
07 August 2024

UNIVERSITÀ POLITECNICA DELLE MARCHE
Repository ISTITUZIONALE

Epistemology of causal inference in pharmacology: Towards a framework for the assessment of harms /
Landes, Jürgen; Osimani, Barbara; Poellinger, Roland. - In: EUROPEAN JOURNAL FOR PHILOSOPHY OF
SCIENCE. - ISSN 1879-4912. - 8:1(2018), pp. 3-49. [10.1007/s13194-017-0169-1]

Original

Epistemology of causal inference in pharmacology: Towards a framework for the assessment of harms

Publisher:

Published
DOI:10.1007/s13194-017-0169-1

Terms of use:

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of
copyrighted works requires the consent of the rights’ holder (author or publisher). Works made available under a Creative Commons
license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor’s
website for further information and terms and conditions.
This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the
published version.

Availability:
This version is available at: 11566/256971 since: 2018-04-05T15:57:30Z

This is a pre print version of the following article:

note finali coverpage



Noname manuscript No.
(will be inserted by the editor)

Epistemology of Causal Inference in Pharmacology

Towards a Framework for the Assessment of Harms

Jürgen Landes · Barbara Osimani ·
Roland Poellinger

Received: Date / Accepted: Date

Abstract Philosophical discussions on causal inference in medicine are stuck
in dyadic camps, each defending one kind of evidence or method rather than
another as best support for causal hypotheses. Whereas Evidence Based Medi-
cine advocates invoke the use of Randomised Controlled Trials and system-
atic reviews of RCTs as gold standard, philosophers of science emphasise
the importance of mechanisms and their distinctive informational contribu-
tion to causal inference and assessment. Some have suggested the adoption
of a pluralistic approach to causal inference, and an inductive rather than
hypothetico-deductive inferential paradigm. However, these proposals deliver
no clear guidelines about how such plurality of evidence sources should jointly
justify hypotheses of causal associations. In this paper, we develop the plural-
istic approach along Hill’s (1965) famous criteria for discerning causal asso-
ciations by employing Bovens’ and Hartmann’s general Bayes net reconstruc-
tion of scientific inference to model the assessment of harms in an evidence-
amalgamation framework.
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1 Introduction: Causal Inference in Pharmacology

Pharmacology blends science and technology in a very peculiar fashion. It
works across levels of reality by directly intervening at the biochemical level
only: whereas the direct domain of action of drug molecules is limited to protein
receptors, the desired end-e↵ects are clinically observable results. However,
because the proteins with which the drug molecules interact are embedded in
various, possibly interacting, biological pathways (metabolic, genetic, signal
transduction), most end-e↵ects are unpredictable.

Knowledge of these various interactions and the biological laws govern-
ing them, as well of the contingent initial conditions holding in any specific
context is far from being exhaustive to allow reliable prediction or causal in-
ference. Hence, until recently, drug approval has mainly relied on a black-box
methodology, grounded on hypothesis rejection. This paradigm, which has
been mainly developed with the aim to minimise false positives in e�cacy as-
sessment (see [49, 102], for an historical-philosophical overview), puts several
constraints on the kind of evidence which is allowed to inform causal inference,
and severely hampers the integration of heterogenous, possibly inconclusive
pieces of evidence. Indeed, by giving a strong precedence to specific methods
for inferring causes (such as Randomised Controlled Trials), the standard ap-
proach implicitly emphasises some indicators of causality, such as “di↵erence
making” in contrast to others, and has di�culties in incorporating evidence
of di↵erent sources (e.g. spontaneous reports, case series, comparative studies
of various kinds) and levels (e.g., molecular data, clinical evidence, epidemio-
logical studies) which cannot be accommodated under this heading. Whereas
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this paradigm is reasonable for the purpose of avoiding fraud, by eliminating
as much as possible any source of confounding and bias, it is not adequate for
the purpose of minimising harms of health interventions (see [78]).

The methodological landscape is rapidly changing though: Bayesian meth-
ods are gaining ground in statistical analysis of trials, because of their ability
to optimise the use of available evidence by incorporating historical (heteroge-
nous) knowledge in the prior, allowing diverse types of evidence to be inte-
grated in the probability function, and by providing a probabilistic measure
of the hypothesis under investigation, hence allowing decisions under uncer-
tainty. Such statistical techniques are gaining ground especially in safety trials
and trials for fast track or so called “orphan” drugs.

Systems pharmacology takes a “holistic” approach to study the e↵ects of
drugs in the organism by focusing on interrelations, rather than the compo-
nents, of the mechanisms leading to intended and unintended outcomes. Com-
putational modeling of perturbated cellular mechanisms for instance, aims to
provide insights into the variability and complexity of pharmacological e↵ects
in the organ system (see for instance [9]). Also, data-intensive and knowl-
edge discovery techniques put all available and drug-outcome relevant data
together, in order to possibly predict the end-e↵ect of a given drug, by recon-
structing the possible routes of action from the molecular to the phenotypic
level (see [1,103,120]). There is still considerable uncertainty as to the inferen-
tial and predictive value of these approaches, especially when they are taken
on their own. However, their specific epistemic contribution could be made
valuable in combination with other sources of knowledge.

The main focus of the present paper is in fact to provide a framework for
the amalgamation of diverse kinds of evidence for causal inference, which is
formally and epistemologically grounded. For this, we will adopt Bovens’ and
Hartmann’s [8] proposal to use Bayesian confirmation theory in order to ac-
count for (and mathematically explain) some phenomena related to scientific
inference; such as the confirmatory power of the coherence of the body of evi-
dence, the epistemic interaction of consistency of measurements and reliability
of information sources, as well as the modular contribution of di↵erent “lines
of evidence” related to diverse observable consequences of the investigated hy-
pothesis. We will adapt this framework to causal inference and consequently
specify a concrete structure for that purpose. We will then illustrate its epis-
temic and heuristic virtues as an instrument for evidence amalgamation, in
the context of causal inference of drug-induced harm.

Section 2 explains in more detail why standards for e�cacy and safety as-
sessments should not be the same. Section 3 focuses on the role of causal infer-
ence in such decisions and elaborates on Bradford Hill viewpoints on causality
in order to provide a list of philosophically grounded causal indicators. Sec-
tion 4 presents Bayesian epistemology as a valid alternative to current stan-
dards of evidence; in particular it relies on Bovens’ and Hartmann’s mathemat-
ical representation of scientific inference and adapts it to the specific problem
of inferring causality in pharmacology. Section 5 presents the details of our
model and illustrates how it functions by presenting two model calculations.
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Section 6 spells out the main virtues of our inferential model with respect to
the standard view and other proposals for synthesising evidence; furthermore
it sets the stage for further developments and practical implementation.

2 E�cacy and Safety Assessments in Pharmacology

2.1 Why Standards Ought Not Be the Same

The European Parliament and the European Council have recently changed
the regulation of pharmacovigilance practice (Directive 2010/84/EU; regula-
tion (EU) No 1235/2010, entered into force in July 2012), putting a special
emphasis on joint e↵orts for what can be considered an information-based
(rather than power-based) approach to pharmaceutical risk assessment. The
related guidelines encourage the integration of information coming from dif-
ferent sources of safety signals (spontaneous case reports, literature, data min-
ing, pharmaco-epidemiological studies, post-marketing trials, drug utilisation
studies, non-clinical studies, late-breaking information; see also [42]). Yet, the
methodological bases for implementing such policy are still shaky in that the
standards for causal assessment of adverse drug reactions (ADRs) is still par-
asitic on the (statistical) methods developed to test drug e�cacy (see also
Senn, 2007, [78,84]). In Osimani (2014), a series of reasons have been provided
for adopting asymmetric standards for safety and e�cacy assessments. These
mainly deal with the following facts: 1) because of pragmatic as well as epis-
temic reasons, in the case of risk assessment there is higher concern for false
negatives (failing to detect possible causes of observed e↵ects), rather than for
false positives (failing to distinguish between spurious and genuine causes).
This is mainly due to the fact that the drug is developed and tested with
reference to the intended e↵ect, whereas the detection of side-e↵ects – apart
from most common ones, which can be observed also in medium-sized samples
– is mainly left to the post-marketing phase; 2) also, evidence accumulating in
time may strongly point to the hypothesis of causal association between drug
and observed harm, without nevertheless being conclusive. Hence, instruments
of probabilistic causal assessment are needed which do not demand a clear-
cut rejection or acceptance of investigated hypotheses; 3) heterogeneous pieces
of evidence might jointly support a given hypothesis without being individ-
ually able to allow any significant inference; hence instruments for evidence
amalgamation are needed for this purpose.

2.2 The Decision Problem

Drug licensing bodies, such as the Food and Drug Agency in the USA or the
EMA in Europe, as well as national agencies such as the Bundesinstitut für
Arzneimittel und Medizinprodukte in Germany, or the Medicines and Health-
care products Regulatory Agency in the UK, regularly face the problem of
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whether to approve a drug for treatment or not and the problem of whether
or not to let a drug further circulate in the market when its safety profile
is updated through the discovery of additional risks. Indeed any given drug
is always approved “with reservation” [74].1 The actions taken by the drug
licensing body may have wide influence on public health and public finance
as well as economic success of the drug’s manufacturer and its competitors.
Intuitively, the normatively right action to take is to leave the drug in the
market, provided that – on the basis of the available evidence – the expected
utility of not withdrawing it exceeds the utility of withdrawing it.

The precautionary principle has been introduced in the pharmaceutical
domain in order to account for the uncertainty arising in cases where suspi-
cion arises about a new harm, possibly associated with the drug, but evidence
cannot conclusively point to a causal connection between them. In fact, be-
fore its introduction in the legal system (and through various international
agreements related to environmental law, see [75]) no preventive measure was
possible without a scientific proof of the causal connection between suspected
source of damage and expected harm. This is because liability and safety reg-
ulations are grounded on a clear causal connection between the agent deemed
responsible for the hazard and the hazard itself. The precautionary principle
relaxes this requirement in view of the good at stakes (health and environment)
and of the radical uncertainty related to the possible unintended outcomes of
human interventions on nature. In such cases, a well-founded suspicion may
su�ce to take action (withdraw the drug or restrict its usage), and the princi-
ple of proportionality applies. This means that the probability associated with
the hypothesis of causal association may be as low as the expected harm is
high (with respect to the expected benefit, [79]).

Hence, the decision, e.g., withdraw the drug or not, will depend on some
threshold which reflects the nature of the medication, the pharmaceutical envi-
ronment (i.e., the availability of alternative treatments for the same condition),
policy and ethical dimensions, as well as the perceived acceptability of the risk.

In order to avoid commitment (for the moment) to any of the many notions
of causation o↵ered by the philosophical-methodological literature2 we use the
formula: D c�H in order to express the proposition: “D causes H”, sometimes
abbreviated by c� when no ambiguities arise. Hence by adopting the classical
cost-e↵ectiveness analysis formula, we can infer the probability threshold for
causality p⇤, at which the expected utility of withdrawing equals the expected
utility of keeping the drug in the market.

1 In reality, the decision problem is not as black and white as presented here. There are
further actions available to a drug licensing agency such as: restricting access to the drug to
a subset of patients and adding further information to the package insert, such as black-box
warnings. For ease of exposition, we shall here disregard further possible actions and only
consider the black and white decision problem on whether or not to approve a drug or leave
it in the market after its safety profile has changed.

2 We deliberately use the circled c� as our relational predicate symbol here to not invoke
any specific technical, theory-informed reading of this claim, yet. We precisely do think,
though, that such an explication is in order – even more so since it is often neglected and
rarely undertaken in the methodological literature.
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Let w stand for the act of withdrawing the drug D from the market while
¬w stands for not withdrawing D. The utility of (not) withdrawing given
that c� or ¬ c� holds is denoted by the two-place utility function U . At the
probability threshold p⇤, the expected utility for withdrawing the drug equals
the expected utility for not withdrawing it. p⇤ can hence be obtained by solving

p⇤ · U(w, c�) + (1� p⇤) · U(w,¬ c�) = p⇤ · U(¬w, c�) + (1� p⇤) · U(¬w,¬ c�) ,

for p⇤. Therefore, we can find p⇤ to be determined by the utilities

p⇤ =
U(¬w,¬ c�)� U(w,¬ c�)

U(w, c�)� U(¬w, c�) + U(¬w,¬ c�)� U(w,¬ c�)
.

If the degree of belief in c� is strictly greater than p⇤, then the normatively
correct decision is to withdraw the drug from the market. If the degree of
belief is strictly less than p⇤, then the normatively correct decision is to keep
the drug in the market. Hence, p⇤ partitions the continuum of degrees of belief
between the two alternative hypotheses ( c� and ¬ c�) into two intervals, see
Figure 1.

p⇤

¬ c� c�

0 1

Fig. 1: p⇤ partitions degrees of belief in c� into two intervals.

There is a fact of the matter: either c� is true or the opposite holds. So, in
order to make the best decision it is necessary and su�cient to adopt degrees
of belief which fall in the interval between p⇤ and the truth value of c� – where
a truth value of 1 stands for ‘true’ and a truth value of 0 stands for ‘false’.
Therefore, p⇤ allows for a certain margin of error; however, the chances to fall
into the right interval get higher and higher the more evidence one takes into
account: the more one “samples” from reality, the closer one’s beliefs get to
the truth ([31]).3

A straightforward consequence of this state of a↵airs is that there is a
need of instruments which allow a probabilistic assessment of the suspected
causal link between drug and side-e↵ect, by taking into account all available
evidence at the time of decision. In particular, four desiderata are essential for
a framework of causal assessment of drug induced harm:

1. It must allow for probabilistic hypothesis confirmation.
2. It must be able to incorporate heterogeneous kinds of data.
3. It must be able to integrate diverse types of inferential patterns, in order

to optmise the epistemic import of available evidence.

3 This is the standard justification of inductive inference ([11,50]); we do not enter into the
related philosophical debate here. However, nothing hinges on the particular philosophical
position about truth.
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4. The framework should be particularly focused on causal assessment in
pharmacology and therefore consider the specific issues which arise in this
context.

In this paper, we focus exclusively on how to develop a framework of this
kind. The problems of i) how to determine the expected utilities of these harms
and ii) how to determine the expected utility of benefits are outside the scope
of this paper.

3 A Framework for the Assessment of Harms in Pharmacology,
Part 1: Relata

In the following, we present our approach to causal inference for drug harms
based on a formal Bayesian model of scientific inference. Our approach 1) iden-
tifies possible indicators of causality (observable consequences of the causal
hypothesis) on the basis of the methodological and philosophical literature
on causality, evidence, and causal inference; 2) embeds them in a topologi-
cal framework of probabilistic dependencies and independencies grounded in
assumptions regarding their reciprocal epistemic interconnections; 3) weakly
orders some of these probabilistic dependencies as a function of their inferential
strength with respect to the confirmation of causal hypotheses. Furthermore,
the developed model is used to illustrate possible epistemic dynamics related
to the interactions of its various components.

3.1 Causal Indicators

In a much quoted paper devoted to causal assessment of environmental hazards
[46], the epidemiologist Sir Austin Bradford Hill identifies nine “viewpoints”
which help detecting possible causes of observed risks. Hill does not consider
these “viewpoints” (neither individually nor jointly) to provide su�cient and
necessary conditions for causality, but they should “help us to make up our
minds on the fundamental question – is there any other way of explaining the
set of facts before us, is there any other answer equally, or more, likely than
cause and e↵ect?”, see [46, p. 299]. The nine “viewpoints” are the following:
1) strength of the association; 2) consistency; 3) specificity; 4) temporality; 5)
biological gradient; 6) plausibility; 7) coherence; 8) experiment; 9) analogy.

1. Strength of the association refers to the observed relationship between
a candidate cause and the putative risk: how much the former contributes to
the latter, measured for instance by the ratio of relevant outcomes between
exposed and unexposed group, or by regression coe�cients. Particularly, Hill
emphasises that although this kind of information may be causally opaque
because of possible confounders, still causation may be conceded whenever
such possible confounders cannot be reasonably identified (on grounds that
one can use this as a heuristic basis for excluding them).
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2. Consistency refers both to the convergence of the observed results in dif-
ferent study settings and across di↵erent methods, and to the stability of the
association across di↵erent background conditions and circumstances. The for-
mer kind of consistency may be also referred to as methodological robustness,
in that it is meant to provide a warrant that the observed results have not been
produced by the studies themselves, and thereby exclude the possibility that
they are a study artifact. The latter instead refers to the association holding
in di↵erent contexts/ kinds of populations/background conditions, and is also
known as “ontological robustness” [112,113].

3. Specificity refers to ideally one-to-one relationships between specific
sources of hazards and specific kinds of harms. Hill makes for instance the ex-
ample of di↵erent kinds of cancer sites (lung or nose vs. scrotum cancer) which
specific populations (nickel refiners vs. chimney sweepers) are more likely to
contract, depending on the kinds of chemicals they are exposed to.

4. Temporality. Excluding theoretical cases of backward causation, causes
come before their e↵ects. Hence, one would be inclined to infer causality when
both a statistical association is present and the putative cause is observed
to come prior to the e↵ect. However, observational studies cannot guarantee
perfect information on temporal order, since generally both the exposure to
risk factors and the development of disease extend through time; therefore
attention should be paid to possible confounding factors and reverse causation.

5. Biological gradient refers to what is also called dose-response curve: an
observed systematic relationship between the exposure and the strength of the
observed e↵ect: “For instance, the fact that the death rate from cancer of the
lung rises linearly with the number of cigarettes smoked daily, adds a very
great deal to the simpler evidence that cigarette smokers have a higher death
rate than non-smokers”, see [46, p. 298].

6. Biological plausibility refers to the fact that knowledge of molecular
mechanisms should also be considered, in addition to statistical knowledge,
when assessing causal associations. On the other hand, causal association
should not be dismissed on the grounds that the hypothesised mechanisms
are implausible, since implausibility is relative to the state of the art, and this
might be overturned by strong evidence to the contrary: “What is biologically
plausible depends upon the biological knowledge of the day”, see [46, p. 298].

7. Coherence relates to how well the di↵erent pieces of evidence fit together.
For instance, when evidence from animal studies and epidemiological studies
point to the same hypothesis. Coherence also relates to how well the hypothesis
fits with background knowledge: “the cause and e↵ect interpretation of our
data should not seriously conflict with the generally known facts of the natural
history and biology of the disease”, see [46, p. 298]. However, lack of coherence
among the di↵erent kinds of studies, cannot totally nullify their evidential
value.

8. Experimental evidence, if available, allows the scientist to isolate the
factor under investigation from other possible confounders, and thereby pro-
vides the strongest support for causal hypotheses according to Hill and the
epidemiological canon in general.
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9. Reasoning by analogy is an additional source of potentially relevant
information for the causal claim at hand. Hill only briefly mentions analogy
as providing further support for the hypothesis under investigation.

Hill concedes that he is not providing a theoretical justification for his list
of categories, but interestingly, his points of view on causality reflect many of
the criteria discussed in the philosophical literature for several decades now.
We shall go on to systematically gather philosophical support for Hill’s list in
the next section.

3.2 Philosophical Underpinnings of Various Indicators of Causality

In the following, we discuss the rationales which epistemologically underpin
Hill’s viewpoints on causality by appealing to the philosophical literature, and
derive our list of indicators of causality for our formal framework. While there
may be further indicators of causality (in pharmacology), we think that those
presented below are the most pertinent ones discussed in the philosophical
literature.4 Figure 2 presents a mapping from Hill’s list onto our framework
which will be discussed in detail below. Not every viewpoint is mapped onto
an indicator of causality in our sense – e.g., we locate analogy among the set
of inferential patterns. The remainder of Section 3.2 is aligned with Hill’s list,
cf. Figure 2.

3.2.1 Strength of Association

Observed strength of association may mean di↵erent things. In biological sys-
tems, causes bring about putative e↵ects, if specific combinations of back-
ground conditions hold and possibly hindering factors are absent. In contrast
to causes which hold on a broad spectrum of background conditions, causes
whose backgrounds conditions are rarely met – or whose hindering factors are
common – will produce small e↵ects in the treatment arm. Hence the e↵ect-
size reflects this kind of phenomenon, which philosophers have referred to as
“stability” or “invariance”, or “insensitivity” or “non-contingency” [81, 114].
This means that the e↵ect size may reflect the relative non-contingency of the
causal e↵ect (independence from “supporting factors”: [16, 99]), rather than
its causative force.

Woodward ([114,116]) introduces stability as a feature of counterfactual de-
pendence between putative cause and e↵ect: the causal relationship remains in-
tact under changes in the environment, and the severity of the changes “tests”
the stability of the relationship – the more stable, the less sensitive to the

4 [52] examines the empirical evidence in support of Bradford Hill guidelines and de-
emphasise their importance. Indeed the influence of biases of various kinds may distort the
genuine informative value of such indicators. In our framework, this aspect is explicitly taken
into account by providing separate lines of support for the confirmatory value of a given
piece of evidence and its reliability.
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1. Strength of the association

2. Consistency

3. Specificity

4. Temporality

5. Biological Gradient

6. Plausibility

7. Coherence

8. Experiment

9. Analogy

Rate of Growth

Dose-Response

Probabilistic Dependence

Di↵erence-Making

Temporality

Mechanistic Knowledge

Relevance

Empirical Level/Methodology

Inferential Patterns

Fig. 2: Mapping Hill’s nine viewpoints onto our framework, with indicators of
causality and dimensions of scientific research (italicised) on the right side.

specification of background parameters. Stability may indeed be considered as
an indicator of causality in that it manifests the non-contingent relationship
between the observed e↵ect and the putative cause: in a certain sense it is
an attenuated version of the necessity condition inherent to the pre-Humean
conception of causality. Woodward as well as Pearl ([81,114]) consider stabil-
ity as an essential quality of causal relations: the more unstable a relation is
observed to be, the higher the likelihood that it is not genuinely causal at all
in the end.

Strength of the association is also a function of how much the putative e↵ect
changes upon changes of the putative cause. This is measured for instance by
the (regression) coe�cient. In this respect, strength refers to the functional
relationship itself, independently of its degree of universality. We will refer to
a strong association in this sense as having a “high rate of growth”.

Related to the rate of growth is also the “dose-response relationship”.
This states whether a systematic relation between changes in one variable and
changes in the other holds in the first place. The existence of a dose-response
model is an important indicator of causality especially because the detection of
a clear dose-response curve (e.g., a logarithmic relation between treatment or
exposure and observed e↵ect values with small error terms) is best explained
by positing a truly ontological influence structure along Reichenbach’s princi-
ple: The variables are either directly causally related or correlated due to the
presence of a common cause.5

5 Drawing causal inferences from functional or statistical relations alone is a hard task
and in many cases not feasible. If a functional description (like a structural equation) or a
statistical connection (like a high measure of covariance) is available though (and has proven
stable), it can be used for intervention and prediction – two hallmarks of causal knowledge.
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treatm./exp.
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treatm./exp.
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(2b)

treatm./exp.

e↵
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t

(2c)

treatm./exp.

e↵
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t

(2a)

Fig. 3: Examples of di↵erent rates of growth (visualised as pointers) and di↵er-
ent dose-response relationships (visualised as dose-response curves), relating a
population’s treatment or exposure to the observed e↵ect.

Dose-response relationship and (high) rate of growth are epistemically re-
lated not only because the latter conceptually subsumes the former, but also
because the higher the rate of growth, the more likely it is that both will be
detected in observational or experimental studies. This is because, if the rate
of growth is high, then a relationship between putative cause x and e↵ect y
(x and y are continuous variables) is more likely to be detected even in small
samples/less favourable background conditions. In sum, the presence of a dose-
response relationship dy/dx 6= 0 (for most x in the domain) suggests that there
is a systematic relationship between the putative cause and the e↵ect; the rate
of growth says how strong this relationship is, e.g, how much dy/dx departs
from 0. Figure 3 contrasts two exemplary rates of growth (high in graph 1a

Although David Freedman criticises the Spirtes-Glymour-Scheines approach ([96]) towards
automatically inferring causal claims from raw data, he points precisely to the practical use
of formal dose-response relations when he writes that “[t]hree possible uses for regression
equations are (i) to summarise data, or (ii) to predict values of the dependent variable, or
(iii) to predict the results of interventions” (Freedman in [35, p. 62]).
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and low in graph 1b) with concrete dose-response curves (graphs 2a, 2b, and
2c). The dose-response relationship can be linear or – as illustrated in the
example – nonlinear (in which case it can be monotonic or non-monotonic).6

The strength of association may also be measured by “probabilistic depen-
dence”. In comparison to rate of growth and the dose-response gradient, this
may be a less informative indicator, in that it need not provide any informa-
tion as to the functional form of the relationship between cause and e↵ect, but
merely denotes the presence of an asymmetry in the conditional distribution
of the two variables.

In our system we distinguish between “rate of growth”, “dose-response re-
lationship” and “probabilistic dependence” as di↵erent indicators of causality
corresponding to Hill’s “strength of association”.

We also introduce “di↵erence making” as a perfect indicator of causality:
this is to be inferred either through experiment or through “intervention” as
intended in the causal graphs literature [81, 114] (see below, Section 5.2).

The main distinction between the three former indicators and the latter
one is that di↵erence making represents an asymmetric relationship (it is about
what makes a di↵erence to what), whereas the various forms of strength of as-
sociations are all symmetric in principle, and therefore cannot provide straight-
forward information about the direction of the relationship. This also follows
from the very same reason why dose-response relationship, rate of growth and
probabilistic dependency are only imperfect indicators of causality, whereas
di↵erence making is a perfect one (more on this below in Section 3.2.6, page
19, and Section 5.2).

3.2.2 Consistency

Hill’s second viewpoint “consistency”, also refers to stability in that it centers
on the question: “Has [the association] been repeatedly observed by di↵er-
ent persons, in di↵erent places, circumstances and times?” (emphasis added).
However, by referring to repeated observations, consistency also relates to repli-
cation of studies with identical methods, or in (systematically) varied study
settings.

Indeed, as for any other empirical science, clinical trials and epidemiological
studies cannot test a given hypothesis but in highly contingent study settings,
together with its theoretical/methodological assumptions, and ceteris paribus
clauses. Hence, systematic variation of study design and setting serves to pro-
vide evidence that the result is not an artifact of the particular circumstances
in which a given study has been carried out, or of the particular n method, or
theoretical model adopted, and related assumptions (see also [57]). Hence the
role of consistency should be distinguished along the following lines:

6 This has implications for both causal inference as well as intervention and prediction:
the more complex the functional relationship, the more di�cult it is to detect it and to
accurately represent it; and therefore the higher the risk of false prediction and inadequate
intervention [97]. However, the framework presented here focuses on detecting causes rather
than on using causal knowledge for prediction and intervention.
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1. Replication of (ideally) identical studies (same “background conditions”
– same inclusion and exclusion criteria, mode of administration/exposure,
etc. – and same design, e.g., cohort study, RCT, etc.): this is a means to
increase accuracy of measurement.

2. Replication of the observation through di↵erent methods, but analogous
background conditions: this should test the results against the suspicion of
being created by the specific study design/setting (“study artifacts”) and
guarantee “methodological robustness”.

3. Replication of the observation through similar methods, but in di↵erent
background conditions: this should test the stability of the causal link itself
in di↵erent populations/circumstances and show the extent to which it is
“ontologically robust” [20,70,113,115].

Replication of studies testing the

same causal link . . .

increases confidence in . . .

in ideally identical conditions (same
method, same background conditions)

accuracy of measurement

with di↵erent methods under same
background conditions

methodological robustness

with the same method under di↵erent
background conditions

stability of the causal link across dif-
ferent populations

Table 1: Di↵erent types of epistemic gain from di↵erent types of study repli-
cation.

Meehl [70] represents the logical structure of theory testing as follows:

(T,A
t

, C
p

, A
i

, C
n

) ! (O1 � O2) .

Where T represents the theory to be tested, A
t

its ancillary assumption, C
p

denotes the ceteris paribus clauses, A
i

the methodological assumption of the
specific study design used, and C

n

the specific and absolutely contingent con-
ditions of a given individual experiment. The arrow denotes entailment and the
horseshoe � between O1 and O2 material entailment. So, the left-hand con-
junction is falsified, modus tollens, if you observe (O1,¬O2), instead, observing
(O1, O2) provides inductive support to it.

Study replication of the first kind (1) serves the purpose of verifying whether
the results, positive or negative, are due to the contingent settings of the indi-
vidual study (C

n

); systematic variation of experimental/observational settings
(2) is meant to identify the influence of the methodological settings (A

i

). Repli-
cation (3) allows one to test the possible violation of ceteris paribus clauses
(C

p

); theory-related ancillary assumptions (A
t

), and any testable consequence
of the theory itself (T ). Hence, the confirmatory role of replication consists in
enhancing the probability of the theory T by decreasing the probability that
the evidence provided by the study for it is instead due to A

t

, C
p
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i

, or C
n

.
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In the specific context of causal inference by means of clinical or epidemi-
olgical studies, the role of replication and systematic study variation can anal-
ogously be related to the various components of scientific inference. So, T
may represent the hypothesis of the causal connection itself; A

t

the ancillary
assumptions, C

P

, the “everything else being equal” clause in relation to the
investigated drug, that is, the possible interacting factors such as age, sex,
co-morbidity etc., A

i

represents the methodological assumptions, that is those
aspects of the study design which make a di↵erence to the result and its in-
terpretation with respect to other kinds of designs (e.g., a cohort study with
respect to a case-control study); and C

n

represents the contingent circum-
stances and conditions of any given study.

Consequently, from a confirmatory point of view, consistency across studies
may mean very di↵erent things depending on whether such studies share the
same design, the same kind of population or both.

In our framework, consideration of the confirmatory value of consistency
is incorporated in the general structure of the network, where multiple nodes
under the same indicator may be related together by the same reliability or
relevance nodes if they share the same methodology or background conditions
respectively.

3.2.3 Specificity: Quantitative and Qualitative Versions

Specificity also refers to diverse phenomena. The traditional concept of speci-
ficity (following Hill) approximates the classic conception of a cause as a neces-
sary and su�cient condition for its e↵ect to occur, in contrast to the possibility
of it being produced by other candidate causes. In particular, specificity is
interesting when considered as an (ideally) bijective function holding between
sets of cause classes and sets of e↵ect classes; for instance when various kinds
of a class of toxic agents are related to various kinds of cancers through biu-
nivocal relationships.

Specificity as a property of causality has been discussed by [63, 106, 116]
as the sort of functional relationship which systematically holds between the
values of a variable and the values of another variable, such that changing the
value of the former in specific ways also changes the values of the latter in
specific ways, ideally in a bijective fashion. Lewis uses for this kind of causal
relationship the term “influence” and describes it as follows: “C will influence
E to the extent that by varying the state of C [...] we can vary the state of E in
a fine-grained way” ([63, p. 305]).7 In itself, an ideal bi-conditional association
with no residual instantiations of Cs not accompanied by Es, or vice versa,
would not guarantee causation: specificity is not an exclusive property of cau-
sation (also conventional codes are specific in this sense, see [76], [55, p. 83]).
However, it is very unlikely that such bi-conditional relationships can occur
by chance alone, therefore, specificity may be considered as an indicator of

7 [116] uses specificity to distinguish between di↵erent kinds of causes, thereby leaving
room for ontological pluralism, and also allows for specificity (as well as stability) to come
in degrees.
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a causal association being present, in that it manifests an underlying robust
relationship, which explains the systematic correspondence between the two
relata.

Another, related notion of specificity refers to the “geometrical complemen-
tarity” on which many biological phenomena are based; such as the key-hole
relationship between antigens and antibodies, or between target receptors and
drug molecules (see [108]). This kind of specificity is relevant to causal assess-
ment and prediction in pharmacology for methods (such as so called “systems
pharmacology”), that try to infer the possible e↵ects of drugs by identifying
the sets of possible families of receptors – and related proteins – which a certain
drug molecule could bind to on grounds of its “a�nity” with them. Indeed,
a�nity is a function of stereometric properties (structural and biological sim-
ilarity); see for instance [120]. This kind of specificity pertains to mechanistic
reasoning, hence it will be considered insofar as it is used to glean causal ev-
idence from knowledge about mechanisms (see below, biological plausibility:
evidence of mechanisms, Section 3.2.6).

Specificity and stability are independent concepts: a causal relationship
may be at the same time highly specific and unstable (e.g. multifactorial ge-
netic diseases), or it may be highly stable but show a low degree of specificity
(e.g. intestinal inflammation caused by various kinds of antibiotics).

Neither stability nor specificity will be used in our framework to distin-
guish di↵erent types of causes, but rather as signs of the presence of a causal
connection. In our framework, specificity is encoded as di↵erence-making since
those very studies aiming at detecting causal e�cacy of a drug under investi-
gation also yield information about the variance of the e↵ect under di↵erent
tests.8

3.2.4 Temporal Order, Distance, and Duration

In his question “which is the cart and which the horse?”, Hill addresses the
aspect of temporal precedence, seen as one of the most important markers of
causality. The importance of this criterion is mirrored by the fact that many
theorists of causality consider it a necessary prerequisite, to postulate align-
ment of the causal and the temporal direction, or even explicitly incorporate
it in their formal framework. 9 For instance, [101] goes beyond Reichenbach’s
common cause principle in explicitly building on the direction of time in his
probabilistic definition of causality: an event genuinely causes a subsequent sec-
ond event if it is identified as a “prima facie cause” – i.e., it precedes the e↵ect

8 Since specificity-as-bijection (referring to a property of the investigated nexus between
cause and e↵ect) supports the causal hypothesis D c�H by excluding alternative explanations
of the observed e↵ect (and ideally also alternative e↵ects of the tested drug), we propose
to model these alternatives on the same categorical level as our main hypothesis, with
the same methodological arsenal for testing and confirming (or rejecting) them. It is the
confirmation of D0 c�H0 together with the rejection of D0 c�H and D c�H0 that makes our
actual hypothesis a specific relation, thereby lending additional confirmatory support to it.

9 Precedence in time is considered so essential to causes that Russel bases his denial of
their existence on the temporal symmetry of laws in physics, [88].
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and raises its probability – and guaranteed not to be an instance of “spurious
causation”. Hence, although temporal precedence is a necessary condition for
causality, it is not su�cient for it because of the possibility of confounding.

The methodological literature speaks about “reverse causation” in cases
where precedence of time, together with statistical association, might give
the false impression that the preceding phenomenon causes the succeeding
one, whereas the contrary holds. In epidemiology, this is mainly due to issues
related to duration and manifestation in time of causal phenomena.10

For example, the recent debate around the causal association between
paracetamol and asthma centers around the possibility that cohort studies
showing a statistical association between the drug and the disease, may not
warrant a causal conclusion, notwithstanding the temporal precedence of parac-
etamol consumption with respect to disease inception, because subjects af-
fected by asthma in its subclinical phase (i.e., when it has not been diagnosed
yet) have a higher than average tendency to develop colds, fever or rhyni-
tis, and therefore to take more paracetamol than the una↵ected population
[39, 107]. Figure 4, replicated from [39], shows the potential common cause
structure explaining the association between the use of antibiotics or parac-
etamol and later wheezing or bronchial asthma.

Antibiotics;
Paracetamol

Wheezing/
Asthma

Respiratory
Infection

Time

Antibiotics;
Paracetamol

Wheezing/
Asthma

Fig. 4: Confounding by indication in the case of the association between an-
tibiotics and asthma (cf. [39, p. 1205, Figure 4]). Where the upper structure
contains a direct causal link, the second structure includes a third and ear-
lier factor, respiratory infection, triggering both the prescription of drugs and
what turns into wheezing or asthma at a later time.

In our framework, temporality will be expressed straightforwardly by a
temporality variable to sum up the above distinctive criteria.

3.2.5 Biological Gradients and Dose-Response Models

Related to specificity as influence is also the dose-response relationship, where
a clear pattern of quantitative dependency manifests. Quite in line with Lewis’

10 From a more general perspective this precisely touches upon the di�culty of defining or
describing an event, as discussed, e.g., by David Lewis in “Counterfactual Dependence and
Time’s Arrow” (1979) and “Events” (1986).
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idea of fine-grained relevance as a characteristic feature of causation, Hill sees it
as a strong indicator of a causal relation if an investigation reveals a biological
gradient, in that a clear dose-response curve admits a simple explanation.

In analogy to the strength of association indicator, also the biological gra-
dients splits up into the three dimensions “rate of growth”, “dose-response
relationship”, and “probabilistic dependence”.

3.2.6 Inferential Patterns

Plausibility of the Biological Mechanism

The role of evidence about possible/plausible/actual mechanisms ([21,25,66])
linking the putative cause to its phenotypic e↵ect is strongly debated in phi-
losophy, especially in relation to evidence standards. Philosophers closer to
the Evidence Based Medicine approach, even in recognising some value to
knowledge about mechanisms, still doubt that they can complement statisti-
cal black-box evidence because of the limited and fragmentary knowledge of
the “causal web” in which they are embedded (see for instance [49]). Other
philosophers instead generally recognise that knowledge about mechanisms
plays a plurality of roles both in combination with statistical information and
in a stand-alone fashion:

1. Following the philosophical analysis of causal explanation, the most tradi-
tional epistemic role assigned to knowledge about mechanisms is to provide
the ontological rationale for observed regularities ([91]).

2. Knowledge about mechanisms can also constitute a sort of double check
for causality ([18, 89,92]).

3. Mechanisms have a methodological relevance in that they are supposed
to provide the basis for extrapolation ([14], [65]), and are important for
supporting the reliability of model assumptions as well as for interpreting
experiment results (for instance a two-way curvilinear causal interaction
cannot be detected or may be misinterpreted by linear regression models).

4. Finally, mechanisms are held to have an epistemological/theoretical rele-
vance, in that they can provide the hypothesis which puts together dis-
parate data (through abductive inference). In this sense they provide the
basis for the accumulation of knowledge and scientific progress (see also
[21]).

In the epidemiological literature, especially in narrative reviews, it is typical
to combine evidence about mechanisms with statistical evidence at the pop-
ulation level, as an argumentative move in favour of causal hypotheses which
are only suggested by statistical associations. For instance, going back to our
debate about the possible causal association between paracetamol and asthma,
a series of reviews ([2, 32, 39, 41, 67, 68, 94, 95]) present both population-level
studies as well as evidence of molecular and cellular mechanisms from bio-
essay or animal studies showing plausible biological pathways leading from
consumption of paracetamol to the development of hyper-responsive reactions
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and asthma, see [77]. This latter evidence is meant to provide support for
the “physical” connection, if the observed statistical association was due to
a causal association.11 In our framework this dimension will be mapped onto
the “mechanistic knowledge” indicator.

The plausibility part of the “plausibility of mechanisms” indicator refers
to the general fit of the hypothesised mechanisms to available background
knowledge and this leads us directly to the subsequent “viewpoint” on causal-
ity (as Hill would call it), namely: “coherence of evidence”. Neither coherence
of evidence nor the subsequent viewpoints listed by Hill (“experiment” and
“analogy”) are strictly speaking indicators of the presence of causal relation-
ships themselves. Rather, they refer to the inferential/methodological process
itself, and they appeal to particular methods (experimental), or kinds of rea-
soning (“analogy”), or theoretical/epistemological virtues (“coherence”) which
may be adopted to “optimise causal inference”.

Coherent Evidence

Coherence is a property of the body of evidence, rather than of the phe-
nomenon under investigation (here, the causal link between drug and side
e↵ect). Hence, coherence may involve the concept of consistency seen above
and therefore denote 1) a property of a set of measurements, related to the
same investigated parameter, both in the sense that they all indicate a posi-
tive (or a negative) e↵ect, and in the sense that the strength of the e↵ect size
does not exceed statistical variability across studies – this sort of coherence
is generally referred to as consistency of results, and is established through
replication; 2) a property of a set of various pieces of evidence related to the
same testable consequence of the hypothesis, investigated through diverse kinds
of methods: methodological robustness or “triangulation” (see [112,113]); 3) a
property of a set of pieces of evidence related to diverse testable consequences
of the investigated hypothesis. This latter sense is the less investigated and
accounted for in the methodological literature.

In the epidemiological literature, consistency and coherence are not explic-
itly distinguished and evaluation of the latter is left to informal/implicit judg-
ment in narrative reviews. Instead, the philosophical literature has investigated

11 The role of evidence about mechanisms of chemical substances in risk assessment has
been recently analysed by [65]. Two issues are particularly relevant for the present purposes:
1) the questioned applicability of animal data in humans; 2) the lack of guarantee that simi-
larity of modes of action may warrant extrapolation of phenotypic e↵ects from one chemical
to another. Both issues relate to the problem of extrapolation: the former regard whether a
given chemical will produce the same e↵ect in the study and in the target population; the
latter refers to whether similar chemicals produce similar e↵ects (on a given population).
In our framework the problem of extrapolation is addressed with the following in mind: I.
As explained in Section 2.3, in the case of risk assessment the main concern relates to false
negatives; hence any signal should be accounted for as a possible sign unveiling latent risks
– “If it happened there, it can also happen here”; II. Warrant for extrapolation is also taken
to come in degrees and therefore is incorporated in a probabilistic approach. This lets the
degree of confidence in such warrant guide the decision at hand in combination with other
relevant dimensions (as illustrated in Section 2.2).
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coherence in several respects: 1) general epistemology o↵ers “coherentism” as
a response to skepticism in alternative to “foundationalism”: according to this
view beliefs are justified by their fitting together in a system, and standing
in a relation of mutual support [7], like the stones of an arc (simul stabunt,
simul cadent); 2) formal epistemology has investigated the confirmatory value
of coherence of beliefs, also by developing various measures of coherence, in
the attempt both to formalise its content and to track its truth-conduciveness;
see for example [8, 23, 28,33,72].

As a theoretical virtue, coherence is particularly relevant in a context, such
as risk assessment, where evidence may come from di↵erent sources and relate
to diverse levels/dimensions of the suspected causal association between drug
and side-e↵ects.

We adopt and adapt such accounts of coherence in order to develop a
system of evidence amalgamation which naturally incorporates coherence as
confirmatory, by virtue of the way the system lets heterogeneous pieces of
evidence interact and thereby jointly contribute to the (dis-)confirmation of
the investigated hypothesis.

Support by Experiment

The scientific method strongly relies on systematic observation and experi-
ment. In particular, carefully controlled experiments are considered a privi-
leged way to inquire nature, in that they ideally allow the scientist to isolate
the phenomenon under investigation from interfering and disturbance factors.
More specifically, the systematic variation of experimental conditions recalls
Mills method of eliminative induction [71], in that it allows to see the behaviour
of the studied phenomenon in combinatorial rearrangement of di↵erent circum-
stances, encoding both methodological and theoretical assumptions (di↵erent
“possible worlds”).

However, traditional experiments in physics are very di↵erent from experi-
ments in biology, pharmacology, and medicine (but also sociology and psychol-
ogy). In physics, the experiment is meant to test a theory by comparing the
observed value and the value predicted by the theory: statistical significance
speaks directly for the theory in that it reflects a small discordance between
the two values. In the latter sciences instead, the tendency has prevailed to
test the null hypothesis, that is, the catch-all complement of the claim that
the experiment is supposed to provide evidence for (see also [70]).

This has raised various criticisms both addressed against the methodol-
ogy of hypothesis testing itself (see for instance [50]) as well as concerning the
epistemic value of randomised controlled trials in medicine ([13,58,80,102,117,
119]). In the latter case, the charge involves the alleged epistemic virtues of
randomisation:12 the exclusive reliance on RCTs for the justification of causal

12 Randomisation has putatively two main roles: 1) in the long run, it should allow the
investigator to approach the true mean di↵erence between treatment and control group;
however it is unclear what this true underlying population probability denotes when we
are dealing not with population of molecules for instance, but with population of patients



20 Jürgen Landes et al.

claims is considered to be wrongheaded for various reasons; both related to
the kind of information which they provide, and to the kind of information
which they are not able to incorporate or account for. Indeed, whereas classi-
cal experiments in physics allow the scientist to observe the behaviour of the
investigated phenomenon in an array of di↵erent “possible worlds” (in di↵er-
ent scenarios or under di↵erent initial or boundary conditions), and compare
systematic di↵erences among such situations, randomisation is blind to such
specific settings. Its outcome is rather to neutralise their e↵ects on the final
result, by creating two populations, one for the treatment and one for the
control group, where the same ”worlds” should be represented in the same
proportion. This should guarantee that the di↵erent results possibly observed
at the end of the trial are due to the treatment and only to it.

Hence randomisation, as a means to isolate the putative cause from other
possible confounding factors, loses much information with regard to the spec-
ification of possibly relevant mediating and interacting causes. However, it
provides a much higher guarantee with respect to confounding than observa-
tional studies do. Ceteris paribus, RCTs fare better in distinguishing spurious
from genuine causes.

Since Rubin [87], the standard conceptualisation of causal claims resulting
from RCTs (and comparative studies) is counterfactual: the “causal e↵ect”
is the di↵erence between what would have happened to the subject, had it
been exposed to the treatment and what would have happened to it, had
it been exposed to the control. Since the subject cannot undergo the same
experimental conditions at the same time, the causal e↵ect is calculated as
the average di↵erence of the e↵ects observed in the group of exposed and the
group of unexposed subjects.13

Causality has indeed been analysed in terms of counterfactuals in several
respects. Lewis ([61–63]) proposes a possible-worlds semantics for the truth
conditions of individual causal claims in terms of counterfactual dependence;
Woodward [114] identifies necessary and su�cient conditions for causality in
terms of invariance under intervention, where his notion of intervention cap-
tures the counterfactual gist of causal graphs and structural equation mod-
elling. Finally, Pearl [81] is focused on counterfactuals related to potential
e↵ects of interventions, and relies on causal knowledge to predict the e↵ect
of such interventions (e.g., policy interventions). Hence, counterfactuals have
di↵erent roles in analysing causal claims, defining causality or using causal

undergoing medical interventions, where heterogeneity among individuals can at most allow
for an aggregate average measure. Furthermore, it is obviously unethical and unfeasible
to re-sample the same subjects of an experiment again and again, and even if this were
possible, the subjects who were administered the drug in the first round would undergo
physiological change; consequently, the successive trial population would no longer be the
“same” [118] ; 2) randomisation (together with intervention and blinding) should guarantee
the internal validity of the study by severing any common cause, or common e↵ect, between
the investigated treatment and its putative e↵ects (i.e., avoidance of confounders and (self-)
selection bias). This kind of objective is supposed to justify the primary role assigned to
randomised evidence by so called evidence hierarchies, see Section 6 below.
13 This is also known as the “potential outcome approach” to causal inference.
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knowledge for predicting the e↵ect of interventions. However, they share the
intuition that a cause must make some di↵erence to whether the e↵ects occur
or not (holding other variables fixed).

Underlying
causal structure

Woodward Pearl

X Y X Y

I

X Y

I

do(x) Y

Fig. 5: Interventions can be used to test the underlying causal structure and
learn more about the relation between event X and Y . Woodward’s interven-
tions require an additional, suitably defined intervention variable I, whereas
Pearl’s interventions are expressed as local surgeries in the causal graph.

In our framework we identify RCTs as particularly reliable sources of evi-
dence for the di↵erence-making e↵ect attributed to causes by the philosophical
literature; and we understand di↵erence-making as ideal controlled variance
along the concept of intervention in manipulationist theories of causation. For
example, Woodward [114] carefully characterises intervention variables for the
purpose of testing the hypothesised causal connection between two events X
and Y . Fig. 5 illustrates the idea: If the unknown underlying causal connec-
tions form a fork (first graph in Fig. 5), the introduction of a suitably chosen
intervention variable I will lift X from the influence of X and Y ’s common
cause and refute the hypothesis that X is a cause of Y (second graph in Fig.
5). Nevertheless, if I is not chosen well it might indeed lift X from its parents’
influence but introduce a new dependency between X and Y , leading to the
false conclusion that X causally influences Y (third graph in Fig. 5). In con-
trast to Woodward, Pearl ([81]) expresses interventions as local surgeries in the
causal model, subjecting X to ideal (external) control by directly setting its
value (qua do(x)), thereby abstracting from the possibility of finding a suitable
intervention variable. X is then called a cause of Y if Y ’s value can be varied
by varying X (possibly upon controlling for additional variables in the given
situation). We see our concept of di↵erence-making as closely related to Pearl’s
definition of what it means to be a cause, and accordingly, di↵erence-making
will be a perfect indicator of causation (also see below, Section 5.2).

Support by Analogy

Hill briefly mentions reasoning by analogy as additionally contributing to the
assessment of the causal claim: if a specific drug is on trial, available evidence
of a similar second drug’s e↵ects might be used for inference about the former.
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This touches upon central and notorious epistemological questions: What does
it mean to be su�ciently similar in the case under consideration? In what way
does the di↵erence between the first and the second drug influence changes
in expected outcome values? How specific are a drug’s properties? If they
are highly specific – to what extent can this drug be used in an analogical
argument, if at all? Although similarity seems to be a concept di�cult to spell
out in formal terms,14 the applicability and fruitfulness of parallel reasoning
is of great interest (see [5] and [44]), and analogical arguments are employed
across disciplines.

Physicists, e.g., transfer abstract structures of analogue reasoning to ana-
logue simulations with which physical systems (presumedly similar in all rele-
vant aspects) are tested under syntactic isomorphism (see, e.g., [104], [24, 43]
for discussions of analogue arguments in physics). Scientific discovery is often-
times propelled by analogy, as, e.g., in the nineteenth century, when secured
knowledge about acoustics was employed in the discovery of spectral lines.
Guided by the image of a harmonic oscillator, physicists were able to focus
their attention to groups of spectral lines with specific frequency patterns from
the beginning (see Bartha’s in-depth overview of analogical arguments in [4]).
When coupled with a suitable theory of confirmation, analogy can finally be
used to support a scientific hypothesis where only evidence from an analogue
system is obtained (see, e.g., [45] or [83]). This is of special interest for our
purposes in this paper.

In pharmacology and epidemiology, explanation and prediction by analogy
rest both on su�ciently well-described background conditions and knowledge
about the relevant biological mechanisms at work. Describing all relevant dif-
ferences between two drugs might be the first step towards justifying assess-
ment by analogy – the second step might then be inference in a unified model
where all the relevant di↵erences are integrated as parameters. Formal models
relating di↵erent pieces of evidence can precisely be of help for this task. Once
relevant influences are distinguished from irrelevant ones and the contribution
of di↵erences in the relevant factors are determined, analogy will justifiedly
help in identifying causation.

Reasoning by analogy is also at the basis of inductive inferences from study
to target population. Indeed, because of the context sensitivity of many causal
associations in the biological realm, these can hold only in specific populations,
and therefore evidence about causal e↵ects related to one population may not
license similar conclusions about another population, unless the two population
are analogous.

14 David Lewis’ bases his formal account of causation implicitly on the concept of compar-
ative similarity and concedes the following: “We do make judgments of comparative overall
similarity – of people, for instance – by balancing o↵ many respects of similarity and di↵er-
ence. Often our mutual expectations about the weighting factors are definite and accurate
enough to permit communication. [. . . ] But the vagueness of over-all similarity will not be
entirely resolved. Nor should it be. The vagueness of similarity does infect causation, and
no correct analysis can deny it.” (cf. [61, pp. 559-560])
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Our framework can be operationalised for the assessment of support by
analogy in two ways:

1. The investigated causal hypothesis D c�H (with all of its sub-structure)
may be related to a second causal hypothesis D0 c�H 0 which has already
been confirmed in specific previous studies. Now, if scientists have su�cient
reason to propose an analogy relation betweenD andD0 (e.g., a high degree
of chemical or functional similarity), knowledge about this second causal
hypothesis supports the first hypothesis D c�H via analogy (“horizontally”
on the same level of investigation).

2. Since in general no piece of evidence comes from an experiment or a study
conducted on the target population, the question of applicability of the
study’s findings must be phrased in terms of the similarity between study
and target populations: If study and target populations are su�ciently
similar, researchers are licensed to reason about causal links in the tar-
get population by analogy with their test cases. The degree to which this
kind of transfer is licensed is encoded in our framework as an attribute of
available reports (see Section 3.3 below for a discussion of the relevance
of evidence and how it “vertically” influences the assessment of the causal
hypothesis).

Relativising the justification of analogue reasoning to a (comparative or nu-
merical) distance measure (i.e., the similarity between drugs or populations)
might of course be criticised due to the perspectival nature of similarity and
relevance. Nevertheless, once this measure is agreed to be of su�cient strength,
our framework can be used to express the confirmatory dynamics of support
by analogy.

3.3 Relevance and Reliability

In the literature on (the philosophy or even science of) evidence, we find the
idea that studying the concept of “dimensions” of items of evidence can help
address the notoriously tricky notion of “weight of evidence” [109]. Schum
put forward a substance-blind classification of inferential power of evidence
employing the dimensions: “credibility” and “relevance”, see [93]. To score
an item of evidence on these dimensions one needs to answer the following
questions “Can one believe the reported evidence?” and “How does an item of
evidence bear upon the proposition of interest?”.

In the same line, Roush argues that good evidence for the user has to be
“credible” and “relevant” (see [86, Chapter 5]).

In [15,16], Cartwright and Stegenga shift the focus to the user of evidence
(policy or decision maker). With this move they make room for a more prag-
matic notion of relevance which refers not only to the confirmatory force of
the evidence with respect to the hypothesis under investigation, but also to
whether the evidence acquired in the study may license the same conclusion
in domains/populations which may di↵er from the study sample (external va-
lidity, extrapolation). We clearly demarcate these distinct notions of relevance



24 Jürgen Landes et al.

by adopting a “relevance dimension”, which refers to external validity issues,
as a notion separate from the standard Bayesian relevance (as paradigmati-
cally measured by probabilistic dependence). Also we distinguish these from
the reliability dimension.

Relevance Ideally, pharmacological studies would license the same infer-
ences for the studied population and the target population of future drug
users. In reality, studies are not conducted on the entire population of future
drug users but on a much smaller number of patients, see [17, p. 1180], [10]
for this problem in neuro science, [29] in cancer research and a philosophical
discussion of this problem in [118, p. 992]. Additionally, studied populations,
in particular in RCTs, often fail to be representative for the target population
due to strict patient inclusion criteria, see [85] and [105, p. 483]. Therefore,
there is a need to reason by analogy from the studied population to the popu-
lation of interest (see Section 3.2.6).15 The relevance pertaining to an item of
evidence measures how well the observed results in a study population can be
transferred to the target population of future drug users.

Reliability The “credibility” dimension of evidence relates to the source
which originates it and the way it has been collected. Bovens & Hartmann,
see [8, Chapter 4], elaborate on “reliability” as an instrument for Bayesian hy-
pothesis confirmation where it is construed as i) a function of an instrument’s
accuracy or ii) the credibility of testimony.

The sums at stake in drug licensing decision problems are enormous (rev-
enues of successful drugs can reach billions of dollars within a few years) it is
hence not surprising that vested interests may influence the flow of informa-
tion. A point in case for vested interests to playing an inglorious role is the
story of “Vioxx”, see [12,47,48,54,56]. The abstract worry that financial con-
flicts of interests lead to a “bias in the synthesis and interpretation of scientific
evidence” seems to be not merely abstract, see [6, 30]. A low reliability of an
item of evidence may be due to a number of methodological flaws (confound-
ing, biased studies, more broadly: poor design of a study, sub-optimal data
recording) as well as not fully objective sources.

In our framework we shall use variables for every piece of evidence. To
every such variable two further variables pertain, a variable for the relevance
and a variable for the reliability.

4 Modeling Scientific Inference in Bayesian Epistemology

4.1 The Bayesian Paradigm

Bayesian epistemology is a current paradigm in the philosophy of science,
see for example [50, 110]. It has two virtues which are key for us. Firstly, it

15 One particular inference by analogy is that from animal studies/models to a human
target population. In [59], it has been argued that animal studies are only good for hypothesis
discovery. We side with [3] in thinking that animal studies are one important piece to the
puzzle to predicting drug reactions.
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complies with Carnap’s principle of total evidence ([11]) which demands that
all available evidence is taken into account when determining probabilities.
This is achieved by updating prior probabilities by the evidence propositions
yielding posterior probabilities.

Secondly, it allows for a nuanced assessment of hypotheses after incorporat-
ing all available evidence into the posterior. The degree to which the evidence
boosts (or lowers) the probability of a hypothesis is the (dis-)confirmation the
evidence provides to the hypothesis.16 In Bayesian epistemology, the role of
evidence in (dis-)confirming a hypothesis is thus grounded on a sound method-
ological bases.

A theoretical framework which allows us to distinguish the di↵erent epis-
temic levels of the problem at hand, as well as their interaction is presented
in [8, Chapter 4]. This framework is a model for epistemic dynamics under-
pinning scientific inference and it provides a mathematical explanation for it
by labeling nodes with epistemic categories. In Section 5, we will adapt their
work for our purposes of causal inference in pharmacology.

4.2 Scientific Hypothesis Confirmation According to Bovens & Hartmann

The Bayesian network model of Bovens & Hartmann, presented in [8], (see
[26, 73] for introductions to Bayesian networks) consists of the hypothesis,
(some of) its observable consequences, reports on whether theses consequences
were born out in experiments and the reliability of instruments used in these
experiments. The graph structure of the Bayesian network represents condi-
tional independencies between the variables. Conditional probabilities attach
to every variable which specify the probability of a variable given its parents.

The following binary propositional variables are used: A variable Hyp
where the intended meaning forHyp = TRUE is that “the hypothesis is true”,
similarly for variables Con

i

(“consequence i holds”), Rep
i

(“consequence i is
reported”)17 and Rel

i

(“report i is reliable”), cf. [8, p. 89]. According to the
Bayesian paradigm, a prior probability function P , defined over the algebra
generated by these variables, is selected. Naturally, P is constrained to respect
the conditional independencies encoded by the graph G. Updating the prior
P , by conditionalising, then allows Bovens & Hartmann to calculate posterior
probabilities given experimental results.

The set of meaningful conditional probabilistic independencies in prior P
can be read o↵ by means of the Parental Markov Condition.18 The graph
G in Figure 6 depicts the situation for one single consequence. The general

16 The reader is referred to the very recent [23] which discusses two leading Bayesian
confirmation measures in detail.
17 ¬Repi means that “not consequence i is reported” rather than “consequence i is not
reported”.
18 The Parental Markov Condition states that every variable is probabilistically condition-
ally independent of its non-descendants given its parents. This condition is silent on all
causal matter and is hence not to be confused with the Causal Markov Condition.
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case for more consequences is more involved and depicted in Figure 7. These
conditional independencies – denoted by ?? – are

Hyp??Rel
i

for all i (1)

Con
i

??Rel
i

|Hyp for all i (2)

Rep
i

??Hyp |Rel
i

, Con
i

for all i (3)

{Con
i

, Rel
i

Rep
i

}??
[

k 6=i

{Con
k

, Rel
k

Rep
k

} |Hyp . (4)

The choice of prior is further constrained by

Hyp P (Hyp) = h

Con
P (Con |Hyp) = p
P (Con | ¬Hyp) = q

RelP (Rel) = ⇢

Rep

P (Rep |Con,Rel) = 1
P (Rep | ¬Con,Rel) = 0
P (Rep |Con,¬Rel) = a
P (Rep | ¬Con,¬Rel) = a

Fig. 6: Hypothesis testing in the Bayesian framework of Bovens & Hartmann
for one single testable consequence. All necessary parameters of the prior prob-
ability are displayed in terms of lower-case letters.

P (Con
i

|Hyp) = p
i

> q
i

= P (Con
i

| ¬Hyp) (5)

P (Rep
i

|Con
i

,¬Rel
i

) = P (Rep
i

| ¬Con
i

,¬Rel
i

) = a
i

(6)

P (Rep
i

|Con
i

, Rel
i

) = 1 (7)

P (Rep
i

| ¬Con
i

, Rel
i

) = 0 . (8)

Bovens & Hartmann take (5) to be their definition of what it means to be an
observable consequence of a given hypothesis, see [8, p. 90].

(6) refers to the convention that when an instrument is unreliable, then the
probability of receiving a report does not depend on whether the consequence
holds. When the instrument is fully reliable, then the probability of receiving a
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Hyp

. . .Con
2

Con
1

Conn�1

Conn

Rel
1

Rep
1

Rel
2

Rep
2

Reln

Repn�1

Repn

Fig. 7: Evaluating a hypothesis with multiple testable consequences according
to Bovens & Hartmann. A reliability node with multiple children is used for
instruments which were used in multiple experiments.

report that the consequence has been observed equals one, if the consequence
holds; see (7). Vice versa, a fully reliable instrument produces a positive report
with probability zero, if the consequence does not hold, see (8).

They then determine the (posterior) probability of the hypothesis being
true, given a report and its reliability [8, p. 92, Equation 4.5]. This probability
can be computed directly from the conditional probabilities specified at the
nodes in the Bayesian network. The comparison of prior and posterior proba-
bility is at the heart of Bayesian confirmation theory.

The rationale for arranging the theoretical layer (Hyp, Con) and the em-
pirical/methodological layer (Rep, Rel) in the proposed way is summarised in
the following:

1. Testable consequences of the hypothesis are inserted as intermediate nodes
between the Hyp-node and the report nodes: Hyp

i

?? Rep
i

|Con
i

for all
i. According to Bovens & Hartmann, this formally captures the fact that
the hypothesis cannot be tested directly, only observable consequences of
the hypothesis are testable (cf. [8, p. 89]).

2. All consequence nodes (together with their respective descendants) are
conditionally independent given Hyp: Rep

i

?? Rep
j

|Hyp for all i, j with
i 6= j. This models the situation where a range of consequences can be
assessed by multiple independent tests (see the left portion of Figure 7
and cf. [8, p. 98]). If, however, the dependence of studies or tests is to be
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marked in the structure, one Rel node might also have more than one Rep
node as a child, thereby creating dependency between reports (see the right
portion of Figure 7).

3. All Rel nodes are unconditionally independent of their non-descendants.
That means: Rel

i

?? nonDesc(Rel
i

) for all i; i.e., in the case of all reports
being independent we have Rel

i

?? Hyp for all i (with i indicating a report
for the i-th consequence). This independence formalises the assumption
that from learning something about the reliability of a report we cannot
infer anything about the truth (or falsity) of the hypothesis (cf. [8, p. 58]).

4.3 Virtues of the Bovens & Hartmann Approach

Probabilistic networks have found wide-spread use in applications in a great
number of domains including medicine (e.g., di↵erential diagnosis). These net-
works implement knowledge from a very specific domain and nodes generally
represent concrete phenomena or entities of interest.

Bovens & Hartmann draw on this formal apparatus to abstractly model
scientific inference and to formally relate higher level epistemic categories.
While the mathematics do not change, the graph provides an illustration of the
epistemic dimensions at stake and thereby provides greater insight into some
methodological issues by o↵ering, as it were, a mathematical explanation of
their dynamics. Indeed, this sort of representation allows us to single out in the
mathematical formulas the specific role played by each epistemic dimension
in the inferential dynamics; e.g., the role of reliability with respect to the
propagation of confirmation in connection with replication of studies and with
heterogenous sources of evidence (see Section 3.2.2).

5 A Framework for the Assessment of Harms in Pharmacology,
Part 2: Structure

5.1 Graphical Representation – Variables and Intended Interpretations

For the purpose of developing our Bayes net model of pharmacological in-
ference, our main interest is determining rational degrees of belief in the
causal hypothesis “Drug D causes harm H in population U”. For ease and
clarity of exposition, we here use a binary propositional variable. We hence
introduce a variable c� with the intended meaning of c� = TRUE is that:
“Drug D causes harm H in U”.

As outlined in Section 3, we take it that rational belief in the causal hypoth-
esis is based on causal indicators: di↵erence-making, probabilistic dependence,
dose-response relationship, mechanisms etc. We use binary propositional indi-
cator variables Ind

i

(i 2 {1, 2, 3, 4, ...}) with Ind1 = �, Ind2 = PD, Ind3 =
DR, Ind4 = RoG, Ind5 = M, Ind6 = T (di↵erence-making, probabilistic de-
pendence, dose-response relationship, rate of growth, mechanisms and tempo-
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rality, respectively) and possibly further variables for causal indication Ind
k

.
Ind

i

= TRUE means that the i-th consequence of the causal hypothesis holds.
For every item of evidence r and every causal indicator i the item of evi-

dence informs us about, we use a report variable Repi
r

.19 Reports may come
from various kinds of studies such as case reports20, case series, case-control
studies and cohort studies; or from experiments at various levels: in vitro,
in vivo and clinical studies. Relevant evidence may also come from knowl-
edge discovery techniques as well as computational modeling. The meaning
of Repi

r

= TRUE is that the item of evidence is consistent with the causal
indicator for a population for which the studied population is representative.

We use two further variables for relevance and reliability for report variables
in order to account for these two dimensions of the evidence and their role in
(dis)confirming the investigated hypothesis (cf. Section 3.3).

5.2 Probabilistic Independencies

By borrowing the quite general reconstruction of scientific inference from
Bovens & Hartmann we import their direct and indirect probabilistic de-
pendencies and conditional independencies (see our summary of the relevant
independencies from [8] in Section 4.2e). Beyond that, our choice of causal
indicators and subsequently their formalisation as variables (i.e., nodes in the
graph) requires us to make the theoretical, implicatory dependencies transpar-
ent by expressing them as links in the network. The following list motivates our
modeling choices for the formalisation of the conceptually related indicators
RoG, PD, DR, and �:

1. We model the implication relations between the four indicators as edges
on the second level of our network: the detection of a high rate of growth
implies a dose-response relationship which in turn means that the variables
under consideration are probabilistically dependent.
Note that the edges on the second level are not a superfluous addition: If
probabilistic dependence is measured but the causal hypothesis is known
to be false (i.e., c� is fixed to FALSE), the variables PD, DR, and RoG
remain dependent since they overlap conceptually. Inserting direct edges
on the second level precisely expresses this overlap. The categorical in-
dependence between the hypothesis level and the indicator level becomes
apparent in this structure: PD, DR, and RoG are not dependent via the
c� node, but directly linked to one another on the indicator level.

19 Superscripts are suppressed in the notation, whenever no confusion arises.
20 Case reports may contribute in two main di↵erent ways to harm assessment: 1) the first
one(s) contribute to hypothesis generation: they function as alarm signals by identifying
identify a previously unknown side e↵ect; 2) following these hypothesis generation events, the
subsequent case reports contribute to “strengthen” the signals, i.e. they have a confirmatory
role, analogously to compared studies and other statistical evidence as illustrated in this
paper. Other kinds of studies may also function as generators of hypotheses of course, but
this role is mainly covered by case reports.
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c�

Ind

Rep↵

Rel↵

Rlv↵

Rep�

Rel�

Rlv�

Hypothesis

Causal Indication

Evidence Reports

Reliability

Relevance

Fig. 8: Graph structure of the Bayesian network for two reports and epistemic
categories.

2. No direct edge links RoG and PD since an observed high rate of growth
implies an observed dose-response which implies an observed probabilistic
dependence in turn and mediates the inference from RoG to PD (in other
words, DR screens o↵ PD from RoG).

3. Our choice to not insert an edge between DR, RoG, PD and � reflects our
intention to clearly demarcate the conceptual/methodological dividing line
between observational/static and interventional/dynamic support for the
causal hypothesis: c� screens o↵ � from the observational/static indica-
tors.21 And formally: � ?? DR,RoG,PD | c�. This principled distinction
is already laid out in Hume’s famous twofold definition of causation which
can be seen as a point of reference both for regularity/supervenience as
well as for counterfactual/manipulationist theories of causation (cf. [51,
Sec. VII]). Finally, all indicators listed above are imperfect ones, except

21 By ‘observational/static’ we refer to inference from observation alone, whereas by ‘inter-
ventional/dynamic’ we refer to inference from data collected in interaction with the inves-
tigated system or population. For example, this contrast becomes evident in the di↵erence
between standard probabilistic conditioning (which amounts to shifting the focus in a prob-
abilistic model) and conditioning with Pearl’s do-operator (which amounts to transforming
the probabilistic model).
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for di↵erence-making. Nevertheless, we are not collapsing � and c� into
a single node: Following the philosophical literature on causality, we con-
sider that when a di↵erence-making relationship between two events or
variables holds, then this is a su�cient – although not necessary – con-
dition for causality. This can be characterized in logical terms as an en-
tailment relationship: � � c�. Hence, in our system, the probability of
a causal relationship, given a genuine di↵erence making relationship is 1:
P ( c� |�) = 1. The inverse entailment, c� � �, does not hold however.
Although � – representing the possibility of ideal controlled variance –
implies c� in a definitional way, knowledge of c� does not necessitate the
existence di↵erence-making – e.g., in cases of “holistic causation”.22

Note also that we are purposely choosing to direct the edge between c�
and M towards M : We understand the existence of a mechanism as a testable
consequence of the causal hypothesis, i.e., as a constitutive element of c� rather
than a pre-requisite (or even somehow causally prior) – in accordance with all
other indicator nodes.23

The Figures 8–10 graphically represent aspects of the graph of our Bayesian
network. Figure 8 displays epistemic dimensions at stake, Figure 9 shows the
causal indicators, their reciprocal relations, and the studies which inform us
about single indicators. Figure 10 depicts a case in which studies are informa-
tive about more than one indicator.

5.3 Adopting a Prior

Success of Bayesian reasoning hinges on the choice of a suitable prior. Incorpo-
rating domain knowledge plays a major role in the choice of a prior. Domain
knowledge may be elicited from experts.24

While the prior has to satisfy the conditional independences discussed
above and incorporate prior domain knowledge, there are further properties
in the problem specification that a sensible prior has to satisfy; which we shall
now discuss.

P ( c�) < P ( c�|Ind) for all indicators Ind (9)

P ( c�) > P ( c�|¬Ind) for all indicators Ind (10)

P ( c�|Ind
i

&Ind
k

) � P ( c�|Ind
i

) for all i 6= k (11)

22 The latter case makes the conceptual divide even more obvious: If one knows the hy-
pothesis to be true, learning that there is no di↵erence-making would not change one’s belief
in a positive dose-response. In this case the causal relation under investigation would then
be explained as holistic causation. We are thankful to an anonymous reviewer for pointing
this case out to us.
23 We are thankful to an anonymous reviewer for hinting at sources of potential disagree-
ment about the role of mechanistic knowledge and thus helping us elucidate our point here.
24 Elicitations of parts of priors from experts in a medical context has recently been re-
viewed in [53]. Determination of prior distributions combining expert opinion with historical
data is reported in [38, Section 4].
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Fig. 10: Example of a Bayesian net for two studies which both inform us
about two indicators. The study generating reports for di↵erence making and
probabilistic dependence may be an RCT, while the study generating the two
reports on the right may be a case control study. For both studies, we use one
reliability and one relevance variable each.

P ( c�|Ind
i

&¬Ind
k

) < P ( c�|Ind
i

) for all i 6= k (12)

P ( c�|�), P ( c�|DR) > P ( c�|PD) (13)

P ( c�|¬PD) < P ( c�|¬DR), P ( c�|¬RoG) (14)

P (Ind
i

|Rep
i

&Rlv
i

&Rel
i

) > P (Ind
i

) for all i (15)

P (¬Rep|¬(Rel&Rlv)&Ind) > P (¬Rep|Ind) . (16)

In (16) all report, reliability and relevance variables pertain to the same indi-
cator variable Ind.

(9) means that the conditioning on one causal indicator boosts the belief
in the causal hypothesis being true, while (10) means that conditioning on the
negation of an indicator lowers the belief in the causal hypothesis. Similarly,
the same holds in the presence of another instantiated indicator, see (11) and
(12). The inequality in (11) is strict, if Ind

k

is not a descendant of Ind
i

. (13)
and (14) express that probabilistic dependence is a weaker causal indicator
than di↵erence-making or high rate of growth. Consequently, conditioning on
di↵erence-making, dose-response relationship, or high rate of growth gives a
greater boost to the belief in the causal hypothesis than probabilistic depen-
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dence. Vice versa, conditioning on the negation of probabilistic dependence
reduces belief in the causal hypothesis more strongly than conditioning on the
negation of a dose-response relationship or high rate of growth.

One reliable study, which is reliable and relevant for the target population,
and finds that, say, there is probabilistic dependence between the drug an
adverse drug reactions, significantly boosts the belief that there is probabilistic
dependence in the target population; (15).

(16) formalises the following thought: Belief in the inconsistency of a re-
port and the respective indicator is boosted if the study is either irrelevant,
unreliable, or both (¬(Rel&Rlv) serves to explain the inconsistency).

5.4 Two Model Calculations

We now illustrate how to use our model by giving two example calculations.
First, we show how to decide between withdrawing the drug or not. Secondly,
we show how the posterior weight of an item of evidence that conflicts with a
large consistent body of evidence decreases.

5.4.1 The Threshold p⇤

With the prior in place, we can now investigate conditions under which we
will recommend to withdraw the drug D by calculating the threshold p⇤.

We find for a pair of distinct indicator variables Ind
j

, Ind
k

which are not
linked by an arrow

P ( c�|Ind
j

&¬Ind
k

) =
P ( c�&Ind

j

&¬Ind
k

)

P (Ind
j

&¬Ind
k

)

=
P ( c�&Ind

j

&¬Ind
k

)

P (Ind
j

&¬Ind
k

& c�) + P (Ind
j

&¬Ind
k

&¬ c�)

=
P ( c�&Ind

j

&¬Ind
k

)

P (Ind
j

&¬Ind
k

& c�) + P (Ind
j

&¬Ind
k

&¬ c�)
.

Letting a, b 2 [0, 1]

a :=P ( c�&Ind
j

&¬Ind
k

) = P (Ind
j

| c�) · P (¬Ind
k

| c�) · P ( c�)

b :=P (¬ c�&Ind
j

&¬Ind
k

) = P (Ind
j

|¬ c�) · P (¬Ind
k

|¬ c�) · P (¬ c�)

we obtain

P ( c�|Ind
j

&¬Ind
k

) =
a

a+ b
.

For fixed a, a

a+b

is a strictly decreasing function in b; if a = 0, then a

a+b

= 0
(as long as b 6= 0 in which case the fraction is ill-defined), if a = 1, then a

a+b

varies between 1 and 0.5. For fixed b > 0, a

a+b

increases strictly with increasing
a. If b = 0, then a

a+b

= 1 (assuming a 6= 0), if b = 1, then a

a+b

varies between
0 and 0.5.
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For the threshold p⇤ given by the decision problem (p⇤ = P ( c�|Ind
j

&¬Ind
k

)),
we can compute the threshold value a⇤ for for fixed b (and vice versa) as follows
(assuming we never divide by zero):

a⇤ = b · p⇤

1� p⇤
b⇤ = a · 1� p⇤

p⇤
.

For fixed b, if a > a⇤, then our belief in the causal hypothesis, D c�H, is too
great to recommend the drug for use. For fixed a, if b > b⇤, then our belief in
the causal hypothesis, D c�H, is low enough to recommend the drug for use.

The posterior probability P ( c�|Ind
j

&¬Ind
k

) and the contour lines are

plotted in Figure 11. The contour lines a⇤ = b · p

⇤

1�p

⇤ and b⇤ = a · 1�p

⇤

p

⇤ are
linear curves which would intersect at the origin of the a�b-plane, if they were
defined there. The clustering of the contour lines near the origin indicates that
small changes in a or b, if a and b are small, can have a large e↵ect on a

a+b

, on
the probability of D c�H and hence easily change the recommended action.

5.4.2 Dynamics

Conflicting reports are a fact of life in pharmacological inference. We here show
that a report which conflicts with all other reports – which speak to the same
causal indicator – has high posterior probability that it is not reliable or not
relevant or both, given that the conflicting report comes from an independent
source.

Let Rep
j

for j 2 {0, 1, . . . , N} all concern indicator Ind
k

be such that
report zero says that the Study 0 is inconsistent with the causal indicator
Ind

k

while all other reports say that the observations are consistent with the
causal indicator Ind

k

. Denote the proposition which captures the evidence
other than the evidence obtained by Study 0 by

⇢ :=
N^

j=1

Rep
j

&Rel
j

&Rlv
j

.

Denoting by % := Rel0&Rlv0 we now compute the posterior probability of ¬%,
that is, the posterior probability that either Study 0 is unreliable, irrelevant or
both. In mathematical prose, the above-mentioned independence is expressed
as P (⇢&¬%&¬Rep0|Indk) = P (⇢|Ind
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) is very close to zero we find
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Fig. 11: Plot of probability P ( c�|Ind
j

&¬Ind
k

) in dependence of a and b.
Contour lines are displayed in the a� b-plane.
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=
P (¬%&¬Rep0|Indk)
P (¬Rep0|Indk)

=
P (¬%&¬Rep0&Ind

k

)

P (¬Rep0&Ind
k

)

= P (¬%|¬Rep0&Ind
k

) .

The posterior probability of % being false is boosted the larger c = P (¬%&¬Rep0&Ind
k

)
is compared to d = P (¬Rep0&Ind

k

) as depicted in Figure 12. For a body of
evidence consistent with, say, probabilistic dependence, and a report which
does not report a probabilistic dependence between drug and harms it is a
priori (highly) likely, that this report is either not reliable or not relevant or
both.

Fig. 12: Posterior probability of ¬% in dependence of c, d.

6 Conclusions

6.1 Summary

The here proposed Bayesian network allows the amalgamation of various pieces
of evidence from heterogeneous sources and methods and to provide an overall
estimate of the causal hypothesis. In particular, our approach
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i) identifies possible indicators of causality on the basis of the methodological
and philosophical literature on causality, evidence, and causal inference;

ii) embeds them in a topological framework of probabilistic dependencies and
independencies grounded in assumptions regarding their reciprocal epis-
temic interconnections;

iii) weakly orders some of these probabilistic dependencies as a function of their
inferential strength with respect to the confirmation of causal hypotheses.

For this, we have adopted Bovens and Hartmann [8] proposal to use Bayesian
confirmation theory in order to account for (and mathematically explain) some
phenomena related to scientific inference; such as the confirmatory power of
the coherence of the body of evidence, the epistemic interaction of consistency
of measurements and reliability of information sources, as well as the modular
contribution of di↵erent “lines of evidence” related to diverse observable con-
sequences of the investigated hypothesis. We have adapted this framework to
situations of causal inference and consequently specified a concrete structure
for that purpose. We have then illustrated its epistemic and heuristic virtues
as an instrument for evidence amalgamation, in the context of causal inference
of drug-induced harm.

Our approach thereby satisfies the desiderata listed at the end of Sec-
tion 2.2: probabilistic hypothesis confirmation, incorporation of heterogeneous
kinds of data, facilitation of diverse types of inferential patterns (more on
this on future work below) with a particular focus on causal assessment in
pharmacology.

6.2 Discussion

6.2.1 Limitations

Our model, as well as every other model, is a simplification of the phenomenon
of interest which entails a regrettable but unavoidable loss of information. One
simplification was the use of binary propositional variables which stands in ten-
sion with concepts such as probabilistic dependence and rate of growth which
clearly come in degrees. For the sake of simple exposition and tractable calcu-
lation, we made this simplification. Nothing hinges on this, the machinery of
Bayesian networks can be applied to non-binary variables in the same manner.
In general, the more information available the stronger the need for variables
with more values.

Furthermore, we have limited the model to indicators of causality in phar-
macology which derive from Hill’s guidelines. We freely admitted in Section 3.2
that there may be further indicators. No suggestion is made here that all these
further indicators can be accounted for in the model; in the outlook below we
talk about a relevant inference which cannot be drawn within our model.
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6.2.2 Virtues and Context

With respect to other proposals for evidence evaluation and causal assessment,
our approach has the following virtues:

1. Our method accommodates many intuitions already expressed by philoso-
phers of medicine regarding pluralistic approaches to evidence evaluation.

2. Our method allows for many inferential patterns to contribute to the overall
causal assessment of drug-induced harm (coherence, consistency, reasoning
by analogy, etc.) and explicitly (as well as formally) accommodates these
patterns in the belief propagation network.

The first point is especially relevant for the current debate on evidence
standards in medicine. For instance, we can see how the EBM paradigm takes
di↵erence making as a highly reliable indicator for causality and the others
as very low indicators; hence it concentrates its e↵orts on having as reliable
as possible evidence for that kind of indicator. The contending view is that
di↵erent indicators may have complementary epistemic roles in supporting
the hypothesis of causality. For instance [18] claim that evidence about dif-
ference making helps in de-masking causes which might be canceled out by
back-up/compensatory mechanisms in the organ system, whereas evidence
about mechanisms is needed in order to design and interpret statistical stud-
ies. Hence, such di↵erent kinds of evidence reciprocally support each other and
jointly (dis-)confirm the causal claim under investigation. This proposal stems
from [89], where both statistical evidence at the phenotypic/population level
and evidence about (molecular-cellular) mechanisms is required to establish
causal claims.

In general, the “new mechanists” (henceforth the “Kentians”), led (among
others) by Jon Williamson, maintain that a sample which is small compared to
the target population on its own is not su�cient to license causal claims about
the target population. In addition, evidence that there exists some mechanism
responsible for the phenomenon in the observed sample which is also present
in the target population is required, cf. [89].25

Howick expresses the opposing view at [49, p. 939]: “There are many cases
where patient-relevant e↵ects of medical therapies have been established by com-
parative clinical studies alone.” Our framework captures this dissent: Howick
takes it to be the case that P (Hyp |�) is large enough to establish the causal
claim, while for the Kentians P (Hyp |�) is too small to establish the causal
claim. For them, only after also updating with the mechanistic indicator is
the posterior probability, P (Hyp |�&M), large enough to establish the causal
claim.

Furthermore, our framework also responds to the view defended by method-
ological pluralists such as Cartwright (CIT) and Stegenga, among others, ac-
cording to whom classical “linear” approaches to causal inference cannot do

25 The Kentians construe of the term “mechanism” in slightly di↵erent fashion than we
did here. For them, a mechanism need not be described on the (sub-)molecular level. This
detail is not relevant for our current discussion.
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justice to the complexity of causal phenomena in the biological and social
sciences, characterized by nonlinear causation and causal interactions. Ste-
genga, in particular, explicitly mentions Hill’s viewpoint on causal inference
and claims that: “a plurality of reasoning strategies appealed to by the epi-
demiologist Sir Bradford Hill is a superior strategy for assessing a large volume
and diversity of evidence” [98] (emphasis added).

In relation to evidence hierarchies – which is a strong point of contention
among philosophers of medicine and methodologists – our inequalities (13),
(14), nicely parallel the ranking proposed there. Evidence hierarchies have
been developed as a decision tool to help clinicians pressed by time constraints,
to integrate their clinical expertise with evidence coming from basic and clin-
ical research ([37, 90, 100]). In these rankings, randomised studies are ceteris
paribus preferred to non-randomised studies.26 However, also the strength of
the e↵ect magnitude and dose-response gradient are considered essential fea-
tures in evaluating evidence ([36,49]). Hence, our inequality constraints mirror
the categorical ordering recommended in such hierarchies.

What di↵erentiates our framework from standard evidence rankings how-
ever is that these have predominantly been formalised as lexicographic decision
rules. This means that higher-level studies trump lower-level ones: when two
studies of di↵erent levels deliver contradictory findings, then the higher in the
evidence hierarchy is considered more reliable and one is allowed to discard
the lower level one. A somewhat unwanted consequence of this “take the best”
approach is that it has become commonplace to assume an uncommitted atti-
tude towards observed associations least they are “proved” by gold standard
evidence (see the still ongoing debate on the possible causal association be-
tween paracetamol and asthma; [2,32,39,41,67,68,94,95]). This runs counter
to the precautionary principle in risk assessment and to how decisions should
be made in health settings (see Section 2.2). Our framework incapsulates the
rationale for ranking evidence in (13) and (14) but at the same time allows
one to take into account all evidence and to act accordingly as soon as the
probability of the causal hypothesis goes above the threshold established by
the other dimensions of the decision (utility of withdrawing/not withdrawing
the drug, conditional on the probability of it causing the suspected harm).

Furthermore, the Bayesian network and its nodes – representing epis-
temic categories (relevance, reliability, various causal indicators, etc.) – pro-
vide us a greater insight into the philosophical dissent around EBM. For in-
stance whereas Worral’s criticism [117, 118] against the privilege accorded to
RCTs for causal inference in EBM insists on questioning their high reliability,
Cartwright’s view [16] is that they provide very limited information on the
e↵ect of the intervention in other populations than the study population (“ex-

26 The rationale for this ranking is provided by methodological-foundational considerations
mainly developed within standard statistics and follow a kind of hypothetico-deductive
approach to scientific inference (see also our comments on Experiment above, Page 19).
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ternal validity”). Hence, these criticisms address di↵erent nodes in the causal
inference, although they regard the same study type.27

Pragmatically, the here presented model has the virtue of being compu-
tationally simple in the following sense. Defining prior probabilities on rich
structures can be a hard practical problem. A graphical representation of the
conditional independencies in terms of the graph of Bayesian network allows
one to specify the full prior by specifying all conditional probabilities at the
variables. For a relatively sparse graph such as ours (the number of parents
of every variable is at most three), specifying all conditional probabilities re-
quires far less input than specifying the full prior by assigning probabilities to
all states.

Concerning the second point, our framework promises to provide a fruitful
platform for integrating insights developed in the philosophy of science around
such topics as the role of replication in assessing the reliability of evidence
([20,40,60,70,82]), the confirmatory role of explanatory power ([19,22,64,69])
and coherence ([8,28,33,72,111]). Our approach indeed lends itself not only to
accommodate heterogeneous evidence, but also various patterns of inference.

6.3 Outlook

We are engaged in two avenues of further research: Firstly, we are interested in
validating our framework through applications through three case studies and
computer simulations. Likely case studies are: i) the ongoing debate on the
possible causal association between Paracetamol and asthma; ii) integration
of mechanistic and statistical evidence in the Torcetrapib case; iii) the role of
causal interaction and safety in the Terfenadine case.

This paper focuses on inference within one model, rooting in one hypoth-
esis, but our framework allows for going beyond the network’s limits and for
embedding it in an even larger network to trace the hypothesis’ relation with
other potentially concurring hypotheses. The mechanics of Bayesian episte-
mology are flexible enough to permit such an augmentation for the purposes
of tracing further inference patterns. To give one prominent example: in the
current debate, the No Alternative Argument (NAA) is discussed as lending
valid confirmatory support to a specific hypothesis through the absence of a
better candidate (also see the comments on safety assessment by the FDA
in [34, p. 5]). Our initial decision to employ the Bayes net framework in the
pharmacological context comes to fruition once more when we insert networks
like Figure 9 in highly expressive NAA meta-structures (as suggested, e.g., by
Dawid, Hartmann, and Sprenger in [27]) for justifying a working hypothesis
when no available evidence adjudicates conclusively. We leave this for another
paper.

27 Moreover, our approach addresses explicitly the issue of external validity by formally
incorporating reasoning by analogy (see Section 3.2.6).
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