower consists 

of drilled piles, which should be designed to support both the tension and compression forces induced by the rocking 

motion. 

Table 10. Viscous dampers results 

 

 =0.5; add =0.15  =1; add =0.15  =1; add =0.3 Stiff; add =0.3 

iy  

[m] 

iy  

[m/s] 

N 

[kN] 

vM  

[kNm] 

iy  

[m] 

iy  

[m/s] 

N 

[kN] 

vM  

[kNm] 

iy  

[m] 

iy  

[m/s] 

N 

[kN] 

vM  

[kNm] 

iy  

[m] 

iy  

[m/s] 

N 

[kN] 

vM  

[kNm] 

0.0213 0.121 3773 33183 0.0216 0.127 1987 17482 0.0163 0.099 3101 27298 0.0158 0.102 3197 28131 

  



4 CONCLUSIONS 

This paper investigates the seismic performance of existing buildings frames coupled with external dissipative towers 

consisting of a steel truss, hinged at the foundation level, whose rocking motion promotes the dissipation of energy by 

means of viscous dampers. 

The system at hand is non-classically damped, being the energy dissipation concentrated at the tower base, and a 

suitable formulation is proposed for its analysis. In particular, a state-space approach and a complex modal analysis of 

the coupled system is proposed to evaluate the influence of the added tower stiffness and damping on both the dynamic 

and seismic behaviour, by highlighting the contribution of each of the complex vibration modes to the global seismic 

response. 

In order to evaluate benefits and drawbacks of the system, a parametric study is carried out, by considering several 

retrofit configurations which differ for the levels of added stiffness (tower-to-frame stiffness ratio  =1 and  =0.5) and 

dissipation capacity (damping ratio add =0.15 and add =0.3). The cases of the bare building (Uncontrolled) and of an 

infinitely stiff tower (Stiff), providing an added damping contribution of 30%, are also considered for comparison 

purposes. 

The results of the parametric analysis show in general that the addition of the towers leads to: 

1 A regularization of the drift demand along the building height; 

2 A reduction of the floor absolute accelerations, though to a less extent compared to the displacements; 

3 The assumption of infinitely stiff dissipative tower, leading to simple closed form expression of the fundamental 

circular frequency and added damping, is quite accurate for all the retrofit cases considered; 

4 The expression at the base of the proposed design procedure for the FVDs provides quite accurate results for all the 

retrofit cases considered in terms of added damping ratio, even if the system is highly non-classically damped; 

5 The investigated retrofit configuration may lead to significant changes in the shear force distribution of the existing 

frame, as a consequence of the regularization of the interstorey drift demands, and this may reduce the benefits of 

the retrofit; 

6 Higher order modes of vibration influence significantly the internal actions demand in the frame and the tower, 

while they do not significantly affect the displacement response; 

7 The case corresponding to an infinitely stiff tower and 30% added damping ratio provides the best distribution of 

absolute accelerations and inter-storey drifts. The retrofit configuration involving a tower with stiffness similar to 

that of the frame ( =1) and 30% added damping ratio provides results quite similar to those observed for the stiff 

tower case. 

Future developments of the work should address the optimal design of the towers for irregular buildings, aiming at 

reducing the in-plane torsional behavior, and the geometrically and mechanically nonlinear structural response of the 

frame and of the tower, which is of interest for earthquakes with high intensity. 
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