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Abstract 

Neurodegeneration represents a global problem due to the progressive increase in the aging 

population all over the world. The quality of life in aging and the cost for the health care system 

requires actions to promote healthy aging.  In this regard, several risk factors associated with the 

development of neurodegeneration can be identified and programs to educate people on the key role 

of prevention could significantly ameliorate the future picture of the aging population. Here we 
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describe the key role of the pre- and post-natal period of life during the first 1000 days of life, focusing 

on the importance of nutrition and a healthy life style of mother and offspring for the prevention of 

neurodegeneration later in life. Environmental risk factors (i.e. nutrition, stress, xenobiotics, alcohol, 

drugs, smoking, etc.) mediate the genetic and epigenetic signature of offspring which may have long-

term effects on the onset of neurodegeneration. 

 

Key words: epigenetics; early-life nutrition; nutrigenomics; neurodevelopment; neurodegeneration. 

 

1. Introduction  

It is now well-recognized that the environmental effects experienced during the first 1000 days 

of life, represented by the nine months of pregnancy plus the first two years of life and as early as 

pre-conception, are transmissible to offspring and to subsequent generations. Animal studies using 

rats and mice appear to indicate that the predisposition to cardiovascular (CV), metabolic and 

neurological diseases may originate in utero and is associated with inheritance of epigenetic 

alterations to gene expression. This in turn is partly linked to the early life experiences of the mother 

and to the offspring’s nutrition, especially during its first two years of life in the case of humans [1,2]. 

Some of the environmental risk factors which shape the genetic and epigenetic signature of offspring 

range from nutrition, stress, xenobiotics to alcohol, drugs and smoking. While plenty of studies have 

focused on the association between nutrition in early-life (pre-natal and post-natal period) and the 

risk of CV and metabolic diseases later in life, the link with neurodegenerative diseases is however 

still not clear. Since diet influences every organ and body system, which can in turn affect brain 

health, the question arises as to whether nutrition in the early stages of life may affect 

neurodevelopment and predispose for the onset of neurodegeneration in the long term. This is of 

interest considering that the field of epigenetics is emerging as an important and novel mechanism in 

neurodegenerative diseases. This review summarizes the major breakthroughs and discoveries that 

have been mainly made over the last five years, and discusses the evidence for the possible 

connections and mechanisms involved between early-life nutrition during the 1000 days of window 

of plasticity and predisposition for neurodegeneration later in life. In other words, our brain’s health 

and mental wellbeing throughout our life span is not just influenced by ‘what we eat’ but probably 

also by ‘what our mothers ate during our early-life’ and ‘what our mothers fed us in the first two years 

of life’. 

 

2. C1 metabolism, DNA methylation and early-life programming of adult health  
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Early life represents a key period for the programming of adult health. During the first 1000 days 

of life, the differentiation process leading to specialized cells from the pluripotent ones is mediated 

by epigenetic remodelling required for switching off genes that do not have to be expressed in a 

particular tissue while maintaining active those that do [3,4]. In this context, DNA methylation and 

post-translational modifications work to differentiate cells properly. DNA methylation depends on 

the activity of DNA methyltransferases (DNMTs) which catalyse the methylation of CpG islands at 

the gene’s promoter leading to a progressive switching off of the gene. The obstruction of the 

interaction between the transcription factors and the promoter region due to methyl groups, limits 

binding with RNA-polymerases required for gene expression to begin (Figure 1A). At the same time, 

methylation of regulatory regions contributes to an additional control of gene expression (Figure 1B), 

likewise for histone methylation which is however more complex (Figure 1C). The methylation 

process is strongly dependent on the availability of methyl group donors during pregnancy and 

through life via the one-carbon metabolism (folate) pathway (Figure 1D) [4]. The availability of 

methyl groups is associated with a folate-rich diet (i.e. green leaves, asparagus, beans, lentils, peas, 

liver, etc.) and to supplementation of folic acid during pregnancy, together with the availability of B6 

and B12 vitamins. Methylenetetrahydrofolate reductase (MTHFR) catalyses the transfer of a methyl 

group to folate leading to 5-methyl tetrahydrofolate and finally to homocysteine which is then 

converted into methionine by 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR). For 

this step, the presence of B12 is necessary and because it is present only in animal food (i.e. meat, 

fish, eggs), in vegans, a synthetic one can be taken orally through sublingual treatment to avoid its 

hydrolysis by the liver. Methionine adenosyltransferase (MAT) catalyses the synthesis of S-

adenosylmethionine (SAM), which is the key factor for methylation, because DNMTs employ its 

methyl groups to methylate DNA. Alcohol intake for example, can interfere with SAM synthesis and 

for this reason should be avoided during pregnancy and breast-feeding, likewise deficits of folic acid 

and folate from food (Figure 1D). 

The epigenetic mechanisms associated with a healthy/unhealthy phenotype include not only DNA 

methylation that plays a key role during the first 1000 days of life, but also post-translational 

modifications, like histone modifications. In this context histone methylation, acetylation, 

phosphorylation, ubiquitinization, sumoylation and glycoylation can work with opposing effects 

leading to chromatin remodelling associated with activation or inhibition of gene expression (Figure 

1C). Every time that a gene is expressed, chromatin remodelling represents the first step required to 

permit the start of gene expression. In the modulation of this process, nutrition plays a key role 

because supply precursors are required for histone-methyltransferases (HMTs), which need the 

methyl group donor SAM to methylate histones (Figure 1C); moreover, the methylation process 
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depends also on the FAD/FADH2 ratio which is always related to the quantity and the quality of 

nutrient intake.  Acetylation of lysine’s positive charge in histones is a fundamental event promoting 

histone-DNA remodelling necessary to support gene transcription; to this aim, acetyl groups deriving 

from the oxidative glucose pathway or beta-oxidation of fatty acids are used by histone 

acetyltransferases (HATs) which need coenzyme A as cofactor. The flexible process is reversed when 

chromatin is stabilized by deacetylation catalysed by histone deacetylases (HDACs) that require 

NAD+ as cofactor [5]. Phosphorylation instead depends mainly on the activity of histone kinases, 

which transfer a phosphate group to the hydroxyl group of threonine and serine in histone H3.  

Overall, ATP-dependent remodelling complexes require the energy of ATP hydrolysis to achieve 

nucleosome structure required for transcription [6].  

 

 

 

Figure 1. Simplified folate pathway and connection with DNA/histone methylation.  

Panel A: Cytosine methylation hampers gene expression by limiting binding of TFs and RNA 

polymerases. Panel B: Gene expression controlled by methylation of regulatory regions. TFs are 

depicted in violet. Panel C: Methyl groups from the folate pathway are used by histone 
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methyltransferases (HMTs) for modifying chromatin structure and finally regulating gene expression. 

Panel D: Simplified folate pathway leading to methyl groups useful for DNA and histone methylation.  

TFs: transcription factors; MTHFR: methylenetetrahydrofolate reductase; MTR: 5-

methyltetrahydrofolate-homocysteine methyltransferase; MAT: methionine adenosyltransferase; en: 

enhancer; act: activator; si: silencer. 

 

Reduced folate intake during early life has been associated with incorrect DNA methylation that 

leads to long term effects, as observed during the Dutch famine where low nutrients intake by mothers 

during pregnancy has been associated with a decrease in promoter methylation of the insulin growth 

factor 2 (IGF2) of the maternal allele in the offspring. The long term consequences of this imbalance 

in the maternal IGF2 promoter methylation associated with deficits in nutrient intake, have been 

correlated with the development of overweight in men at 20 years old and glucose intolerance when 

they reached 50 years old, and to an increase in BMI in females at the same age [7]. Despite these 

outcomes, Lumey et al. did not find any significant correlation between pre-natal famine and global 

DNA methylation on 350 births with pre-natal exposure to the Dutch famine [8]. Recently, Tserga et 

al. [9] studied the correlation between folate supplementation and IGF2 methylation in cord blood of 

90 mothers-child which resulted in a complex picture depending on the MTHFR genotype. Tobi et 

al. in a recent work on 60 individuals with periconceptional famine exposure and genetic variation 

within the IGF/H19 region, suggested that both famine and genetic factors can alone or together be 

responsible for DNA methylation at the same regulatory site [10]. Overall, there are various aspects 

that can modify the DNA methylation of the imprinted IGF2 gene and the absence of an epigenome-

wide association study of DNA methylation in humans contributes to delineate a heterogeneous 

picture. Furthermore, Tobi et al. found differences in offspring in DNA methylation of genes involved 

in growth, development and metabolism only when famine exposure was during the first 10 weeks 

of gestation of their mothers [11]. In agreement with this is Stein et als. work on 923 individuals 

affected by depressive symptoms in adulthood that were born from mothers exposed to famine prior 

to conception [12]. Similarly, 360 offspring from prenatally undernourished fathers, but not mothers, 

were heavier and more obese than offspring from parents receiving a normocaloric diet before 

conception [13].  

The association between birth weight and obesity, coronary heart disease (CHD) and glucose 

intolerance later in life was first discussed by Barker [14] who observed a correlation between low 

birth weight and CHD death rates. Furthermore, low birth weight has also been associated with 

impairment of neurocognitive development later in life, and maternal smoking during pregnancy 

seems to promote this phenotype [15,16]. Additionally, studies on monozygotic and dizygotic twins 
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revealed a non-genetic negative association between birth weight and insulin resistance and glucose 

intolerance and it was estimated that the genetics associated with birth weight was 38% [17]. The 

mechanisms linked to the long term effects of prenatal and postnatal dietary nutrients on obese 

phenotype seems to be mediated by the early life programming of appetite regulatory hormones [18]. 

Studies on animal models showed that a protein restricted diet or a high fat diet during pregnancy is 

associated with decreased beta-cells in the pancreas, early or reduced leptin source, increased 

orexigenic peptide, resistance to glucose, hypertrophic adipocytes and finally development of the 

obese phenotype [19].  

 

3. Risk factors associated with neurodevelopment and neurodegeneration  

Exposure to unhealthy environmental factors in early life and during the life span have been 

associated with neurodevelopmental disorders and neurodegeneration later in life [20]. An 

unbalanced diet negatively modulates gene expression leading to reversible epigenetic signatures that 

are responsible for various features later in life. Other environmental factors that contribute to 

epigenome remodelling associated with early and long-term neurobehavioral deficits are smoking, 

alcohol, stress and exposure to pesticides during pregnancy. In this review we focus on food, alcohol, 

and food pesticides. 

A general consensus based on several evidences on human and animal models supports the 

hypothesis that the development of idiopathic neurodegenerative diseases is strongly associated with 

the quality of life style starting from prenatal age. Alcohol and food intake modulate the epigenome 

but another important environmental risk factor is the presence of pesticides and metal residues in 

food, because these xenobiotics are associated with promoting neurodegeneration in the long term. 

Pesticides are required to respond to the increasing demand of food by the population and to 

guarantee the absence of microorganism contamination in fresh and long term stored food (i.e. 

mycotoxins).  However, the main concern regarding with risks linked to food pesticides should take 

into account not only the presence of single chemicals over the authorised limits, but also the presence 

of mixtures of pesticides that are within the maximum residue levels permitted by the legislation. 

Pesticides can modulate gene expression later in life by early remodelling of the epigenome. Exposure 

to these hazard factors is associated with genetic and epigenetic modifications leading to oxidative 

stress, mitochondrial damage, change in calcium homeostasis, reduction of overall brain volume, loss 

of dopaminergic neurons in substantia nigra, shortened fetal telomere length, microbiota-imbalance 

promoting proinflammatory cytokine release and finally altered brain development which has long 

term effects on the onset of the more common neurodegenerative disorders like Alzheimer’s disease 

(AD) and Parkinson’s disease (PD) [21–24].  
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Worthy of note are the studies on animal models where the long-term effects of early life exposure 

to pesticides, herbicides and metals, identified as residues in food, can be demonstrated. Neonatal 

exposure to permethrin pesticide during brain development, promotes a progressive 

neurodegeneration characterized by the typical features of PD with behavioural and dopamine deficit, 

and a worrisome intergenerational effect [25,26]. Permethrin is able to induce a progressive PD-like 

neurodegeneration if administered in early life, because it can cross the blood-brain barrier (BBB) 

and remains long after the exposure [26-30]. In particular, permethrin binding to sodium channels, 

induces neuron depolarization that seems to modulate DNMTs activities responsible for DNA 

methylation [31]. Accordingly, changes in DNMTs have been demonstrated in the striatum of animals 

exposed to permethrin during brain development [32]. Furthermore, permethrin is able to decrease 

global DNA methylation in mothers exposed to the food pesticide during early life as well as in their 

untreated offspring, underlining the intergenerational effect of the pesticide [26]. This effect seems 

to be mediated by reactive oxygen species production induced by the pesticide that leads to up-

regulation of DNMTs [33]. 

Of particular concern are the recent data obtained by the CHAMACOS cohort in the US on the 

association between increased biomarkers of organophosphate exposure in urine of farmworker 

mothers and abnormal mental development in their children [34].  Other studies support the capacity 

of organophosphates to act as endocrine disruptors underlining their possible involvement in 

promoting neurodevelopmental toxicity in early life [35,36]. Dialkyl phosphates (DAPs) and 3-

phenoxybenzoic acid (3-PBA), the urine metabolites of organophosphate and pyrethroids 

respectively, result increased in children’s urine affected by Attention-Deficit/Hyperactivity Disorder 

(ADHD). The risk of developing ADHD increases by 55% when the level of urine’s DAPs is 

increased ten-fold compared with controls, while the risk of developing ADHD may be twice when 

children have detectable concentrations of 3-PBA with respect to the undetectable metabolite [37]. 

The PELAGIE cohort in France has associated urine 3-PBA levels with a decline in verbal and 

memory functions in children of six years old [38]. The mechanisms associated with these effects 

might be mediated by both genetic and epigenetic modulation. Recently PON1, a detoxifying enzyme 

for organophosphate and pyrethroid pesticides, has been shown to modulate DNA methylation [39].  

Low levels of heavy metals in early life and higher levels later in life identified in the food chain 

(i.e. fish and molluscs), also represent risk factors associated with the promotion of neurodegenerative 

diseases [40]. High levels of cadmium in food have been linked to global DNA methylation [41] and 

aluminium, a metal present in water can cross the BBB promoting chromatin remodelling associated 

with oxidative stress, inflammation, mitochondrial dysfunction, impairment of glutamate transport 

and finally neuronal death [42].  
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Iron deficit in early life has been connected with permanent deficits in recognition memory and 

procedural memory in adult age; at the same time an excess of maternal iron or during adult age might 

lead to poor developmental consequences and long term effects mediated by epigenetic and 

neuroinflammatory processes, respectively [43,44]. Studies on animal models have demonstrated that 

deficit of iron during neonatal age is associated with neurodevelopmental dysfunction that is a 

consequence of altered hippocampal DNA methylation and to changes in expression of genes 

involved in the regulation of the BBB permeability, hypoxia and angiogenesis [45]. Furthermore, iron 

deficiency has been related to changes in histone deacetylase 3 which modifies hepcidin expression 

involved in the regulation of systemic iron homeostasis [46]. Deficiencies in two other metals, copper 

and zinc during pregnancy and in early life have been associated with decreased fetal neurogenesis 

due to impairment of DNA methylation [47], and both can promote amyloid- peptide production 

typically present in the plaques of patients with AD [48].  

Concerning alcohol as a risk factor for neurodegeneration later in life, several studies on human 

and animal models have indicated that maternal alcohol consumption during pregnancy and lactation 

is associated with a decrease in DNA methylation, [49]. Alcohol interferes with the methyl donor 

transfer to methylenetetrahydrofolate (Figure 1D) and the co-administration of the methyl donor 

betaine, was effective in contrasting DNA hypomethylation due to ethanol intake [50] Furthermore, 

chronic alcohol intake perturbs folate homeostasis due to decrease in folate absorption in the small 

intestine, abnormal uptake and low folate storage in the liver [51]. Overall, mother alcohol 

consumption inhibits the 1-carbon metabolism pathway affecting the DNA methylome. This in turn 

influences several genes associated with brain development, oxidative stress and pro-inflammatory 

cytokine production [52,53]. Physical and cognitive abnormalities known as fetal alcohol spectrum 

disorder (FASD) have in fact been observed in children following mother alcohol intake [54].  

These risk factors exert their impact differently on people according to their own genetic profile: 

the individual responses to the exposome, which includes all external and internal factors interacting 

with humans, leads to a healthy or unhealthy phenotype according to the genetic polymorphism 

differences ultimately mediating the onset of PD and AD neurodegeneration. Of particular interest is 

the hypothesis that the incidence of neurodegeneration is mainly increased when a secondary 

exposure to toxicants occurs in adult age. This hypothesis known as the “two hits” model, is in 

agreement with studies on PD where occupational and non-occupational exposure to toxicants has 

been associated with the increased incidence of neurodegeneration [55–58]. Table 1 summarizes 

some of the epigenetic modulators treated in this section, with the possible outcomes, while the others 

will be discussed in the subsequent sections. 
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Table 1: Time frame for epigenetic remodelling by diet/environmental factors and outcomes during 

the first 1000 days of life (early life) and overall life span. 

 

Epigenetic 

modulators  

 

 

Period of exposure 

 

Outcomes 

 

References 

Exposure to food and 

food pesticides/metals  

Pregnancy 

Early life 

Adult age 

Inflammation 

Neurodevelopmental 

/neurological 

disorders 

[20] [22] [25] [27] 

[29] [34] [35] [38] 

[40] [41] 

Alcohol Pregnancy 

Early life 

Reduction in folate 

absorption 

[49-54] 

Low folate intake  Pregnancy 

 

Decrease in methyl 

groups  

[51] [103] [105] [106] 

Low B12 intake  Pregnancy 

 

Decrease in methyl 

groups 

[4] [10] 

High fats intake Pregnancy 

 

Inflammation [63-68] [73] [75] 

High meat intake  Adult age TMA-N-oxide 

mediates 

inflammation 

[90] 

High vegetables 

intake  

 

Pregnancy 

Adult age 

Inhibition of 

inflammation  

[80] [106] [164] [175] 

Intake of whole 

cereals 

 

Pregnancy 

Adult age 

Inhibition of 

inflammation (SCFA) 

[116] 

Intake of 

phytochemicals 

 

Pregnancy 

Adult age 

Inhibition of 

inflammation and 

oxidative stress 

[107] [163-179] 

 

 

4. Strategies for prevention: Maternal diet during pregnancy  

Maternal diet is a major determinant of offspring health. Most studies have focused on the 

metabolic consequences of perinatal nutrition but very few have addressed those concerning 

neurodegenerative diseases. There are now several indications in the literature demonstrating that 

neurodevelopmental health and cognitive deficits of offspring are also associated with maternal 

obesity and an association between increased BMI in healthy mothers and decreased cerebellar 

growth in offspring has been observed [59-62]. The link between obesity and neurodegeneration 

appears to be in part associated with inflammation. Systemic inflammation is a common consequence 

of obesity and high fat diet (HFD) consumption, hence it is logical to question whether a maternal 

inflammatory diet may have adverse outcomes in off-spring both in early life and later life that could 



10 
 

predispose to neurodegenerative diseases and whether correction of a high fat maternal diet might 

prevent this.  

The source of the low-grade systemic inflammation characteristic of obesity is believed to derive 

from lipopolysaccharide (LPS), a potent trigger of the innate immune system. LPS is an endotoxin 

naturally present in the intestinal lumen as a component of the cell wall of Gram-negative bacteria 

and it enters the circulation along with other nutrients following a meal, initiating a transient 

postprandial endotoxoemia. Under normal conditions the immune system responds normally to this 

acute endotoxin stimulus and once the toxin is neutralized and removed, the state of inflammation 

returns to baseline levels. However, frequent consumption of high fat meals chronically elevates LPS 

in circulation contributing to the low-grade inflammatory state observed in the obese phenotype 

[63,64]. This is exemplified by a recent study in which pregnant and lactating mice regardless of 

whether they were fed on a HFD or continuous infusion of LPS, had similar outcomes in their 

offspring: obese phenotype and greater inflammatory response in adulthood even if they consume 

normal diets throughout adulthood [65]. This prenatal inflammation has not only been associated with 

an obese phenotype, but also with long-term impaired adult neurogenesis and hypothalamic 

inflammation [66,67].  

Neuroinflammation is mediated by microglia which are resident macrophages and are the first line 

of active immune defence in the central nervous system (CNS) and systemic inflammation has been 

shown to induce long-lasting neuroinflammation via TNF and inflammatory cytokines that cross 

the BBB. In fact, microglia abundantly express TLR-4, a signal-transducing receptor that responds to 

saturated fats through the IKKβ/NFκB pathway releasing proinflammatory cytokines (such as IL-6 

and TNF-α) [68]. Obesity has been demonstrated to induce the expression of cytokines and the 

proinflammatory transcription factor NFkB in the hypothalamus [69], and since TNF and 

inflammatory cytokines can cross the placenta and BBB as they have been measured in the uterus, 

fetal circulation and the fetal brain, it is expected that maternal diet-induced inflammation may 

directly influence the developing fetus’s CNS and brain with far reaching consequences [70-72]. 

Maternal dietary fatty acids have in fact been found to induce hypothalamic inflammation via 

TLR4/NFBp65 signaling in adult offspring, but also normolipidic diets with unbalanced quantities 

of different fatty acids (trans-fats, palm oil and interesterified fats) have led to inflammatory responses 

on the hypothalamus (increased TLR-4 expression) in the offspring of dams [73–75]. 

Inflammation caused indirectly via LPS administration, and not through diet during gestation, has 

also been shown to increase TNF and IL-1 mRNA in the fetal brain and alter the glial cell 

population thus impairing neuronal differentiation and neurogenesis [76]. Interestingly, Graciarena 

et al. found that prenatal and adult LPS treatments in Wistar rats reduced adult neurogenesis and 
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provoked specific microglial activation in the dentate gyrus (DG), but more importantly, that only 

prenatal inflammation-mediated effects were long-lasting (>60 days). In fact, only prenatal LPS 

treatment reduced the local levels of TGF-1 mRNA in the DG of offspring and that it exerted its 

pro-neurogenic effects via the Smad 2/3 pathway in a neural stem cell culture [66]. These data 

highlight the importance of the consequences that prenatal immune programming has on CNS 

physiology compared to the limited response observed in the adult brain. Others have also led to 

similar conclusions using mouse models and LPS that accurately mimic intrauterine inflammation in 

humans: exposure to intrauterine inflammation during pregnancy results in postnatal brain injury, 

with chronic inflammation, presence of macrophages in the adult cortex, activation of microglia and 

long-term EEG biomarkers of neurodegeneration, setting the stage for development of 

neurodegenerative diseases in adulthood [77-79].   

The already well-established link between diet and inflammatory biomarkers in the non-pregnant 

population also persists in pregnant mothers, particularly in those that are obese [80,81]. This is 

particularly worrisome considering that the sharp rise in obesity over the last 25 years is reflected in 

the increasing trend of obesity during pregnancy [82]. Increased adiposity associated with a HFD also 

increases the number of resident macrophages in white adipose tissue, the major type of immune cells 

in this tissue involved in the development of chronic inflammation [83]. These secrete inflammatory 

cytokines and chemokines and inhibit the production of anti-inflammatory adiponectin, further 

exacerbating an inflamed state. A maternal HFD is not the only contributor to chronic inflammation. 

Intra-uterine growth restriction (IUGR) in which maternal under/poor-nutrition is one of the principal 

causes, also leads to an inflammatory response in pregnant mothers and fetuses which is reflected by 

elevated serum concentrations of inflammatory markers, including TNF, IL-6 and C-reactive 

protein (CRP) [84]. Prenatal protein restriction in maternal diet has also been associated with a pro-

inflammatory state in offspring since increased expression of the pro-inflammatory genes, IL-6 and 

IL1 in white adipose tissue macrophages of Sprague Dawley rat offspring was observed [85].  

In a recent cohort study, an inflammatory diet was associated with small-for-gestational age infants 

among mothers with pre-pregnancy obesity and with high levels of the inflammatory marker, CRP 

86]. Evidence from cell models suggest that cytokines such as IL-6 released by an inflammatory state 

may influence the epigenome by altering DNMT1 expression patterns which could result in disruption 

of epigenetic programming. [87]. This is in accord with accumulating evidence showing the 

association between maternal obesity (an inflammatory condition) and offspring methylation. 

Nomura et al. showed that maternal obesity was associated with placental global hypermethylation, 

which was also linked to infant length and head size. Although their findings did not reach significant 

levels, maternal obesity could potentially affect fetal programming of development, including 
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neurodevelopment. This study was conducted on a small sample size therefore the results would need 

to be reconfirmed on a greater sample size [88]. In another epigenetic study, maternal pre-pregnancy 

BMI (body mass index) was associated with offspring DNA methylation of the CpG sites in genes 

involved in a broad array of chronic diseases, including inflammation-mediated disorders and lipid 

metabolism, suggesting that maternal BMI-induced alteration in DNA methylation may be one of the 

mechanisms underlying fetal origins of adult diseases, comprising neurodegeneration [89]. However, 

because of some pitfalls in this study regarding sample size, possible inadequate techniques that had 

low coverage of CpG sites for each gene as well as a lower coverage of genes in the genome (~15k 

genes, <50% known human genes), small DNA methylation differences across BMI categories for 

the top hits found and possible misclassification of maternal pre-pregnancy BMI, future studies in a 

larger sample and using denser chips would be required to strengthen these findings. 

Recently, in a non-human primate model, maternal over-nutrition via in utero exposure to a HFD 

lead to developmental programming of obesity and to pro-inflammatory gene signatures along with 

alterations in DNA methylation in key developmental genes in the offspring. Significant changes in 

gut microbiota were also observed [90]. In HFD-fed rats, Reynolds et al. were able to demonstrate 

that the dietary anti-inflammatory nutrient, conjugated linoleic acid (CLA), a lipid commonly found 

in beef and dairy produce, was effective in reversing the increased expression of the 

immunomodulatory cytokines TNF and IL-1 in the gut of offspring. In the same offspring, they 

also observed that CLA was able to partially reverse the altered expression of the gut taste receptors 

Tas1R1 and Tas1R3 which are linked to metabolic diseases [91]. 

The hypothesis that a pro-inflammatory diet leads to elevated concentrations of cytokines and 

other inflammatory molecules that alter the regulation of key genes in the developing fetus, mediated 

by epigenetic mechanisms, was recently investigated by McCullogh et al. They found consistent 

inverse associations between maternal inflammatory cytokine concentrations (IL-12, IL-17, IL-4, IL-

6, and TNFα) and lower methylation at the MEG3 regulatory sequence in offspring but their results 

failed to support the link between a maternal inflammatory diet and circulating cytokines. However, 

they did observe that women with pro-inflammatory diets had elevated rates of preterm birth among 

female offspring but not male ones and higher rates of caesarean delivery among obese women. Based 

on their findings, they concluded that other factors may be more important contributors to 

inflammation than diet in the pregnant population. There are many sources of inflammatory 

molecules in pregnant women which could make it more difficult to observe than the contribution of 

diet alone [92]. 

In rodents, several relationships have also been established between inflammation, iron 

homeostasis and neurobehavioural changes induced by a maternal HFD [93]. Hepcidin is a critical 
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hormone in iron homeostasis and is primarily stored in oligodendrocytes. It is increased following 

inflammation causing subsequent decreases in ferroportin expression and the available iron needed 

for myelination [94]. Therefore disruptions in these interconnected processes may have deleterious 

effects on neurodevelopment by reducing myelination. Evidence is the decrease in myelination in the 

medial cortex recently observed in male pups (but not in females) born to maternal HFD-fed dams at 

PN21 with resulting changes in behaviour at 4 months [95].  

Vitamin D is an anti-inflammatory nutrient, and its role in maternal diet and consequent systemic 

inflammation in offspring has recently been investigated. Low maternal vitamin D status is associated 

with systemic low grade inflammation, assessed via serum LPS in mouse offspring at adulthood [96]. 

However, when mothers were fed a diet enriched with vitamin D before pregnancy and during 

lactation, this was shown to be reversed in male offspring only. Long-lasting benefits to the metabolic, 

gut and bone health of C57BL/6J adult male mouse offspring exposed to an obesogenic diet were 

observed along with lower intestinal permeability and lower circulating levels of LPS [97,98]. At 

present, an understanding of the specific mechanisms responsible for the sex-specific alterations in 

offspring born to obese dams is not known, and whether the same occurs in humans. However, if it 

were to be confirmed, it would be an area of investigation worth pursuing for developing preventive 

and treatment strategies. 

In summary, maternal dietary-induced inflammation appears to directly affect the developing fetus 

and offspring that includes neurodevelopment, and this may have a long-term impact on the onset of 

neurodegenerative disease later in life. Since most studies have focused on intervention in early life 

as a possible effective strategy for preventing developmental programming of metabolic dysfunction, 

this could also be valuable for preventing neurodegenerative diseases later in life, since they share a 

common denominator: inflammation. Controlling and preventing maternal obesity which is linked to 

inflammation, would not only be beneficial to expectant mothers but also to their offspring in the long 

run. Epigenetic modifications that control genes involved in inflammation, together with oxidative 

stress, may provide a mechanistic link between obesity and the promotion of neurodegeneration [99], 

therefore epigenetic markers may in the future be used for assessing the effects of intervention.  

 

5. Strategies for prevention: Folate intake and microbiota during pregnancy  

In the previous sections we have mentioned how epigenetic marks are determined by nutrition and 

this cannot be better exemplified than in the Agouti mouse model. Female mice fed on a high methyl 

supplemented diet (folic acid, vitamin B12, choline, betaine) deliver offspring that are brown in 

colour and healthy as opposed to controls which are yellow in colour and obese. This is associated 

with increased DNA methylation and silencing of the Agouti viable yellow (Avy) gene [100].  
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There are specific micronutrients that act as cofactors and methyl donors which are responsible 

for mediating epigenetic processes in response to the maternal diet. Both prenatal iron and zinc 

deficiencies [101,102] have been reported to affect histone modifications and DNA methylation, 

likewise maternal folate and choline [103]. Offspring of rats fed on a maternal diet poor in the methyl 

donors folate, choline and methionine, showed increased anxiety behaviour and altered methylation 

of neurontin, an essential gene in neonatal brain development [104]. Severe maternal folate deficiency 

also results in neural tube defects (NTDs) where brain and spinal cord fail to develop normally, and 

in other congenital defects [105]. Early pregnancy is a critical period with rapid cell division, growth 

and proliferation, as well as high responsiveness to external influences, therefore optimal maternal 

folate concentrations are vital. However, the ideal concentrations are frequently not achieved through 

regular dietary folate intake (leafy green vegetables, beans and pulses) and deficiencies can lead to 

compromised epigenetic programming associated with long-term health consequences [106]. 

Because of this risk, women are advised to increase folate intake during pregnancy and a red blood 

cell folate level of greater than approximately 900 nmol/L is considered sufficient to reduce the risk 

of NTDs [107]. A recent study has highlighted the importance of folic acid supplement during the 

vulnerable peri-conception period (14 weeks before and 10 weeks after conception) on embryonic 

growth. A negative association was found between inadequate maternal folic acid supplementation 

and embryonic growth as well as growth rate during the first trimester [108]. In rodents, folic acid 

supplementation to pregnant rats prevents epigenetic and phenotypic effects on offspring [109], while 

paternal folate dietary deficiency is associated with increased birth defects in the offspring. Genome-

wide DNA methylation analysis and the subsequent functional analysis showed differential 

methylation in sperm of genes implicated in development and chronic diseases suggesting that 

epigenetic transmission may involve sperm histone H3 methylation or DNA methylation and that 

adequate paternal dietary folate is essential for offspring health [110]. However, in this study overlap 

between genes that were identified as being differentially methylated in sperm and differentially 

expressed in placenta was limited to only two genes which moreover, did not show methylation 

differences in the placenta. This suggests that mechanisms other than DNA methylation are involved 

such as histone methylation. Although the study demonstrated that paternal environment can 

influence offspring phenotype by transfer of epigenetic information through sperm, at present no 

definitive convincing mechanism has been established, neither in this study nor in other similar 

studies. Both diet and stress are common examples for rodent models of intergenerational transfer of 

information about paternal conditions that have key metabolic outcomes in future generations, and 

these have been recently reviewed in [111,112]. 
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Folic acid is recommended prior to and during the first trimester of pregnancy. However, because 

of folic acid food fortification programmes in many parts of the world for ensuring sufficient intakes 

in women approaching pregnancy, and because many women continue to take folic acid supplements 

beyond the recommended first trimester, there has been an overall increase in folate intakes. This has 

raised concerns on the consequences of this for the developing fetus, recently reviewed by McStay et 

al.[113]. Based on several human studies, they bring into question the role of folic acid intake in late 

pregnancy in the development of allergic disease in children, after the critical period of time for 

protection against NTDs. In animal studies, folic acid has been found to modify gene expression 

linked to the development of allergic disease in offspring which strengthens their findings [114].  

Since maternal dietary folates and other micronutrients are involved in epigenetic programming 

of offspring, and because they all pass through the gut in order to be metabolized and absorbed, the 

role of a healthy gut and microbiome is thus of vital importance. The gut microbiota with its 

variability and complexity, modulates gastrointestinal functions because it works actively on the 

degradation of products derived from food intake, releasing active metabolites able to exert local and 

systemic effects even on the brain, through the gut-brain axis (GBA) [117]. Food intake plays an 

essential part in the gut microbiota composition and metabolite’s production: fibers can actively 

promote the production of short chain fatty acids (SCFA) like butyric acid, propionic acid and acetic 

acid which have systemic effects. In particular, butyric acid can promote anti-inflammatory and anti-

apoptotic effects in the colo-rectal region by promoting inhibition of TNF- and IL6 production and 

encouraging IL10 release [116]. At the same time, SCFA work actively to promote glucose 

production and ATP synthesis in the colonocyte, with systemic effects on the hypothalamic hunger-

satiety centre, insulin production and lipid synthesis [117]. Of particular relevance are recent elegant 

studies on human and animal models that underline the key role of microbiota composition in the 

mediation of gut inflammatory cytokines promoting neuroinflammation in PD and AD diseases [118-

124]. The control of inflammation represents a key factor in the prevention of neurodegeneration: 

intrauterine infection has been suggested to inhibit microglial-derived grow factors which are 

associated with deficit in brain development and promotion of neurodegeneration in adulthood 

[125,126]. A well-designed recent study on 43 neonates born before 28 weeks of gestation, showed 

the association between placental indicators of inflammation and mRNA expression of 445 genes in 

umbilical cord tissue, six of which were correlated with cognitive deficit later in life [127] 

In the previous section we discussed how an obese phenotype contributes to inflammation and 

how this is believed to arise in the gut following a HFD that induces increased circulatory LPS. It 

follows therefore, that changes in the maternal gut microbiome and intestinal permeability consequent 

to inflammation, may alter folate levels thus affecting epigenome programming in the offspring with 
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long-term consequences. Indeed, a significant role of gut microbiota as an epigenetic factor that 

influences DNA methylation and other epigenetic signatures has been speculated. Microbes within 

the human gut are important in the regulation of various elements of the GBA via immunological, 

endocrine and direct neural mechanisms [128,129]. Therefore it is plausible that neurodegenerative 

disorders may partly derive from dysregulation of this axis associated with gastrointestinal 

manifestations. This for example, has been postulated for PD where dysregulation of the gut-brain-

microbiota axis may significantly contribute to the pathogenesis of the disease, reviewed in [130]. 

Indeed, a mechanistic hypothesis has been advanced indicating the gut as the gateway in 

neurodegenerative disease [131]. A wide gut microbial diversity represents a fundamental aspect 

associated with a healthy phenotype required to guarantee the maintenance of gut permeability in 

order to avoid any absorption of toxic compounds (i.e. lead, pesticides and other xenobiotics), and 

the release of pro-inflammatory cytokines that could reach the brain via the GBA and promote 

neuroinflammation associated with neurodegeneration (Figure 2) [132].  

 

 

Figure 2.  Simplified scheme on how diet modifies cytokine production by gut microbiota and 

its connection with neuroinflammation. SCFA: Short chain fatty acids  
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Hence, the microbiota of a pregnant mother may shape neurodevelopment of her off-spring and 

predispose her child to neurodegeneration later in life. Maternal microbiota, obesity and dietary intake 

are known to influence the composition of the infant gut microbiota. This is particularly relevant since 

the mother plays a direct role in initial colonization of the infant microbiota depending on whether 

infants are born vaginally or by caesarean section [133]. Furthermore, microbiota of pregnant obese 

women are different from normal pregnant women: the former have significantly higher 

Staphylococcus, Enterobacteriaceae and E. coli and fewer Bifidobacterium, Bacteroides and 

Akkermanisa muciniphila [134]. These differences could influence microbial colonization of the 

infant with important metabolic consequences in adulthood, recently reviewed in [135,136]. Could 

similar associations between obese mothers and their offspring predispose towards increased risk of 

developing neurodegenerative diseases later in life? A recent review by Contu and Hawkes who 

investigated the impact of maternal obesity on the cognitive function and mental health of offspring, 

points in this direction [137]. In fact, a few animal studies have reported disrupted DNA methylation 

patterns and altered clearance of the -amyloid peptide, marker of AD, in the brains of adult off-

spring exposed to a HFD during the prenatal period. However, no work has been done yet to 

determine epigenetic changes in the brains of human offspring born to obese mothers for obvious 

ethical reasons, although alterations in the extent of DNA methylation in cord blood and microRNA 

in amniotic fluid have been reported in human studies of maternal obesity, supporting the above 

hypothesis [138,139].  

 

6. Strategies for prevention: Postnatal nutrition on differences between breast-fed and formula-

fed 

The importance of early-life feeding patterns is vital since it shapes the early pioneering bacteria 

in the new-born, setting the stage for gut function and immune system development. This in turn may 

influence susceptibility to intestinal inflammatory disorders and other health and disease risks, and in 

the context of this review, possibly neurodegenerative disorders too later in life. The immune system 

of neonates is immature and requires the exposure of gut bacteria to develop properly and this is 

particularly important within the early days of life [140.141]. Other functions such as vitamin 

biosynthesis, energy retention and intestinal permeability essential for human health, also develop in 

parallel with gut microbe expansion. Initially, the infant gut is colonized by facultative anaerobes 

such as Enterobacteriaceae and Lactobacillus, followed by Bifidobacterium, Bacteroides and 

Clostridium [142]. Subsequently, milk-feeding practices play an essential role in microbiota 

composition. Compared to formula-fed milk, breast milk in healthy women contains a wider variety 

of viable and more beneficial bacteria, including Staphylococcus, Streptococcus, Lactobacillus and 
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Bifidobacterium, the two latter known to stimulate the developing immune system and improve 

intestinal barrier function  [143-145]. The source of this diverse population of bacteria in breast milk 

is unclear, but it appears to derive from bacteria residing in the mother’s gut. Human milk also 

contains secretory IgA, antimicrobial peptides, cytokines, and immune cells and over 200 non-

digestible oligosaccharides (HMOs) which provide nutrients to the microbes colonizing the infant gut 

that produce specific SCFAs [146]. The HMOs and sIgA present in human milk are involved in 

preventing the colonization of pathogenic Proteobacteria during establishment of the early gut flora. 

Proteobacteria are believed to be important contributors to inflammation associated with metabolic 

disease in adults, and their role in infant immunity is critical for early priming of the innate and 

adaptive immune system [147-149]. Recently, differences in HMOs composition in mother’s milk 

have also been associated with infant growth and body composition [150].  

The gut microbiome of formula-fed infants is instead dominated by members of the 

Enterobacteriaceae, Streptococcus, Bacteroides, Clostridium, and Bifidobacterium families [151]. 

The SCFA profiles of formula-fed infants is also different to those that are breast-fed, the latter being 

characterized by high proportions of acetate and lactate and a lower proportion of propionate [152]. 

Since SCFAs play essential roles in host-immune regulation and have anti-inflammatory effects, 

considered important to protect against obesity and metabolic syndrome, it follows that the 

differences found between SCFAs consequent to the two types of milk-feeding, will lead to different 

outcomes in terms of health risks later in life. For instance, the different gut microbial community of 

formula-fed infants which have significantly higher levels of Bacteroides than breast-fed infants, has 

been linked to the possible risk of celiac disease [153].   

Overall, breast-feeding compared to formula feeding which is more calorie-dense, is widely 

recognized to provide significant health benefits to infants, particularly in reducing the risk of 

pediatric obesity [154,155], and this risk is inversely related to the duration [156]. Since obesity is 

linked to inflammation and this in turn to neuroinflammation, then the risk of developing 

neurodegenerative diseases later in life may also be reduced by breast-feeding. Worthy of note is that 

breast milk from obese mothers has been shown to harbour a different and less diverse and beneficial 

bacterial community than that of normal-weight subjects, such as higher levels of Staphylococcus and 

A. muciniphila and lower levels of Bifidobacterium [157], along with a different composition of 

hormones, cytokines, and oligosaccharides [158]. In fact, infants born to obese mothers are exposed 

to higher levels of the hormones leptin and insulin present in mother’s milk and these appear to be 

correlated with changes in the composition and characteristics of the neonatal microbiome [159]. 

Whether the early effects of human milk from obese mothers on changes in the microbiome contribute 

to future disease risks in their infants remains to be explored.  
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7. Strategies for prevention: what can be done in adult age?  

Strategies for prevention could be defined mainly in three phases: the first includes nutrigenomic 

dietary interventions for the mother during pregnancy, the second is defined during the postnatal age 

in a different way by breast- or formula -feeding, both described above, while the last one includes 

both nutrigenomics and supplements useful to counterbalance the progression of neurodegeneration. 

It is important to mention that all these approaches exhibit common mechanisms of action: the first 

and the second might be useful for avoiding or delaying the development of neurodegeneration, while 

the third in adult age may be useful to also counterbalance/inhibit the alterations that have already 

initiated.   

An anti-inflammatory diet might represent a key strategy to prevent the risk factors associated with 

the development of neurodegeneration later in life. To this aim, the daily diet should include food 

able to promote an active modulation on genes involved in the control of inflammation and in the 

maintenance of a balanced redox state starting from toddlers which should be educated on their 

importance and use throughout their whole life.  Food containing phosphatidylcholine (i.e. red meat, 

fish, egg and other animal products) should be controlled in adult age because they can promote 

microbiota-mediated trimethylamine (TMA) which is converted into trimethylamine-oxide (TMA-

N-oxide) after hepatic metabolism, and that can be accumulated inside the vascular wall leading to 

atherosclerosis and promoting macrophages pro-inflammatory responses [90]. A high fat diet also 

should be avoided because it modifies the inflammatory responses via NFk stimulation and pro-

inflammatory cytokines that may change intestinal permeability. The latter can also be regulated by 

the level of Akkermansia muciniphila, a mucin-degrading bacterium, that has been reported to be 

positively associated with a reduction in adipose tissue inflammation, insulin resistance and 

restoration of the gut barrier [160-162].  

Foods such as green/white/red/orange vegetables, red fruits, broccoli, curcuma, tea represent an 

important source of bioactive compounds able to protect against neurodegeneration [163]. Broccoli, 

kale, and radish of the Brassicaceae family contain sulforaphane, an isothiocyanate which becomes 

active only after myrosinase-mediated degradation of glucosinolate precursors such as glucoraphanin. 

However, the myrosinase contained in the Brassicaceae is inactivated by high temperatures (> 60 

°C).  Recently, it has been observed that gut microbiota can exert a myrosinase-like activity giving 

the possibility to produce sulforaphane even after cooking of vegetables [164]. The protective effect 

of sulforaphane is linked to its modulation of anti-inflammatory and antioxidant pathways. Several 

reports have demonstrated that sulforaphane is able to inhibit COX-2, while promoting the Nrf2/ARE 

pathway, an indicator and modulator of oxidative stress in neurodegeneration [165,166]. Moreover, 
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sulforaphane has been reported to improve behavioural cognitive impairments and attenuated brain 

Aβ burden in an Alzheimer's disease animal model [167]. Studies on mitochondria from human 

neuroblastoma SH-SY5Y cells treated with hydrogen peroxide, show that sulforaphane is able to 

protect mitochondrial membrane against lipid and protein oxidation; moreover it can also protect 

against loss of ATP 168]. For these reasons, its use against particular signs and symptoms of AD has 

been suggested [169].  

Green tea for its high content in the flavonoid epigallocatechin gallate (EGCG) exerts a significant 

antioxidant and anti-inflammatory activity. In a mouse model of dopaminergic oxidative damage 

induced by the prodrug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), EGCG was shown to 

regulate the iron-export protein ferroportin, reducing oxidative stress in the brain [170]. In neonatal 

mice, EGCG inhibited the damage induced by exposure to sevuflurane, a toxicant used to induce 

neurodegeneration, and improved learning and memory by acting on the activation of the 

CREB/BDNF/TrkB-PI3K/Akt signalling pathway [171]. Quercetin, another flavonoid widely 

distributed in nature, has also been associated with a reduced risk of development of 

neurodegenerative disorders because it may mitigate oxidative stress and mitochondrial dysfunctions 

[172].  

Resveratrol and curcumin, found in the skin of red and blue berries and in turmeric powder 

respectively, have anti-inflammatory properties due to their ability to decrease the expression of 

inflammatory genes (i.e. NFκB, AP1, COX-2, and iNOS); it has been suggested that histone 

acetylation by activated NFκB can be repressed by resveratrol [173]. The numerous reports on the 

positive effects of resveratrol and curcumin against the production of anti-inflammatory cytokines, 

underline their key protective role against neurodegeneration.  A recent review that has summarized 

the data on curcumin in the last five years, highlights the neuroprotective role of curcumin which is 

able to cross the BBB, and exerts anti-inflammatory, antioxidant, and anti-protein-aggregating roles 

[174, 175].  

Melatonin, produced by the pineal gland in animals, but also produced in plants, has been 

suggested as a strategic compound for its long-term effect on neuroprotection. Studies on LPS-treated 

animals show that melatonin can stimulate the SIRT1/Nrf2 pathway reducing reactive oxygen species 

production [176]. Similarly, a protective effect against the neurotoxin polychlorinated biphenyls 

(PCBs) on motor coordination and anxiety-like behaviour was observed when animals were co-

treated with melatonin [177]. In a rat model of AD, melatonin improved the neurotoxicity and 

astrocyte activation due to -amyloid1-42 (Aβ1-42) exposure in the cerebral cortex. Furthermore, 

melatonin was able to inhibit the reduction of Reelin and Dab1 expression stimulated by Aβ1-42  

[178].  
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Lutein, a xanthophyll found in high quantities in green leafy vegetables, has been proposed to be 

useful in the protection of brain damage because of its beneficial properties during brain development. 

Lutein concentration has been correlated with lipid and energy metabolites, brain osmolytes and 

aminoacid neurotrasmitters [179].  

Lastly, since a high fat diet promotes hypothalamic inflammation and epigenetic programming, 

the composition and the content of fatty acids in the diet should be under control during all stages of 

life. At present, the main problem in early life nutritional strategies to prevent neurodegeneration is 

associated with the poor knowledge on ‘how much’ and ‘which’ foods should be included in the diet, 

that actually become bioavailable in order for their bioactive compounds to exert their protective 

effects. In dietary supplements, how much of the bioactive compounds should be present in order to 

achieve only long-lasting positive effects? These are all questions which are waiting to be addressed. 

Further research aimed to identify the association between “quantity/quality of food” and individual 

metabolic responses, should be promoted to finalize the data on the numerous bioactive compounds 

known, and those still awaiting to be discovered for contrasting the development of 

neurodegeneration (Figure 3). 

 

Figure 3: Risk factors for neurodegeneration and possible prevention strategies 
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8. Conclusion 

Neurodegeneration is a complex aging process which starts as early as the intrauterine period of 

life. Early life actions are here suggested to prevent and counterbalance its development: 1) mother-

to-be life style should be carefully monitored to guarantee the required balanced micro/macro-

nutrients, avoidance of stress, drugs, xenobiotics or smoke exposure and finally any intrauterine 

infections; 2) early postnatal age of life should be under control for mother’s food intake and 

environmental exposure if offspring is breast-fed; 3) vaginal delivery should be preferred, when 

possible, with respect to cesarian-section delivery particularly when the mother has a lean phenotype; 

4) breast-feeding should be promoted longer because of its protective effect on offspring; 5) a diverse 

organic fruit and vegetable intake should be present in the diet of both young and adult people because 

of their key role in the maintenance of microbiota diversity which is importantly linked with SCFA 

production and with their anti-inflammatory activity associated with a healthy metabolic profile; 6) 

moderate physical activity, equilibrated emotional status and mental wellness contribute to the 

maintenance of an anti-inflammatory status; 7) intake through diet or supplements of bioactive 

compounds able to reduce oxidation and inflammation, thus preventing or counterbalancing 

progressive neurodegeneration, should be taken into account particularly in people exposed to 

environmental chemical and physical stressors. 
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