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 50 

Abstract 51 

Simulation models, informed and validated with datasets from long term experiments (LTEs), are 52 

considered useful tools to explore the effects of different management strategies on soil organic 53 

carbon (SOC) dynamics and evaluate suitable mitigative options for climate change. But, while 54 

there are several studies which assessed a better prediction of crop yields using an ensemble of 55 

models, no studies are currently available on the evaluation of a model ensemble on SOC stocks. 56 

In this study we assessed the advantages of using an ensemble of crop models (APSIM-NWheat, 57 

DSSAT, EPIC, SALUS), calibrated and validated with datasets from LTEs, to estimate SOC 58 

dynamics. Then we used the mean of the model ensemble to assess the impacts of climate change 59 

on SOC stocks under conventional (CT) and conservation tillage practices (NT: No Till; RT: 60 

Reduced Tillage). The assessment was completed for two long-term experiment sites (Agugliano -61 

AN and Pisa - PI2 sites) in Italy under rainfed conditions. A durum wheat (Triticum turgidum 62 

subsp. durum (Desf.) Husn.) - maize (Zea mays L.) rotation system was evaluated under two 63 

different climate scenarios over the periods 1971-2000 (CP: Present Climate) and 2021-2050 (CF: 64 

Future Climate), generated by setting up a statistical model based on canonical correlation 65 

analysis. Our study showed a decrease of SOC stocks in both sites and tillage systems over CF 66 

when compared with CP. At the AN site, CT lost -7.3% and NT -7.9% of SOC stock (0-40 cm) 67 

under CF.  At the PI2 site, CT lost -4.4% and RT -5.3% of SOC stocks (0-40 cm). Even if 68 

conservation tillage systems were more impacted under future scenarios, they were still able to 69 

store more SOC than CT, so that these practices can be considered viable options to mitigate 70 

climate change. Furthermore, at the AN site, under CF, NT demonstrated an annual increase of 71 

0.4%, the target value suggested by the 4 per thousand initiative launched at the 21st meeting of the 72 

Conference of the Parties in Paris. However, RT at the PI2 needs to be coupled with other 73 

management strategies, as the introduction of cover crops, to achieve such target. 74 
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 78 

1. Introduction 79 

Soil organic carbon (SOC) is important to crop production because it mediates nutrient cycling, 80 

and affects soil fertility (Bolinder et al., 2010; Lal et al., 2009), and soil water-holding capacity 81 

(Huntington, 2007).  Sequestration of carbon in soil by increasing SOC is also considered one way 82 

to mitigate climate change as SOC represents the main C sink in terrestrial ecosystems (Wang et 83 

al., 2015).  Different tillage practices affect both sequestration capacity and the distribution of 84 

organic C in soil and can contribute to mitigative adaptation strategies to climate change in a 85 

variety of ways (Marraccini et al., 2012). In general, benefits associated with tillage include topsoil 86 

aeration, ease of seed emergence, effective weed control and incorporation of crop residue into the 87 

soil. However, conventional tillage (CT), characterized by traditional moldboard ploughing, can 88 

stimulate rapid mineralization of SOC, increase soil erosion, create a plough pan and increase the 89 

use of energy for mechanical operations (Bertolino et al., 2010; Rusu, 2014). 90 

Less intensive tillage management, also referred to as conservation agriculture (i.e., Reduced 91 

tillage – RT and no till – NT), has been adopted to reduce these negative impacts although 92 

sometimes lower yields have been associated to these practices (Van den Putte et al., 2010). There 93 

is still uncertainty of the merit of conservation tillage to contribute to increasing the resilience of 94 

cropping systems to climate change (Powlson et al., 2016) and to increasing SOC compared with 95 

CT practices (Gonzalez-Sanchezet al., 2012; Haddaway et al., 2016).  In fact, SOC significantly 96 

increases in the layers closest to the soil surface under conservation tillage but does not always 97 

increase in the deeper soil profile where, conversely, SOC content tends to increase under 98 

conventional tillage, particularly near or at the bottom of the plowed layer (Alvarez, 2005; Angers 99 
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and Eriksen-Hamel, 2008; De Sanctis et al., 2012). These results highlight the importance of 100 

evaluating the entire soil profile or, at least, the depth of the plowed layer to compare the effect of 101 

contrasting tillage practices on SOC stocks. 102 

However, because changes in SOC can occur very slowly (Smith et al., 1997), the relationship 103 

between tillage practices and SOC sequestration should be evaluated over a sufficiently long 104 

period of time.  Long-term experimental sites (LTEs) at research facilities thus represent the ideal 105 

setting to assess processes and factors that may affect SOC content over a long period of time 106 

because there are long-term datasets associated with these sites (Korschens, 1996; Ruisi et al., 107 

2014).  In fact, while short-term experiments can support research that focuses on the initial stages 108 

of a process, LTEs permit evaluation of the magnitude of change over a longer period of time and 109 

allows understanding the cause of these changes at the same time (Knapp et al., 2012).  For this 110 

reason, data coming from LTEs play a key role in informing and validating crop simulation 111 

models. Furthermore, as LTEs permit understanding the relationship of short- and long-term 112 

processes, they are crucial to improving the ability of current crop simulation models to simulate 113 

future scenarios.  Powerful tools can be developed from this process that permit researchers and 114 

policymakers to explore management strategies that increase SOC and define suitable adaptation 115 

and mitigation options to reduce the impact of climate change on cropping systems (Ewert et al., 116 

2011; White et al., 2011). Models were successfully used to simulate contrasting tillage 117 

management in agroecosystems under current (Chang et al., 2013; De Sanctis et al., 2012; Franko 118 

and Spiegel, 2016; Leite et al., 2009; Tan et al., 2007) and future climates (Bhattarai et al., 2017; 119 

Farina et al., 2011).   120 

Given the growing interest in assessing uncertainty, in particular under future scenarios (Wallach 121 

et al., 2016), both the climate and crop modeling communities have proposed the use of an 122 

ensemble of models to obtain a probability distribution of projections (Harris et al., 2010) rather 123 

than a single model.  In fact, crop models can vary in structure and parameterization and formalize 124 
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bio-physical and physiological processes differently. For this reason, they may respond in different 125 

way to future climate scenarios, thereby projecting different impacts of climate change on SOC 126 

and crop yield, even if they had been able to reproduce quite well the observed values under past 127 

conditions (Bassu et al., 2014). As a result, an assessment of climate change impacts based on an 128 

ensemble of outcomes from multiple model simulations is more reliable than one obtained from a 129 

single model (Rötter et al., 2011; Tao et al., 2009).  130 

Furthermore, many studies of multi model ensembles (MME) under current climate conditions 131 

have shown that the mean or median of the ensemble’s simulated values reproduce the measured 132 

crop yields better than any individual model (Asseng et al., 2014; Li et al., 2015; Martre et al., 133 

2015; Palosuo et al., 2011; Rötter et al., 2012). Given the improved performance of crop model 134 

ensembles over single models under current conditions, Wallach et al. (2016) suggest that better 135 

predictions under future climate conditions can be obtained with the mean or median of the model 136 

ensemble, even without improving the present-day crop models. Nevertheless, while some 137 

research has assessed MME to predict crop yield, no MME studies are currently available that 138 

evaluate the ensemble mean or median to simulate SOC dynamics. Many studies have used 139 

biogeochemical models (Alvaro-Fuentes et al., 2012; Gottschalk et al., 2012; Lugato et al., 2007; 140 

Meersmans et al., 2016; Muñoz-Rojas  et al., 2013; Tornquist et al., 2009) to assess the impact of 141 

climate change on SOC, but because these models have simplified processes for crop growth 142 

simulation, they could produce unreliable impacts on crop productivity and, consequently, on soil 143 

C-input. Most climate change impact studies using crop process based models have focused on the 144 

crop-atmosphere interaction of single crops alone (Asseng et al., 2014; Bassu et al., 2014; Long et 145 

al., 2006) while, more recently, studies emerge which consider the entire system of soil-crop-146 

atmosphere interaction  (Basso et al., 2015; Kollas et al., 2015; Nendel et al., 2014; Teixeira et al., 147 

2015).  This is particularly important under limited growing conditions such as in rainfed cropping 148 

systems with low SOC content. As a matter of fact, SOC can vary by year in response to agronomic 149 
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management decisions and climate. These changes in SOC then affect soil water holding capacity 150 

and nitrogen and, at the same time, crop performance which, in turn, affects additional input of 151 

SOC.  152 

Considering all of the issues mentioned above, we hypothesized that using an ensemble of models 153 

to estimate SOC in agricultural soils provides an advantage in terms of simulation accuracy, an 154 

approach that has not been used in previous studies. Moreover, we assumed that the use of 155 

process-based crop models for the dynamic estimation of plant C inputs to soil, varying year by 156 

year according to soil and climate variability and considered the main driver of SOC dynamic 157 

(Izaurralde et al., 2006), greatly improves the reliability of SOC simulations. We tested our 158 

hypothesis with four process-based crop models that were calibrated and evaluated with a set of 159 

data from selected Italian LTEs where different tillage options had been applied to cereal-based 160 

cropping systems in rainfed conditions. Thereafter we used MME to assess the long-term effects 161 

of contrasting tillage practices on changes in SOC stocks, considering both superficial (0-15 cm) 162 

and deeper layers (15-40 cm), in rainfed durum wheat (Triticum turgidum subsp. durum (Desf.) 163 

Husn.) - maize (Zea mays L.) rotations.  These simulations were completed under both current and 164 

future climate scenarios. In this way we were able to assess the impact of future scenarios on both 165 

SOC and crop yield. 166 

 167 

2. Material and methods 168 

2.1 Description of the long-term datasets 169 

The data from two rainfed long-term experiments (LTEs) were utilized for this study: the AN site 170 

located in Agugliano (Ancona, Marche, 43°32’N, 13°22’E) and the PI2 site in San Piero a Grado 171 

(Pisa, Toscana, 43°41’N, 10°23’E).  These sites are characterized by contrasting tillage practices 172 

and belong to the IC-FAR national network (Linking long term observatories with crop systems 173 

modeling for a better understanding of climate change impact and adaptation strategies for Italian 174 
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cropping systems). The climate of the both AN and PI2 sites is Mediterranean with a bimodal 175 

distribution of cumulated monthly precipitation in spring and autumn, mild winters and warm dry 176 

summers.  177 

2.1.1 LTE AN 178 

The AN LTE (Seddaiu et al., 2016) was established in 1994 in a hilly area with silt-clay soil.  The 179 

rotation included two years of durum wheat (cv. Grazia, ISEA) followed by sunflower (Helianthus 180 

annuus L., cv. Starsol, ISEA) until 2001. After 2002 the sunflower crop in the rotation was 181 

replaced by maize (DK440 hybrid, Dekalb Monsanto, FAO class 300).  These rotations were 182 

replicated twice in adjacent fields to allow production of all crops each year. Over the 183 

experimental period (1994-2014), the AN experiment site experienced mean annual rainfall of 820 184 

mm and mean annual air temperature of 15.3°C.  185 

The conventional tillage (CT) and no till (NT) treatments were used to calibrate the crop models in 186 

the durum wheat-maize rotation (2002-2014). CT plots were ploughed each year by moldboard to 187 

a depth of 40 cm in October for wheat and at the end of August for maize. The seedbed was 188 

prepared with double harrowing to a depth of 15 cm before the sowing date. NT plots were left 189 

undisturbed except for sod seeding, chopping of crop and weed residues and herbicide spraying 190 

before seeding.  Both CT and NT treatments were fertilized with 90 kg N ha-1. Mineral N was 191 

distributed as ammonium nitrate in two equal rates in February and March for wheat and in one 192 

rate at seeding for maize. For both tillage systems crop residues were not removed from the field 193 

and incorporated in soil under CT by ploughing.  194 

Measured crop data consisted of phenology (flowering, and physiological maturity dates), leaf area 195 

index (LAI), and productivity (aboveground biomass and grain yield) from 2002 to 2014. SOC 196 

samples of the soil profile were collected to a depth of 40 cm in 1996 and 2002 and to a depth of 197 

100 cm in 2006 and 2010 in both the CT and NT treatments. Physical soil characteristics and 198 

hydraulic proprieties were measured in 2006 and used to define the main soil characteristics of the 199 
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site (Table 1). As the experiment was initialized on a CT system, we used 2006 data of the CT 200 

N90 treatments as a reference for the main soil characteristics of AN site assuming that these did 201 

not substantially change since the beginning of the experiment as reported by De Sanctis et al. 202 

(2012). 203 

2.1.2 LTE PI2  204 

The PI2 LTE (Mazzoncini et al., 2011) is located in a lowland coastal area with an alluvial loam 205 

soil. The experimental design includes two tillage systems (CT – annual plough vs RT – reduced 206 

tillage), four mineral N fertilization rates and four soil cover types factorially combined in a split-207 

split-plot design with four replications. The design included a continuous maize crop from 1994 to 208 

1998 followed by a two-year durum wheat-maize rotation until 2004. After 2005 the LTE was 209 

changed to a four-year crop rotation of durum wheat-maize-durum wheat-sunflower. Over the 15 210 

years include in this research (1994-2008), mean annual precipitation at this site was 826 mm and 211 

the mean annual air temperature was 14.6 °C. 212 

In this study we used a subset of treatments of the PI2 LTE (1994 to 2008) where durum wheat 213 

and maize were grown without cover crops, to evaluate the effects of the different tillage systems 214 

on SOC dynamics. The CT consisted of annual moldboard ploughing to a depth of 30-35 cm 215 

followed by secondary tillage with disk and rotary harrows. The RT was characterized by no-216 

tillage for wheat and shallow harrowing for seedbed preparation for maize to a depth of 10-15 cm. 217 

Plots of durum wheat and maize were fertilized with 180 and 300 kg N ha-1, respectively.  In both 218 

systems, crop residues were chopped after harvest and left in the field. Weed control was based on 219 

post-emergence herbicide application in the CT system while pre-sowing glyphosate was also 220 

applied in the RT.  FAO class 300 were used from 1994 to 2000 and class 500 from 2002 to 2006, 221 

while Cirillo and Duilio were used for durum wheat in 1999 and from 2001 to 2007. Aboveground 222 

biomass and crop yield were measured each year at harvest. Soil analyses were conducted on soil 223 

samples collected at the depths of 0-10 and 10-30 cm at the end of September in 1993 (at the 224 
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beginning of the experiment), 1998 and 2008. During the IC-FAR project, additional soil data 225 

were collected in 2015 from a depth of 30 to 90 cm to characterize the soil texture of the deeper 226 

layers assuming that texture values did not change from the beginning of the experiment. Data 227 

from 1993, coupled with texture data from the deeper layers collected in 2015 were used to define 228 

the main soil physical characteristics of the PI2 site (Table 1). Soil hydraulic properties were 229 

estimated using the pedo-transfer functions of Ritchie et al. (1999).  230 

 231 

2.2 Setup of the crop models  232 

The experimental and weather data collected and harmonized in the common IC-FAR database 233 

(see details in Ginaldi et al., 2016) were used to inform and validate four process-based crop 234 

models to assess their ability to simulate SOC dynamics in different tillage systems and reproduce 235 

reliable crop residue-C inputs. Table 2 provides a list of the models used and the various 236 

biophysical approaches used in each model. In APSIM-NWheat, the simulation of maize was 237 

replaced by adding to the soil the observed amounts of residues left by the maize crop each year. 238 

SOC is commonly divided up in these crop models into several different pools (Table 2) based on 239 

the residence time. In order to properly estimate SOC distribution across pools, soil carbon 240 

initialization was carried out considering the land use history of the experimental sites.  241 

Before the start of the experiment in 1994, De Sanctis et al. (2012) reported the AN site had 242 

previously experienced a two-year durum wheat-maize rotation for 44 years (1950-1994) with an 243 

average N fertilizer rate of 140 kg ha-1, initiated on grassland. Therefore, before simulating the 244 

cropping system for 1994-2014, the models were run over 44 years (since 1950) with an 245 

antecedent simulation based on a wheat-maize rotation. The total SOC in the upper 40 cm in 1950 246 

was iteratively estimated by fitting the simulated value at the end of the simulation with the first 247 

observed measured SOC available in 1996 that was considered as initial value of the LTE 248 

assuming that it did not substantially change from the beginning  of the experiment in 1994. In the 249 
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Century-based models (EPIC, DSSAT, SALUS), the SOC fractions in 1950 were initialized 250 

following the procedures suggested by Basso et al. (2011) considering 2%, 64% and 34% for the 251 

active, the slow and the passive pools, respectively. The final simulated fractions of the passive 252 

pool for each soil depth obtained at the end of the antecedent simulation were then used as inputs 253 

in the simulation starting in 1994. A wheat-maize rotation was also simulated over the period 254 

1994-2001 although in the same years sunflower was sown instead of maize but the amount of 255 

residues left by sunflower was similar to that left by maize in this rainfed system (De Sanctis et al., 256 

2012). In the APSIM-NWheat model, inputs to set the amounts of the initial labile pool (biom) and 257 

the rest of the soil organic matter (hum) in each layer for year 1994 were set in order to minimize 258 

the root mean square error between simulated and measured values at both 0-15 and 15-40 cm for 259 

the two treatments (i.e., tillage and no tillage).   260 

In the PI2 site, before the start of the experiment in 1993, a pre-run simulation over 63 years 261 

(1930-1993) was performed on a rainfed biannual durum wheat-maize rotation fertilized with 180 262 

kg N ha-1 for the winter crop and 300 kg N ha-1 for the summer crop. The biannual rotation was 263 

initialized in 1930 on grassland. Total SOC in the upper 30 cm in 1930 was estimated iteratively 264 

until the measured SOC value in 1993 was adequately predicted by the simulation. Following the 265 

procedure of Basso et al. (2011), the same initial SOC fractions used in AN for the Century-based 266 

models were used also for PI2 in 1930. At the end of the 63 year period, the final simulated 267 

fractions obtained for the passive pool in each model were then used to initialize simulations 268 

starting in 1993.  269 

APSIM-NWheat  started the simulation in 1998 when the continuous maize system was replaced 270 

by the wheat-maize rotation. The initial amounts of biom and hum in 1998 were defined so that 271 

root squared errors between simulated and measured SOC values were minimized. 272 

The approach used by De Sanctis et al. (2012) was applied at the AN site for the DSSAT model in 273 

order to consider the presence of weeds in the conservation tillage systems. The simulations under 274 
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NT were carried out with the weed contribution during the fallow period from wheat harvest (July) 275 

to maize sowing (April). Plant parameters for Bahia grass (Paspalum notatum Flüggé) were used 276 

to simulate green foxtail (Setaria viridis L.), the most frequent weed species observed at the 277 

experimental site, because Bahia grass is a C4 plant included within DSSAT that is similar to 278 

foxtail. In PI2, as the simulation of weed growth during the fallow period was limited by the 279 

presence of tillage, weed contribution to SOC was simulated in the RT system adding also an 280 

amount of 1500 kg ha-1 of bahia grass crop residue at the onset of each maize growing seasons. 281 

This average amount per year was taken from Mazzoncini et al. (2011) considering the total weed 282 

biomass contribution over the experimental period 1994-2008.  283 

In the APSIM-NWheat, EPIC, and SALUS models, the weed biomass was added to the initial 284 

input residues and set to 1500 kg ha-1 at both AN and PI2 sites as reported in De Sanctis et al. 285 

(2012) and Mazzoncini et al. (2011), respectively.  286 

 287 

2.3 Evaluation of model performance 288 

The performance of each model to simulate SOC was evaluated by calculating complementary 289 

indicators following the method proposed by Smith et al. (1997), but only one indicator was 290 

selected for each statistical aspect of the simulation so that the same weight was given in the 291 

evaluation of the model’s overall ability. We selected the relative root mean square error 292 

(RRMSE), its statistical significance RRMSE 95%, the modeling efficiency (EF), the relative error 293 

E with its statistical significance E 95%. and the correlation coefficient (r) . A full description of 294 

each indicator is provided in the Supplementary material. 295 

Statistics were calculated in each site considering the available observed SOC measurements (AN: 296 

2002, 2006, 2010; PI2: 1998, 2008) to a depth of up to 40 cm for both tillage systems but not 297 

including the initial observed SOC values used as model inputs (1996 and 1993 respectively for 298 
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AN and PI2). The performance of APSIM-NWheat was evaluated in PI2 considering only the 299 

observed SOC of CT and RT in 2008. 300 

The multi model mean (MM_Mean) of the individual simulations was also considered to evaluate 301 

the performance of the MME. All previously mentioned statistics were also determined for this 302 

multi model estimator. The single models and the MM_Mean were then ranked in relation to the 303 

performance obtained for each indicator and the mean of ranks (RankMean) over all the statistics 304 

was taken into account to evaluate the overall skill of the simulations. 305 

To evaluate whether the crop growth modules of each model correctly simulated the annual C 306 

input to the soil from crop residues, the mean measured and simulated aboveground biomass 307 

(AGB) and yield for the two crops were compared under conventional and conservational tillage 308 

systems at both sites. The simulation bias for AGB and yield were also evaluated by calculating 309 

the mean difference between measured and simulated data with the Mean Bias Error (MBE, see 310 

Supplementary material). 311 

Hereafter, the names of models APSIM-NWheat, DSSAT, EPIC, SALUS are reported as Model1, 312 

Model2, Model3, Model4, respectively, in order to remove any sense of endorsement of any 313 

of these models, since that is outside the scope of this research. 314 

An uncertainty analysis was also carried out calculating the mean standard errors of the estimated 315 

SOC values until the ploughing depth over the calibrated periods in both sites and tillage systems 316 

with the increase of the number of the simulation models (Supplementary material, Table S1). 317 

 318 

2.4 Simulation scenarios  319 

Climate scenarios were generated by setting up a statistical downscaling model over the case 320 

studies, represented by a multivariate regression (Tomozeiu et al., 2014). The statistical scheme 321 

was based on the assumption that the local climate variability is determined by the variability of 322 

large scale fields and local features. The link between local predictors and large scale predictors 323 
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has been determined by Canonical Correlation Analysis (CCA). The most important patterns that 324 

resulted from CCA were then used as input of the multivariate regression scheme. The setup of the 325 

statistical model was done using predictors from ERA40 and ERA-Interim1, and predictands 326 

represented by the seasonal indices of temperature and precipitation over the case studies, 327 

computed from E-OBS gridded dataset2 (Haylock et al., 2008). The large-scale predictors tested 328 

were: mean sea level pressure (MSLP), geopotential height at 500 hPa (Z500) and temperature at 329 

850 hPa (T850), spatially ranging between 90°W to 90°E in longitude and 20°N to 80°N in 330 

latitude, with a horizontal resolution of 1.125° × 1.125°. The set-up of the statistical model was 331 

done over the 1958-2010 period. Once the most skillful model was detected for each season and 332 

index (local temperature or precipitation), the predictors simulated by the CMCC-CM global 333 

climate model (Scoccimarro et al., 2011) were entered into the statistical scheme in order to 334 

estimate the future local climate. Two emission scenarios were used: RCP4.5 and RCP8.5 (Moss 335 

et al., 2008), while the projections were constructed over the period 2021-2050 (CF: Future 336 

Climate) with respect to 1971-2000 (CP: Present Climate). 337 

Seasonal projections were used as input in a Richardson-based weather generator (Richardson and 338 

Wright, 1984) to preserve the correlation between weather variables in order to generate daily time 339 

series of precipitation (PREC), maximum and minimum air temperature (Tmax, Tmin) for both 340 

AN and PI2 sites. Daily generated datasets were bias-corrected with monthly correction factors 341 

obtained by comparing the overlapping periods of the CP and the available local weather stations. 342 

Finally, daily radiation was estimated by the RadEst model (Donatelli et al., 2003) from Tmax and 343 

Tmin for all climate scenarios.  344 

A CO2 concentration of 360 ppm was used  for the present climate scenario considering a mean 345 

CO2 value recorded at Mauna Lao Observatory (NOAA ESRL Global Monitoring Division, 2015) 346 

 
1 http://www.ecmwf.int/products/ 
2 http://eca.knmi.nl/download/ensembles/ensembles.php 
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over the CP period, while values of 460 ppm and 490 ppm were projected for RCP4.5 and RCP8.5 347 

CF scenarios up to 2050.  348 

The four validated crop models were run using the CP and CF scenarios in both LTEs to assess the 349 

climate change impacts on SOC stocks. Models were run with the management practices reported 350 

in Table 3 and simulating two rotations (Rot1: wheat-maize, Rot2: maize-wheat) to allow the 351 

presence of both crops in each year. Seedling emergence was set according to the most frequent 352 

values observed in the field as measured by Seddaiu et al. (2016) for AN and by Mazzoncini et al. 353 

(2011). It was set at 300 and 350 plants m-2 for durum wheat in AN and PI2 (all tillage systems) 354 

respectively, and 7 and 6 plants m-2 for maize under all tillage systems in PI2 and under CT in AN 355 

site. Maize seedling emergence was reduced to 3 plants m-2 under NT as observed for the LTE in 356 

AN. The crop harvest date was set at maturity in the crop models. The SOC measured in 1996 (for 357 

AN) and 1993 (PI2) were used as initial values in all scenarios. The SOC fractions were initialized 358 

with the same procedures described in the set-up phase. SOC changes to a depth of 0-40 cm, 359 

aboveground biomass, and yield were assessed using the MM_Mean in both sites over the 360 

simulation periods CP and CF, for the different applied tillage management (Table 3) and climate 361 

change scenarios.   362 

 363 

3. Results 364 

3.1 Model Evaluation 365 

All models suitably reproduced the mean observed yield and AGB values of both crops, 366 

demonstrated by low MBE values in the different tillage systems of both sites.  This was 367 

particularly true for crop yields (Supplementary material, Fig. S1).  368 

Table 4 shows statistics that describe the performance of all the models tested to simulate the SOC 369 

dynamics in the upper 40 cm and the MM_Mean for all of the models. At the AN site, RRMSE for 370 

all of the models was less than the RRMSE95% which indicates that even if some of the models 371 
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generated some simulation values outside the measured standard errors (Supplementary material, 372 

Fig. S2), they were still within the 95% confidence interval when the entire dataset was examined.  373 

Model 3 (RRMSE= 7.44) had the worst performance and strongly overestimated SOC in NT.  374 

Model1 (RRMSE= 5.85) presented a flat trend in NT SOC dynamic, with most of the values 375 

laying below the observed ones. A similar pattern of model performance was reflected by the EF 376 

indicator that showed a negative value (EF= -0.60) only for Model3.   Model1 produced an EF 377 

value very close to zero. E values for all of the models were within the 95% confidence interval of 378 

E95%, and Model3 had the highest bias (E= -6.57). All models, excluding Model1, presented 379 

significant r values. Considering the overall statistics, the best performance in the simulation of 380 

SOC dynamic in AN was achieved by the MM_Mean which showed the lowest value of the 381 

RankMean. The good performance of MM_Mean was also supported by the qualitative graphical 382 

representation reported in Fig. 1 in which the SOC dynamics simulated by the MM_Mean were 383 

very close to the measured data in both tillage systems and better than those shown by the other 384 

crop models (Supplementary material, Fig. S2) in both total (0 - 40 cm), superficial (0 - 15 cm), 385 

and deeper layers (15 - 40 cm).  386 

In PI2, only Model1 showed a RRMSE within the 95% confidence interval of the measured data, 387 

although all models presented positive values of EF. Considering the EF statistics, only Model1 388 

(EF=0.90), MM_Mean (EF= 0.65), and Model2 (EF= 0.62) reached values close to 1. In fact, 389 

these models better reproduced the measured data for CT system in 1998 (Supplementary material, 390 

Fig. S3), while all models showed an underestimation of the observed data under RT. Considering 391 

model bias evaluation, only Model3 and Model4 showed E values greater than E95% (E=8.28 and 392 

E=7.95, respectively). All models, except Model1, for which it was not possible to calculate the 393 

statistical significance of r given the low numbers of observations (n=2), showed high positive and 394 

significant correlations between measurements and simulated data. Considering overall statistics, 395 

the best performance in the simulation of SOC in PI2 was obtained by Model1 (RankMean= 1.0), 396 
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but its simulation started in 1998, and it could not be statistically compared with the other models. 397 

The second best rank was reached by the MM_Mean (RankMean= 2.0).  MM_Mean showed a 398 

better representation of CT system (Fig. 1) than other single models (Supplementary material, Fig. 399 

S3) but it was not able to reproduce the high SOC value observed in RT.  400 

 401 

3.2 Simulation scenarios: CP vs CF  402 

3.2.1 Climate scenarios 403 

The CP scenario reproduced the mean monthly values of all indices very well (Tmax, Tmin and 404 

PREC) for the local observed climate from 1971 to 2000 in both sites (Supplementary material, 405 

Table S2). The CF scenarios RCP4.5 and RCP8.5 (Fig. 2) showed that an increase of temperatures 406 

is expected during the period 2021-2050 in all seasons in both sites: +1.8°C annual mean T in 407 

RCP4.5 and +2.1°C in RCP8.5 at AN and +1.9°C (RCP4.5) and +2.1°C (RCP8.5) at PI2, with 408 

highest increases in the summer.  409 

The changes in precipitation pattern were different from season to season in the two sites. At AN, 410 

the mean annual precipitation (750 mm under CP) decreased by -22.5% in RCP4.5 and -23.0% in 411 

RCP8.5, with the highest reduction occurring in spring (up to -49.0 % in RCP4.5 and -56.1% in 412 

RCP8.5) and summer months (up to -38.0% in RCP4.5 and -34.1% in RCP8.5). At PI2, the mean 413 

annual precipitation under CP (884 mm) is expected to slightly increase of 2.1% in RCP4.5 and 414 

4.9% in RCP8.5. The largest increase is expected in April (+24.0 % in RCP4.5 and +16.9% in 415 

RCP8.5) and in the autumn months (+30.5% in RCP4.5 and +41.4% in RCP8.5), while a strong 416 

reduction of rainfall is expected in the summer months (47.0% in RCP4.5 and -52.7% in RCP8.5). 417 

 418 

3.2.2 Multi-model mean simulation scenarios   419 

The projected effects of climate change on crops were similar for both RCP4.5 and RCP8.5 420 

scenarios with a slightly higher impact of the latter (Table 5).  421 
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On average for both future scenarios, maize at the AN site had a growing season that was shorter 422 

by 14 days with decreased both AGB (-20.8 % in CT and -20.2% in NT) and yield (-19.2% in CT 423 

and -21.5% in NT).  The growing season for wheat was also shorter (-11 days) which resulted in a 424 

decrease in both AGB (-18.8% in CT and -16.8% in NT) and yield (-21.4% in CT and -18.4% in 425 

NT) but with more stable results as evidenced by the lower coefficient of variation (CV) values 426 

(Table 5).  427 

Maize at the PI2 site was strongly affected by the impact of a shorter growing season (-15 days). 428 

Yield decreased by 27.5% with CT and 26.6% with RT, and AGB was reduced by -13.5% with CT 429 

and -14.6% with RT. However, the effect of climate change on wheat appears less important. The 430 

growing season had a comparable reduction (-11 days) to AN but a lower relative decrease of 431 

AGB (-9.6% in CT and -14.3% in RT) and yield (9.5% in CT and 13.8% in RT) than in AN.  432 

In general, this study showed a decrease of SOC stocks to the depth of 0-40 cm in both sites and 433 

tillage systems under CF scenarios when compared with CP and a standard error increasing with 434 

time (Fig. 3 and 4). The deviations of the single models from MM_Mean simulation under CF 435 

were generally smaller in the 0-15 cm layer than the 15-40 cm layer. This is evidenced in Fig. 3 436 

and 4 by the larger red and green areas for conventional and conservation systems, respectively, in 437 

deeper layers in both sites. 438 

At the AN site, under CP conditions, the SOC stock increased at an annual rate of +0.28% with CT 439 

and +0.73% with NT, corresponding to gains of +0.11 (CT) and +0.29 (NT) Mg C ha-1 year-1 in 440 

the uppermost 40 cm of soil. Over 30 years of simulation under future scenarios, no significant 441 

changes in the SOC stock were observed with CT, while the SOC stock increased at an average 442 

annual rate +0.16 Mg C ha-1 year-1 with NT, corresponding to a relative annual gain of +0.4% of 443 

SOC. When compared to SOC dynamics under CP and same tillage technique, after 30-years of 444 

simulation we observed a SOC decrease of -3.1 Mg ha-1 with CT (-7.3%) and -3.8 Mg ha-1 with 445 
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NT (-7.9%), with greater losses in the top (-10.2%) vs bottom (-5.5%) layers only in the case of 446 

NT. 447 

In PI2, under CP scenario, the SOC stock decreased at an annual rate of -0.04% with CT and 448 

increased at the rate of +0.07% with RT, corresponding to a loss of -0.02 (CT) and a gain of +0.04 449 

(RT) Mg C ha-1 year-1 in the 0-40 cm soil layer. Under CF scenarios, SOC values obtained at PI2 450 

after 30 years of simulation were lower than stocks reported in CP but, in contrast with AN, the 451 

difference between initial and final values were always negative. In fact, on average with both 452 

future scenarios, the SOC stock declined at a mean annual rate of -0.10 Mg C ha-1 year-1 with CT 453 

and -0.06 Mg C ha-1 year-1 with RT in the 0-40 cm soil layer, corresponding to a relative annual 454 

SOC losses of -0.19% (CT) and -0.11% (RT). Comparing the future soil dynamics to those 455 

obtained with same tillage technique under CP scenario, after 30 years of simulation SOC 456 

reductions of -2.1 Mg ha-1 in CT (-4.4 %) and -2.8 Mg ha-1 in RT (-5.3%) were observed. 457 

According to AN site, the conservation tillage system (RT) showed a greater loss of SOC in the 458 

top (-8.3%) layer than in the bottom (-2.5%). 459 

 460 

4. Discussion 461 

Our results confirm the hypothesis that under current climatic conditions, the MM_Mean 462 

reproduces SOC dynamic better than a single simulation model and with less uncertainty as 463 

demonstrated by lower RMSE and standard error values. Hence the model ensemble (MME) 464 

provides a better prediction of SOC change in relation to climate change. In contrast with other 465 

studies (Alvaro-Fuentes et al., 2012; Lugato et al., 2007; Tornquist et al., 2009), we used crop 466 

models rather than biogeochemical ones to assess the impact of future scenarios on crop 467 

productivity and yield in order to reliably reproduce soil C-input and, at the same time, evaluate 468 

climate change impacts on crop yields. Several studies have used simulation models as effective 469 

tools to assess changes in SOC stocks under current and future scenarios in order to identify 470 



20 

 

effective agronomic practices (Farina et al., 2011; Lugato et al., 2015; Tornquist et al., 2009; 471 

Wiesmeier et al., 2016) that reduce soil C emissions and increase C stock, thereby mitigating 472 

climate change. The added value of this work is the robustness of the results we obtained given the 473 

use of an ensemble of models that were validated using long-term experimental datasets and able 474 

to adequately assess the long-term processes that affect SOC dynamics.   475 

Our results are generally in agreement with the SOC trends reported by other authors (Farina et al., 476 

2011; Lugato et al., 2014; Mondini et al., 2012; Smith et al., 2005) which projected a negative 477 

trend on SOC stock dynamics in cropland across the 21th century. However the results obtained by 478 

other studies are not always directly comparable with the ones of this work due to the differences 479 

in spatial and temporal scale, soil profiles, climate scenarios, and methodologies. Lugato et al. 480 

(2014) reported in the short to medium term (2020) a decrease in SOC in agricultural soils of 481 

Central and Southern Italy and an expected net loss of about 2.5 Mg ha-1 close to the end of the 482 

century in the Mediterranean region. Mondini et al. (2012) projected a loss of about 6.3% of SOC 483 

between 2001 and 2100 on arable land in Italy, while Smith et al. (2005) projected a SOC loss of 484 

between -14% and -10% over 1990-2080 on a high level (European croplands). Farina et al. (2011) 485 

applied a similar methodology at the same AN site using EPIC model coupled with two different 486 

general circulation models (GISS and HadCM3) for A2 and B2 emission scenarios. Considering 487 

the entire soil profile, the study showed a SOC loss ranging from -2.3 Mg ha-1 up to -6.1 Mg ha-1 488 

in CT and from -2.1 Mg ha-1 up to -7.4 Mg ha-1 in NT, over the period 2040-2069 compared to the 489 

baseline 1956-2006.  490 

Temperature and precipitation are the main climatic drivers that influence, both directly and 491 

indirectly, organic carbon trends in the soil (Fantappiè et al., 2011; Saby et al., 2008; Smith et al., 492 

2005). Because the monthly mean temperature is expected to increase around +2.0°C under future 493 

scenarios at both sites, soil biological activity will likely be stimulated which increases the 494 

decomposition rate and facilitates SOC losses through heterotrophic respiration (Ugalde et al., 495 
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2007). Leiros et al. (1999) showed that the positive effect on soil decomposition rate caused by a 496 

2°C temperature increase is usually limited by a concurrent -10% decrease in soil moisture.  497 

Moreover, according to Gottschalk et al. (2012), C mineralization is constrained by both low or 498 

high values of soil water content, which is mainly influenced by precipitation. The two sites were 499 

characterized by similar increase of temperatures but diverse patterns of precipitation (on average -500 

22.7 % in AN and +3.5% in PI2). Hence, the interaction of both factors affected the organic 501 

carbon decomposition differently at the two sites under the future scenarios, and led to lower SOC 502 

impact in PI2. However, the impact of climate change at AN was constrained by a higher clay 503 

content which physically protects SOC from microbial decomposition (Baldock and Skjemstad, 504 

2000; Six et al., 2002; Xu et al., 2016).  These interactions are taken into account by the models 505 

which control SOC stock dynamics considering a variety of management, soil proprieties and 506 

climate factors. In all the considered models the decomposition of the organic carbon is simulated 507 

with a first-order decomposition kinetics of the C mass (Jones and Kiniry, 1986; Parton et al., 508 

1994; Parton et al., 1988). The decomposed carbon is partly lost to the atmosphere as CO2 and 509 

transferred to another organic matter pool. The decomposition rates are computed daily and their 510 

values change in relation to some environmental modifiers such as temperature, moisture, litter 511 

quality, and soil texture (Basso et al., 2006; Gijsman et al., 2002; Izaurralde et al., 2006; Porter et 512 

al., 2009). 513 

Temperature and precipitation indirectly influence SOC by affecting a number of physiological 514 

and biological processes that drive crop growth and development, and determine soil C input 515 

released by crop residues. Our results showed that the growing season length of both maize and 516 

wheat was significantly reduced during the period 2021-2050 in the two sites due to increased 517 

temperature. In both sites, maize grain and AGB production was also strongly constrained by the 518 

projected precipitation decrease occurring during summer season, when the crop is more 519 

vulnerable to water stress under rainfed conditions (Sánchez et al., 2014). In particular, maize was 520 
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more affected in PI2 than in AN due to the significant reduction of rainfall (around -50%) that is 521 

projected to occur during July and August at the PI2 site. Maize production at the AN site could be 522 

even more affected especially under NT system since the yield of this crop is low as it is affected 523 

by high variability and low seedling emergence (50% than with CT). 524 

Wheat is mostly influenced by water availability during earing and anthesis phases occurring in 525 

the spring (Albrizio et al., 2010; Campiglia et al., 2015). At the AN site, the significant reduction 526 

in precipitation that was projected in the spring constrained wheat production under future 527 

scenarios, despite the positive effect of CO2 atmospheric enrichment which offsets the rainfall 528 

impact. On the other hand, the expected increased precipitation at PI2 in April was able to limit the 529 

negative effect of the shortening of the growing season on both wheat yield and aboveground 530 

biomass, determining a concurrent lower decrease of available crop residue input into the soil.  531 

CT and conservation tillage (both NT and RT) resulted in different redistributions of SOC among 532 

soil horizons. However, considering the total SOC of the 0-40 cm depth, the conservation tillage 533 

systems were able to stock more SOC than CT also under future scenarios. In fact, as conservation 534 

tillage practices decrease SOC decomposition by reducing soil CO2 emissions (Powlson et al., 535 

2011), they are suggested for climate change mitigation.  536 

In all the used models the effects of tillage on soil proprieties are based on the procedures 537 

developed by Dadoun (1993) in the Ceres-Till model. Tillage directly affect the soil organic 538 

carbon decomposition modifying a cultivator factor. This factor accelerates the decomposition 539 

rates in particular more after ploughing than other tillage practices. While, in NT systems, there is 540 

no direct effect on the decomposition rates.  541 

A meta-analysis review by Angers and Eriksen-Hamel (2008) reported that the difference in SOC 542 

stocks between NT and CT at the depth of 0-30 cm is an average of 4.9 Mg ha-1 and that the 543 

difference in favor of NT increases over time until ~25-30 years, when NT may have reached a 544 

new steady state (Alvarez et al., 2005). The same difference, 4.9 Mg ha-1, was observed in the 545 
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experimental dataset from the AN site for the period 1996-2010 in the 0-40 cm soil layer. In the 546 

CP scenario the difference between NT and CT was 5.4 Mg ha-1 after 30 years of simulation. The 547 

difference still remained high in the future scenarios with a value of 4.7 Mg ha-1. The higher SOC 548 

stock with NT was not only due to the reduction in the decomposition coefficient but also to the 549 

weed biomass contribution, considered by the models, as also shown by De Sanctis et al. (2012).  550 

The RT system in PI2 was not so as performant as NT in AN, even if it showed slightly higher 551 

SOC values than CT with a positive difference of 1.8 Mg ha-1 in CP period and 1.3 Mg ha-1 in 552 

future scenarios. The SOC dynamic in this site was reproduced with higher uncertainty as the 553 

MM_Mean showed a high RMSE value mainly due to an underestimation of observed data under 554 

RT.  555 

A reliable SOC stock assessment has been recently encouraged by the 4 per thousand initiative 556 

(4PT, Le Foll, 2015) launched at the 21st meeting of the Conference of the Parties in Paris. This 557 

initiative aims to mitigate climate change by increasing SOC stock at an annual rate of 0.4% 558 

through the adoption of best management practices. The results of this study showed that 559 

conservation tillage systems (NT and RT) in both sites were able to store more SOC than CT so 560 

these practices ought to be considered viable options to mitigate climate change in Mediterranean 561 

cereal systems. Furthermore, in AN, NT could provide the annual increase of 0.4% required by 562 

4PT also under climate change scenarios. The main problem related to NT in this silty-clay site is 563 

the lower average productivity of maize due to low establishment that was attributed to poor soil 564 

physical conditions at seeding. On the contrary, RT in PI2 needs to be coupled with other 565 

management strategies such as the introduction of cover crops to ensure higher SOC levels. 566 

However, the benefits of adopting conservation tillage to reduce the transfer of C to the 567 

atmosphere and enhance SOC sequestration, have to be verified for other greenhouse gas 568 

emissions in order to assess their overall impacts. Some studies have reported increased nitrous 569 

oxide emissions in no tillage systems (Mackenzie et al., 1998; Pastorelli et al., 2013) and more 570 
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abundant denitrifying bacteria in no-tilled soil (Doran, 1980). It is also important to consider that 571 

soils might have a potential limit for C accumulation mainly determined by their physical 572 

proprieties and clay content (Tornquist et al., 2009). Consequently, SOC sequestration can be only 573 

a short-term strategy for climate change mitigation but other long-term solutions have to be 574 

implemented.  575 

 576 

5. Conclusions  577 

In this study an ensemble of four process based crop models (APSIM-NWheat, DSSAT, EPIC, 578 

SALUS) was used to assess the impacts of climate change on SOC stock changes under 579 

conventional and conservation tillage practices in two rainfed long-term wheat-maize rotational 580 

cropping systems under different Mediterranean climate scenarios. Our results clearly showed that 581 

the multi-model mean reproduced SOC dynamics better and with less uncertainty than single 582 

simulation models and provided a more reliable prediction of SOC dynamics under future climate 583 

scenarios. Under changed climate, conservation tillage systems were still able to retain more SOC 584 

than CT, with only the NT reaching the target of 4PT. The contribution of weeds, considered by 585 

models and covering the soil in the fallow period between the wheat harvest and maize seeding, 586 

was also relevant in providing an extra C input to the soil under conservation tillage systems. 587 

Although there is the potential for no tillage to strongly contribute to SOC sequestration, our study 588 

has also evidenced that, at the same time, NT systems could affect crop productivity in specific 589 

sites with silty clay soils, because of crop establishment problems. Further studies including more 590 

sites and more simulation models are necessary to achieve more general conclusions and to 591 

consider specific side-effects of contrasting tillage practices. 592 
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 901 

Fig. 1. Soil organic carbon (SOC, Mg ha-1) dynamics simulated (Mod) by the multi model mean 902 

(MM_Mean) in different tillage systems (CT= Conventional tillage, NT= No till, RT= Reduced 903 

tillage) at different soil depths in the two sites (AN: 0-15cm, 15-40cm, 0-40cm; PI2: 0-10cm, 10-904 

30cm, 0-30cm) in comparison with the observed (Obs) SOC values in the LTEs. Vertical bars are 905 

the standard errors. 906 

 907 

Fig. 2. Climate scenarios for the three time spans: CP (Present Climate), CF (Future Climate) 908 

RCP4.5, and RCP8.5  in AN and PI2 sites. PREC: monthly mean precipitation, Tmax: monthly 909 

maximum temperature and Tmin: monthly minimum temperature. 910 

 911 
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 912 

Fig. 3. Soil organic carbon (SOC) trends and climate change impacts over different soil layers (0-913 

15 cm, 15-40 cm and 0-40cm) simulated by the multi model ensemble (MM_Mean) in present and 914 

future climate scenarios (RCP4.5 and RCP8.5) using Conventional Tillage - CT or No Tillage - 915 

NT practices in AN; a) RCP4.5 scenario; b) RCP8.5 scenario. The red and green regions delimited 916 

by the dashed lines are the standard errors of the simulations respectively obtained for CT and NT 917 

systems; c) Relative annual SOC change (%) observed in climate change scenarios (CF: mean 918 

values of RCP4.5 and RCP8.5) in relation to the present climate scenario. 919 

 920 
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 921 

Fig. 4. Soil organic carbon (SOC) trends and climate change impacts over different soil layers (0-922 

15 cm, 15-40 cm and 0-40cm) simulated by the multi model ensemble (MM_Mean) in present and 923 

future climate scenarios (RCP4.5 and RCP8.5) using Conventional Tillage - CT or Reduced 924 

Tillage - RT practices in PI2; a) RCP4.5 scenario; b) RCP8.5 scenario. The red and green regions 925 

delimited by the dashed lines are the standard errors of the simulations respectively obtained for 926 

CT and NT systems; c) Relative annual SOC change (%) observed in climate change scenarios 927 

(CF: mean values of RCP4.5 and RCP8.5) in relation to the present climate scenario. 928 

 929 
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Table 1. Main physical and hydrological properties of the soils in AN and PI2 as reported in the 930 

IC-FAR database and used as inputs in the process based crop models.  931 

 
cm % % % g cm-3 cm3 cm-3 cm3 cm-3 cm3 cm-3 

LTE Depth Clay Silt Sand BD WP FC SAT 

AN 0-5 49.8 41.4 8.7 1.27 0.293 0.427 0.518 

5-15 49.1 41.2 9.7 1.30 0.289 0.424 0.514 

15-40 49.4 42.3 8.4 1.37 0.290 0.425 0.517 

40-60 49.9 42.1 8.0 1.48 0.293 0.422 0.519 

60-100 51.1 40.7 8.2 1.56 0.300 0.424 0.519 

PI2 0-10 28.3 24.2 47.4 1.37 0.116 0.253 0.430 

10-30 27.9 23.3 48.8 1.38 0.114 0.251 0.430 

30-60 21.5 35.1 43.3 1.44 0.116 0.250 0.420 

60-90 14.2 26.5 59.3 1.47 0.100 0.230 0.390 

WP = Soil water content at wilting point; FC = Soil water content at field capacity; SAT = 932 

Saturated water content; BD = Bulk Density. 933 

  934 
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Table 2. Crop models applied and their modeling approaches to determine crop growth and SOC 935 

dynamic. 936 

Model Reference Crop 

Biomass 

growtha 

Yield 

formationb 

Root 

distributionc 

Soil 

dynamicd 

N° 

SOC 

poolse 

N° 

FOM 

poolsf 

APSIM-NWheat 
Keating et al., 

2003 
Wheat RUE Gn Exp Ceres 2 3 

DSSAT 4.6 
Hoogenboom 

et al., 2015 

Wheat, 

Maize 
RUE Gn,B Exp Century 3 2 

EPIC 

Williams and 

Sharpley, 

1989 

Wheat, 

Maize 
RUE HI, B Lin Century 3 2 

SALUS 
Basso  and  

Ritchie, 2015 

Wheat, 

Maize 
RUE Gn,B Exp Century 3 2 

a) Biomass growth or light utilization: RUE = Radiation use efficiency approach; b)Yield 937 

formation depending on: HI = harvest index, B = total above-ground biomass, Gn = number of 938 

grains and grain-growth rate; c) Model of root distribution over depth: linear (Lin), exponential 939 

(Exp), sigmoidal (Sig); d) Soil dynamic based on Ceres (Jones and Kiniry, 1986) or Century 940 

model (Parton et al., 1988; Parton et al., 1994); e) Number of soil organic carbon pools: 2 (labile 941 

pool and the rest of the soil organic matter), 3 (active, slow, and passive); f) FOM (fresh organic 942 

matter) pools: 2 (structural and metabolic), 3 (carbohydrate, cellulose, and lignin).  943 
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Table 3. Dates of the agronomic management practices used in AN and PI2 sites for the 944 

simulations.  945 

AN (Tillage systems: CT* and NT**) Wheat Maize 

CT: Plowing (40 cm)  October 20 August 30 

CT: Harrowing (15 cm)   October 30, November 10 November 15, April 5 

All: Sowing November  20 April 10 

All: Nitrogen fertilization 

 

February 15 (45N) 

March 10 (45N) 

April 25 (90N) 

PI2 (Tillage systems: CT* and RT***) Wheat Maize 

CT: Plowing (30 cm)  October 5 August 30 

All: Harrowing  (15 cm)  November 8, November 30 May 7, May 10 

All: Sowing  December 6 May 10 

All: Nitrogen fertilization February 18 (90N) 

April 12 (90N) 

May 10 (300N) 

*CT= Conventional Tillage; **NT= No Tillage; ***RT= Reduced Tillage; N= Nitrogen 946 

fertilization rate (kg ha-1 year-1).   947 
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Table 4. Evaluation of the four models (Model1, 2, 3 and 4) and the multi model mean 948 

(MM_Mean) in simulating the soil organic content (SOC, Mg ha-1) in AN and PI2 sites 949 

considering the available observed measurements (AN: 2002, 2006, 2010; PI2: 1998, 2008) until 950 

the depth of ploughing (0-40cm for AN and 0-30 cm for PI2) under both conventional and 951 

conservative tillage systems.  952 

Min 0.00 -inf. -inf. -1.00  

Max +inf. 1.00 +inf. 1.00  

Best 0.00 1.00 0.00 1.00  

 RRMSE EF E r RankMean 

Site AN RRMSE95%=8.36  E95%= ±6.63   

Model1 5.85 (4)  0.01 (4) 2.26 (3) 0.63   (5) 4.0 

Model2 4.60 (3)  0.39 (3) 0.31 (1) 0.83* (4) 2.8 

Model3 7.44 (5) -0.60 (5) -6.57 (5) 0.86* (3) 4.5 

Model4 3.77 (2)  0.59 (2) -2.64 (4) 0.91* (2) 2.5 

MM_MEAN 3.46 (1)  0.65 (1) -1.66 (2) 0.95* (1) 1.3 

Site PI2 RRMSE95%=5.43  E95%=±5.35   

Model1 3.54 (1) 0.90 (1) 2.91 (1) - 1.0 

Model2 5.80 (3) 0.62 (3) 3.71 (2) 0.977* (3) 2.8 

Model3 8.68 (5) 0.15 (5) 8.28 (5) 0.962* (4) 4.8 

Model4 8.39 (4) 0.20 (4) 7.95 (4) 0.978* (2) 3.5 

MM_MEAN 5.55 (2) 0.65 (2) 5.22 (3) 0.999* (1) 2.0 

RMSE=  root mean square error;  RRMSE95% = 95% confidence interval of RRMSE;  EF = 953 

modeling efficiency; E = the relative error; E95% =  95% confidence interval of E; r =  Pearson 954 

correlation coefficient;  * is the r statistical significance at 95% confidence level, (-) means no 955 

data. The numbers in brackets indicate the ranks obtained by models in relation to the performance 956 

of each indicator. RankMean is the mean of the ranks for each model.  957 
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Table 5. Mean values (Mg ha-1) of aboveground biomass (AGB) and yield for maize (MZ) and 958 

wheat (WHT) between CP (Present Climate) and future scenarios CF (RCP4.5 and RCP8.5) under 959 

conventional and conservation tillage systems in AN and PI2 sites. The numbers in brackets are 960 

the coefficients of variation. 961 

 Conventional Tillage  Conservation Tillage 

 MZ_AGB MZ_Yield WHT_AGB WHT_Yield  MZ_AGB MZ_Yield WHT_AGB WHT_Yield 

CP_AN 
9.9 

(15.7%) 

4.0 

(21.6%) 

8.5 

(8.9%) 

3.2 

(8.5%) 

 8.4 

(14.3%) 

3.4 

(17.2%) 

8.6 

(7.9%) 

3.2 

(8.2%) 

CF 

RCP4.5_AN 

7.9 

(23.1%) 

3.2 

(32.7%) 

7.0 

(16.2%) 

2.5 

(19.7%) 

 6.7 

(24.9%) 

2.7 

(22.1%) 

7.2 

(16.1%) 

2.7 

(19.0%) 

CF 

RCP8.5_AN 

7.7 

(23.9%) 

3.2 

(30.7%) 

6.8 

(17.9%) 

2.4 

(19.5%) 

 6.6 

(29.6%) 

2.6 

(27.9%) 

7.1 

(15.9%) 

2.6 

(17.1%) 

CP_PI2 
10.5 

(14.1%) 

4.1 

(25.0%) 

9.1 

(14.2%) 

4.4 

(18.6%) 

 10.9 

(12.7%) 

4.3 

(23.6%) 

8.5 

(13.4%) 

4.1 

(17.6%) 

CF 

RCP4.5_PI2 

9.0 

(19.0%) 

2.9 

(31.2%) 
8.6 (19.8%) 

4.2 

(22.7%) 

 9.3 

(16.0%) 

3.2 

(27.3%) 

7.6 

(22.3%) 

3.77 

(23.48%) 

CF 

RCP8.5_PI2 

9.2 

(11.7%) 

2.9 

(25.0%) 

8.0 

(14.4%) 

3.7 

(18.0%) 

 9.3 

(12.4%) 

3.1 

(23.1%) 

7.0 

(18.7%) 

3.4 

(20.2%) 

 962 

 963 


