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Abstract: 

Scour may act as a threat to coastal structures stability and reduce their functionality. Thus, 

protection against scour can guarantee these structures’ intended performance, which can be 

achieved by the accurate prediction of the maximum scour depth. Since the hydrodynamics of 

scour is very complex, existing formulas cannot produce good predictions. Therefore, in this 

paper, Genetic Programming (GP) and Artificial Neural Networks (ANNs) have been used to 

predict the maximum scour depth at breakwaters due to non-breaking waves ( nbHSmax ). The 

models have been built using the relative water depth at the toe ( nbtoe Lh ), the Shields parameter 

( ), the non-breaking wave steepness ( nbnb LH ), and the reflection coefficient ( Cr ), where in 

the case of irregular waves, Hnb=Hrms, Tnb=Tpeak and Lnb is the wavelength associated with the 

peak period (Lnb= Lp). 95 experimental datasets gathered from published literature on small-scale 

experiments have been used to develop the GP and ANNs models. The results indicate that the 

developed models perform significantly better than the empirical formulas derived from the 

mentioned experiments. The GP model is to be preferred, because it performed marginally better 

than the ANNs model and also produced an accurate and physically-sound equation for the 

prediction of the maximum scour depth. Furthermore, the average percentage change (APC) of 

input parameters in the GP and ANNs models shows that the maximum scour depth dependence 

on the reflection coefficient is larger than that of other input parameters. 
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1. Introduction 

Coastal structures such as breakwaters are constructed to protect harbors and vessels from 

wave attacks. Proper and optimum initial design of these structures can eliminate the main 

construction problems, such as the structure instability, which could cause significant unforeseen 

expenditure. Therefore, optimizing the design of coastal structures is fundamental. 

Scour, which may act as a threat to the stability and functionality of marine structures, is one 

of the main reasons for the failure of coastal (Hughes and Fowler, 1991; Lillycrop and Hughes, 

1993; Oumeraci, 1994; Whitehouse, 1998) and offshore (e.g. Mattioli et al., 2012, 2013) 

structures. Therefore, protecting structures against scour is critical in the construction of well-

functioning man made harbors. To do this, the accurate prediction of maximum scour depth at 

coastal structures has inevitable importance. Although several studies have been conducted on 

scour at coastal structures, the complexity of onshore hydrodynamic and complex interaction 

between incoming waves, bed sediments and structure has impeded the accurate maximum scour 

depth prediction. Scour at breakwaters or seawalls (vertical or inclined) can be categorized into 

two main classes: scour at the head of coastal structures; and scour at the trunk section of coastal 

structures (due to breaking or non-breaking waves). Since the present paper focuses on 

predicting of the maximum scour depth at breakwaters due to non-breaking waves (hereafter maxS

), only the non-breaking wave-induced scour depth at the trunk section of coastal structures has 

been discussed here. It is noted that maxS  is the ultimate value of scour depth when the 

equilibrium bottom profile is reached and it is independent of time. 

Scour at inclined and vertical breakwaters due to non-breaking waves was investigated in 

several studies based on small-scale experiments. Sawaragi (1966) and Baquerizo and Losada 

(1988) investigated the relation between the wave reflection and the equilibrium scour depth at a 

rubble-mound breakwater and suggested that the scour depth becomes larger with the increase of 

the reflection coefficient (Cr ). Similarly, using small-scale experiments, Oumeraci (1994) 

studied the effect of breakwater slope on maxS  and suggested that the maximum scour depth in 

front of a vertical breakwater is larger than that at sloped breakwaters. Furthermore, he indicated 

that the key mechanism for scour due to non-breaking waves is the action of standing waves 

(fully or partially), which leads to a steady streaming pattern. Carter et al. (1973) investigated the 

regular and irregular wave-induced scour depth at vertical breakwaters, and showed that the scour 
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and deposition pattern in front of the vertical breakwaters emerges in the form of alternating scour 

and deposition developing parallel to the shoreline. This finding has also been obtained by 

Baquerizo and Losada (1988). 

Soft computing approaches like Artificial Neural Networks (ANNs) and Genetic 

Programming (GP) have been successfully employed for the prediction of scour depth in various 

fields of coastal engineering, such as the estimation of scour depth below free overfall spillways 

(Samadi et al., 2015), the estimation of scour around submarine pipelines (Kızılöz et al, 2015), 

the prediction of scour depth under live-bed conditions at river confluences (Balouchi et al., 

2015), the prediction of scour depth in bridges (Akib et al., 2014), the prediction of scour at a 

bridge abutment (Azamathulla, 2012), the determination of the most important parameters on 

scour at coastal structures (Yeganeh-Bakhtiary et al., 2012; Pourzangbar, 2012), the study of 

scour below submerged pipeline (Azamathulla et al., 2011). Regarding the mentioned studies, 

GP and ANNs can predict scour depth at coastal structures with high precision, and, to the best 

knowledge of the authors, these approaches have not been implemented in the prediction of the 

maxS . Therefore, ANNs and GP have been used in this study as robust and promising tools. 

Furthermore, GP is capable of producing physically-sound and accurate solutions in the form of 

mathematical equations. Using this capability of GP, a new formula was developed for the 

prediction of maxS . 

This study is structured as follows: Section 2 shows the overview of scour governing 

parameters; section 3 presents ANNs and GP concepts. The modeling approach and the data at 

the basis of the analyses are reported in section 3; the results and discussions are given in section 

4; the sensitivity analysis is given in section 5 and finally section 6 contains this study summary 

and the conclusion. 

 

2.   Scour governing variables and formulas 

Scour at the trunk section of breakwaters due to non-breaking waves depends on three 

classes of parameters: the wave characteristics, the sediment properties and the breakwater 

configuration. Several small-scale experimental studies are available that provide useful 

information about the governing parameters of scour at breakwaters. Among the most important 

experimental studies that also led to empirical formulas to predict scour depth we find the 

following. 
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Xie (1981) examined the scouring profile of a bed consisting of fine and coarse sediments at 

a vertical breakwater. Xie (1981)’s experiments were performed using four different sediment 

diameters d50=0.106, 0.150, 0.200, and 0.780 mm, d50 being the mean diameter of bed sediments. 

The fall velocities ( sV ) associated with d50=0.106, 0.150, 0.200, and 0.780 mm are Vs= 0.7, 1.5, 

2.2, and 11 cm/s., respectively. He showed that the scour profile is utterly different for fine and 

coarse sediments depending on the waves’ characteristics. In the case of fine material 

(suspension mode of sand transport), the bed sediments move in suspension from the node 

towards the antinode, while in the case of relatively coarse sand (bedload inception), the 

sediments transport are governed by the bed shear and scour occurs halfway between the node 

and the antinode, and deposition at the node, this finding is in line with De best et al. (1971) 

results. Xie proposed the following threshold for bedload inception: 

 

5.16max 


sV

cr
UU

 (1) 

where 
axmU   is the maximum value of the orbital velocity at the bed, crU  is the critical velocity 

for initiation of the bed sediments motion and sV  is the sand grain fall velocity. The bed 

sediments are transported in suspension mode (fine sediments) when 5.16V
cr

U
max

U s  . 

Based on the results of mobile-bed flume experiments, Xie (1981) proposed Eq. (2) for the 

prediction of the maximum scour depth at vertical breakwaters: 
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where maxS  is the maximum scour depth (the ultimate value of scour depth when the equilibrium 

bottom profile is reached), nbH  is the non-breaking wave height (both regular and irregular 

waves analysed), h  is the still water depth in deepwater and nbL  is the non-breaking wave length 

(regular or irregular), and 3.0C   (suspension mode of sand transport) for fine sediments and 

4.0C   (bedload mode of sand transport) for coarse sediments. In the following the subscript “nb” 

means “non-breaking” and it is employed to clarify that this study focuses on the scour induced by 
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non-breaking waves. In the case of random waves or irregular waves, Hnb=Hrms, Tnb=Tpeak and Lnb is 

the wavelength associated with the peak period (Lnb= Lp). 

Eq. (2) was proposed to describe the action of fully standing waves condition, thus the effect 

of the structural configuration, such as the breakwater slope, was not accounted for. Although 

this formula is very limited in application, it was the basis for subsequent investigations. To 

amend Xie (1981)’s formula deficiencies, Sumer and Fredsøe (2000) conducted some wave 

flume small-scale experimental studies on scour at rubble-mound and vertical breakwaters. They 

concluded that the wave reflection is the most important phenomenon accounting for the effects 

of breakwater slope and structural configuration, and, thus, suggested the following empirical 

equation to predict the maximum scour depth at a vertical or a rubble-mound breakwater: 
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where   is the breakwater slope in the range of 30 - 90 degrees. Eq. (3) includes the effect of the 

breakwater slope, while the effects of structural configuration, breakwater submergence and 

permeability, sediments properties and bed slope were not accounted for. 

Lee and Mizutani (2008) investigated the scour at vertical submerged breakwaters. In 

agreement with Sumer and Fredsøe (2000)’s findings, they introduced the reflection coefficient 

as the main parameter affecting the scour depth. Their proposed formula is as follows: 
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where Cr is the reflection coefficient. 

This equation accounts for the structural configuration, the relative water depth at the toe of 

the breakwater and the wave height. However, it cannot be used to predict the scour depth for fully 
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standing waves since it diverges when 1Cr  . Furthermore, it does not give account of the 

sediment-waves interactions, since sediment properties do not appear in (4). 

The aforementioned studies experimentally investigated the non-breaking wave-induced 

scour at breakwaters and developed regression-based empirical formulas to predict maxS . 

However, the proposed equations do not include the effects of all important parameters for 

scouring; also they do not have adequate accuracy and wide applicability in predicting maxS . 

Hence, developing accurate and robust models that describe the effects of all important 

parameters on the maximum scour depth can be very imperative. 

Since the non-breaking wave-induced scour at breakwaters is the result of a complicated 

interaction between waves, structure, and bed sediments, the waves’ characteristics, the bed 

sediments properties, and the structural configuration are of great importance in the accurate 

prediction of scour depth. Accordingly, the non-breaking wave-induced maximum scour depth (

maxS ), the ultimate value of scour depth when the equilibrium bottom profile is reached, can be 

expressed by the following functional relationship: 

 

),,,,,,,,,,,,,( 5050max  dhTLHPDBhfS stoenbnbnbc    (5) 

 

where   is the structure slope, ch  is the submerged depth of breakwater, B  is the breakwater 

width, 50D  is the median size of breakwater armor stones and P is the permeability of the 

breakwater. These parameters account for the effects of breakwater configuration on the scour 

depth. The non-breaking wave height ( nbH ), the non-breaking wave length ( nbL ), and the wave 

period ( nbT ) represent the incoming waves’ characteristics. nbH  gives the non-breaking wave 

height for both regular waves ( 0H ) and random waves (in the case of random waves rmsnb HH  , 

peaknb TT  , peaknb LL  ). The water depth at the toe ( toeh ), the mass density of water (  ), the 

kinematic viscosity ( ), the specific gravity of sediments ( s ), the mean diameter of bed 

sediments ( 50d ), and the bed slope (  ) indicate the effects of bottom profile and the fluid and 

bed sediments properties on maxS . For a better understanding, the variables appearing in Eq. (5) 

are schematically shown in Fig. 1. 
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Sumer and Fredsøe (2000) attributed the difference between the maximum scour depth of 

vertical and rubble-mound breakwaters to the wave reflection. Lee and Mizutani (2008) 

indicated that the effects of submerged depth, breakwater width and structural configuration can 

be effectively described by the reflection coefficient. Therefore, in this paper, the reflection 

coefficient ( Cr ) accounts for the effects of structural configuration, such as the breakwater slope 

( ), the submerged depth ( ch ), the breakwater width ( B ), the size of armor stones ( 50D ) and the 

permeability of the breakwater ( P ). Sumer and Fredsøe (2000) indicated that the empirical 

formula of Losada and Gimenez-Curto (1981), Eq. (6), can be successfully employed in the 

prediction of the reflection coefficient. Therefore, in the present paper the reflection coefficients 

of Xie (1981), and Sumer and Fredsøe (2000) datasets are calculated based on the following 

equation: 

 

)
gTH2

tan
071.0exp(1(35.1Cr

2
nbnb


















 (6) 

 

in which g  is gravity acceleration. 

The key mechanism for scour at breakwaters due to non-breaking waves is the action of 

standing waves (fully or partially), which leads to a steady streaming pattern and recirculating 

cells (Xie, 1981, Sumer and Fredsøe, 2000). The water depth at the toe of the breakwater ( toeh ) 

can adversely affect the steady streaming strength and the bed sediments transport capability, in 

a way that an increase in the water depth will decrease the steady streaming and recirculating 

cells strength, and so leads to the scour depth decrease. In this study, the relative water depth 

normalized by the non-breaking wave length ( nbtoe Lh ) has been used to account for the effects 

of the water depth on the maxS . The Reynolds number ( Re ) and the Shields parameter ( ) 

account for the wave-seabed interaction and the sediment transport, respectively. According to 

Sumer and Fredsøe (2000), since the bed acts as a rough wall in most coastal engineering 

problems ( 3Re  ), the effects of Re  are taken to be unimportant and, thus, neglected in this 

study. However, the effects of seabed and bed sediments properties on the maximum scour depth 

( maxS ) have been accounted for through the Shields parameter ( 07.0 ). Hajivalie et al. (2008) 
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studied the effect of the bed slope on the pattern of standing waves and indicated that bed slope 

changes the size of steady streaming and recirculating cells. Therefore, the bed slope can be one 

of the fundamental parameters governing the scour at breakwaters due to non-breaking waves. 

However, no experimental or field data that describes the effects of bed slope on scour process is 

available, and, thus, it is impossible to actually describe its role in the present modeling. 

Results of various studies showed that an increase in the wave height intensifies the 

sediment transport capability and ultimately leads to the large scour depths (Sumer and Fredsøe, 

2000, Lee and Mizutani, 2008). Here, the relative non-breaking wave steepness ( nbnb LH ) 

accounts for the wave characteristics effects on maxS . According to the above, Eq. (5) can be cast 

in dimensionless form as follows: 
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where nbHSmax  is the maximum scour depth normalized by the non-breaking wave height, fmU  

is the maximum shear velocity, maxU  is the maximum horizontal velocity of water particles just 

above the wave bottom boundary layer, wf  is the wave friction coefficient, and   is the wave 

angular frequency. 
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3. Soft computing approaches 

3.1. Genetic Programming (GP) 

GP is borrowed from the process of evolution occurring in the nature (survival of the fittest). 

GP employs a “parse tree” structure for the search of its solutions, which are continuingly 

evolving and never fixed. Unlike the most soft computing approaches, like ANNs, GP solutions 

are in the form of tree structure, mathematical equations or computer programs (see Fig. 2). 

Furthermore, there is no assumption made on the structure of the relationship between the 

independent and dependent variables, and, therefore, GP can produce very accurate solutions. 

In order to evolve a model with GP, five preparatory steps must be taken, as follows: 

Step 1: determining the terminal set, including the independent and the dependent variables, 

random coefficients and constant values; 

Step 2: choosing the appropriate functional set (i.e. arithmetic operators (+,-, ×, ÷) and 

mathematical functions (such as sin, tan, Exp, Sqrt)). This step is challenging, in a way that 

inappropriate functional set selection may result in programs that are not physically sound. In 

this paper the functional set are selected based on the trial and error procedure. This may lead to 

subjective overlearning, which can be minimized on the basis of an appropriate uncertainty 

assessment analysis (see section 6). 

Step 3: selecting the fitness criteria to evaluate the individuals’ accuracy. This criterion 

determines the individuals to be selected as parents and survived into the next generation. Here, 

the Root Mean Square Error (RMSE) has been used as fitness criterion. 

Step 4: choosing the controlling parameters like the gene linking function, the genetic 

operators’ rate, and chromosomes. These parameters can control the models’ size and accuracy. 

One of the problems regarding GP models is the Bloat phenomenon, for which the program size 

increases without any corresponding improvement in the models’ fitness. This problem results in 

nested models that are hard to interpret and computationally expensive (Poli and MchPhee, 

2008). The limitation of parse tree depth by applying of Parsimony Pressure may be regarded as 

a proper method as described by Poli and McPhee (2008). Parsimony pressure is a general family 

of methods that considers the size as part of the selection process and can be used to control the 

sizes of evolved models in genetic programming. This method effectively treats the minimization 

of size as a soft constraint and attempts to enforce this constraint using the penalty method, i.e., 
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by decreasing the fitness of programs by an amount that depends on their size. The penalty is, 

typically, simply proportional to the program size. The intensity with which bloat is controlled is, 

therefore, determined by one parameter called the “parsimony coefficient” (Poli and McPhee, 

2008). Here, the parsimony pressure has been implemented to the fitness function (Root Mean 

Square Error (RMSE)). In other words, in this study the selection criteria are based on the fitness 

function and individuals’ size. 

Step 5: determining the termination condition. This parameter can be a specific number of 

generations or a specific accuracy. Table 1 indicates the functional set, controlling parameters 

and termination condition used in this study. 

After accomplishing the preparatory steps, GP observes the following step-by-step procedure 

to produce the final result, called solution. As indicated in Fig. 3, in the first place, GP creates 

the initial models (population) using a random combination of the terminal and functional sets. 

Each model or individual of this initial generation is evaluated based on the statistical criterion 

such as RMSE to be selected as a parent. 

Then, GP utilizes selection methodologies, such as ranking, in which individuals are ranked 

and selected out according to their fitness value, or tournament, in which all of the individuals 

regarded as a “gene pool”, and the fittest models are selected out by randomly picking up a 

certain number of individuals for several times, to select the parents. Applying genetic operators 

like crossover, mutation or reproduction, new individuals (offspring) are produced (Figs. 4a and 

b). Comparing the created models accuracy or generations number with the termination 

condition, the GP states when to terminate the modeling process. If the termination criterion, 

such as the maximum number of generation or the fitness function is not satisfied, the modeling 

process continues by selecting new parents, creating new generation, and comparing the created 

generation with terminal condition. Otherwise, the best individual is known as the best solution. 

 

3.2. Artificial Neural Networks (ANNs) 

ANNs provide a random mapping between an input vector and an output one. An ANN 

consists of a set of neurons, the fundamental processing element of a neural network, arranged in 

input, hidden, and output layers. In order to produce output vector, each neuron combines inputs 

and estimates their weights. Then they produce an output bypassing the summed values of all 
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nodes through transfer functions. The number of input layer neurons equals the input parameters, 

and the number of neurons in the output layer equals the number of output parameters. However, 

determining the number of neurons in hidden layers that controls the accuracy of prediction is a 

challenging issue. Rogers and Dowla (1994) suggested the following criteria for the 

determination of hidden layer neurons number: 

 1N2N LH   (10a) 

1N

N
N

L

TR
H


  (10b) 

where 
HN  stands for the number of hidden layer neurons, 

LN is the number of input parameters 

(here 4N L  ) and 
TRN stands for the number of training datasets (here 68N TR  ). According to 

Eqs. (10a and b), the number of hidden layer neurons must be less than 9 ( 9HN ) for this study. 

A trial and error procedure is utilized to achieve the best configuration of neural network 

employed. Accordingly, a three-layer feed forward network with Levenberg-Marquardt back 

propagation training algorithm, which is the most commonly used neural network in many 

studies (Jain and Deo, 2007), is utilized for the prediction of maxS . The learning rate and the 

iteration, resulted from the trial and error process, were 0.01 and 1000, respectively. The Log-

Sigmoid function was also employed in the optimum network as a transfer function. Fig. 5 shows 

the structure of artificial neural network which has been used in this study with 4 input 

parameters in input layer, 5 neurons in hidden layer, and 1 output parameter. Further information 

on ANNs can be found in published literatures. 

 

4. Datasets and modeling 

4.1. Datasets description 

To evolve the GP model, a combination of Xie (1981), Sumer and Fredsøe (1981, 2000) and 

Lee and Mizutani (2008) published datasets was used. All such data (95 data points), as well as 

the related finding come from small-scale flume experiments. It is clear that all findings derived 

from the mentioned datasets, as it happens for all studies based on small-scale experiments, can 

be influenced by scale effects and their use for practical applications should be made with some 
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caution. Further, being based on flume experiment (2D flow) all results are only adequate to 

describe dynamics evolving along vertical transects (typically normal to shore). 

The data in use refer to both regular and irregular non-breaking wave-induced scour at 

vertical and rubble-mound breakwaters, and the maximum scour depth is the ultimate value of 

scour depth when the equilibrium bottom profile is reached. The dataset from Xie (1981) 

contains 39 data records. 23 experimental data records were selected from the Sumer and 

Fredsøe (2000)’s work and 33 data records were collected from the Lee and Mizutani (2008)’s 

laboratory study.  

Of the 95 experimental datasets 70% (65 data points) was used for the model’s training and 

30% for the model’s testing. Table 2 shows the range of datasets used in this paper. Details of the 

mentioned experimental studies are given in the following. 

 

 

4.1.1 Xie (1981) experimental study 

Xie (1981) studied experimentally the scour pattern in front of a vertical breakwater under 

the action of standing waves. His experiments were conducted using two wave flumes: 1) a small 

flume - 38 m long, 0.8 m wide, and 0.6 m deep - and 2) a large flume - 46 m long, 0.8 m wide, 

and 1 m deep. The sandy bed, made of four different types of sand sizes (0.106, 0.15, 0.20 and 

0.78 mm), was 0.15 m thick. The wave paddle was located at a distance of 32.9 m from the 

vertical breakwater. Most runs were made with regular waves and only some with random 

waves. Incident wave heights ranged from 4.5cm to 11 cm, wave periods were in the 1.1 to 3.56 

s range and water depths were of 30, 40 and 50 cm. From this experiment, 39 data records were 

selected to evolve the models. 

4.1.2 Sumer and Fredsøe (2000) experiment 

Sumer and Fredsøe (2000) studied the non-breaking wave induced scour along the trunk section 

of vertical and rubble-mound breakwaters under regular and irregular wave conditions. The 

experiments were conducted in a wave flume of 0.6 m width, 0.8 m depth and 28 m length. 

Waves were generated by a piston-type wave generator located at a distance of 22 m from the 

model breakwater. The water depth was of 0.31 m, and the sand size was of 0.2 mm. Two 
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breakwater slopes were implemented 1:1.2 (
40 ) and 1:1.75 (

30 ) and the results were 

compared with those for the vertical breakwater made of a plywood plate. The surface elevation 

was measured by a wave gauge, located at 18 m from the wave generator; and the scour 

development was monitored by visual observations accompanied by scour measurements 

undertaken at certain points and small time intervals. 

4.1.3  Lee and Mizutani (2008) experiment 

Lee and Mizutani (2008) studied experimentally the scour due to regular waves at a vertical 

impermeable submerged breakwater that induced partial reflection of the incident waves and, as 

a consequence, a field of partially standing waves. They conducted their experiments in a flume 

with 0.7 m width, 0.9 m, depth and 30 m length. A flap-type wave generator and a wave 

absorption layer were located at the ends of the wave flume. The breakwater was placed at 16.5 

m from the wave paddle, and was seated on the bottom of the wave flume. The sandy bed was 2 

m long, 0.2 m thick and 0.7 m wide, and the median sand diameter was of 0.2mm. The wave 

steepness ( nbnb LH ) ranged from 0.019 to 0.052, and the wave period ( nbT ) varied in the range 

1.1s to 1.9 s. The still water depth above the movable sand ( toeh ) was of 20 and 30 cm. 

Suspended load transport was found to be negligible. 

4.2. Statistical error parameters 

The performance of the GP and ANNs models in the prediction of nbHSmax for all the 

datasets of interest has been evaluated in terms of statistical parameters like the Correlation 

Coefficient (CC), the Root Mean Square Error (RMSE), the Scatter Index (SI) and the BIAS, as 

given in Eqs. (11)-(14). The parsimony pressure is a selecting criterion, but the CC, SI and BIAS 

have been used to evaluate the accuracy of the final and selected models. To have an 

understandable evaluation between the GP and ANN models and the existing equations, SI and 

BIAS are of great importance. However, the parsimony pressure is only applicable to GP models 

in the stage of selection. 
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Here iO  and iP  denote the observed and predicted values, respectively. N  is the number of 

observed data and mm O,P  are the corresponding mean values of the predicted and observed 

parameters, respectively. 

 

5. Results and discussion 

5.1. Evaluation of the existing formulas 

Best known empirical formulas for the prediction of the maximum scour depth are those of 

Xie (1981), Sumer and Fredsøe (2000), and Lee and Mizutani (2008) (Section 1). In this section 

the performance of these formulas in the prediction of the maximum scour depth for the different 

datasets (Section. 3.1) has been investigated on the basis of statistical error parameters. Fig. 6a, 

b, and c show that the performance of the empirical formulas of Xie (1981), Sumer and Fredsøe 

(2000), and Lee and Mizutani (2008) is fair in predicting the maximum scour depth for their own 

dataset. However, Fig. 6d illustrates the performances of the formulas of Xie (1981) and Sumer 

and Fredsøe (2000) in the prediction of the scour depth using all the data available (95 data 
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points). As indicated, such empirical equations do not have adequate accuracy for such a global 

dataset. Furthermore, Xie (1981)’s formula (Eq. 2) predictions in some cases are larger than 1, 

while the maximum scour depth is by definition smaller than 1. Although Lee and Mizutani 

(2008) formula leads to completely scattered values for the maximum scour depth as fucntion of 

the reflection coefficient (e.g. under the same waves characteristics for 9.0Cr   and 8.0Cr  , 

the maximum scour depth coefficient changes from 10 to 5, respectively) and it cannot be 

implemented in predicting the scour depth for all data set, since it diverges when 1Cr  , it 

shows less scatter and high precision in predicting the maximum scour depth for its own 

experimental data set. The higher performance of Lee and Mizutani (2008) formula is mainly 

due to the use of the reflection coefficient ( Cr ) as an input parameter. 

Table 3 shows the error measures of the existing formulas in predicting the maximum scour 

depth for various datasets. It can be seen that the CC , RMSE , SI , and BIAS of Lee and 

Mizutani (2008) formula - 0.952, 0.069, 23.67% and -0.054, respectively - are less than those of 

other empirical formulas in the prediction of their own datasets. However, considering accuracy 

and width of applicability, the empirical equations cannot be implemented for the prediction of 

the maximum scour depth for all the datasets used in this paper. For instance, the prediction of 

the maximum scour depth of all the available data by means of Xie (1981)’s formula (Eq. 2) is 

not fair, the CC , RMSE , SI , and BIAS being 0.528, 0.286, 77.9% and 0.154, respectively. To 

improve the accuracy and width of applicability, a set of new models has been developed by 

means of the ANNs and GP approaches (Section 5). 

 

5.2. Development of the ANNs and GP models 

A total of 95 regular and irregular non-breaking wave dataset has been used for the 

prediction of the maximum scour depth using the ANNs and GP models. Different combinations 

of dimensionless parameters have been considered in developing the GP and ANNs models to 

achieve the most accurate and parsimonious models. Three different structures (Table 4) have 

been considered to develop the models with the most important input parameters. 

The first step in developing a model with ANNs is to determine the architecture and 

configuration of the used ANNs model, these being discussed in Section 2. By increasing the 

number of hidden neurons the performance of ANNs improves when using training data. 
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However, at certain number of hidden neurons ANNs produce noisy fluctuations with testing 

data and “overtraining” occurs (Van Ghent et al., 2007). To avoid this problem, the number of 

neurons in the hidden layer has been determined based on training the ANNs with a varying 

number of neurons in the hidden layer and each time comparing the ANN’s performance on the 

training and testing data sets. To achieve the highest possible accuracy and avoid the 

overtraining problem, the optimum number of hidden layer neurons has been determined by a 

trial and error approach (see Table 5). 

Table 5 shows that the various ANNs models which have been developed based on the 

different input parameters (S1, S2, and S3 model structures). As indicated, the ANNs model with 

5 neurons in its hidden layer and the S3 model structure input parameters, including the wave 

reflection (Cr ), the non-breaking wave steepness ( nbnb LH ), the relative water depth at the toe (

nbtoe Lh ), and the Shields parameter ( ), results in the best performance amongst the tested 

models with 971.0CC  and 054.0RMSE  in the prediction of training dataset used in this 

paper. 

 

At times the accuracy of models for testing data set is higher than that of training data set. 

This issue relates to the model’s configuration such as the number of neurons in hidden layer, 

and also to the modeling approach, here ANN. 

Similar to ANNs, GP produced its best results for the S3 model structure input parameters 

(Table 6), this model is referred as the best GP model (hereafter S3-GP), and all of the 

contributing parameters in Eq. (7) play an important role in the prediction of the maximum scour 

depth and cannot be neglected in the modeling process. Fig. 7 illustrates the scattered diagram of 

measured and predicted the relative maximum scour depth ( nbHSmax ) for the case of S3-

ANN(5) and S3-GP. As indicated in this figure, the high accuracy of the S3-ANN(5) and S3-GP 

models is reflected in the data points’ short distance from the fit line and their low scatter index. 

As indicated in Table 3, both developed models predict the maximum scour depth for 

various datasets with high precision in comparison to the existing empirical formulas. However it 

appears that S3-GP performs marginally better than S3-ANN(5) in predicting of nbHSmax for all 

cases, the main advantage of the GP on other soft computing methods, such as ANNs, being its 

ability to produce explicit and accurate equations for the prediction of the phenomena at hand. 
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Using this capability, the following formula has been developed, by means of S3-GP, for 

predicting the non-breaking wave-induced maximum scour depth: 
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Unlike the empirical formulas of Xie (1981), Sumer and Fredsøe (2000), and Lee and 

Mizutani (2008), the S3-GP developed equation (Eq. (15)) includes the effects of the structural 

configuration, the bed sediments’ properties and the wave characteristics, and it can be applied in 

predicting of the maximum scour depth of the vertical, sloped, and submerged structures under 

the action of fully or partially standing waves. The values of the reflection coefficient for Xie 

(1981), and Sumer and Fredsøe (2000) datasets, not measured during their experiments, were 

calculated using Eq. (6). On the opposite, the values of Cr for the Lee and Mizutani (2008) 

dataset were measured during their experiments, hence no use is here made of (6) for such Cr. 

The reflection coefficient measured by Lee and Mizutani (2008), and appearing in Eq. (15), 

includes the effects of the breakwater slope ( ), the breakwater submergence ( ch ), the 

breakwater width ( B ), the size of the armor stones ( 50D ) and the permeability of the breakwater 

( P ). Although it may appear that Eq. (15) cannot give proper account of the effects of bottom 

slope, this is actually modeled through the role of Cr  and nbtoe Lh , see also the analysis of 

Hajivalie et al. (2008) on the role of the bottom slope in altering the steady streaming during 

wave shoaling.  

As already mentioned the findings here proposed are characterized by limitations related 

with both scale phenomena and geometry. In particular, the 2D geometry and the wave forcing in 

use suggest the proposed results be taken as reliable to describe the maximum scour depth 

induced by non-breaking waves at the vertical trunk section of breakwaters. 

The mathematical functions used in Eq. (15) like sinh , tan , 3 , are the functions that 

have been used in the above-mentioned available formulas (Section 3). The main advantages of 

the proposed GP model are that it contains all of the most important parameters affecting the 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

maximum scour depth at breakwaters, has wide applicability, and it is very accurate in predicting 

the maximum scour depth in comparison to the mentioned existing formulas. However, it is 

fairly complex in its use and interpretation, such deficiencies being easily resolved by numerical 

computing. 

The proposed equation (15) is in good agreement with both the engineering sense and the 

existing knowledge of the scour process. Fig. 8 shows the dependence of the maximum scour 

depth predicted by Eq. (15) on fundamental input parameters, the others being kept constant. As 

discussed by Sumer and Fredsøe (2000) and Lee and Mizutani (2008), among others, the 

maximum scour depth increases with an increase in the reflection coefficient, the Shields 

parameter and the non-breaking wave steepness, and decreases when the relative water depth at 

the toe of the breakwater increases. As expected, Fig. 8 displays that the maximum scour depth is 

directly proportional to the wave reflection, the non-breaking wave steepness, and the Shields 

parameter. However, it decreases when the relative water depth at the toe of the breakwater 

increases. Furthermore, Fig. 8 illustrates that the relationship between nbHSmax and   is almost 

linear, which shows that the Shields parameter is not as important as Cr  or nbtoe Lh  (see the 

nonlinear dependence). Similarly, the trend between nbHSmax and nbnb LH is almost linear. This 

is in line with the existing understanding of the relative importance of the parameters governing 

the maximum scour depth at breakwaters due to non-breaking waves (Section 6). 

 

6. Uncertainty and reliability assessment 

After developing the final models with ANNs and GP, their predictions for other test data 

sets may be biased and it is possible that the models cannot perform adequately well for the 

available data spread over the entire domain of data set. To have more trustworthy models, a 

resampling technique, the K-fold cross validation, has been applied to the data set as a whole. In 

this technique, the whole data set is randomly partitioned into K equal-sized folds; K-1 folds are 

used for training and the remaining one is used for testing. This process is repeated K times, with 

each of the K folds used exactly once as the testing data set. The advantage of the K-fold cross 

validation is that all the examples in the data set are used for both training and testing (Mahjoobi 

and Adeli Mosabbeb, 2009). The error of the models is estimated through the average error rate: 
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where iE  is the error for a single estimation. In this work, a 4-fold cross validation is used. 

Hence, the whole data set (96 data points) is randomly partitioned into 4 subsets (folds), so that 

each fold contains 24 data points ( 495 ). For each time, one fold is selected as the test set and 

the other 3 folds are used as the training set. The results of the cross validation of both ANNs and 

GP are given in Table 7. The results show that the uncertainty of the developed models is very 

low and so these models can be implemented for various data sets. 

Uncertainty assessment ensures that the final GP solution, Eq. (14), is not sensitive to the 

data selection and, thus, can be implemented for different data sets, ranging from small-scale to 

field-scale data. As indicated in Table 7, using various data sets as training and testing data, the 

performance of Eq. (14) in predicting the maximum scour depth does not change significantly. 

Furthermore, uncertainty assessment shows that the final model has not experienced overlearning 

problem. 

In order to achieve the models reliability, the box plot of the various models’ discrepancy is very 

useful (Etemad-Shahidi and Ghaemi, 2011). The discrepancy is the distance between lower 

extreme and upper extreme in box plots and shows the models uncertainty. As indicated in Fig. 

9, box plots are larger for the existing equations that mean they are more conservative and need 

higher values of safety factor. However, the discrepancy for the evolved models has small values 

and so they are more reliable. Furthermore, it was found that the empirical equations of Xie 

(1981), Sumer and Fredsøe (2000), and Lee and Mizutani (2008) are more conservative in 

comparison with the S3-GP and S3-ANN(5) evolved model. Also, Fig. 9 shows that the lower 

and upper quartiles of the data average in the empirical equations have significantly different 

numbers that indicates their uncertainty. This gap is not as large as empirical equations in the 

developed models (the S3-ANN(5) and S3-GP models). Having larger box height, the empirical 

formulas need larger safety factors to cover all the range of the predicted scour depths. However, 

the S3-GP and S3-ANN(5) models are more accurate and reliable in comparison with the 

empirical formulas. 
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7. Sensitivity Analysis 

Sensitivity analysis is a conventional method for determining the relative significance of 

input parameters in the modeling process. Employing irrelevant or insignificant input parameters 

can lead to complex models, which are very difficult to evaluate and interpret. One of the major 

capabilities of genetic programming is its inherent power in the determination of the variables 

importance in the evolved model, in a way that the unimportant variables are gradually omitted 

in the final evolved model.  

To determine the importance of the input parameters contributing to S3-GP model, the 

Liong et al. (2002) approach was implemented, where only one input parameter varies while the 

others are constant and a variation of ±15%, ±10%, ±5% for each input parameter was 

considered at each stage. The influence of the modification procedures on the proposed formula 

for prediction of nbHSmax  is measured in terms of the average percentage change ( APC ) as: 
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where  
onbHSmax  is the predicted relative scour depth obtained by means of S3-GP using the 

original values of the input variables, and  
mnbHSmax  is the modified predicted relative scour 

depth due to variation of a particular variable and N is the number of data points. The procedure 

is repeated for all of the input variables. The significance of the input parameters resulting from 

the sensitivity analysis is summarized in Table 8. As seen, nbHSmax  is mostly affected by Cr  

and followed by nbtoe Lh , respectively. This result is in line with the experimental findings of 

Sumer and Fredsøe (2000) and Lee and Mizutani (2008), which have pinpointed the reflection 

coefficient as the most important parameter for the scour depth at breakwaters. 

The ANN weight matrix can be used to assess the relative importance of the various input 

parameters on the output parameter (Kasiri et al., 2008). The following equation was proposed 

based on partitioning of connection weights by Garson (1991): 
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where jI  is the relative importance of the jth input variable on output variable, iN  and hN  are 

the number of input and hidden neurons, respectively. sW  are connection weights, the 

superscripts h,i  and o refer to input, hidden, and output layers, respectively; and subscripts m,k

and n  refer to input, hidden, and output neurons, respectively. Table 9 shows the results of the 

ANN sensitivity analysis based on Eq. (18). As indicated, the wave reflection is the most 

impressive parameter on the scour depth and, again, the relative importance of the various input 

parameters calculated by Eq. (18) is in line with the S3-GP model results (Table 8). This shows 

that the S3-ANN(5) model is very sensitive to the wave reflection and the relative water depth at 

the toe, and the Shields parameter and the wave steepness are as important as the mentioned 

input parameters. 

 

8. Summary and Conclusion 

In this study, the non-breaking wave-induced scour depth at the trunk section of breakwaters 

has been studied by Genetic Programming (GP) and Artificial Neural Networks (ANNs) 

methodologies. Experimental data sets collected from the available literature have been used for 

developing the models. The developed models predict the relative scour depth (Smax/Lnb) as 

function of the reflection coefficient (Cr), the non-breaking wave steepness (Hnb/Lnb), the Shields 

parameter (θ), and the relative water depth at the toe of the breakwater (htoe/Lnb). 

In order to achieve the best possible accurate models, various ANNs and GP models have 

been developed using different combinations of input parameters. The results of the developed 

models indicate that the S3 model structure (S3) yields the best results and that all of the 

mentioned parameters play an important role in predicting the maximum scour depth. The results 

of the developed models have been compared with those of the equations by Xie (1981), Sumer 

and Fredsøe (2000), and Lee and Mizutani (2008) in terms of error measures. The results 
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indicate that the developed models (S3-ANN(5) and S3-GP) predict the Smax/Lnb better than those 

of the existing empirical equations in terms of accuracy. Also, unlike the existing formulas, 

which do not include the effects of many parameters of importance of the scouring, the 

developed models include the effects of most of the parameters that have an important influence 

on the maximum scour depth at breakwaters. 

To verify that the developed models are consistent with the existing findings and reliable, 

the scour depth predicted by S3-GP has been analysed as function of four main input parameters, 

each varied while keeping the others fixed. It is shown that the GP best model (S3-GP) behavior 

is in complete agreement with the known findings. In order to examine the reliability of the 

developed models, a probabilistic approach has been applied using box plots. According to the 

box plot, the discrepancy between observed scour depths and those predicted by means of the 

ANNs and GP models is smaller than that achieved when predicting the scour through empirical 

equations. A sensitivity analysis based on APC formulation has been conducted to explore the 

effects of the various input parameters contribution in the ANNs and GP developed models. The 

results of the sensitivity analysis proved that the reflection coefficient is the most important 

parameter in the scour process at breakwaters. The latter result is clearly in line with the 

experimental result of Sumer and Fredsøe (2000) and Lee and Mizutani (2008). 
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Figure captions 

Fig. 1. Sketch illustrating the role of variables and the waves’ characteristics that contribute to Eqs. (6) and (15). 

Fig. 2. An example of GP final solution ( )y5(x
2  ) in the form of Parse Tree. 

Fig. 3. Typical genetic programming flowchart (Koza, 1992). 

Fig. 4. (a) Crossover between ( )y5(
2

x  ) and ( 4y  ), (b) Mutation operation applied on a parent ( )y5(
2

x  ). 

Fig. 5. The ANN structure used in this study. 

Fig. 6. Comparison between the measured (dataset) and predicted (formula) maximum scour depth from the specific 

works of (a) Xie (1981), (b) Sumer and Fredsøe (2000) and (c) Lee and Mizutani (2008). Panel (d) gives the 

maximum scour depth predicted by the formulas of Xie (1981) and Sumer and Fredsøe (2000) on the dataset made 

of all the data coming from the mentioned works. 

Fig. 7. Comparison between the measured and predicted maximum scour depth by the developed models (S3-

ANN(5) model, and S3-GP model (Eq. 15))) for (a) Xie (1981) dataset, (b) Sumer and Fredsøe (2000) dataset, (c) 

Lee and Mizutani (2008) dataset, (d) the full dataset. 

Fig. 8. Scour depth predicted by Eq. (15) as function of: (A) the relative water depth (htoe/Lnb); (B) the reflection 

coefficient (Cr); (C) the Shields parameter (θ) and (D) the wave steepness (Hnb/Lnb) 

Fig. 9. Box plots of the developed models and the existing empirical equations in predicting of the scour depth for 

all datasets used in this paper. 
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Table 1 

The characteristics of employed Genetic Programming models. 

Function set 
+, -, ×,÷, Exp, 

 x2, x1/2, x1/3, sinh(x)  

Number of chromosomes 30 

Head size 8 

Number of genes 3 

Linking function Addition 

Fitness function RMSE 

Mutation rate 0.044 

One-point and two-point 

recombination 
0.3 

Gene transposition 0.1 

Constants per gene 2 

Range of constants -10 to 10 

Table. 1



Table 2 

Ranges of the parameters employed to train and test the GP model. 

Parameters Test data range Full data range Minimum Average Maximum 

Cr  0.273-1.00 0.225-1.00 0.225 0.719 1.00 

nbL
nb

H  0.011-0.043 0.008-0.058 0.008 0.026 0.058 

nbLtoeh  0.060-0.199 0.045-0.199 0.045 0.114 0.199 

  0.020-0.187 0.023-0.187 0.020 0.081 0.187 

nbHSmax  0.011-0.938 0.011-0.938 0.011 0.368 0.938 

 

Table. 2



Table 3 
Performance indices of the developed models and the existing empirical equations in the prediction of 

various datasets.  

Equation/Model Dataset CC RMSE SI (%) BIAS 

Xie (1981) formula 

 (Eq. 2) 

Xie (1981) dataset  0.806 0.162 31.71 0.015 

All dataset 0.528 0.286 77.90 0.154 

Sumer and Fredsøe 

(2000) formula (Eq. 3) 

Sumer and Fredsøe (2000) dataset 0.820 0.158 68.37 0.074 

All data set 0.763 0.163 44.24 0.050 

Lee and Mizutani (2008)  

formula (Eq. 4) 
Lee and Mizutani (2008) dataset 0.952 0.069 23.67 -0.054 

S3-ANN(5) 

Xie (1981) 0.943 0.081 15.7 -0.0120 

Sumer and Fredsøe (2000) 0.951 0.065 28.3 +0.0120 

Lee and Mizutani (2008) 0.931 0.051 17.4 +0.0050 

All data set 0.959 0.068 18.40 -0.0003 

S3-GP 

(Eq. 15) 

Xie (1981) 0.946 0.076 14.75 0.0102 

Sumer and Fredsøe (2000) 0.960 0.062 26.99 0.017 

Lee and Mizutani (2008) 0.956 0.041 14.21 -0.006 

All data set 0.964 0.062 16.82 0.006 

 

Table. 3



Table 4 
Model structures for the non-breaking scour depth prediction. 

Model 
structure 

Input parameters combination Output parameter 

S1 Cr, htoe/Lnb, Hnb/Lnb Smax/Hnb 

S2 Cr, htoe/Lnb , θ Smax/Hnb 

S3 Cr, htoe/Lnb , Hnb/Lnb , θ Smax/Hnb 

 

Table. 4



Table 5 

Comparison of various structures of ANN in the prediction of training and testing data set. 

ANN Referred  

Model 

Model 

structure 

Number of 
hidden layer 

neurons 

Training data set Testing data set 

CC RMSE SI (%) Bias CC RMSE SI (%) Bias 

S1-ANN(3) 

S1 

 3* 0.957 0.066 17.8 0.0001 0.938 0.085 23.7 -0.009 

S1-ANN(4) 4 0.951 0.084 19.8 0.0002 0.928 0.081 25.7 -0.011 

S1-ANN(5) 5 0.954 0.059 16.27 0.0001 0.905 0.113 31.3 -0.025 

S1-ANN(6) 6 0.922 0.091 24.07 0.0001 0.708 0.221 61.5 0.021 

S2-ANN(3) 

S2 

3 0.915 0.091 24.75 0.001 0.933 0.087 24.3 0.008 

S2-ANN(4) 4 0.953 0.069 18.65 0.0012 0.929 0.089 24.8 0.0005 

S2-ANN(5) 5* 0.960 0.063 16.94 -0.0002 0.933 0.092 25.6 -0.003 

S2-ANN(6) 6 0.940 0.082 21.68 0.0004 0.804 0.150 41.8 -0.015 

S3-ANN(3) 

S3 

3 0.939 0.077 20.76 0.0006 0.910 0.104 29 0.016 

S3-ANN(5) 5* 0.971 0.054 14.19 -0.0016 0.929 0.104 29 0.003 

S3-ANN(6) 6 0.966 0.058 15.71 0.0011 0.925 0.103 28.7 -0.001 

S3-ANN(7) 7 0.971 0.053 14.39 0.0004 0.925 0.105 29.2 0.013 

S3-ANN(8) 8 0.965 0.060 16.02 0.0002 0.894 0.119 33.2 0.017 

  *The results in bold show the best number of hidden layers for each specified model. 

 

Table. 5



Table 6 

Performance indices of various GP models in the prediction of the relative scour depth. 

Model (Equation) Used dataset CC RMSE SI(%) BIAS 

S1-GP 
Training data set 0.900 0.099 26.65  0.003 

Testing data set 0.894 0.108 30.01 -0.009 

S2-GP 
Training data set 0.915 0.092 25.51 -0.001 

Testing data set 0.912 0.098 25.53 -0.008 

S3-GP 
Training data set 0.981 0.050 13.23   0.005 

Testing data set 0.922 0.093 25.82   0.007 

 

Table. 6



Table 7 

Error statistics of predicted maximum scour depth by S3-ANN(5) and S3-GP (4-fold cross validation). 

Model Used dataset CC RMSE SI(%) BIAS Mean ± std 

S3-ANN(5) (4-fold  cross validation) All data set 0.919 0.089 23.5 -0.003 0.337 ± 0.252 

S3-ANN(5) (non- cross validation) All data set 0.959 0.068 18.4 -0.0003 0.368 ± 0.241 

S3-GP (4-fold  cross validation) All data set 0.934 0.078 19.8   0.011 0.348 ± 0.247 

S3-GP (non- cross validation) All data set 0.964 0.062 16.8   0.006 0.372 ±  0.223 

 

Table. 7



Table 8 

Average Percentage Change (APC) in the relative scour depth predicted by Eq. (15) due to changes in 
specific variables. 

Considered 

variable 

Average Percentage Change (APC) Significance 

order -15% -10% -5% +5% +10% +15% 

Cr  20.68 11.76   3.58 -14.39 -25.43 -58.75 1 

htoe/Lnb -38.53 -26.43   -14.79  4.07  12.81  21.66 2 

θ     -3.11   -3.74    -4.38 -5.66  -6.31  -6.97 3 

Hnb/Lnb     -2.70   -3.47    -4.24 -5.79  -6.56  -7.34 4 

 

Table. 8



Table 9 

The relative importance of input parameters in predicting scour depth based on S3-ANN(5). 

Variable under 

analysis 
Relative importance (%) 

Significance 

order 

Cr 54.40 1 

htoe/Lnb 24.16 2 

θ 9.14 3 

Hnb/Lnb 3.30 4 

 

Table. 9



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Sketch illustrating the role of variables and the waves’ characteristics that contribute to Eqs. (6) and (15). 
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Fig. 4. (a) Crossover between ( )y5(
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x  ) and ( 4y  ), (b) Mutation operation applied on a parent ( )y5(
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Fig. 5. The ANN structure used in this study 
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Fig. 6. Comparison between the measured (dataset) and predicted (formula) maximum scour depth from the specific works of (a) Xie 

(1981), (b) Sumer and Fredsøe (2000) and (c) Lee and Mizutani (2008). Panel (d) gives the maximum scour depth predicted by the formulas 

of Xie (1981) and Sumer and Fredsøe (2000) on the dataset made of all the data coming from the mentioned works. 
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Fig. 7. Comparison between the measured and predicted maximum scour depth by the developed models (S3-ANN(5) model, and S3-GP model (Eq. 15))) for 

(a) Xie (1981) dataset, (b) Sumer and Fredsøe (2000) dataset, (c) Lee and Mizutani (2008) dataset, (d) the full dataset. 
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Fig. 8. Scour depth predicted by Eq. (15) as function of: (A) the relative water depth (htoe/Lnb); (B) the reflection coefficient 

(Cr); (C) the Shields parameter (θ) and (D) the wave steepness (Hnb/Lnb) 

 

  
 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

p
r
e
d

ic
te

d
 (

S
m

a
x
/H

n
b
) 

htoe/Lnb 

(A) Smax/Hnb variation against htoe/Lnb  for 

  

Cr=0.629, Hnb/Lnb=0.017, and  θ=0.058  

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.23 0.30 0.38 0.45 0.53 0.60 0.68 0.75 0.83 0.90 0.98

p
r
e
d

ic
te

d
 (

S
m

a
x
/H

n
b
) 

Cr 

(B) Smax/Hnb variation against Cr for 

 

 htoe/Lnb=0.090, Hnb/Lnb=0.017, and θ=0.058  

0.29

0.30

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

p
r
e
d

ic
te

d
 (

S
m

a
x
/H

n
b

) 

θ  

(C) Smax/Hnb  variation against θ for 

 

Cr=0.629, Hnb/Lnb=0.017, and htoe/Lnb =0.090    

0.30

0.31

0.31

0.32

0.32

0.33

0.33

0.34

0.34

0.35

0.35

0.36

0.36

0.01 0.02 0.03 0.04 0.05 0.06
p

r
e
d

ic
te

d
 (

S
m

a
x
/H

n
b

) 

H0nb/Lnb 

(D) Smax/Hnb  variation against Hnb/Lnb for 

 

Cr=0.629, θ=0.023, and htoe/Lnb =0.090  

Figure. 8



 
Fig. 9. Box plots of the developed models and the existing empirical equations in predicting of the scour depth for all datasets used in this paper. 
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