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SUMMARY 

High damping natural rubber (HDNR) bearings are extensively employed for seismic isolation of structures 
because of their low horizontal stiffness and high damping capacity. Filler is used in HDNR formulations to 
increase the dissipative capacity, and it induces also a stress-softening behaviour, known as the Mullins 
effect. In this paper, a wide experimental campaign is carried out on a large number of virgin HDNR samples 
to better investigate some aspects of the stress-softening behaviour, such as the direction-dependence and 
recovery properties, and to characterize the stable and softening response under different strain histories. 
Test results are also used to define a model for simulating the response of HDNR bearings in shear that 
advances the state of the art in the description of the stress-softening, which can be significant during the 
earthquake time-history. The proposed model is used to analyse the seismic response of a simplified isolated 
structure modelled as a S-DOF system under ground motions with different characteristics and by 
considering two different conditions for the bearings: one assuming the virgin (or fully recovered) rubber 
properties and the other assuming the stable (or fully scragged) rubber properties. The results show that, in 
the case of far field records, the differences between the responses are limited although not negligible, 
whereas for near fault records, modelling the bearings as being in their virgin state significantly reduces the 
effect of this kind of motion on isolated structures. 
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INTRODUCTION 

In the last few decades, laminated high damping natural rubber (HDNR) bearings have been 
extensively employed for seismic isolation of buildings and bridges because of their low horizontal 
stiffness and high damping capacity, which enable the isolated vibration period to be shifted away 
from the range where the earthquake input has the highest energy content and most of the relative 
displacements to be accommodated benignly, and reduced through dissipation of energy taking 
place in the bearings rather than in the structure.  
The seismic response of a system isolated with HDNR bearings is mainly controlled by the HDNR 
material behaviour in simple shear, which is characterized by different specific features such as 
dependency on the strain-amplitude (Payne or Fletcher & Gent effect), stiffening at large strains due 
to crystallization, stress-softening due to repeated cycles, a generally mild strain rate sensitivity, as 
well as dependency on environmental factors such as long term ageing and ambient temperature. In 
particular stress-softening, on which this paper is focused, may be considered as a macroscopic 
consequence of breakdown of filler-filler structure and rubber-filler interaction which takes place 
within the “virgin” rubber during the deformation-path. This effect, whose extent depends on the 
maximum strain amplitude the material has been subjected to during loading cycles and does not 
much affect the loading curve for strains higher than the maximum strain experienced [1], is often 



 
 

referred to in the literature as the "Mullins effect" [2] whereas the process of generating such 
softening effect is often referred to as "scragging" [3], being a procedure sometimes applied to 
metal springs or rubber mounts after production and before service. The largest softening effect 
occurs in the first cycle, and models for the "Mullins effect" usually focus on this (e.g. [2]); 
softening on subsequent cycles to the same strain has been referred to as "cyclic stress relaxation" 
[4] or "continuous damage" [5]. However, Clark et al. [6], with reference to cyclic loading paths at 
a given strain amplitude. use the term "scragging" to denote the softening characterizing the first 
cycle, and "Mullins effect" for the softening over the other cycles. As such classification is not 
consistent in the rubber science literature, thus all the softening effects are termed here as the 
“Mullins effect”, and will also be modelled in a unified way. It is sometimes thought that stress-
softening effects can be eliminated by subjecting HDNR-based devices to several cycles at a large 
shear amplitude, i.e. scragging, as part of a manufacturer’s quality control practices. However, 
experimental evidence has shown that the rubber can at least partially recover its initial (or "virgin") 
stress-strain properties over time [3,7-9]. The recovery behaviour is usually rapid at the beginning, 
and continues at slower rates. It is known that the rate of the recovery depends on several factors, 
such as the elastomeric compound, the manufacturing process and the temperature, however 
comprehensive recovery models have not been developed yet. Since an earthquake may occur after 
a long period of rest of the isolation system, when a seismic event occurs the properties of the 
bearings could have fully recovered to the virgin state, thus the evaluation of the seismic reliability 
of HNDR isolated structures would require dynamic analyses accounting for softening from the 
virgin state during the strong motion, as also experimentally observed [10,11]. 
Many different three-dimensional large strain constitutive models of filled rubber have been made 
available [12-15]. In some cases the Mullins effect has been included by coupling continuum 
damage theory with elasticity theory [12], viscoelasticity theory [13], or pseudo-elasticity theory 
[15]. These material models permit a detailed description of the behaviour of laminated HDNR 
bearings up to collapse via finite element analysis. However, this approach is too complex for 
engineering applications. For this reason, several device phenomenological models have been 
proposed in the past to describe the global behaviour of HDNR bearings. At this regard, it is found, 
to a good approximation, that for typical design of laminated rubber bearings (e.g., primary shape 
factor S1>20 and secondary shape factor S2>3, [16,17]) and under typical design axial loads, 
bending moments, and shear deflections (far from collapse condition as imposed by Standards), the 
shear load-deflection behaviour of a laminated HDNR bearing is the same as that of a block, 
constrained to be in simple shear, of the same total thickness, cross-sectional area and material 
properties as the rubber in the bearing. In fact, under these conditions the effects of axial load and 
bending moment on the shear-load behaviour of such a single rubber layer in the bearing are 
negligible and the extra compliance resulting from P-Δ effects estimated from the appropriate 
beam-column theory can be assumed to be small. Consequently, several device phenomenological 
models have been proposed in the past to describe the behaviour of the HDNR bearings in simple 
uniaxial shear [18-22] and biaxial shear [23-25]. Obviously, in the near collapse conditions more 
complex stress states of the isolation device will arise. However, device phenomenological models 
can still be used to globally describe the multiaxial behaviour of bearings [26-28], by accounting for 
specific relevant phenomena, such as the cavitation/buckling occurring under tensile/compression 
strains as well as coupling effects between the horizontal and vertical behaviour.  
However, few models among those mentioned take into account the stress-softening process 
occurring during cyclic loadings. In particular, in the model proposed by Kikuchi and Aiken [19] 
and then adopted in Kikuchi et al. [27] this process is accounted for in a simplified way by 
introducing an additional elastic force which vanishes when the current shear strain is within the 
minimum and maximum strains already experienced in the past. Differently, in Hwang et al. [20] 
the stress-softening is modelled by using load-history dependent parameters whereas in Grant et al. 
[24-25] and Dall’Asta and Ragni [22] it is accounted for through damage parameters evolving as 
the strain history progresses. However, recent experimental investigations have shown that the 



 
 

stress-softening is direction-dependent, in the sense that cyclic loadings in one direction (i.e., for 
positive or negative strains) only marginally affect the stresses in uniaxial cyclic loadings in the 
other direction [29-30]. This direction-dependent behaviour, which may influence significantly the 
response of HDNR bearings under generic strain histories, is the subject of very recent research and 
it has not been included yet in device models.  
This paper describes the experimental campaign carried out on HDNR double-shear specimens, 
manufactured by TARRC from a highly dissipative rubber compound commonly employed for 
seismic isolators, to better understand and model the stress-softening which might significantly 
affect the seismic response of structures isolated on virgin HDNR bearings. The choice of 
employing small test pieces is motivated by the large number of independent tests that have to be 
carried out on separate virgin HDNR samples to achieve a satisfactory characterization of the stress 
softening of HDNR, which would result in a prohibitive cost if full-scale devices were employed. 
Moreover, as already explained, for typical bearing geometries and loading conditions, the material 
behaviour in shear can be assumed to represent the horizontal behaviour of virgin HDNR bearings. 
In the first part of the paper the results of uniaxial tests are illustrated and discussed. Next, a one-
dimensional non linear process-dependent constitutive model is described, which advances the 
model previously developed by some of the authors for HDNR devices [22]. The proposed model 
provides a better description of the transient behaviour of the rubber (characterizing the transition 
from the virgin state to the damage stabilization) by accounting also for the direction-dependence of 
the Mullins effect and thus it can be used to accurately simulate the shear response of HDNR 
bearings under transient motions. 
In the last part of the paper the model is employed to evaluate the influence of stress softening on 
the seismic response of isolated structures under design conditions. In fact, despite the relevance of 
this topic especially for strategic isolated structures, few studies have been carried out thus far to 
evaluate the effects due to the softening in cyclic shear loading on the seismic reliability assessment 
of isolated systems. Some preliminary investigations have been done by Stewart et al. [10] based on 
experimental testing and by Dall’Asta and Ragni [31-32] based on numerical simulations. In this 
paper, further numerical investigations are carried out by considering an isolated structure modelled 
as a S-DOF system and by performing several dynamic analyses under different seismic inputs, 
including near-fault (NF) and far-field (FF) records, producing different strain paths. In all the 
analyses, two different limit conditions have been considered to highlight the influence of the 
Mullins effect: (i) the case of virgin bearings and (ii) the case where stress-softening is fully 
developed to the maximum strain expected during the motion. Although this last case is  primarily a 
limit condition for the rubber, given the partial or total recovery occurring during the interval time 
between the manufacturer’s quality controls and an earthquake or between two earthquakes, it 
serves as a limit state for the purposes of comparison to highlight the effects of stress-softening on 
the seismic response of isolated structures and to evaluate the differences between the responses 
obtained by considering or neglecting the effects of stress-softening during the seismic time-history. 

EXPERIMENTAL TESTS 

The experimental campaign described in this paper has been carried out on a large number of 
identical virgin material double shear testpieces (see Figure 1).They were manufactured by TARRC 
from a highly dissipative rubber compound commonly employed for seismic isolators, that satisfies 
the prescriptions of the current European code EN15129 [33] for anti-seismic devices about the 
stability of shear properties under repeated cycling, as well as similar prescriptions of other 
international seismic codes such as AASHTO 2010 [34] or ASCE/SEI 41-139 [35].  
The tests have been tailored to characterize the transient and stable behaviour of the rubber in 
uniaxial simple shear under different strain amplitudes and strain rates and to study some aspects 
related to the Mullins effect, such as the direction-dependence and the recovery properties. In the 
following sections, after a brief description of the double shear test set-up, the main results of the 
experimental campaign are reported.  



 
 

Test set-up 

The testpiece for double-shear tests consist of two cylindrical rubber discs (Fig.1a) moulded 
between three metal end pieces. The thickness t of the disc is 6mm and its diameter D is 25mm, 
since standards for testing rubber ([33],[36]) stipulate for shear tests a value D/t > 4 to render 
imperfections in the boundary conditions insignificant so that the rubber can be taken to be mainly 
in uniform simple shear. The central metal cylinder is driven by a servohydraulic actuator, while the 
end pieces are held in a jig attached to a load cell fixed to the machine bed. (Fig. 1b). The testing 
machine’s internal sensors record the load cell force and the imposed displacements during the test. 
It is noteworthy that the shear deformations reported in the figures include also the deformation of 
the steel rod and of the strain gauges in the load cell, whose contribution is however negligible. 

   a) 

25mm 
6mm 

 

  b)  

 

 
Fig. 1- Test set-up: (a) double shear test piece geometry; (b) test machine 

Double shear tests for the rubber behaviour characterization 

The current European code EN15129 [33] for anti-seismic devices prescribes that the ratio between 
the minimum and maximum value of the secant shear modulus G measured in the cycles between 
the 1st and the 10th shall not be less than 0.6 at the design shear strain. To verify the compliance of 
this prescription, the first test of the experimental campaign was a sinusoidal test carried out at the 
maximum strain amplitude max = 1.5, which is the assumed design amplitude, and frequency 0.5 
Hz. Results are reported in Fig. 2a, in terms of shear stress () versus the shear strain (), calculated 
by dividing the measured force and displacement respectively by the total cross-section area and the 
thickness of the testpiece. The shear modulus, defined as G = max/max, for max 1.5   is G1  = 1.03 

MPa at the 1st cycle, G3 = 0.752 MPa at the 3rd cycle, and G10 = 0.653 MPa at the 10th cycle. 
Although the stress-softening under repeated cycling is significant, the ratio r=G10/G1=0.62 (also 
defined in Fig.2a), is higher than the minimum threshold value of 0.6 allowed by the European 
code. Note also that the rubber compound has an equivalent damping ratio at the 10th cycle of 0.16. 
It is worth noting that the ratios of r=G10/G1 for shear strains measured in the range of 100% to 
250% are all above 0.6. 
In order to investigate the damage evolution characterizing the transient behaviour of the virgin 
rubber and its dependence on the maximum strain amplitude experienced, a first series of cyclic 
tests with triangular waveform was carried out at different deformations ( max ) and at different 

strain rates ( ) kept constant during each test, with no pauses between continued positive or 

negative strain ramps. In particular, two tests were firstly performed at 5.2max  , which was the 

highest deformation considered in any test, and with strain rates equal to 11  s  and 14  s . 

More in detail, 20 cycles at the amplitude 5.2max   and further 20 cycles at successively smaller 

amplitudes equal to 2, 1.5, 1, 0.5 and 0.25 were imposed. In Fig. 2b, the stress-strain loops relevant 



 
 

to the test with 11  s  are reported. The objective of this type of test was to determine the 
“primary curve” of the virgin material (i.e. the loading path of the first cycle) and to analyze how 
the stress softening progresses up to stable cycles at the maximum assumed deformation 

5.2max  . The hysteresis cycles change very little after 10-15 cycles of imposed strain, and the 

temperature increment (calculated from the dynamic results assuming adiabatic heating of the 
rubber) is negligible and thus does not influence the results significantly for this number of cycles. 
It can be observed in Fig. 2b that once the stress-softening is stabilized for the cycles at the 
maximum amplitude of deformation, successive cycles at smaller amplitudes are also stable and 
they are all “included” in the largest stable cycle since their stiffness is influenced by the extent of 
stress softening that occurred at the maximum experienced strain ( 5.2max  ). However, the 

stiffness of the stable cycles increases for decreasing strain amplitude, a behaviour which is 
commonly referred to as Payne or Fletcher & Gent effect in the literature. 
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Fig. 2 – Shear tests: (a) stability under repeated cycling; (b) strain rate 1 s-1. 

Four further similar tests were carried out on virgin test pieces with a strain rate equal to 14  s  

but for smaller values of the maximum deformation max . In particular, values of max  equal to 2 

(Fig. 3a), 1.5 (Fig. 3b), 1 (Fig. 3c) and 0.5 (Fig. 3c) were imposed. Also in this case the tests 
consisted of imposing 20 cycles at the maximum strain amplitude and 20 further cycles at each of 
the smaller amplitudes. For each of these tests, the observations made for the test with max =2.5 are 

still valid. However, it is important to note that the stiffness of the stable cycles obtained at the 
different maximum deformations imposed are significantly different. This can be better observed in 
Fig. 4a where for each test only the stable cycle at the maximum strain amplitude is reported. The 
different stiffness of these cycles confirms that the level of softening depends on the maximum 
deformation experienced by the rubber. This is also confirmed by Fig. 4b, which reports the stable 
cycles at a small strain amplitude (0.5) for all the four tests considered. It is evident that the stiffness 
of these cycles decreases as the maximum strain amplitude imposed increases.  
In order to investigate the strain-rate dependency of the transient response, the primary curves of the 

two tests carried out at  5.2max   and strain rates 11  s  and 14  s  are compared one to each 

other in Fig. 5 (a). In the same figure, the primary curves obtained with ramp tests up to 5.2max   

and at low values of the strain rate equal to 11.0  s  and  1.410-5 s-1 (quasi-static test with 
execution time of about 50 hours) are reported. These tests confirm that in the range of frequencies 
of interest for seismic applications the dependence of the primary curves on the strain rate is not 
very high, though not negligible, and only at very low frequencies the stresses reduce significantly. 
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Fig. 3 – Shear tests at strain rate  4 s-1 corresponding to maximum shear strains of (a) 2.0; (b) 1.5; (c) 1.0; (d) 0.5. 
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Fig. 4 –Stable cycles: (a) at different maximum strain amplitudes; (b) at a strain amplitude of 0.5 after different 
maximum strain amplitudes 

The dependence on the strain rate of the stable cycles is also very low as can be observed in Fig. 5 

(b), where the stable cycles at 5.2max   of the tests carried out at 11  s  and 14  s  as well as 

other values of the stain rate spanning from 0.1 s-1 to 4 s-1 are reported, together with the quasi-static 
response. The differences between the hysteretic cycles are very low and only in the loading paths 



 
 

(both for positive and negative strain amplitudes) they are not negligible. However, the difference 
between the quasi-static response and the other responses is very significant, confirming that the 
material can be classified as a fading memory one, and thus it should be modelled as a viscoplastic 
material with long relaxation times (rather than an elasto-plastic material). 
In order to further investigate this aspect and separate the elastic response from the time relaxing 
overstresses, multi-relaxation tests were also carried out, by imposing strain increments with rate 

14  s  and by using relaxation times between each strain increment (0.5x105s) of the same order 
as taken to increase the strain by 1 for the quasi-static loading in Fig. 4a (0.71x105s). The stress and 
strain diagrams over the time are reported in Fig. 6a, confirming that the overstress contribution 
vanishes in a sufficient long period and that there are at least two relaxation processes leading to 
equilibrium with different (very short and very long) relaxation times. In Fig. 6b, the stress-strain 
diagram is reported, showing that the upper and lower bounds of the elastic contribution are very 
close. This again confirms that the rubber is a fading memory material and that after a sufficient 
long period of time from a seismic event the HDNR bearings return to its natural state (zero stress 
and zero strain) without permanent deformations.  
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Fig. 5 – Tests with different strain rates: (a) primary curves; and (b) stable cycles at different strain rates 
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Fig. 6 – Multi-relaxation test: (a) strain and stress histories; (b) stress-strain diagram  

Double shear tests for further investigation on the Mullins effect 

The last parts of the experimental campaign were focused on the dependence of the Mullins effect 
on the shear strain direction and on the recovery properties. For the first purpose a pair of virgin 



 
 

rubber samples were subjected to the strain histories reported in Fig. 7a. The first strain history 
consists of a common sequence of 6 full cycles with triangular shape at the amplitude 1.5 and strain 
rate 2 s-1. The alternative history consists of 6 half cycles with triangular shape at the amplitude 1.5 
followed by 6 half cycles with triangular shape at the amplitude -1.5. The hysteretic cycles 
corresponding to the applied strain histories are reported in Fig. 7b and confirm that the stress-
softening occurring in one direction has a negligible influence on the response in the opposite 
direction. In fact, the maximum stress attained at negative shear strains after 6 half cycles at positive 
strains is very close to the stress attained in the second part of the first full cycle. 
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Fig. 7 – Symmetric and asymmetric tests: (a)  strain histories imposed; (b) and relevant hysteretic response 

Further investigations on the direction-dependence of the Mullins effect were carried out by 
performing a different kind of test consisting of imposing shear strains in opposite directions. In 
particular, the rubber has been subjected to 6 consecutive cycles in a sequence of increasing strain 
amplitudes along two different directions, x and y, where y is rotated by 180° with respect to x. The 
strain amplitudes considered for the cycles were 0.25, 0.5, 1, 1.5, and 2.5, and the rate of 
deformation was 2 s-1. The testpiece was rested for 60 seconds between each consecutive set of 6 
cycles at every amplitude and direction (which implies a partial recovery of the Mullins effect). Fig. 
8 shows the imposed strain history, whereas the obtained stress-strain loops are reported in Fig. 9a.  
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Fig. 8 –  Imposed strain history of the rotated double shear test  

The response in the y-direction is very close to the response in the x- direction, confirming that the 
Mullins effect is direction-dependent. For comparison purpose, the response to the same strain 
history but without rotation (x = y) is illustrated in Fig. 9b. It is evident that the contribution of the 



 
 

Mullins effect is reduced when repeating the tests in the same direction, though it is not negligible 
due to the recovery occurring between each test sequence. 
Finally, the recovery properties after a sufficient long period of time are investigated. To this 
purpose, a test at maximum strain amplitude 5.2max   and rate  4s-1 was performed on a 

sample previously tested at the same maximum amplitude after a period of rest of 6 months and 
results are compared with the primary curve related to the same strain rate. The comparison is 
shown in Fig. 10, where it can be observed that the primary curve  of the test repeated after 6 month 
is very close to the primary loading curve of the virgin rubber, even if some differences can be 
observed especially at small strain amplitudes. This confirms that the Mullins effect is a reversible 
phenomenon for this HDNR compound, i.e. it has recovered most of its initial properties after 6 
months rest.  
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Fig. 9 –  Stress-strain cycles: (a) rotated and (b) not rotated double shear test 
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Fig. 10 – Mullins effect recovery  

HDNR CONSTITUTIVE MODEL 

This section describes a one-dimensional constitutive model for HDNR in simple shear accounting 
for the strain-path history dependent phenomena observed in the experimental test results presented 
in the previous section. The proposed model introduces several advances in the description of the 
stress-softening behaviour of rubber. In fact, while several analytical models are available in the 
technical literature that allow an accurate simulation of the stable HDNR bearing behaviour, few 
models are able to describe the transient softening response and none of these models account for 
the direction dependence of the Mullins effect. The proposed model is tested not only against the 



 
 

experimental data above, but also with respect to two additional double shear tests, to compare 
simulation and experiment for strain histories representative of earthquakes, before and after 
scragging. 

Models overview and proposed model 

The proposed model provides a relation between the shear strain  and the shear stress , from 
which the bearing force-displacement relationship can be evaluated through simple geometrical 
considerations. In particular, the stress-strain material response is decomposed into two 
contributions:  

 m  0   (1) 

where the former ( 0 ) is the stable component not affected by the strain history, whereas the latter 

( m ) describes the additional transient response, which degenerates as the stress-softening evolves 

during the strain history.  
Similarly to Dall’Asta and Ragni [22], the component 0 of the stress is described by assuming a 

rheological model consisting of a nonlinear elastic spring, modelling the non linear stiffening 
behaviour of the rubber at large strains, acting in parallel with two rate-dependent elements, 
modelling the dissipative component of the response [19-24]. It can be expressed in the form: 

      22110 ,,,, vvvve       (2) 

where: 

    cbae  35    (3) 

represents the nonlinear elastic contribution which still exists once all the overstresses are relaxed 
(see Fig. 6b). The other terms describe the over-stresses relaxing in time. At least two terms are 
required to describe different material behaviours: the term 1v , representing the main dissipative 

contribution of the response  not sensitive to strain rates typical of seismic histories (but sensitive to 
very low strain rates as showed by the tests at strain rate equal to 1.410-5 s-1 reported in Fig.5b), and 
the term 2v , which is a visco-elastic term sensitive to strain rates typical of seismic histories, but 

very low for the rubber considered in this paper (see Fig. 5b). Different approaches can be found in 
the technical literature for modelling the main dissipative contribution. In [22], a rate-dependent 
viscous-plastic model was used, based on the plastic model originally proposed by Ozdemir [37]. 
Differently, rate independent hysteretic models based on different formulations were adopted by 
other authors [19-21,23-24]. Among these rate-independent models, the model proposed in Huang 
[38] and later extended in Grant et al. [24-25] on the basis of the Bounding Surface (BS) theory, 
firstly developed by Dafalias and Popov [39], is particularly convenient for the HDNR behaviour 
simulation, since it enables more accurate description of the change of stiffness with the strain 
amplitude for both loading and unloading paths. In particular, in Grant [24-25] a BS model with a 
vanishing elastic region depending on the current value of shear strain was adopted to better match 
the tests. In this paper, a modified BS model with vanishing elastic region is also proposed to 
describe the main dissipative contribution 1v . In particular, based on the experimental results, the 

modifications described in the following are introduced. First of all, a dashpot is considered in 
series with the BS model, in order to maintain the relaxation property of the model. As a 
consequence of this assumption and the elastic region being vanishing, the plastic shear strain p  is 

the difference between the total shear strain   and the inelastic strain 1v , whose rate is controlled  

by the following evolution law 

   111 vv     (4) 



 
 

The stress is provided by an incremental law, where the shear stress rate 1v  is obtain from the 

plastic shear strain rate  1vp     through the relation: 

 ppv E   1   (5) 

The parameter Ep is the varying plastic modulus describing the non linear behaviour of the rubber 
from the yielding surface (vanishing in this case) to the bounding surface (R) . It can be written as: 

 2
10 pR     (6) 

The expression for the plastic modulus may have many different forms [24,39,40]. In this paper, 
one similar to Grant et al. [24] is used: 

      0 2 2 1 22p p p p p
p

dR
E E sign sign

d
          


         (7) 

where  0pE  is the value of the plastic modulus when the yield surface and boundary surface 

intersect, while  is the positive difference between the current stress and the appropriate bounding 

surface  pR sign   , being positive in loading processes (when  >0) and negative in unloading 

processes (when  <0), as expressed by the following equation: 

   1p vR sign       (8) 

According to Equation (7), the plastic modulus becomes infinite when  tends to infinity. However, 
differently from [24] and in order to better fit the experimental results, it is assumed that the 
parameter 2  controlling the dependence of the plastic modulus on the distance   linearly depends 
on the magnitude of the current plastic deformation, according to the following expression:   

 p 2,21,22    (9) 

Finally, for the viscous term 2v , due to its very low contribution to the global behaviour for the 

rubber considered, a simple Maxwell element is adopted: 

    2222 , vvvv E     (10) 

The internal variable v2 describes the inelastic strain and its evolution is given by the law: 

  2222 , vvv     (11) 

where the relaxation time is 1/( 2 E2). The material parameters adopted for the model have been 
calibrated based on the results of the tests. More specifically, the elastic contribution has been fitted 
first by considering the multi-relaxation test results of Fig. 6. Once the elastic contribution is 
identified, the parameters related to the main dissipative contribution have been determined on the 
basis of the stable cycles of the test results reported in Fig. 2b. Finally, the parameters of the visco-
elastic contribution have been calibrated by considering the stable cycles with different strain rates 
reported in Fig. 5. Table 1 reports the values obtained for the parameters. 
 
Table 1 – Model parameters of the stable (left) and transient (right) response 

e v1 v2  me mv 

a b c 0 1 2,1 2,2 1 E2 2  e e  v v 
MPa MPa MPa MPa MPa - - MPa-1s-1 MPa MPa-1s-1  - - - - - - 

0.015 -0.05 0.28 0.14 0.08 3.5 1.5 0.4 0.068 8.5  1.7 0.25 0.4 2.2 0.13 0.4 



 
 

In Fig. 11 the elastic contribution (Fig. 11a) and the two dissipative contributions (Fig.11b) are 
shown separately for the test described in Fig. 2. 
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Fig. 11 –  Contributions for the test described in Fig. 2b: (a) elastic; (b) dissipative 

The stress-softening behaviour of the rubber response is usually described through damage models 
[20,22,24] and the key point is in the definition of the laws describing the damage evolution. The 
model proposed in this paper recovers some basic ideas already proposed in Dall’Asta and Ragni 
[22], such as the use of different damage parameters and the dependence of the damage limits on 
the current strain, but it is based on a new set of damage parameters and associated evolution laws 
that better describe the response observed in the tests. In particular, the tests reported in Fig. 2 and 3 
show that the major effect is progressive reduction of the stiffness as the strain history progresses 
and that the material tends to different stable loops for different maximum strains experienced by 
the rubber. This phenomenon can be described by means of a damage parameter qe affecting the 
elastic response ( )e and which progressively grows towards a limit value which varies with the 

current total strain. However, in order to account for the direction dependence of the stress-
softening, as highlighted by the experimental results reported in Figs. 7 and 9, two separate damage 

parameters 
eq  and 

eq  evolving only for positive and negative strains respectively are introduced. 

A minor softening effect concerns the reduction of the cycle amplitude at zero strain, as measured 
by the stress intercept. This latter effect cannot be related to an elastic contribution, which is null for 
zero strains, thus the response reduction is due to a further softening mechanism, described by the 
parameter qv involving the dissipative response (v1 and v2). Note that the direction dependence of 
the softening relates to the elastic contribution only and cannot be assumed for qv, because this 
would lead to discontinuities in the shear stress by passing from positive to negative strains which 
are not observed in the tests. Thus, this parameter evolves both for positive and negative strains so 
that the response in the negative direction is slightly affected by cycling at the positive direction, as 
observed in the experiments. Assuming that the initial response is proportional to the stable one, the 
stress-softening response can be written as:  

 m me mv        (12) 

where the damage contribution affecting the elastic response (me) along the two directions and the 
one affecting the dissipative response (mv)  can be expressed as: 

   eeeme q   1  for  0  (13a) 

   eeeme q   1  for 0    (13b) 

     211 vvvvmv q     (13c) 



 
 

For all the damage parameters it is assumed that their evolution is proportional to the strain rate, i.e. 
they evolve as the strain history progresses, and that their limit value depends on the current value 
of strain. In particular, the evolution laws of the elastic damage parameters for 0  are posed in 
the following form:  

0
eq                                                      (14a)  

mod
e e eq q


 


 

  
      

                if     
mod

eq





  
  
 

   (14b) 

0
eq                                                if     

mod
eq





  
  
 

 (14c)  

For 0  the roles of 
eq  and 

eq  are interchanged in equations 14 and  is replaced by  . During 

a cyclic strain history both the damage parameters 
eq and 

eq  tend to the same limit value, 

depending on the amplitude of the strain cycle and the velocity of the damage evolution is 

controlled by the parameter e . In particular, the maximum value that can be reached by 
eq  and 

eq  

for strain amplitudes not exceeding   is given by the expression   mod  where mod  is the 

maximum amplitude for which the model is deemed valid ( mod =2.5 for this model). It should be 

noted that Eqn. 14b ensures that the damage parameters cannot decrease and that they do not 
increase further once their limit depending on the current strain has been attained. Finally, for the 

damage parameter qv a similar evolution law is assumed, with the same maximum values as for 
eq  

and 
eq  but with a different velocity parameter ( v ) and without the strain-direction dependency:  
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 0vq                                              if     


















mod
vq   (15b)  

The values of the material parameters adopted for describing the stress-softening, based on fitting to 
the experimental test results of Figs. 2b, 3 and 7, are given in Table 1. Fig. 12 shows the two 
contributions of the transient response for the test described in Fig. 2b. 
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Fig. 12 –Softening contributions for the test described in Fig. 2b: (a) me affecting the elastic response ; (b) mv affecting 
the dissipative response. 



 
 

Numerical simulation of the tests 

The test described in Fig. 7 and consisting of cycles with positive strains followed by cycles with 
negative strains is firstly simulated to show the ability of the proposed model to describe the 
direction-dependence of the Mullins effect. Fig. 13a compares the hysteretic loops obtained by 
testing and by simulation, whereas Fig. 13b shows the evolution with cycling of the three damage 
parameters of the model up to the limit corresponding to the maximum strain amplitude of 1.5. Fig. 
14a compares the experimental and numerical hysteretic responses corresponding to the test of Fig. 
2b, whereas Fig. 14b the evolution of the damage parameters of the transient response according to 
the numerical model.  

Fig. 13 –  (a) Simulation of the asymmetric test of Fig. 7 half cycle tests;  (b) evolution of damage parameters 
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Fig. 14 – (a) Simulation of the test at strain rate 1s-1 of Fig. 2b; (b) evolution of damage parameters 

Fig. 15 reports the results of the simulation of the tests described in Fig. 3. In all the cases, the 
agreement between experimental and numerical results is very satisfactory. Thus, the ability of the 
model to predict the near-stable and transient response of the rubber at different strain rates and 
strain amplitudes is verified, also for very small strain amplitudes (Fig. 15c,d). 
Finally, the ability of the model to simulate the seismic response of isolated structures has been 
checked by performing two further tests in which the strain histories reported in Fig. 16 have been 
imposed. These imposed strain histories represent the simulated displacement responses of a S-DOF 
isolated structure under a near-fault (Fig. 16a) and a far-field (Fig. 16b) record prior to and after 
scragging cycles consisting of ten cycles at 0.5 Hz with 250% shear strain, as can be seen in Fig. 16. 
The strain history before the application of scragging is used to test the capability of the HDNR 
model to simulate the behaviour of the rubber in the virgin isolators, whereas the strain history after 
the scragging procedure is used for validating the model for simulation of the scragged behaviour. 
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Fig. 15 – Simulation of the tests of Fig. 3 at strain rate 4s-1 and different maximum strain amplitudes 
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Fig. 16 –  Imposed strain histories simulating the response under seismic excitations before and after a scragging 
procedure: (a)  near fault record (Northridge-0-Newhall-W Pico Canyon station); (b) far-field record  (Imperial Valley-
06-Delta station) 

Fig. 17 compares the experimental and numerical responses obtained under the near-fault record 
(Figs. 17a,b) and the far-field record (Figs. 17c,d) respectively in the virgin and scragged 
conditions. In all the cases, good agreement between the experimental and numerical response is 
obtained., 
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Fig. 17 –  Stress-strain simulations for the seismic response excitations of Figure 16:  (a) near fault  prior to scragging; 
(b) near-fault after scragging;  (c) far-field prior to scragging; (d) far-field. after scragging .  

SEISMIC RESPONSE  

In this section, the proposed rubber model is employed to simulate the horizontal response under the 
design conditions (far from the collapse) of virgin laminated HDNR bearings with shape factors 
used in the design practice [16,17], so that the hypothesis of uniform simple shear is realistic. In 
particular, numerical analyses aim at evaluating the influence of the stress softening on the 
predicted seismic response of isolated structures. To this purpose, a simplified isolated structure 
modelled as a S-DOF system is considered and the process-dependent response has been studied by 
performing two different sets of dynamic analyses under seismic events with different duration and 
frequency content. More precisely, the case of near-fault (NF) ground motions and the case of far-
field (FF) ground motions are separately studied. To highlight the contribution of the stress-
softening, the solution provided by the proposed model for the virgin material is compared with the 
solution evaluated by using a “scragged” model, where the softening corresponding to the design 
strain amplitude is fully developed. It is noteworthy that this latter condition may not occur during 
the lifetime of the isolated structure, because of the recovery properties of the Mullins effect and the 
long time between earthquakes of significant intensity. However, the kinetics of recovery have so 
far not been thoroughly investigated, nor does the numerical model as yet account for any recovery 
of the Mullins effect. The comparison given here permits to investigate and evaluate the highest 
possible effects of the stress-softening on the seismic response of structures isolated with HDNR. 

Case study and seismic response evaluation 



 
 

The case study consists of an isolated structure modelled as a S-DOF system, with a mass M=800 
kNs2/m which is assumed representative of that of a realistic multistorey building. For the isolation 
system, a rubber thickness equal to tr=0.138 m is assumed in order to have a maximum shear strain 
equal to 1.5 under a realistic value of the maximum displacement equal to 0.2m. The isolation 
system is finally defined by the total rubber area, which is assumed equal to A=0.917 m2. For 
example, a number of 6 isolators may be assumed, with diameter D=450mm and total rubber 
thickness arranged in 28 layers of thickness t about 5mm (corresponding to S1=D/4t=22.5 and 
S2=D/tr=3.2). The total stiffness of the isolation systems can be estimated by Kis=GA/tr, where 
G=1.18 N/mm2 is the shear modulus evaluated as the average over three cycles [35] of a numerical 
sinusoidal test carried out at the design shear amplitude and frequency. The relevant vibration 
period of the isolated structure is about Tis=2 s.  
The load-history dependent behaviour of the virgin isolation system is described by the model 
introduced in the previous section and several ground motions are considered to evaluate the effects 
due to the load-history dependence. In particular, two sets of ground motion records are considered, 
one representative of far field (FF) and the other of near-fault (NF) seismic inputs. Considering that 
FF and NF have strongly different time histories and frequency contents, response with different 
characteristics are expected, thus the two cases are studied separately. General information about 
the records employed and the relevant scale factors are reported in Tables 2 and 3. Table 3 also 
reports the period Tp of the dominant pulses of the NF records. It can be observed that the pulse 
periods are higher than the design isolation period (Tis=2s). Moreover, scale factors for NF records 
are all lower than 1 and  in general smaller scale factors are required for Tp values close to Tis while 
higher scale factors are required for Tp values much higher than Tis and away from resonance 
[41,42]. 
 
Table 2. Far-field ground motions. 

Name Event Station Magnitude Rrup(km) Component PGA (g) SF 

FF1  Northridge-01   Beverly Hills-12520 Mulhol  6.69 18.36 H1 0.535 1.87 

FF2  Northridge-01   Beverly Hills-14145 Mulhol  6.69 17.15 H1 0.440 0.80 

FF3  Northridge-01   Castaic - Old Ridge Route     6.69 20.72 H1 0.505 1.19 

FF4  Imperial Valley-06   Delta                         6.53 22.03 H1 0.262 1.47 

FF5  Imperial Valley-06   Delta                         6.53 22.03 H2 0.262 1.26 

FF6  Imperial Valley-06    El Centro Array #13           6.53 21.98 H1 0.118 3.65 

FF7  Imperial Valley-06    Niland Fire Station           6.53 36.92 H1 0.088 5.32 

Rrup= Closest distance to rupture plane, H # =component name, SF =scale factor 
 

Table 3. Near-fault ground motions. 

Name Event Station Magnitude Rrup(km) Comp.-Tp(s) PGA(g) SF 

NF1  Northridge-01   Sylmar-Converter Sta      6.69 5.35 FN - 3.5 0.698 0.50 

NF2  Northridge-01   Sylmar-Converter Sta East 6.69 5.19 FN - 3.5 0.686 0.68 

NF3  Landers   Lucerne  7.28 2.19 FN - 5.1 0.727 0.60 

NF4  Northridge-01         Newhall - W Pico Canyon 6.69 5.48 FN - 2.4 0.363 0.45 

NF5  Imperial Valley-06   El Centro Array #6            6.53 1.35 FN - 3.8 0.448 0.66 

NF6  Imperial Valley-06   El Centro Array #6            6.53 1.35 FP - 2.6 0.448 0.78 

NF7  Imperial Valley-06   El Centro Array #7            6.53 0.56 FN - 4.2 0.437 0.72 
Rrup= Closest distance to rupture plane, FN=fault normal component    NP= fault parallel component, SF =scale factor 
Tp = pulse period 
 
In order to compare results for different seismic inputs, the selected ground motions are scaled to 
provide a maximum value of displacement equal to 0.2m in the model with the "virgin" HDNR 
bearings, corresponding to the design strain amplitude is =1.5. For each analysis, in addition to the 
“virgin” case, also the "scragged" case is considered. For the latter case the assumption is that the 
stress-softening effect has fully exhausted at the design strain amplitude is=1.5.  This condition, 



 
 

from Eqs.14-15, corresponds to an initial value of the damage parameters equal to the limit value at 
the design strain amplitude, i.e. (1.5/2.5)0.4=0.82, evolving only if the strain amplitude 1.5 is 
exceeded. In this way, the effects of the stress-softening can be effectively quantified under 
different path histories producing the same maximum strain amplitude in the virgin case.  
Table 4 reports the results of all the time-history analyses in terms of peak values of bearing shear 
strain b and bearing shear stress b obtained by considering the virgin and the scragged bearing 
properties, for both the FF and NF records. First of all, note that the results related to the virgin case 
confirm that the virgin behaviour of bearings is significantly influenced by the displacement-history 
dependent softening process. In fact, although in all the analyses the maximum shear strain is equal 
to 1.5, the corresponding shear stresses are quite different. In particular, the maximum shear stresses 
obtained for the FF records range from 1.54 MPa, when the softening during the excitation is 
greatest, to 2.04 MPa, when the softening is least. The highest values of maximum stress 
correspond to response histories characterized by few small-amplitude cycles taking place before 
the largest one, whereas the lowest values correspond to histories with several cycles taking place 
before the largest one. The responses to record FF2 and to record FF5 are representative of these 
two cases, as can be seen in the plots of the hysteretic response of the virgin rubber (green lines in 
Fig.s 18a and 18b) and of the evolution of the three damage parameters for these records (Fig.s 18c 
and 18d). Differently, in the case of NF records, the response histories are all characterized by few 
small-amplitude cycles before the largest one, thus the values of the shear stresses are all high and 
similar to each other (from 1.82 MPa to 2.08 MPa). This trend can also be observed in Fig.s 19a and 
19b, plotting the shear stress-strain diagram relevant to two NF records (NF3 and NF6), and Figs. 
19c and 19d, reporting the relevant evolution of the damage parameters of the HDNR model. 
Table 4. Peak response values for FF and NF ground motions. 

FF records NF records 
 b [-] b [MPa]  b [-] b [MPa] 
acc. virgin scragged virgin scragged acc. virgin scraggedvirgin scragged
FF1 1.500 1.365 1.924 0.972 NF1 1.500 2.529 1.815 2.859 
FF2 1.500 1.334 1.896 0.946 NF2 1.500 2.072 2.075 1.767 
FF3 1.500 1.429 2.044 0.994 NF3 1.500 2.221 2.038 2.067 
FF4 1.500 2.049 1.543 1.691 NF4 1.500 2.324 2.056 2.342 
FF5 1.500 1.696 1.595 1.276 NF5 1.500 2.681 2.045 3.560 
FF6 1.500 2.134 1.845 1.891 NF6 1.500 2.497 1.885 2.822 
FF7 1.500 1.768 1.767 1.325 NF7 1.500 2.689 1.974 3.594 
average 1.500 1.682 1.802 1.299 average 1.500 2.430 1.984 2.716 

 
Regarding the comparison between the virgin and scragged cases, in order to explain the different 
trends observed in the results it may be useful to note first that the FF records are characterized by 
displacement response spectra which remain constant (Fig. 18e) or increase (Fig. 18f) for increasing 
period, whereas NF records are always characterized by displacement spectra which increase 
significantly at large periods (Fig. 19e and Fig. 19f). In the case of FF records with constant spectra, 
although the scragged and virgin devices have different dynamic properties and relevant effective 
vibration periods, they undergo similar displacements. Thus, the scragged device being more 
flexible, the maximum stresses attained in the scragged case are smaller (see FF1, FF2, FF3 in 
Table 4 and Fig. 18a). In contrast, in the case of FF records with increasing displacement spectra at 
large periods, the scragged bearing system, characterized by a higher effective period, undergoes 
larger displacements than the virgin one. However, in the cases where the softening is maximum 
(i.e., several cycles taking place before the largest one) the differences in terms of strain demand 
between the virgin and scragged case are not very large and the maximum stresses attained by the 
scragged device remain smaller (Fig. 18b and FF5, FF7 in Table 4). Conversely, in the cases in 
which the softening is limited (i.e. few small-amplitude cycles taking place before the largest one) 



 
 

the differences in terms of strain demand between the virgin and scragged cases are high (see FF4, 
FF6 in Table 4) and the maximum stresses achieved by the scragged device are significantly larger. 
Moreover, it is noted that despite the differences in the numbers of cycles for the various records, 
the damage parameters never attain the limit value for the design strain (Fig. 18c,d). 
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Fig. 18 – Result of the analyses for two FF records: shear stress-strain response of virgin and scragged isolators (a,b), 
evolution of damage parameters (c,d), 5% damped elastic displacement response spectra (e,f). 

Under the action of NF ground motions, as a consequence of the combined effects of load paths  
with minimal softening (see Fig. 19c,d), and of displacement spectra that increase significantly with 
the period, the response in terms of maximum strain of the scragged bearing is always significantly 
larger than the response of the virgin device, as is observed in Fig. 19a (representative of the 
response to NF2, NF3, NF4 records in Table 4), or even more clearly in Fig.19b (representative of 



 
 

the response to NF1, NF5, NF6 and NF7 records in Table 4), where a strain amplitude in the range 
of the stiffening response of the rubber is attained by the scragged bearing. In the first case, the 
maximum shear stresses of the virgin and scragged devices are similar to each other, whereas in the 
second case the shear stress experienced by the scragged bearing is significantly larger. Note that in 
both the cases, the maximum strain significantly exceeds the design strain equal to 1.5, thus also the 
damage parameters in the scragged response attains values beyond the limit value 0.82 (Fig. 19c,d). 
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Fig. 19 – Result of the analyses for two NF records: shear stress-strain response of virgin and scragged isolators (a,b), 
evolution of damage parameters (c,d), 5% damped elastic displacement response spectra (e,f). 



 
 

On average, in the case of FF motions the maximum strain is 12% lower for the virgin case than for 
the scragged case, whereas the maximum stress is 27% larger. Thus, as expected, modelling the 
rubber in its scragged state leads to an overestimation of the displacements and an underestimation 
of the stress of the bearing and thus of the forces transmitted to the isolated superstructure. 
However, the difference between the forces is limited (lower with respect to the ratio between the 
maximum stresses of the first and tenth cycle at the design strain amplitude, which is about 1.6) 
because of the smaller displacements attained by the model for virgin rubber behaviour. In contrast, 
in the case of NF records, both the average strain and the average stress are smaller in the case 
where virgin rubber properties are considered. In particular, the normalized differences are 
respectively 62% for the strain and 37% for the stress. This result is of particular interest because 
NF earthquakes are very critical for isolated systems in consequence of the large displacements that 
they can induce [41-42] but accounting for stress softening from the virgin state during simulated 
responses predicts significant reduction of this negative effect. It is worth noting that NF ground 
motions are still critical also by considering the Mullins effect, since the scale factors  reported in 
Table 3 are all lower than 1 in order to maintain the design displacement at 0.2 m. Instead, if the 
bearings had to be designed to the unscaled ground motions, a larger design displacement or an 
additional damping source would be required, but the same differences would be observed between 
the cases with and without the stress softening. Furthermore, it is worth mentioning that results 
presented in this section are only qualitative and focused on the influence of the shear stress 
softening on the seismic response of isolated structures. A more complete and accurate analysis 
would consider: (i) multiple degrees of freedom model of the structural system,  (ii) the actual 
multi-axial behaviour of HDNR isolators calibrated on the basis of experimental tests on bearing 
prototypes, (iii)  all checks prescribed by current seismic codes for the building and the isolation 
devices.  
 

CONCLUSIONS 

This paper addresses experimental and numerical investigations carried out to better understand and 
model the stress-softening behaviour of high-damping natural rubber (HDNR) and its impact on the 
seismic response of isolated systems.  
The experimental campaign, carried out at TARRC on a wide set of virgin HDNR pieces, has been 
tailored to study some aspects related to the stress-softening effect which have received minor 
attention in the past, such as the direction-dependence and the recovery properties, and to 
characterize the transient (i.e. softening) and stable (i.e. fully scragged) behaviour of a HDNR 
compound commonly used for isolation bearings under different strain histories. The test results 
have been used to devise and fit a model for simulating the rubber behavior in shear, which 
advances the state of the art in the description of the transient behavior and which can be used to 
describe the horizontal shear behavior of virgin HDNR bearings for typical values of shape factors 
and design actions. Near the collapse conditions the bearing behavior is more complex, however the 
proposed model can be used to improve the description of the horizontal virgin behavior in more 
complex coupled multiaxial models of bearings. In particular, with reference to the transient 
response, two damage parameters have been introduced to describe the uniaxial but  direction-
dependent (i.e. positive or negative) damage process affecting the elastic response contribution, and 
a further damage parameter to describe the damage process affecting the dissipative contribution. 
The proposed model has been used to analyse the seismic response under the design condition of a 
simplified isolated structure modelled as a S-DOF system subjected to ground motions with 
different characteristics for the isolators: either the virgin condition, with consequent softening 
during the excitation, and the scragged condition, without such transient softening. The results show 
that, except for the special case of NF ground motions, the scragged condition, considered less 
realistic albeit easier to model, leads to an overestimation of the bearing displacements and an 
underestimation of the forces acting on the bearings and thus transmitted to the structure. However, 



 
 

the obtained differences are not large, suggesting simplified approaches, taken by Eurocode 8 and 
other international seismic codes such as AASHTO 2010 or ASCE/SEI 41-139 based on safety 
factors or property modification factors applied to simple elasto-plastic or visco-elastic models 
could be justified, thus accounting indirectly for the consequences of the Mullins effect and its 
possible recovery. In contrast, in the case of NF records, usually considered very critical for isolated 
systems, the results show that simulations based on the scragged condition result in very large 
displacements, often attaining the range of the stiffening response of the rubber, and to very high 
bearing stresses. Nevertheless, NF ground motions remain a challenge for the design of isolated 
structures even with stress softening taken into account, as a large design displacement or additional 
damping source is likely to be called for. In any case, the use of models accounting for the virgin 
condition and consequent stress-softening during the seismic excitation due to NF records is 
recommended to have a reliable estimate of the bearing displacements and of the eventual 
additional damping required. Furthermore, further studies should be carried out by employing more 
accurate building models as well as the actual distribution and multi-axial behaviour of bearings. 
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