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Highlights 22 

 23 

- Several treatments applied to fruit and vegetables can trigger host defenses 24 

- Induced resistance can be systemic acquired resistance or induced systemic resistance 25 

- Biocontrol agents, physical means, and natural compounds elicit host defense system 26 

- Induced resistance is a strategy that contributes to control of postharvest decay 27 

- Induced resistance can increase amounts of beneficial antioxidant compounds 28 
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Abstract 73 

 74 

More than one third of harvested fruit and vegetables are lost and do not reach the customers mainly 75 

due to postharvest decay. During the last decade, several postharvest fungicides have been excluded 76 

from the market, or their allowed residues have been significantly decreased. Therefore, there is 77 

growing interest in eco-friendly and safe alternatives to synthetic fungicides. Induced resistance has 78 

gained increasing attention as a sustainable strategy to manage postharvest decay of fruit and 79 

vegetables. Their natural resistance can be increased by various means, such as biocontrol agents or 80 

their secreted elicitors. Alternatively, physical means, such as UV-C, ozone, and heat treatment, can 81 

prime plant resistance through abiotic stress. Moreover, various defense-related phytohormones, 82 

biological elicitors, non-organic elicitors, and volatile organic compounds have been shown to induce 83 

plant resistance. During the last decades, new technologies have enabled the evaluation of gene 84 

expression, such as quantitative real time PCR and the most recent next-generation sequencing, and 85 

thus the quantification of physiological changes, which have revealed new knowledge about 86 

preharvest and postharvest induced resistance in response to various treatments. These techniques 87 

allow optimization of postharvest application of the control means, although these data cannot 88 

disregard the evaluation of in vivo effectiveness. The elicitation of host defenses prevents the 89 

appearance of resistant isolates of pathogens. Induced resistance can lead to increased levels of 90 

phenolic compounds in the plant tissues, which often have antioxidant properties that are highly 91 

beneficial to humans. Moreover, induced resistance preserves the natural microflora, which is rich in 92 

potential biocontrol agents, and which provides a combined approach in the control of postharvest 93 

decay that is sustainable and safe for both growers and consumers. This approach meets the 94 

requirements of integrated disease management on sustainable use of pesticides that in the EU is 95 

implemented through Directive 128/2009. This review summarizes recent achievements and 96 

knowledge of the elicitation of host defenses to control postharvest decay of fruit and vegetables, and 97 

provides an outlook on the new challenges in this fascinating subject. 98 

 99 

Keywords: biostimulants, elicitors, induced systemic resistance, resistance inducers, systemic 100 

acquired resistance 101 

 102 

  103 
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1. Introduction  104 

 105 

Recent investigations have shown that more than one third of harvested fruit and vegetables are lost 106 

(FAO, 2011; USDA, 2014; OECD, 2014). Most losses occur due to pathogen infections in the field 107 

or after harvest, which lead to postharvest decay, when fruit ripen and vegetables senesce. Moreover, 108 

during the last decade, several postharvest fungicides that often had wide spectra of targets have been 109 

withdrawn from the market, due to: (i) selection of resistant fungal isolates; (ii) toxicity to humans 110 

and the environment; (iii) increasing consumer concern toward risk of pesticide residues on products, 111 

with the consequent strict requirements from several major supply chains for the quantity and number 112 

of active ingredient(s) on foodstuffs, as percentages of maximum residue limit; and (iv) increasing 113 

costs of registration and re-registration (Romanazzi et al., 2016a). Therefore, there is growing interest 114 

in finding cheap, safe, and eco-friendly alternatives to synthetic fungicides for the control of 115 

postharvest decay of fresh produce. Induction of plant resistance by biological, chemical, or physical 116 

means is considered a sustainable strategy to manage postharvest decay of fruit and vegetables. This 117 

approach has gained increasing interest during recent years, in which we can see a high trend in papers 118 

dealing with induced resistance, from few ones recorded 30 years ago to more than 800 recorded 119 

yearly in 2013-2015 (Fig. 1), and due to new tools, further knowledge has been obtained on host 120 

responses to various methods of control (Hershkovitz et al., 2013; Gapper et al., 2014).  121 

The beneficial effects of induced resistance in the postharvest environment were originally 122 

demonstrated about two decades ago. For example, the use of heat treatment to decrease chilling 123 

injury and disease incidence in fruit through the induction of host resistance has been extensively 124 

studied (Lurie and Pedreschi, 2014). Ultraviolet-C (UV-C) irradiation and exposure to sunlight have 125 

been shown to induce resistance to pathogens and chilling tolerance in many harvested commodities 126 

(Wilson et al., 1994; Ruan et al., 2015; Sivankalyani et al., 2016). More recently, different inducers, 127 

such as cell-wall components, plant extracts, compounds of biological origin, and synthetic 128 

chemicals, have been shown to trigger plant resistance to pathogen attack locally and systemically 129 

(Walters and Fountaine, 2009). Moreover, biological control agents can induce plant resistance to 130 

pathogens (Vallad and Goodman, 2004; Da Rocha and Hammerschmidt, 2005; Lyon, 2007). 131 

However, to correctly induce resistance in different plants, it is necessary to know and understand the 132 

host–microbe interactions, and the effects on postharvest physiology and handling of the different 133 

fruit and vegetables (Da Rocha and Hammerschmidt, 2005).  134 

Here, we review the different biological, physical, and chemical inducers that have been 135 

shown to control postharvest diseases of fruit and vegetables, and highlight their proposed 136 

mechanisms of action.  137 
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 138 

2. Mechanisms involved in induced resistance  139 

 140 

Various biotic inducers (e.g., fungi, bacteria, viruses, phytoplasma, insects) and abiotic stresses (e.g., 141 

chemical and physical inducers) can trigger resistance in plants, which is known as ‘induced 142 

resistance’ (Pieterse et al., 2012; Walters et al., 2013; Pieterse et al., 2014). These can produce rapid 143 

expression of defense responses (Conrath et al., 2002; Fu and Dong, 2013). Examples of treatments 144 

able to induce resistance in host tissues and of representative mechanisms involved are reported in 145 

Fig. 2. We can imagine induced resistance as produced by an array of treatments that elicit a cloud of 146 

defense responses. There are two types of induced resistance in plants: systemic acquired resistance 147 

(SAR) and induced systemic resistance (ISR). Both of these mechanisms can induce defenses that 148 

confer long-lasting protection against a broad spectrum of microorganisms, and are mediated by 149 

phytohormones, such as salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). SAR requires the 150 

signal molecule SA and is associated with accumulation of pathogenesis-related (PR) proteins, which 151 

are believed to contribute to resistance (Durrant and Dong, 2004). Instead, the ISR pathway functions 152 

independently of SA, while it is dependent on JA and ET (van Wees et al., 1999).  153 

This induced resistance does not directly activate plant defense responses, but activates the 154 

plant to a state of ‘alertness’, so that a future pathogen attack will be strongly and efficiently 155 

responded to. This phenomenon is also known as the ‘priming effect’ (Conrath et al., 2006; Jung et 156 

al., 2009), and one of the most known priming effects is root colonization by plant-growth-promoting 157 

rhizobacteria (PGPR), which induce plant development and ISR-mediated resistance (Vallad and 158 

Goodman, 2004; Verhage et al., 2010). While PGPR induces ISR, other inducers can activate SAR 159 

or both of these systems. 160 

 161 

2.1. Systemic acquired resistance (SAR) 162 

The mechanisms of SAR are based on SA-mediated defense. The transcription factor Nonexpressor 163 

of pathogenesis-related genes 1 (NPR1) is considered to be the master regulator of SA and SAR. 164 

Here, biotic, abiotic, chemical, and physical inducers can trigger defense responses locally, and can 165 

also induce the production of suggested mobile immune signals, including SA, methyl salicylic acid 166 

(MeSA), azelaic acid (AzA), glycerol 3-phosphate, and abietane-diterpenoid-dehydroabietinal (Park 167 

et al., 2007; Chaturvedi et al., 2012). One or more of these signals can lead to systemic defense 168 

‘memory’ that can last for weeks to months, to protect the plant from future infection (Jung et al., 169 

2009).  170 
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Cellular redox and reactive oxygen species (ROS) are modified during SAR. Both primary 171 

and secondary oxidative bursts are required for the onset of SAR (Alvarez et al., 1998). Furthermore, 172 

cellular redox has been shown to be modified during SAR, as initially oxidized, and then reduced. 173 

NPR1, a master regulator of SA and SAR, was shown to be reduced by thioredoxin. The NPR1 174 

oligomer is disrupted and its monomers enter the nucleus, and activate SA-mediated defense (Tada 175 

et al., 2008). The transcription factor NPR1 and the activated SA-mediated defense response result in 176 

SAR and the activation of approximately 10% of the plant transcriptome (Fu and Dong, 2013). This 177 

defense response includes direct targets of the WRKY domain transcription factor family, and 178 

synthesis and secretion of various PR proteins, with activation of the mitogen-activated protein kinase 179 

(MAPK) cascade, the DNA repair machinery, histone modifications, and a whole arsenal of defense-180 

related transcripts (Fu and Dong, 2013). 181 

 182 

2.2. Induced systemic resistance (ISR)  183 

Induced systemic resistance is known to reprogram plant-induced mechanisms based on JA and ET 184 

defenses that alleviate physiological, abiotic, and biotic stresses. Elicitors and effectors known as 185 

‘microbe-associated molecular patterns’ can be identified by plant receptors (Bent and Mackey, 186 

2007). This recognition has a key role in activation of innate immunity. The ISR responses to biotic 187 

or abiotic stresses are diverse and can elicit plant defense responses. These responses include: MAPK 188 

signaling, generation of ROS, the octadecanoic pathway (which synthesizes oxidized fatty acid 189 

signals known as oxylipins), the phenylpropanoid pathway (which is involved in terpenoid and 190 

phytoalexin biosynthesis), increased levels of phenolic compounds, lignification at the site of 191 

pathogen infection, and cell-wall metabolism (Shoresh et al., 2010; Lloyd et al., 2011). ISR activates 192 

hydrogen peroxide producers on the one hand, such as oxalate oxidase and glucose oxidase, and 193 

antioxidants on the other hand, such as peroxidase (POD) and superoxide dismutase (SOD) (Shoresh 194 

et al., 2010). The balance between these two determines the ROS levels, and high ROS levels can 195 

lead to lipid peroxidation (Mittler, 2002). Additionally, several key transcripts, such as lipoxygenase 196 

(LOX1), phenylalanine ammonia lyase (PAL), and heat-shock proteins (HSPs), have been shown to 197 

be induced during ISR (Bi et al., 2007; Shoresh et al., 2010). 198 

 199 

2.3. Other mechanisms of induced resistance  200 

While the main induced resistance mechanisms are SAR and ISR, some processes of induced 201 

resistance combine these two resistance mechanisms in various ways. For example, β-aminobutyric 202 

acid (BABA)-induced resistance involves both SA-dependent and abscisic acid (ABA)-dependent 203 

defense mechanisms (Buonaurio et al., 2009; Pieterse et al., 2009). The relative importance of these 204 
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phytohormone-dependent defenses varies according to the nature of the challenge pathogen. Indeed, 205 

BABA-induced resistance against Botrytis cinerea resembles SAR and requires SA accumulation 206 

(Zimmerli et al., 2000), while the ABA-dependent pathway, which is associated to callose deposition, 207 

is necessary against Hyaloperonospora parasitica and Plectosphaerella cucumerina (Zimmerli et al., 208 

2000; Ton and Mauch-Mani, 2004).  209 

 210 

3. Induced resistance by biocontrol agents 211 

 212 

Numerous reports have indicated that biocontrol agents, such as antagonistic yeast, can increase fruit 213 

resistance against postharvest diseases (Ippolito et al., 2000; Tian et al., 2006; Janisiewicz et al., 2008; 214 

Droby et al., 2016; Spadaro and Droby, 2016) (Tab. 1). As defense responses in plants are complex 215 

and involve both biochemical and structural barriers, the mechanisms of biocontrol agents are usually 216 

multiple. One is the secretion of extracellular lytic enzymes, as for Pichia membranifaciens and 217 

Cryptococcus albidus, where these can attach and degrade the hyphae of Monilinia fructicola, 218 

Penicillium expansum and Rhizopus stolonifer, both in vitro and in vivo (Chan and Tian, 2005). The 219 

second is the accumulation of host PR proteins (Jijakli and Lepoivre, 1998). These are strongly 220 

induced in response to wounding or infection by pathogens, and they accumulate abundantly at the 221 

site of infection, to contribute to SAR (Ryals et al., 1996). Treatment with Cryptococcus laurentii 222 

noticeably stimulated expression of the β-1,3-glucanase (Glu-1) gene in jujube fruit (Tian et al., 223 

2007), which suggested that Glu-1 has a role in defense responses to fungal pathogens. C. laurentii 224 

and P. membranifaciens have been shown to reduce disease incidence in pears (Tian et al., 2006), 225 

peaches (Xu et al., 2008a), and table grapes (Meng and Tian, 2009), via enhancement of defense-226 

related enzyme activities, such as chitinase (CHT), β-1,3-glucanase (GLU) and PAL. Aureobasidium 227 

pullulans induced the production of CHT, GLU and POD in apple tissues starting 24 h after treatment, 228 

which reached maximum levels 48 h and 96 h after treatment (Ippolito et al., 2000). Then, the 229 

induction of host antioxidant enzymes and specific proteins has a relevant role. P. membranifaciens 230 

can induce host hydrogen peroxide metabolism, to enhance the resistance of sweet cherry against blue 231 

mold by P. expansum (Chan and Tian, 2006). Additionally, four antagonistic yeasts (P. 232 

membranifaciens, C. laurentii, Candida guilliermondii, Rhodotorula glutinis) can stimulate catalase 233 

(CAT) and POD activity, and reduce the levels of protein carbonylation in response to ROS caused 234 

by M. fructicola in peach fruit (Xu et al., 2008b). These results suggest that yeast treatments can 235 

alleviate protein carbonylation and pathogen-induced oxidative damage, which implies that the 236 

antioxidant defense response is involved in the mechanisms of microbial biocontrol agents against 237 

fungal pathogens. Other yeasts, such as P. membranifaciens, C. guilliermondii, and R. glutinis, have 238 
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also been shown to stimulate the expression of both PR proteins and redox enzymes (e.g., CHT, GLU, 239 

CAT, POD) in peach fruit during all storage periods (Xu et al., 2008b). Candida saitoana induced 240 

postharvest systemic resistance in apple fruit against B. cinerea, with increased activities of CHT and 241 

GLU reported (El Ghaouth et al., 2003b). Candida intermedia induced strawberry fruit defense 242 

mechanisms, which included β-1,3-exoglucanase, and was effective in postharvest control of B. 243 

cinerea (Huang et al., 2011a). Higher PAL, CHT and GLU activities were observed when Pichia 244 

guilliermondii and C. laurenti were applied to harvested tomatoes (Zhao et al., 2008).  245 

 246 

4. Induced resistance by physical means  247 

 248 

Several physical means, such as ultraviolet-C (UV-C) light, heat, hypobaric and hyperbaric treatments 249 

are known to be effective in controlling postharvest decay of fruit and vegetables (Usall et al., 2016). 250 

The advantage of most of these relies on direct effects on the pathogen without leaving residues on 251 

the fruit (Sanzani et al., 2009a). Moreover, these can induce several changes in host tissues, including 252 

increased resistance to abiotic and biotic stress (Tab. 2).  253 

 254 

4.1. UV-C irradiation 255 

The eliciting effects of UV-C irradiation have been studied for different fruit and vegetables (Charles 256 

and Arul, 2007). The first studies on the effects of UV-C irradiation on host tissues were carried out 257 

with carrots, the phytoalexin content of which was increased by the treatment (Mercier et al., 1993). 258 

Strawberries exposed to UV-C at 0.50 kJ m-2 and 1.00 kJ m-2 increased their PAL activity 12 h after 259 

treatment (Nigro et al., 2000). Peach fruit treated with UV-C showed increases in PAL, CHT and 260 

GLU activities (El Ghaouth et al., 2003a). Tomatoes exposed to UV-C and later inoculated with R. 261 

stolonifer showed 40% reduction in polygalacturonase (PG) activity, as compared to the control 72 h 262 

after the challenge (Stevens et al., 2004). The application of UV-C to harvested table grape berries 263 

increased the content of trans-resveratrol and catechin in the skin (Cantos et al., 2000; Romanazzi et 264 

al., 2006). A higher production of both compounds occurred when the berries were treated with 265 

chitosan 48 h before harvest and later exposed to UV-C irradiation (Romanazzi et al., 2006).  266 

 267 

4.2. Heat treatment 268 

Temperature (both high and low) is one of the oldest means to control postharvest diseases of fruit 269 

and vegetables. In particular, the use of low temperature is the most diffuse means of control, and 270 

nowadays imperfect management of this cold chain can cause heavy losses of fresh produce 271 

(Romanazzi et al., 2016a). The physiological changes in host tissues induced by heat treatment were 272 
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well described by Lurie and Pedreschi (2014). In peaches exposed to hot water treatment, cell-wall 273 

genes involved in ripening, such as β-galactosidase, pectin lyase, PG, and pectin methyl esterase, 274 

showed general decreased expression, while ROS scavenging genes and PAL, CHT, and HSP70 275 

showed increased expression (Spadoni et al., 2014). A microarray analysis run on apples treated at 276 

45 °C for 45 min and inoculated with P. expansum showed up-regulation of HSP, HS cognate protein, 277 

and HS transcription factor genes, which were linked to resistance of the fruit to the heat stress 278 

(Spadoni et al., 2015). Thus, this short hot water treatment has been shown to induce resistance to 279 

chilling and pathogens in various fruit (Fallik, 2004; Lurie and Pedreschi, 2014). 280 

 281 

4.3. Hypobaric and hyperbaric treatment  282 

Hypobaric and hyperbaric treatments rely on the use of pressure different from atmospheric pressure 283 

over a short period of time. These treatments do not have direct effects on the pathogen, although 284 

they affect the host tissues (Romanazzi et al., 2008). For hyperbaric treatment the occurrence of 285 

physiological changes is presumed, but not yet clarified, while the variations in host tissues induced 286 

by hypobaric applications have been well known since the middle of the last century, when they were 287 

applied to fresh fruit to delay ripening (Burg and Burg, 1966). The reduced pressure affects ET 288 

metabolism, which reduces respiration, delays ripening, and makes the fruit less prone to decay 289 

(Lougheed et al., 1978). Short hypobaric treatment has been shown to be an effective means of control 290 

of postharvest decay of strawberries, sweet cherries, and table grapes (Romanazzi et al., 2001), and 291 

increased activities of PAL, CHT, and POD were observed in strawberry exposed to 0.5 atm for 4 h 292 

(Hashmi et al., 2013). In contrast, the mechanisms of action of hyperbaric treatments are still not 293 

clear. However, this treatment changed lycopene accumulation in tomatoes, as it reduced during 294 

storage and increased during ripening (Liplap et al., 2013). 295 

 296 

5. Induced resistance by natural and synthetic chemicals  297 

5.1. Phytohormones and chemical elicitors 298 

Phytohormones are well-known in the control of defense responses to pathogens and in the 299 

modulation of plant induced resistance (Alkan and Fortes, 2015). A central role in the regulation of 300 

plant immune responses has been ascribed to the defense hormones SA, JA, ABA, and ET in the 301 

regulation of plant–pathogen interactions (Fujita et al., 2006; Spoel and Dong, 2008). Gibberellic 302 

acid, auxin indolacetic acid, brassinosteroids (BR), and cytokinines have recently emerged as 303 

important modulators of plant defenses against microorganisms, mostly based on vegetative tissue 304 

data and on the lifestyle of the infecting pathogen (Robert-Seilaniantz et al., 2011). The SA and JA 305 

signaling pathways are generally considered as antagonistic and are dependent on NPR1 (Spoel et al., 306 
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2007; Spoel and Dong, 2008; Pieterse et al., 2012). This interplay between SA and JA was suggested 307 

to optimize the host response to the pathogen lifestyle (Glazebrook, 2005; Spoel and Dong, 2008; 308 

Pieterse et al., 2012; Siciliano et al., 2015). In vegetative tissues, it is commonly postulated that 309 

effective responses to biotrophic pathogens are typically mediated by SA and programmed cell death, 310 

and responses to necrotrophic pathogens, which benefit from host cell death, involve JA and ET 311 

signaling (Glazebrook, 2005; Spoel and Dong, 2008). Examples of changes in gene expression or 312 

enzyme activities in response to application of natural and synthetic chemicals are reported in Tab. 313 

3. 314 

 315 

5.1.1. Salicylic acid and its analogs 316 

SA participates in the mechanisms of defense, plant development, fruit ripening, and responses to 317 

various abiotic factors. SA application to an active necrotrophic infection with Colletotrichum 318 

gloeosporioides led to programmed cell death and increased susceptibility (Alkan et al., 2012). 319 

Similarly, infection with C. gloeosporioides on a ripe NahG tomato fruit mutant that lacked SA 320 

responses showed increased tolerance to C. gloeosporioides (Alkan and Fortes, 2015). Also, 321 

preharvest and postharvest treatments with SA for latent infection of C. gloeosporioides effectively 322 

reduced the occurrence of anthracnose of mango (Zainuri et al., 2001). Application of SA at 0.14 323 

mg/mL by preharvest spraying or soaking before storage induced resistance to gray mold in kiwi fruit 324 

(Poole et al., 1998). SA at 0.05 mM in combination with ultrasound induced higher disease resistance 325 

to blue mold in peach fruit (Yang et al., 2011). Treatment with 0.5 mM SA reduced incidence and 326 

severity of decay caused by P. expansum on sweet cherries (Chan and Tian, 2006). 327 

Treatment with SA and its analogs induces the accumulation of ROS, which can kill pathogen 328 

cells (Baker and Orlandi, 1995; Mittler et al., 2011). ROS levels are determined by the activities of 329 

enzymes, such as NADPH oxidase, that are designated as ‘respiratory burst oxidase homologs’, and 330 

antioxidants, such as SOD, ascorbate peroxidase (APX), glutathione reductase (GR), and CAT 331 

(Sharma et al., 2012). The induced host resistance was closely related to the levels of hydrogen 332 

peroxide and the activities of antioxidant enzymes (Liu et al., 2005; Ren et al., 2012; Dickman and 333 

Fluhr, 2013; Ge et al., 2015). On the other hand, activation of NADPH oxidase promotes the SA 334 

defense response (Alkan et al., 2012). 335 

SA increased the activities of CHT, PAL, GLU and GR, and reduced the activities of CAT 336 

and APX in pears (Cao et al., 2006). A combination of SA and an antagonistic yeast significantly 337 

increased the activities of polyphenol oxidase (PPO), PAL, and GLU activities in cherries (Qin et al., 338 

2003). Additionally, in cherry, increases in the activities of CAT, POD, APX, and SOD were observed 339 

after application of MeSA (Valverde et al., 2015). 340 

app:ds:salicylic
app:ds:acid
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Proteome research has shown that antioxidant and PR proteins, as well as enzymes associated 341 

with sugar metabolism, are involved in resistance of peach and sweet cherry fruit treated with SA 342 

(Chan et al., 2007). Therefore, the induced resistance by SA in fruit and vegetables activates a global 343 

defense response, which includes activation of the phenylpropanoid pathway, induction of 344 

accumulation of ROS and antioxidants, and production of PR proteins (Liu et al., 2014; Wang et al., 345 

2015b). 346 

 347 

5.1.2. Benzothiadiazole (BTH) 348 

Benzothiadiazole (benzo(1,2,3)-thiadiazole-7-carbothioicacid S-methyl ester, also known as BTH or 349 

ASM) is perhaps the most potent synthetic elicitor discovered to date (Terry and Joyce, 2004; Bi et 350 

al., 2007). BTH is a light-insensitive functional analog of SA that induces resistance against a broad 351 

range of pathogens through activation of SAR in plants. Preharvest and postharvest BTH treatments 352 

have effectively reduced latent infections and induced resistance to diseases in fruit and vegetables, 353 

including strawberries (Terry and Joyce, 2004; Mazaro et al., 2008; Cao et al., 2011; Feliziani et al., 354 

2015), pears (Cao et al., 2006), peaches (Liu et al., 2005), melons (Ren et al., 2012; Liu et al., 2014; 355 

Li et al., 2015b), and potatoes (Bokshi et al., 2003). 356 

Preharvest BTH treatment significantly reduced Alternaria rot and blue mold of pears during 357 

storage (Cao et al., 2005). The same authors reported that the activities of PR proteins such as POD, 358 

CHT, and GLU were significantly enhanced in pears treated with BTH. Similar results were also 359 

observed in potatoes (Bokshi et al., 2003), peaches (Liu et al., 2005), and melons (Bi et al., 2006a). 360 

Postharvest application of BTH to strawberries induced gene expression and increased activity 361 

of a range of enzymes that included several that are linked to biotic stress resistance (Landi et al., 362 

2014). BTH-induced disease resistance enhanced gene expression of PPO and POD, and up-363 

regulation of these genes was related to accumulation of total phenolic compounds, in harvested 364 

mango fruit (Lin et al., 2011). Postharvest dipping with BTH at 100 mg/L reduced artificial and 365 

natural infections in melons, while concentrations greater than 300 mg/L failed to promote resistance 366 

and caused phytotoxicity (Bi et al., 2006a).  367 

 368 

5.1.3. 2,6-Dichloronicotinic acid (INA) 369 

2,6-Dichloronicotinic acid (INA) is a synthetic compound that is a structural and functional analog 370 

of SA, and it has been reported to mediate resistance against a broad spectrum of pathogens and its 371 

induced resistance has been suggested to have long-lasting effects (Lucas, 1999).  372 

Preharvest foliar spray of INA at 50 mg/L significantly reduced postharvest diseases of melons 373 

(Bokshi et al., 2006). The resistance against C. gloeosporioides in mango was noticeably enhanced 374 
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by preharvest treatment with INA (Santiago et al., 2006). INA at 0.5 g/L also effectively reduced the 375 

disease spot sizes on the peel of banana fruit when inoculated with C. musae (Huang et al., 2011b). 376 

 377 

5.1.4. Jasmonic acid (JA) and methyl jasmonate (MeJA) 378 

Application of JA and methyl jasmonate (MeJA) can control decay incidence of several fruit. 379 

Postharvest JA treatment at 0.01 mM reduced green mold of grapefruit and orange (Porat et al., 2002). 380 

The optimal concentration of JA or MeJA varies for different fruit, and for different diseases on the 381 

same fruit. The effective concentration of MeJA to control tomato anthracnose was 0.0448 mM 382 

(Tzortzakis, 2007), while it was 10 mM for the control of tomato gray mold (Zhu and Tian, 2012). 383 

When applied by infiltration, the concentration of MeJA was reduced to 0.1 mM (Yu et al., 2009). 384 

JA stimulated production of signaling molecules related to resistance and accumulation of 385 

antimicrobial compounds, and strengthened the structural barriers that restrict pathogen infection 386 

(Tian et al., 2007). MeJA treatment promoted higher PAL activity and increased total phenolics, 387 

flavonoids, and anthocyanins (Wang et al., 2009b). MeJA treatment promoted early accumulation of 388 

hydrogen peroxide, and increased gene expression of Cu-Zn SOD, CAT, and APX, at the same time. 389 

MeJA treatment also enhanced the contents of ascorbic acid and glutathione, which can scavenge 390 

excess ROS to alleviate protein oxidation injury (Zhu and Tian, 2012). MeJA treatment induced 391 

resistance against Penicillium citrinum by priming defense responses, and up-regulated the hydrogen 392 

peroxide burst and enhanced translation levels of defense-related proteins and the contents of 393 

antimicrobial compounds in Chinese bayberries (Wang et al., 2014). 394 

 395 

5.1.5. Other chemical elicitors 396 

Brassinosteroids (BRs) are a group of phyto-steroidal hormones that have crucial roles in a wide 397 

spectrum of biochemical, physiological, growth, and developmental processes in plants. A 398 

remarkable feature of BRs is their potential to increase resistance to a wide spectrum of stress in 399 

plants (Krishna, 2003). BRs at 5 μM effectively inhibited development of blue mold rot and enhanced 400 

the activities of defense-related enzymes in jujube fruit. BRs did not show in vitro antimicrobial 401 

activity against P. expansum (Zhu et al., 2010). 402 

Although BABA is only rarely found naturally in plants, it has been shown to be a potent 403 

inducer of acquired resistance and has a broad spectrum of activity against many pathogens (Conrath 404 

et al., 2001). BABA induced resistance of mango fruit to postharvest anthracnose caused by C. 405 

gloeosporioides, and enhanced the activity of fruit defense mechanisms (Zhang et al., 2013). BABA 406 

caused short-lasting activation of CHT and POD after a first spray, and a boost after a second spray, 407 

although to a lower level than that caused by INA (Bokshi et al., 2006). 408 
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The application of oxalic acid has been shown to induce systemic resistance against 409 

postharvest diseases (Zheng et al., 2005). Oxalic acid induced defense-related enzymes and priming 410 

of defense responses, enhanced the contents of antimicrobial compounds and modulated antioxidant 411 

enzymes in muskmelon (Deng et al., 2015). Oxalic acid at 5 mM increased antioxidant levels and 412 

PPO activity, which was beneficial for delayed ripening and enhanced disease resistance in peach 413 

fruit during storage at low temperature (Zheng et al., 2005). 414 

L-arginine induced disease resistance via its effects on nitric oxide (NO) biosynthesis and 415 

defensive enzyme activity in tomato fruit (Zheng et al., 2011).  416 

Riboflavin at 1.0 mM inhibited development of Alternaria rot, enhanced the activities of 417 

defense-related enzymes, such as PAL, PPO and POD, and increased accumulation of flavonoids, 418 

phenolics, and lignin (Li et al., 2012b). 419 

1-Methylcyclopropene induced resistance against postharvest decay in jujube fruit, and 420 

increased PAL, PPO, CAT, and SOD activities (Zhang et al., 2012). 421 

 422 

5.2. Biological elicitors  423 

5.2.1. Bacterial effectors 424 

5.2.1.1. Harpin 425 

Harpin is an acidic, heat-stable, glycine-rich, 44-kDa protein encoded by the hrpN gene, and it was 426 

first described in Erwinia amylovora, which causes fire blight of Rosaceae. Bacterial harpin has been 427 

shown to elicit the hypersensitive response and to induce SAR in plants (Baker and Orlandi, 1995). 428 

This elicitor has also been shown to induce resistance in some postharvest fruit and vegetables (Bi et 429 

al., 2007). Postharvest treatment with harpin at 0.04 mg/L to 0.16 mg/L inhibited incidence of blue 430 

mold in apple (De Capdeville et al., 2003). Field spraying with harpin at 50 mg/L reduced latent 431 

infections in muskmelons caused by A. alternata and Fusarium spp., with reductions proportional to 432 

the levels of applied harpin, up to 90 mg/L (Wang et al., 2011b). However, harpin higher than 90 433 

mg/L failed to promote resistance in melons (Bi et al., 2005). Harpin reduced lesion diameter in both 434 

treated and untreated halves of the same melon, which indicated that SAR was induced by harpin (Bi 435 

et al., 2005). Some of the defense reactions in melons elicited by harpin were identified as alterations 436 

in the levels of preformed antifungal substances, such as phenols and flavonoids, accumulation of PR 437 

proteins, such as CHT and GLU, induction of enzyme activities, such as PAL and POD, modulation 438 

of metabolism of ROS, such as SOD, CAT, and hydrogen peroxide, and reinforcement of cell walls 439 

and lignin (Bi et al., 2005; Wang et al., 2011b; Zhu and Zhang, 2016). 440 

 441 

5.2.1.2. Oligandrin 442 
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Oligandrin is an elicitin-like protein with molecular mass of >10 kDa that has been shown to be 443 

secreted by Pythium oligandrum. Oligandrin is known to induce resistance against a number of plant 444 

diseases. The treatment of tomato fruit with oligandrin at 10 μg/mL significantly reduced incidence 445 

and severity of gray mold, increased the activities of the defense-related enzymes, like PAL, PPO, 446 

and POD, and the mRNA levels of the genes encoding PR proteins, and activated the ET-dependent 447 

signaling pathway (Wang et al., 2011a). 448 

 449 

5.2.2. Fungal effectors 450 

5.2.2.1. Chitosan 451 

Chitosan (poly-β-(1,4)-N-acetyl-d-glucosamine) is a natural biopolymer with wide antimicrobial 452 

properties that can elicit defense responses in fruit and vegetables (El Ghaouth et al., 1992; 453 

Romanazzi et al., 2002). This chemical and its derivatives, such as oligochitosan and glycol chitosan, 454 

can be used in solution, as powders, and as edible coatings (Romanazzi et al., 2016b). Preharvest and 455 

postharvest treatments with chitosan and its derivatives tend to suppress storage rots in many 456 

commodities, such as strawberry (El Ghaouth et al., 1992; Reddy et al., 2000), jujube (Yan et al., 457 

2012), sweet cherries (Feliziani et al., 2013a), citrus fruit (Fajardo et al., 1998; Zeng et al., 2010), 458 

apples (Felipini and Di Piero, 2009), banana (Meng et al., 2012), table grapes (Romanazzi et al., 2002; 459 

Meng et al., 2008), and tomatoes (Liu et al., 2007; Badawy and Rabea, 2009), and for many other 460 

vegetables (Miranda-Castro, 2016). 461 

Several studies have shown that chitosan has multiple mechanisms of action, with direct 462 

antimicrobial properties, film-forming activities, and induction of host defenses (Romanazzi et al., 463 

2016b). There was a significant increase in CHT and GLU activities in banana and jujube treated with 464 

oligochitosan (Meng et al., 2012; Yan et al., 2012). Chitosan and oligochitosan treatments induced 465 

significant increases in the activities of PPO (Liu et al., 2007), POD (Liu et al., 2007; Yan et al., 466 

2012), and PAL (Romanazzi et al., 2002; Meng et al., 2012; Landi et al., 2014) in several harvested 467 

products. Chitosan treatment enhanced the total content of phenolics, flavonoids, and other antifungal 468 

substances (El Ghaouth et al., 1992; Yan et al., 2012), and accumulated ROS through regulation of 469 

the activity of metabolic enzymes, such as SOD, CAT, and APX (Zeng et al., 2010; Yan et al., 2012; 470 

Landi et al., 2014). Spraying with chitosan increased the activities of PPO and PAL in table grapes, 471 

thus promoting protection from latent infection of B. cinerea (Romanazzi et al., 2002; Meng et al., 472 

2008). Next-generation sequencing with chitosan-treated avocado has defined more genes as up-473 

regulated than down-regulated (Gutiérrez-Martínez et al., 2016). CHT and ROS production in table 474 

grape berries varied according to the formulation of chitosan applied (Feliziani et al., 2013b). 475 

Structural defense responses, such as preservation of pectin binding sites and the intense and regular 476 
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cellulose distribution over host cell walls were observed in the first tissue layers beneath the ruptured 477 

cells in bell peppers treated with chitosan (El Ghaouth et al., 1997). 478 

 479 

5.2.2.2. Burdock fructooligosaccharide 480 

Burdock fructooligosaccharide (BFO) is a fructosan oligomer that effectively inhibited postharvest 481 

diseases and reduced incidence of gray mold in tomato. BFO increased mRNA levels of genes 482 

encoding PR proteins, such as PR-1a, PR-2a (extracellular GLU), PR-2b (intracellular GLU), PR-3a 483 

(extracellular CHT), and PR-3b (intracellular CHT), and induced accumulation of PAL mRNA in 484 

tomatoes (Wang et al., 2009a). BFO also effectively controlled postharvest diseases in grapes, apples, 485 

banana, kiwi fruit, citrus fruit, strawberries, and pears (Sun et al., 2013). 486 

 487 

5.2.3. Other biological elicitors  488 

Peach fruit pretreated with yeast saccharide activated CHT, GLU, PAL, and POD. Moreover, yeast 489 

saccharide triggered endogenous NO in peaches during storage (Yu et al., 2012). The flavonoid 490 

quercetin significantly reduced blue mold in apples, and genes differentially expressed in quercetin-491 

treated apples revealed high similarities with different classes of PR proteins (i.e., RNase-like PR10, 492 

PR8), and with proteins expressed under stress conditions (Sanzani et al., 2009b; Sanzani et al., 2010). 493 

The resistance inducer protein hydrolysates were effective against green mold of citrus fruit and gray 494 

mold of table and wine grapes (Lachhab et al., 2015, 2016). 495 

 496 

5.3. Inorganic elicitors 497 

5.3.1. Silicon (Si) 498 

Silicon (Si) is the second most abundant element in the Earth lithosphere, and it is as important as 499 

phosphorus and magnesium in the biota (Exley, 1998). Si is also considered to be biologically active 500 

and to trigger more rapid and extensive deployment of plant natural defenses. Guo et al. (2007) 501 

reported that Si oxide and sodium silicate suppressed pink rot in muskmelons. Sodium silicate at 100 502 

mM reduced rots in melons caused by A. alternata, F. semitectum, and T. roseum (Bi et al., 2006b; 503 

Li et al., 2012a).  504 

Sodium silicate has been shown to be effective for suppression of pathogen growth and for 505 

induction of resistance to postharvest diseases in fruit and vegetables. Si treatment did not affect the 506 

activities of POD, PPO, PAL, and GLU, or the content of total phenols and flavonoids in potato tuber, 507 

although these were significantly accumulated after a challenge with F. sulphureum (Li et al., 2009). 508 

These results indicated that a priming state was induced by Si in potato tubers (Conrath et al., 2001). 509 

In Hami melons, Si treatments caused activation of POD and CHT (Bi et al., 2006b). The effects of 510 
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Si on postharvest diseases of muskmelons were associated with elicitation of the antioxidant system 511 

(Li et al., 2012a). 512 

 513 

5.3.2. Nitric oxide (NO) 514 

Nitric oxide (NO) is an important bioactive molecule that serves as a signal in plants, in particular for 515 

maturation and senescence (Leshem et al., 1998). Lai et al. (2011) reported that NO treatment 516 

activated antioxidant enzymes and induced resistance against gray mold in tomato. NO increased 517 

accumulation of phytoalexin rishitin in potato tubers (Niritake et al., 1996), and induced resistance 518 

against dry rot in potato tubers (Hu et al., 2014a). Moreover, NO treatment modulated anthracnose 519 

levels and induced defense-related enzymes in mangoes (Hu et al., 2014b). 520 

 521 

5.3.3. Sodium carbonate  522 

Sodium carbonate and bicarbonate were effective in the control of green mold of citrus fruit (Youssef 523 

et al., 2014). These salts exerted direct antifungal effects on Penicillium digitatum, and increased the 524 

activities of resistance enzymes, such as GLU, POD, and PAL. Moreover, citrus peel extracts showed 525 

increased levels of sugars and phytoalexins, with sucrose and scoparone being the most represented.  526 

 527 

6. Induced resistance by disinfecting agents  528 

6.1. Ozone 529 

Since its recognition in 1997 by the US Food and Drug Administration as a safe food disinfectant, 530 

both gaseous ozone (O3) and ozonated water have gained particular attention for the control of 531 

postharvest diseases of fruit and vegetables. The most recent examples of its use are those reported 532 

for blueberries (Crowe et al., 2012), persimmons (Ikeura et al., 2013), papaya (Ali et al., 2014), and 533 

table grapes (Feliziani et al., 2014). Ozone is a strong oxidizing agent; however, as the O3 disinfecting 534 

activity is limited to surface-contaminating microflora, and as various microbes show different 535 

susceptibilities (Pascual et al., 2007), further modes of action appear to be involved (Feliziani et al., 536 

2016). Artes-Hernandez et al. (2007) reported that continuous flow of O3 increased total flavonol and 537 

hydroxycinnamates contents in cold-stored ‘Autumn Seedless’ table grapes. Moreover, it has been 538 

reported that O3 boosts maintained the total polyphenols, and greatly increased the phytoalexin 539 

resveratrol content in cold-stored ‘Napoleon’ table grapes (Artés-Hernández et al., 2003). Similarly, 540 

O3 at 0.1 μmol/mol increased total phenolic content in red bell peppers (Glowacz et al., 2015). A 541 

proteomic analysis conducted on O3-treated kiwi fruit identified 102 differentially expressed proteins 542 

that were mainly involved in energy, protein metabolism, defense, and cell structure (Minas et al., 543 

2012). A set of candidate kiwifruit proteins was defined as sensitive to protein carbonylation, which 544 

app:ds:nitric
app:ds:oxide
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was induced by ripening and depressed by O3. Moreover, O3 treatment transiently increased 545 

expression of CHT and PAL in ‘Redglobe’ and ‘Sugraone’ table grapes (Duarte-Sierra et al., 2016) 546 

(Tab. 4).  547 

 548 

6.2. Electrolyzed water  549 

Electrolyzed water (EW) is obtained by adding a small amount of an electrolyte to tap water, which 550 

is traditionally sodium chloride, and passing an electrical current across an anode and a cathode. EW 551 

has high oxidation–reduction potential with strong direct effects against decay causing fungi 552 

(Guentzel et al., 2010). However, recently, it has shown resistance inducer potential. In particular, it 553 

caused 30% increase in the total phenolic content of broccoli (Navarro-Rico et al., 2014) and 554 

maintained fresh-cut cilantro firmness (Hao et al., 2015), thus improving their resistance to pathogen 555 

attack. More recently, other electrolytes have been tested to improve EW performance and to avoid 556 

production of chlorine by-products. Encouraging results were obtained using NaHCO3 against 557 

postharvest rots of citrus fruit, which also induced host defense responses (Fallanaj et al., 2016). In 558 

particular, up-regulation of defense-related genes that encode CHT, POD, and PAL was observed at 559 

6 h to 12 h post-treatment, with increased activity of the related enzymes and of GLU (Tab. 4). As 560 

this was observed at 12 h post-treatment, this suggested an early host response against P. digitatum 561 

by limiting tissue colonization.  562 

 563 

6.3. Ethanol  564 

The effects of ethanol dipping as a surface disinfectant that can reduce pathogen populations without 565 

impairing product quality are well known (Lichter et al., 2002; Mlikota Gabler et al., 2004; Lee et al., 566 

2015). However, its mode of action appears to be much more complex. Ethanol induction of 567 

resistance to postharvest anthracnose in loquat fruit was demonstrated by Wang et al. (2015a). 568 

Ethanol at 300 μL/L inhibited anthracnose caused by Colletotrichum acutatum, and maintained 569 

overall quality. Moreover, it increased SOD activity, thus resulting in higher levels of hydrogen 570 

peroxide, which can activate disease resistance. Meanwhile, ethanol treatment significantly enhanced 571 

the activities of defense-related enzymes, including PAL, POD, PPO, CHT, and GLU (Tab. 4). 572 

Recently, ethanol treatments were shown to decelerate the ripening process and down-regulate 573 

expression of major lipoxygenase-encoding genes involved in melon fruit ripening, thus contributing 574 

to its increased resistance to biotic and abiotic stress (Zhang et al., 2015). 575 

 576 

7. Induced resistance by microbial and plant volatile organic compounds (VOCs) 577 

 578 
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Biotic agents that contribute to plant disease management include PGPR, growth promoting fungi, 579 

and fungi that work as biocontrol agents (Lyon, 2007). In addition to the use of microorganisms and 580 

chemical compounds in plant protection, there is an important developing area of research in the 581 

control of postharvest pathogens in fruit and vegetables based on the use of volatile organic 582 

compounds (VOCs), which can be produced by microorganisms (MVOCs) or by plants (PVOCs) 583 

(Mari et al., 2016).  584 

 585 

7.1. Induced resistance by microbial volatile organic compounds (MVOCs) 586 

Microbial volatile organic compounds (MVOCs) are mixtures of carbon-based compounds that are 587 

highly volatile or are vapors (Morath et al., 2012). Fungi, yeasts, and bacteria produce MVOCs as 588 

primary and secondary metabolites (Jijakli and Lepoivre, 1998; Korpi et al., 2009). MVOCs have 589 

shown applicative potential as biofumigants and have motivated great interest, mainly because they 590 

occur naturally without chemical synthesis (Li et al., 2015a). MVOCs can be signaling substances for 591 

regulation and control of some physiological actions, which include induction of systemic resistance 592 

against pathogens (Ryu et al., 2004). 593 

Some defense mechanisms activated by biocontrol bacteria are induced in fruit and leaves by 594 

MVOCs, including production of phytoalexins, PR proteins, such as CHT and GLU, and protein 595 

inhibitors (Conrath et al., 2006; Li et al., 2012c). Bacillus spp. VOCs (2-3-butanediol and lipopetides) 596 

induced over-expression of the surfactin and fengicin genes, which caused metabolic changes in host 597 

tissues (Ryu et al., 2004; Ongena et al., 2007).  598 

 599 

7.2. Induced resistance by plant volatile organic compounds (PVOCs) 600 

The eliciting activities of PVOCs, such as MeSA, were reported in section 5.1.1. Citrus fruit produce 601 

VOCs that are actively involved in defense systems before pathogen attacks. The presence and 602 

variation of VOCs depend on the type of produce and of its development phase. VOCs occur naturally 603 

in plant systems and can be associated with the biochemistry of constitutive defense mechanisms 604 

(Wightwick et al., 2010). Structures in the petals of citrus flowers, called osmophores, can release 605 

more than 60 VOCs, such as phenols, terpenes, and lipophilic compounds, which have been 606 

recognized as antifungal agents (Caccioni et al., 1995; Lattanzio et al., 2006). It was reported that 607 

limonene and linalool have antifungal actions against C. acutatum and are associated with constitutive 608 

biochemical responses and can be used in the control of pathogens (Rodrigues Marques et al., 2015). 609 

Essential oils produce their activity through vapor, and thyme and cinnamon essential oils 610 

increased PPO, PAL, CHT, GLU activities in peach fruit (Cindi et al., 2016). In tomato, it has been 611 

reported that VOCs are induced and modified in defense responses, and ripening processes, and by 612 
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wounding. In a microarray analysis of tomato fruit at different stages of ripening, more than 4,000 613 

differentially expressed genes have been reported. Genes related to defense mechanisms were 614 

expressed in the early stages of ripening, and genes related to VOCs changed during late maturation. 615 

Overall, more than 40 VOCs were detected, and their profiles were characterized along the fruit 616 

ripening stages (Baldassarre et al., 2015).  617 

 618 

8. Induced resistance perspectives 619 

 620 

A large amount of data has been generated during the last few years that are related to the triggering 621 

of host defenses during postharvest (see as examples, Tables 1, 2, 3 and 4, and Fig. 1). The elicitation 622 

of host defenses has a central role nowadays in integrated disease management strategies, and this is 623 

welcome for the reasons summarized in Tab. 5. The effects on plants can last for weeks or months. 624 

Induced resistance has a wider spectrum of targets than synthetic fungicides. Induced resistance does 625 

not lead to the appearance of resistant strains, due to involvement of various modes of action. Induced 626 

resistance is usually applied before the appearance of the symptoms, so there are no side effects on 627 

nontarget organisms and on humans, in terms of farmers, people working in the packinghouses, 628 

retailers, or consumers. Moreover, induced resistance can lead to increased levels of phenolic 629 

compounds in the plant tissues, which often have antioxidant properties that are highly beneficial to 630 

humans. However, we cannot forget the weaker points linked to the application of strategies based on 631 

induced resistance, such as possible inconsistent results or difficulties in their implementation in 632 

packinghouse practices. Recently, a high number of biostimulants have appeared on the market, and 633 

are considered as part of the effective treatments. Usually these biostimulants have combinations of 634 

direct activities on pathogens and indirect activities on the host. Increasing interest in this novel 635 

approach that is based on the triggering of host defenses satisfies consumer demands and the 636 

guidelines on sustainable approaches to plant protection, which in European Union is implemented 637 

through Directive 128/2009 on sustainable use of fungicides. New tools, such as the -omics sciences, 638 

allow better understanding of the changes in host physiology and provide information on gene 639 

functions. This information will provide optimization of the application of alternative treatments to 640 

control postharvest decay.  641 
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Figure captions 1149 

 1150 

Figure 1. Number of articles available through Scopus over the last 30 years using the search 1151 

keywords of “induced resistance postharvest” (accessed on June 16, 2016). 1152 

 1153 

Figure 2. Treatments that can induce resistance in fresh fruit and vegetables, and the mechanisms 1154 

or enzymes involved. Images from http://cliparts.co/free-fruit-pictures. 1155 

INA, 2,6-Dichloronicotinic acid; HWT, Hot water treatment; GRAS, generally recognized as safe; 1156 

JA, jasmonic acid; SA, salicylic acid; MeJa, methyl jasmonate;  BFO, Burdock 1157 

fructooligosaccharide; BTH, benzothiadiazole; EOW, Electrolyzed oxidizing water; NO, nitric 1158 

oxide; UV-C, ultraviolet C irradiation; BCA, biocontrol agents; MVOCs, microbial volatile organic 1159 

compounds; Si, silicon; PVOCs, plant volatile organic compounds; EtOH, ethanol; SC, sodium 1160 

carbonate; SAR, systemic acquired resistance; PG, polygalacturonase; BABA, β-aminobutyric acid; 1161 

GLU, β-1,3-glucanase; PR, pathogenesis related proteins; MAMP, microbe-associated molecular 1162 

pattern; LOX, lipoxygenase; ROS, reactive oxygen species; CHT, chitinase; CAT, catalase; ABA, 1163 

abscisic acid; PPO, polyphenol oxidase; PAL, phenylalanine ammonia lyase; ISR, induced systemic 1164 

resistance; PAMP, pathogen-associated molecular pattern; SOD, superoxide dismutase; NPR1, 1165 

nonexpressor of pathogenesis-related genes 1; hsp, heat shock protein. 1166 
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Table 1. Examples of differential gene expression or enzyme activities in response to the application of biocontrol agents. 

 

Treatment Genes and/or enzymes Reference 

 PAL* CHT SOD CAT SA LOX GLU SURFACTIN FENGICIN POD  

Bacillus subtilis       +/++**  +/+++ +/+++  Ongena et al., 2007 

Candida saitoana  +/++     +    El Ghaouth et al., 2003b 

Cryptococcus laurentii        +    Tian et al., 2007 

Pichia membranifaciens, Candida 

guilliermondii Rhodotorula glutinis 

 +  +/+++   +/+++   +/++ Xu et al., 2008b 

Pichia guilliermondii + + + -/+   +   -/+ Zhao et al., 2008 

Aureobasidium pullulans   +     +   + Ippolito et al., 2000 

*PAL, phenylalanine ammonia lyase; CHT, chitinase; SOD, superoxide dismutase; CAT, catalase; SA, salicylic; LOX, lipoxygenase; GLU, β-1,3-

glucanase; POD, peroxidase 

**+, overexpressed up to 3-fold; ++, overexpressed from 4-fold to 10-fold; +++, overexpressed more than 10-fold; -, down-regulated up to 3-fold 

 

  

app:ds:salicylic


Romanazzi et al. Postharvest Biology and Technology Page 41 
 

 

Table 2. Examples of differential gene expression or enzyme activities in response to application of physical means. 

 

Treatment Genes and/or enzymes Reference 

 PAL* CHT GLU POD Trans-

resveratrol 

Catechin  

UV-C irradiation +** ++/+++ +  ++/+++ ++ Cantos et al., 2000; Nigro et al., 2000; El 

Ghaouth et al., 2003a; Romanazzi et al., 

2006 

Heat treatment +/- -     Spadoni et al., 2014, 2015 

Hypobaric treatment + +  +   Hashmi et al., 2013 

*PAL, phenylalanine ammonia lyase; CHT, chitinase; GLU, β-1,3-glucanase; POD, peroxidase  

**+, overexpressed up to 3-fold; ++, overexpressed from 4-fold to 10-fold; +++, overexpressed more than 10-fold; -, down-regulated up to 3-fold 
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Table 3 Examples of differential gene expression or enzyme activities in response to application of natural and synthetic chemicals. 

 

 

Treatment Genes and/or enzymes Reference 

 SOD CAT POD APX CHT PAL GLU PPO  

Salicylic acid  -** ++ - + ++ +  Cao et al., 2006 

Methyl salicylic acid + ++ ++ +     Valverde et al., 2015 

Benzothiadiazole + + ++  + + ++  Cao et al., 2005 

β-aminobutyric acid    +  +    Bokshi et al., 2006 

Riboflavin   ++   +  + Li et al., 2012b 

1-Methylcyclopropene + +    +  + Zhang et al., 2012 

Harpin   +++  +++    Bi et al., 2005 

Oligandrin   +   +  + Wang et al., 2011a 

Chitosan   + +/++ +/++ +/+++ +/+++ + Romanazzi et al., 2002; Liu et al., 2007; 

Meng et al., 2012; Yan et al., 2012; 

Feliziani et al., 2013b; Landi et al., 2014 

Yeast saccharide   ++  + +++ +++  Yu et al., 2012 

Silicon   +++  +++    Bi et al., 2006b 

Sodium carbonate   ++  - ++ ++  Youssef  et al., 2014 

app:ds:salicylic
app:ds:acid
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SOD, superoxide dismutase; CAT, catalase; POD, peroxidase; APX, ascorbate peroxidase; CHT, chitinase; PAL, phenylalanine ammonia lyase; GLU, 

β-1,3-glucanase; PPO, polyphenol oxidase 

**+, overexpressed up to 3-fold; ++, overexpressed from 4-fold to 10-fold; +++, overexpressed more than 10-fold; -, down-regulated up to 3-fold 
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Table 4. Examples of differential gene expression or enzyme activities in response to application of disinfecting agents. 

 

Treatment Genes and/or enzymes Reference 

 PPO* GLU PAL LOX POD CHT  

Ozone   +**   + Duarte-Sierra et al., 2016 

Electrolyzed water   +  ++ +++ Fallanaj et al., 2016 

Ethanol    -   Zhang et al., 2015 

*PPO, polyphenol oxidase; GLU, β-1,3-glucanase; PAL, phenylalanine ammonia lyase; LOX, lipoxygenase; POD, peroxidase; CHT, chitinase 

**+, overexpressed up to 3-fold; ++, overexpressed from 4-fold to 10-fold; +++, overexpressed more than 10-fold; -, down-regulated up to 3-fold  



Romanazzi et al. Postharvest Biology and Technology Page 45 
 

 

 

Table 5. Aspects related to the induction of resistance to postharvest diseases of fruit and vegetables 

 

Negative sides Positive sides 

Complete effect is not always reproducible Long-lasting effects 

Does not provide a complete control of decay Broad range of targets 

Not easy to implement as part of farmer and 

packinghouse practices 

Do not cause appearance of resistant isolates of 

the pathogen  

Investigation methods are not standardized Increasing number of biostimulants on the market 

 Low side effects 

 Reduction of pesticide use 

 Promoted by EU Directive n. 128/2009 

«Sustainable Use of Pesticides» and following 

National Action Plans 

 Increased amounts of beneficial antioxidant 

compounds  

 


