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Abstract 

 

The interior sound perceived in vehicle cabins is a very important attribute for the user. 

This implies that the study of the acoustic and vibration performance of a vehicle should be 

considered since the early stages of the design. Experimental methods have a key role both 

in helping validating the modelling and the virtual prototyping of the designed vehicles and 

in troubleshooting, understanding causes and effects of noise and vibration problems 

occurring inside the vehicle enclosure. Acoustic imaging and sound source localization 

methods such as beamforming and Near-field Acoustic Holography are used in vehicles 

NVH because they are capable of locating and ranking the noise sources contributing to the 

overall noise perceived inside the cabin. However these techniques are often relegated to 

the troubleshooting phase, thus requiring additional experiments for more detailed NVH 

analyses. It is therefore desirable that such methods evolve towards more refined solutions 

capable of providing a larger and more detailed amount of information. In order to meet 

these requirements, this thesis proposes a modular and multi-domain approach involving 

direct and inverse acoustic imaging techniques. These techniques are combined with pre- 

and post- processing algorithms for providing quantitative and accurate results in 

frequency, time and angle domain, thus targeting relevant types of problems in vehicles 

NVH such as the identification of interior and exterior (affecting interior noise) noise 

sources and the analysis of noise sources produced by rotating machines such as internal 

combustion engines. In this framework, an improved version of Generalized Inverse 

Beamforming  algorithm, working in frequency domain, is presented. The improvement 

raises from the exploitation of PCA-based adaptive pre- processing yielding larger dynamic 

range and better performance in terms of source quantification. A criterion for the 

separation of the sought sources into uncorrelated distributions is also presented. The core 

finding of this thesis is represented by a novel inverse acoustic imaging method working in 

frequency domain, named Clustering Inverse Beamforming (CIB). The method grounds on 

a statistical processing based on an Equivalent Source Method formulation. In this way, an 

accurate localization, a reliable ranking of the identified sources and their separation into 

uncorrelated phenomena, thanks to a new entity called clustering mask matrix, is obtained. 

The clustering mask matrix is a function defined in the source region whose values, ranging 

from 0 to 1,  can be interpreted as the confidence level of finding a sought physical source 

in the corresponding location. The CIB approach is validated on several simulated and real 

experiments. The clustering mask matrix is also exploited in this work for scaling the 

under-determined inverse acoustic problem up to an equivalent over determined version, 

allowing the reconstruction of the time evolution of the sources sought. It has limited effect 

in presence of distributed sources and spatially joint uncorrelated sources. Finally a 

methodology for decomposing the acoustic image of the sound field generated by a rotating 

machine as a function of the angular evolution of the machine shaft is proposed. The 

approach is validated on simulated data for several operating conditions with promising 

results. This set of findings aims at contributing to the advent of a new paradigm of 

acoustic imaging applications in vehicles NVH, supporting all the stages of the vehicle 

design with time-saving and cost-efficient experimental techniques. 
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Chapter 1. 

 

Introduction 
 

The ambition of this thesis work is contributing to the advent of a new paradigm of acoustic 

imaging applications in vehicles NVH. The acronym NVH stays for: Noise, Vibration and 

Harshness. This discipline studies acoustic and vibratory problems in industry. It plays a 

key role in the design and development of performing and comfortable vehicles for 

ground/air/marine transportation. In fact, thanks to NVH, the manifold causes of noise and 

vibration affecting the passengers’ comfort can be taken into account and tackled since the 

earliest stages of the design of the vehicle, granting an harmonious development of the 

assembly combining sound and vibration quality with the required performance. In-vehicle 

acoustic discomfort can be due to causes that occur at the exterior or at the interior of the 

vehicle’s cabin. In general it is easier, in the design process, to optimize and reduce as 

much as possible the NVH problems due to interior components because their behaviour is 

controllable and their influence more predictable. On the contrary, the exterior causes of 

noise and vibration problems, affecting the in-vehicle passengers experience, are very often 

due to complex mechanisms of propagation from the exterior towards the interior and/or to 

the interaction of the vehicle with the external environment. The latter cause is less 

predictable and controllable. For this reason exterior sources affecting the in-vehicle noise 

and vibration must be studied with particular effort. 

This document will mainly focus on the noise issues caused by exterior phenomena and in 

particular on the experimental techniques that can help the localization task, i.e. to answer 

the question: “where the noise sources come from?” A first answer can be obtained by 

classifying the category of potential exterior noise sources. Taking, from now on, the 

example of cars, the main exterior noise sources are: 

 

 Road noise: due to the interaction of the tires and the road. 

 Wind noise: due to the air flow impinging on the vehicles structure. 

 Engine noise: due to the functioning of the engine. Typical components are: 

combustion noise, mechanical noise due to the rotating elements, etc. 

 

The interior sound perceived in an automotive cabin is a very important attribute in vehicle 

engineering. This implies that the study of the acoustic and vibration performance of a 

vehicle should be considered since the early stages of the design. If not, making changes on 

the product would become more expensive and of limited options. In order to perform a 

early study of the acoustic and vibration performance of the vehicle, the ideal would be 

being able to predict the behavior of the product with simulation models. To understand the 

modelling challenges and improve the modelling know-how, experimental acoustic 

methods play an important role. Moreover, experimental methods are instrumental also for 
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troubleshooting and for understanding both the causes – paths - and the effects – sources - 

of the noise and vibration problems occurring inside a vehicle cabin. 

The main techniques that serve these needs are: 

 

 Acoustic imaging techniques, capable of locating and quantifying  the noise 

sources contributing to the overall noise level inside a vehicle. 

 Transfer Path Analysis (TPA), that is able to assess the possible ways of energy 

transfer from the various causes of noise and vibration and to evaluate their 

individual effects at a given target location providing insight into the mechanisms 

responsible for the problems. 

 Acoustic Modal Analysis (AMA), that relates the acoustic response to the intrinsic 

system behaviour of the car cabin. 

 

Without using these techniques, the only option - which was actually the one used in the 

past - to reduce the noise and vibration issues occurring in a vehicle’s cabin prototype is the 

so-called “masking” method. This approach consists in covering all the interior surfaces 

with acoustic absorbing material and to uncover the target regions sequentially, in order to 

evaluate the  contribution to the overall noise level of each single region. The “masking” 

method allows only qualitative results and only in a very advanced stage of the vehicle’s 

production cycle. The synergy between AMA, TPA and acoustic imaging, on the contrary, 

makes it possible to predict the acoustic behaviour of the car cabin since the early stages of 

its design. This is particularly due to the exploitation of simulation models that can be made 

more and more reliable through the updating processes linked to AMA [1]. The use of TPA 

and advanced acoustic imaging techniques allows analysing the (virtual or real) prototype 

of the vehicle’s cabin giving to the designer a deep insight about the mechanisms that 

generates the observed noise and vibration problems, thus easing their solutions. 

 

This thesis proposes a modular and multi-domain (frequency, time and angle domain) 

approach to acoustic imaging for advanced vehicles NVH analyses pursuing time and 

economical efficiency.  

Acoustic imaging techniques such as beamforming and Near-field Acoustic Holography are 

considered robust and simple experimental tools. However, due to their limitations, they 

have been often relegated to troubleshooting and qualitative studies in vehicles and in 

particular in automotive NVH. This limited exploitability makes the use of these techniques 

not always convenient compared to the costs of the equipment and the human effort 

required to conduct the tests. It is therefore desirable that such methods evolve towards 

more refined solutions capable of providing a larger and more detailed amount of 

information. If on the one hand this must be pursued by enhancing the single acoustic 

imaging approaches, on the other hand it is important to improve the synergy between 

acoustic imaging and other NVH techniques (such as TPA, AMA, Sound Quality 

assessment, etc.) oriented to the design of multi-purpose test setups and the modular 

exploitation of the results of each analysis. For the sake of time and economic efficiency, 

another requirement to this new paradigm of NVH experimental analyses is the possibility, 

on the one hand, to apply multiple techniques at the same time adopting the same 
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experimental setup and on the other hand adopting the same technique with similar 

equipment, but on different configurations and application cases. Such solutions would 

improve the effectiveness of acoustic imaging in the vehicle NVH development process ( 

[2, 3] Fig. 1. 1 ). 

 

 

Fig. 1. 1 : towards virtual prototyping of the acoustic package of a vehicle. 

 

The ideas reported in this thesis have been conceived with this paradigm in mind. Three 

experimental contexts, where improved acoustic imaging solutions can be beneficially 

exploited, have been targeted: study of exterior sources affecting in-vehicle noise, interior 

noise sources identification and components noise assessment. The information obtained 

through such acoustic imaging applications may serve several other NVH analyses. To give 

some examples: the accurate identification of the spectra of the exterior noise sources 

affecting in-vehicle noise and/or of the interior sources allow the estimate of their partial 

contribution to the driver (dis)comfort adopting source-transfer-receiver-based methods.  

 

 
  

(a) (b) (c) 

Fig. 1. 2 : acoustic imaging in automotive. Applications to (a): exterior, (b): interior and 

(c): components noise sources identification. 
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The availability of the time evolution of such noise sources enable auralization and Sound 

Quality studies. The decomposition into their angular evolution over the cycle of the engine 

would help understanding the mechanism of generation of the noise sources produced by 

ICE, etc. This variety of desiderata suggests to tune the type of acoustic imaging analysis 

on the specific information required. In order to do so, a multi-domain framework has been 

imagined in which frequency-based, time-based and angle-based techniques have been 

developed to be chosen, modularly, according to the problem under study. 

 

1.1. Literature survey 
 

Among the manifold techniques suitable for the localization of exterior sources affecting 

in-vehicle noise, in this document we will focus on the acoustic imaging methods involving 

microphone arrays, thus leaving apart the ones based on Sound Intensity measurements [4]. 

For this purpose a state-of-the-art overview about the main acoustic imaging techniques 

will be given in paragraphs 1.1.1 and 1.1.2. The more experienced readers will find in these 

paragraphs a comprehensive overview of the main references in the domain, accompanied 

with a brief discussion of the mentioned acoustic imaging methods. The non-initiated 

readers can refer to section 1.2 for a better understanding of the more fundamental aspects 

related to acoustic imaging. Moreover, despite they will not be explicitly treated in this 

thesis, for the sake of clearness and completeness a short description of the main literature 

available regarding TPA and AMA will be given in paragraphs 1.1.3 and 1.1.4 respectively. 

 

1.1.1. Exterior acoustic imaging 
 

Acoustic imaging techniques are used for localizing and ranking (based on their strength) 

the noise sources active in the acoustic field under study. A typical acoustic imaging 

experimental setup involves the presence of an array of microphones that can be placed at 

large distance with respect to the object under study - far-filed beamforming - in the 

proximity of the object - Near-field Acoustic Holography (NAH), Inverse Boundary 

Element Method (IBEM) - and/or in enclosures such as vehicle cabins, rooms, etc… In the 

latter case, literature often refers to interior beamforming. Such techniques divide into two 

main categories: direct methods and inverse methods. A systematic definition of the two 

categories is given by Leclère et al. in [5]. In the case of a direct method the 

location/strength of each source is identified independently from the others by scanning 

over the source area covering the location of potential sources and assigning to each of 

them a strength as a function of position and of course the microphones signals. Inverse 

methods are considering the problem for all sources at once. In this way the interference 

between potential coherent sources is taken into account. The main drawback is that inverse 

methods are more sensitive to noise and to numerical instabilities. 

The shape of the array and the geometrical placement of the microphones on the array 

depend on the application pursued and on the type of processing algorithm used. Some 

examples are the following. Regular (equally spacing between microphones) arrays are 

used in the case of NAH based on 2D spatial Fourier transform (see references [6] and [7]). 

Planar optimized shapes (i.e. spiral, wheel, half-wheel, cross/star shapes, etc…) are mainly 
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used for far-field applications when adopting those beamforming techniques falling into the 

category of direct methods. Spherical distributions (open sphere or rigid scattering sphere) 

are more suited for interior applications. When adopting inverse methods the influence of 

the shape of the array is less dramatic and, at least theoretically, there is no influence on the 

accuracy in the results as a function of frequency. In this case, irregular and randomly 

spaced microphone distributions are the most adopted. 

Among the direct methods, the algorithms working in frequency domain descending from 

the so-called Conventional Beamforming (CB) are the most used. The working principle of 

the CB algorithm consists in scanning the source area by means of “steering vectors” (see 

[8] and [9]) applied to the Cross-Spectral Matrix (CSM) estimated between the signals 

recorded by the microphone array. This idea has been conceived for the first time, and 

formalized in both time domain and frequency domain, by Billingsley et Al. in 1974-1976 

under the name of “the acoustic telescope” ([10], as reported also in [11]) and Fisher et Al. 

in 1977 under the definition of “polar correlation” and applied to jet engine noise (see 

references [12] and [13]). CB presents some intrinsic limitations related to the fact that the 

acoustic sources active at the calculation plane appear in the beamforming output not as 

clean beams, but rather contaminated by corresponding Point Spread Functions (PSFs). A 

PSF is the spatial impulse response of the beamformer to an acoustic source in a specific 

source location, “observed” by a specific microphone array. A typical PSF presents a main 

lobe in correspondence of the theoretical location of the acoustic source and sidelobes 

elsewhere. Such sidelobes degrade the beamforming output and make the acoustic map 

difficult to interpret. In order to overcome such limitations advanced approaches have been 

lately developed. Among them it is worth mentioning: the Functional Beamforming (FB) 

[14], deconvolution methods such as CLEAN and its evolutions (i.e. PSF-CLEAN, 

CLEAN-SC, HR-CLEAN-SC) [15, 16], DAMAS and its evolutions (i.e. DAMAS2, 

DAMAS3,…) [17, 18, 19, 20], the Non Negative Least Square approaches (NNLS, FFT-

NNLS) [21], the deconvolution methods based on the Richardson-Lucy (RL) algorithm [22, 

23, 24], etc. Functional Beamforming aims at eliminating the sidelobes by adopting a 

modified CSM which is manipulated by raising it to the power of an exponent parameter. 

All the deconvolution methods aim at removing the unwanted effect of the sidelobes by 

iteratively removing the PSFs from the beamforming map calculated by means of CB in 

order to improve the spatial resolution, to increase the dynamic range and better quantifying 

the source strengths (methods for quantification of the source strengths after deconvolution 

are described in [9] and [17]). For a comparison of their performance the interested reader 

can refer to [25] where different versions of DAMAS, NNLS and CLEAN have been 

described and compared with the aim of giving guidelines on their application. A similar 

work has been presented by Ehrenfried and Koop in [26] where the authors compare the 

DAMAS2 algorithm to DAMAS, NNLS and RL algorithms in term of computational 

effort, sensitivity to noise  and robustness to user-dependent parameters such as the number 

of iterations to set. Yardibi et Al. give, in reference [27], a systematic comparison of 

DAMAS and CLEAN-SC in terms of the estimation of the absolute signal power of the 

sources, capability of identifying correlated and uncorrelated sources and computational 

effort. Another approach that completes the panorama of the deconvolution methods is the 

so-called Localization and Optimization of Array REsults (LORE) whose main idea, 
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described in reference [28], consists in recognising patterns in the beamformed outputs 

(obtained with CB) and relating them to the noise sources that would produce the map. 

Since most of the deconvolution methods involve the solution of an inverse problem after 

the direct CB step, they are sometimes classified as inverse methods (see for example: 

[11]). In this thesis they are still considered as direct methods because they all start from a 

so-called “dirty map” computed by means of CB. This implies that the scanning of the 

acoustic scene requires the assumption that all the scanned points are assumed to be 

incoherent sources that emit sound independently. This is a big limitation when dealing 

with correlated and/or distributed sources as pointed out by Chu and Yang in [25]. 

Moreover the CB processing intrinsically implies the presence of Point Spread Functions, 

requiring deconvolution for obtaining clean maps. These are the aspects that encourages the 

use of different philosophies for acoustic imaging which are not affected by such 

limitations, such as inverse methods. 

All inverse methods have in common the idea of finding the best linear combination of 

sources that reconstruct the measured pressure distribution at the array level in an optimal 

way. Contrarily to direct methods, inverse methods are intrinsically able to deal with 

correlated as well as uncorrelated source distributions, and with sparse as well as spatially-

distributed acoustic sources (see for example [29]). This versatility explains the reason of 

their use and the increasing interest in their development. The choice of the nature of 

sources, the implementation of the inversion of the acoustic problem and the geometry of 

the problem will define different methods in literature. Relevant examples are IBEM and 

Equivalent Source Methods (ESM). IBEM [30, 31] uses functions obtained adopting the 

Boundary Element Method for formulating the radiation problem, therefore relates the 

acoustic field at a certain region in space with the vibration velocity of an emitting object. 

The ESM replaces the emitting object with a cloud of monopoles (equivalent, or 

elementary, sources) and assigns to each elementary source the proper strength and phase 

relationship, required to match the acoustic field sampled at the measurement plane by the 

microphone array [32]. Under the category of ESM several methods can be accounted. The 

nomenclature is not unified because historically such methods have been developed by 

many scientific communities with slightly different purposes. To give some examples: the 

irregular NAH [33] is an ESM applied in the near-field; the Airborne Source Quantification 

(ASQ) [34] or the Inverse FRF (IFRF) method [35] are techniques adopted in cases in 

which the inverse acoustic problem is not severely under-determined (see also: [32]); the 

Generalized Inverse Beamforming (GIBF) [36, 37, 38, 39], generally applied in far-field 

applications, solves severely under-determined inverse acoustic problems by multiple 

iterations. And they can all be considered ESM. In the case of GIBF at each iteration the 

number of equivalent sources describing the acoustic scene is reduced according to a 

wanted criterion (normally the equivalent sources’ strength). In this way numerical issues 

are reduced and sparsity is enforced. Notice that in this case the term beamforming is 

inapposite because the working principle of the method does not require the use of scanning 

acoustic beams. Nevertheless this terminology is widely adopted in literature. ESM are also 

used in near-field applications like in the case of the wideband acoustical holography 

described in reference [40]. 
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The main advantages of adopting ESM for Sound Source Localization (SSL) is that such 

techniques aim at associating a reliable quantitative output to the source localized by means 

of a distribution of elementary sources (monopoles or even multi-poles). The reason why 

the approach is versatile is twofold. On the one hand it allows to reproduce complex source 

distributions as a combination of simple source models; on the other hand, with the same 

principle, one is able to model, in a theoretical way, simple scenarios (such as monopole 

radiation) by means of multiple elementary sources as long as the pressure field produced 

by such distribution is equivalent to the real one. A consequence of this equivalence is that 

the power radiated by the equivalent sources distribution should be the same radiated by the 

real sources to be modelled. These interesting properties make it possible to exploit such 

methods not only for troubleshooting purposes, but also for accurate quantitative 

assessments. However, despite effective, these approaches can lead to numerical 

instabilities mainly due to the ill-posedness of the inverse problem to be solved. In fact, the 

number of equivalent source points, also called “scan points” - characterized by their own 

amplitude and phase - that discretize the calculation plane is generally higher than the 

number of microphones used in the beamforming array. Therefore, the number of 

unknowns is higher than the number of equations. For solving such underdetermined 

problem, a pseudo-inverse and a regularization strategy are required. There is a vast 

literature about this subject and many approaches have been studied and applied also in 

similar domains such as Near-field Acoustic Holography (see for example: [41]). Colangeli 

et al. [39] performed a sensitivity analysis on a Generalized Inverse Beamforming (GIBF) 

algorithm in order to identify the best regularization strategy to be adopted with GIBF. A 

similar study, on a different ESM-like approach, was performed by Kim and Nelson in 

[42]. Other approaches where the regularization strategy is somehow triggered by the 

characteristics of the acoustic fields are described in [43, 44]. The interested reader might 

refer to [45] for a deeper discussion on regularization methods. The problem of 

regularization in inverse beamforming is often tackled together with the problem of 

decomposition of the active field in uncorrelated noise sources distributions. The ill-

conditioning of the numerical problem is not only due to the lack of information in the 

measurements, but it can also be caused by other factors such as possible uncertainties in 

the propagation model and noise disturbances. Especially for the latter issues, a Principal 

Component Analysis (PCA) of the acoustic field under study can help for improving the 

results of acoustic inverse methods (some typical scenarios are depicted in references [46, 

47]). Colangeli et al. used such approach in [39] in order to solve complex acoustic fields 

and severe background noise conditions.  

A Bayesian formulation of the inverse acoustic problem is proposed by Antoni in [48, 49, 

50]. In this approach, physical and probabilistic information about the investigated acoustic 

problem are combined to obtain an equivalent sources reconstruction of the acoustic scene. 

Such method relies on the so-called Bayesian regularization strategy that relates the choice 

of the optimal regularization to probabilistic assumptions about the source field and the 

measurement noise. Moreover it is proven in [48, 49] that the possibility of exploiting a 

priori spatial information on the source field greatly improves the spatial resolution thanks 

to the so-called “Bayesian focusing”. The method is based on rephrasing the inverse 

problem formulation in order to obtain the reconstruction of the source field through the 
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expansion of optimal basis functions. Due to this aspect, this technique goes beyond the 

ESM concept. However, it still remains an Equivalent Source Method because such optimal 

basis is obtained from the discretization of the source region into elementary equivalent 

sources. In fact in [51], where Pereira et Al. compared the Bayesian method with a classical 

ESM formulation with different regularization strategies, it is shown that such classical 

formulation can be obtained as a particular case of the Bayesian formulation. It is moreover 

noteworthy that the Bayesian nature of this approach allows assigning a probabilistic value 

to the obtained results by quantifying the level of uncertainty [52]. 
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1.1.2. Interior acoustic imaging 
 

For interior acoustic imaging a convenient classification of methods is proposed by Pereira 

in [52] (where the reader can find a more detailed description of the possible methods), 

based on their underlying assumptions and processing to solve the given problem: 

 

 Beamforming methods. 

 Near-field Acoustic Holography (NAH) methods. 

 Inverse methods. 

 

The beamforming principle adopted is the same as in the exterior acoustic imaging. Instead, 

the configuration of the array is adapted considering that the in interior applications the 

microphones array receives acoustic radiation coming from all the directions and not only 

from the one “observed” with a planar configuration. As regards interior acoustic imaging, 

therefore, a typical configuration of the microphone array is the rigid sphere.  

In most of the applications the scattering effect of the rigid sphere is taken into 

consideration in the adopted radiation model, therefore in the formulation of the steering 

vectors (spherical beamforming [33]). This improves the accuracy and the dynamic range at 

mid-high frequencies because it improves the directivity of the antenna. This advantage is 

unfortunately lost at low frequency, where the wavelength of the acoustic waves is larger 

than the diameter of the sphere, making the scattering effect less efficient. In order to 

extend such frequency range, Lamotte et Al. propose to combine the rigid sphere with a 

larger open sphere (disposed concentrically). This will allow covering a larger range by 

adopting the following strategy (reported in reference [53]): 

- High frequency (above 1500 Hz): only small rigid sphere with spherical beamforming. 

- Mid-frequency (500 - 1500 Hz): combination of large open sphere (bad directivity, 

good resolution) and small rigid sphere (good directivity, bad resolution).  

For combining the benefits of the two arrays, a patented procedure based on “spatial 

coherence” is applied.  

Another powerful way to exploit the spherical configuration of the microphones within the 

array is the so-called Spherical Harmonics Beamforming described in [54]. It is based on 

the decomposition of the acoustic pressure field sampled on the spherical array onto a 

spherical harmonics basis which is used, in the spirit of the beamforming principle, to focus 

the array towards a set of scan positions obtaining the beamforming map very often in the 

azimuth and elevation angles coordinates. Roig et Al. proposed in [55] an approach that 

adopts the spherical harmonics decomposition to generate virtual pressures onto a spherical 

surface concentric and larger than the rigid spherical array. The aim is obtaining, through 

processing, the hardware configuration proposed in [53] with the same purposes. The 

advantage of these approaches is that the scattering effect of the rigid sphere can be taken 

into account improving the results. However, such methods still rely on a free field 

propagation model between the scan points and the microphones of the array. In order to 

improve the results one could improve the radiation model used in the beamforming 

solution by including the effect of reflection in the radiation model (Image Source Method, 
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an example is given in: [56] ) and/or taking into account the modal behavior of the cavity 

[57]. Another strategy for improving the beamforming results, but still adopting the free 

field propagation assumption was proposed by Castellini and Sassaroli in [58, 59] trough 

the so-called “average beamforming”: a statistical approach that requires to place the 

microphones array in several (two or more) positions within the cabin. The idea is that the 

effect of the reflections and the modal behaviour of the cavity depends on the position of 

the array while the physical sources obviously remain the same. By complementing the 

information carried by the standard beamforming maps with the mapping of statistical 

quantities it is possible to reduce the undesired effects focusing on the physical sources. 

The application of acoustic holography in non-anechoic conditions is a difficult task 

because the noise sources are placed in both regions of the microphone array (front and 

back). Villot et Al. studied the radiation of plane structures inside an enclosure [60]. 

Tamura et Al. [61, 62] proposed the use of a double layer microphone array for making it 

possible to distinguish between the sources acting in front or in the back of the array. The 

concept was then used in [63]. Other approaches, such as: Statistically Optimized NAH 

[64] and Spherical NAH [65] have been proposed for improving the performance of NAH 

and reducing its costs in terms of time and equipment. However the latter aspects are still 

the main drawbacks of adopting NAH for interior noise applications despite the benefit of 

an improved spatial resolution with respect to beamforming methods. 

Among the inverse method to be applied in interior applications the main options are: 

IBEM and ESM. IBEM was introduced for overcoming the limitations of NAH in dealing 

with arbitrarily shaped radiating surfaces [31], Kim and Ih applied for the first time the 

technique to a car cabin mock-up [30]. The IBEM method, that relates the acoustic pressure 

within a bounded domain to the normal velocity and surface pressure of the bounding 

surfaces thanks to a numerical discretization of the Kirchhoff-Helmholtz integral equation, 

has on the one hand the advantage of giving the freedom of utilizing arbitrarily shaped 

radiating surfaces and microphone arrays, on the other hand it has the drawback that the 

number of required measurement points increases in frequency and that the quality of the 

result is highly influenced by the numerical model adopted. The ESM ( [66], originally 

called “wave superposition method”) tends to mitigate the limitations of IBEM. It is based 

on the idea that the acoustic field generated by an arbitrarily shaped object can be described 

by means of the superposition of the fields generated by elementary sources (monopoles, 

dipoles, etc. ) placed within the radiator. As already mentioned for exterior applications, the 

solution of the inverse acoustic problem formulated in terms of ESM consists in finding the 

optimal equivalent sources parameters (amplitude and phase) such that the resulting 

acoustic fields matches the one measured by the microphones array. Thanks to this 

formulation it is no longer required that the shape of the microphone array should be 

conformal to the cabin’s cavity, moreover the number of measurement points can be 

severely reduced if compared to the IBEM case. This allows the application of such 

methods also adopting the rigid spherical configuration typical of the beamforming 

applications [67, 68]. The price to pay for this great versatility is that the inverse problem to 

be solved is in general severely under-determined and in most of the cases severely ill-

conditioned, too. The issues related to the ill-conditioning of ESM problems and their 
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consequences have been addressed from several angles in literature: [32, 52, 69]. In this 

thesis a novel approach will be discussed in Chapter 3. 

To conclude this paragraph three hybrid methods will be shortly described. The first is 

called: Helmholtz Least Squares (HELS, [70]), the second is called Hybrid Near-field 

Acoustic Holography (HNAH, [71]), the third one is called inverse Patch Transfer Function 

method (iPTF, [72]). The HELS method utilizes a microphones array conformal to the 

cabin enclosure in order to reproduce the pressure field active within the cavity as a 

superposition of a particular orthogonal basis of functions: the acoustic modes. This 

strategy gives on the one hand the advantage of a reduced number of required measurement 

points, on the other hand the approach badly deals with geometry of the cavity that deviate 

considerably from a sphere, moreover it is limited at high frequency due to the high modal 

density. Due to these limitations, Wu [71] proposed to use HELS as a pre-processing in a 

methodology called HNAH. It uses the HELS decomposition of the acoustic field within 

the enclosure to generate virtual microphones (in literature it is used the term “synthetic 

acoustic pressure”) on the same surface, conformal to the enclosure bounds, where the 

physical sensors belong. In this way it is possible to increase the number of measurement 

points onto the measurement surface. This increased sampling of the measurement surface 

makes it possible the use of iBEM for finally computing the normal surface velocity and 

the pressures over the source (enclosure) surface. This method gives the advantage of 

performing iBEM with a reduced number of microphones, however it suffers from the same 

limitations of the HELS method. The iPTF method tries to overcome the limitations of the 

abovementioned approaches (HELS and HNAH). The iPTF approach has been proposed in 

several formulations: [72, 73, 74]. Its main idea is to define an arbitrary volume including 

the main sources within a cavity and discretizing its virtual surface in patches in which 

pressure and particle velocity should be measured/known. This information is finally 

combined with a FEM model of the virtual volume. This approach allows to identify the 

acoustic field inside the entire virtual volume. Thanks to its formulation and to the FEM 

modelling, the iPTF method overcomes most of the limitations of the previous methods 

allowing to deal with complex geometries of the cavity in a larger frequency range. Weak 

point of the method is the cumbersome measurement effort required. In order to mitigate 

this limitation a novel formulation has been recently presented, [75], with the name: 

“Mixed iPTF”. This formulation keeps the basic principles of the previous version, but 

requires only pressure measurements becoming more cost efficient. 

 

1.1.3. Transfer Path Analysis 
 

The transmission towards the interior can occur through the structure of the cabin - 

structure-borne path - or through the acoustic propagation of the load through the air-

structure coupling. The latter ones are named air-borne paths. The most suitable technique 

for studying the propagation of noise and vibration problems from the exterior towards the 

interior of a vehicle is the so-called Transfer Path Analysis (TPA). It is a procedure that 

allows to trace the transfer of vibro-acoustic energy from a source to a given receiver 

assuming that the system can be modelled by means of a set of source-transfer-receiver 

paths that bring energy from the “active part”, where the “sources” are located, towards the 
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“passive part”, where the receiver/s is/are located. In automotive the passive part is 

represented by the car cabin, while the active part is represented by the engine, wheels, 

suspensions, etc. TPA will not be assessed in this document and for a complete description 

of this approach the reader can refer to: [76, 77, 78]. Different approaches for the 

assessment of the structure-borne and air-borne paths are required. While for structure-born 

paths assessment the most convenient approaches are better defined and more robust 

(mount-stiffness method, matrix inversion method, OPAX, etc. [76, 77, 78, 79] ), it is not 

the same for the study of air-borne paths. In this case several solutions have been proposed, 

but very often they have to be specialized to specific cases (powertrain airborne noise 

contribution [34, 80], airborne tire noise contribution [81], panel contribution analysis [82], 

etc.). For the airborne transfer paths analysis, is often used the definition: “Airborne Sound 

Quantification” (ASQ). With ASQ is generally defined an inverse method based on the 

estimation of Noise Transfer Functions (NTF) between the source location (where the 

acoustic loading takes place) and the target location(s) (where the acoustic loading’s 

influence is of interest) [83, 84, 85, 86]. It has been often used also for exterior noise 

assessment such as pass-by noise engineering [87, 88, 89]. 

If the study of the transmission is a crucial aspect to reduce the discomfort of the vehicle’s 

passengers, it is equally very important to have a deep knowledge about the exterior source 

location and their characteristics. This knowledge, in fact, will help on the one hand to 

refine the TPA models making them more effective and on the other hand to understand in 

detail the mechanisms of generation of the exterior noise loads, their nature, their causes. 

To give some examples related to automotive, this sort of analyses will help understanding 

the role of the leading and trailing edge [90] and the degree of correlation between front 

and rear wheel in the road noise airborne propagation (see section 3.3); understanding the 

contribution to the wind noise of specific car components [91]; understanding the 

contribution of combustion and mechanical noise produced by an Internal Combustion 

Engine (ICE) [92]. 

 

1.1.4. Acoustic Modal Analysis 
 

AMA aims at decomposing the behaviour of the car cavity into a set of individual 

resonance phenomena, each characterized by a resonance frequency, damping ratio, 

participation factor and mode shape. The experimental data set to derive this model consists 

of a set of Frequency Response Functions (FRFs) between a set of reference (i.e. acoustic 

source input) degrees of freedom and all response (i.e. microphone output) degrees of 

freedom. The analogy with the structural Experimental Modal Analysis (EMA) is 

straightforward [93, 94, 95]. A broader view and a deeper insight on this topic can be 

obtained thanks to the literature produced by Accardo and co-workers listed in the 

references section: [96, 97, 98, 99]. 
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1.2. General theoretical aspects 
 

In this section there are reported some theoretical aspects related to simple sources radiation 

and to how a radiation problem is related to acoustic imaging. This short dissertation does 

not aim at giving a deep insight on these topics, but rather at defining tools that will be 

largely used in the following chapters, in order to facilitate the reader in the manuscript 

consultation. In particular, the interdependency of the acoustic quantities related to the 

radiation problem of simple sources will be recalled in paragraph 1.2.1, while the direct and 

inverse formulations of an acoustic imaging problem will be discussed in paragraph 1.2.2. 

For a more detailed treatment, the reader can refer, within the vast literature on these 

subjects, to [100] regarding the fundamentals of acoustics and to [101] regarding the 

manifold array based methods and their formulation.  

 

1.2.1. Monopole propagation and related acoustic quantities 
 

An acoustic monopole radiates sound equally in all directions. In practice, any sound 

source whose dimensions are much smaller than the wavelength of the sound being radiated 

will act as a monopole. This explain our interest in such a model of propagation of sound. If 

the source is small with respect to a wavelength and several wavelengths apart, it can be 

treated as a simple source (at the same frequency). In this case its acoustical radiation 

properties can be considered identical to the ones of a pulsating sphere of the same source 

strength Q. This assumption will allow to describe these sources through the monopole 

propagation model. In particular it will be possible to know the pressure field, for any given 

frequency, at any given distance as in Eq.(1. 1). 
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Fig. 1. 3 : scheme of the radiation of a monopole of strength Q in free field. 
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The quantities represented in Eq.(1. 1) are: 

 p: acoustic pressure [Pa];  

 ρ: density of the air [kg/m3]; 

 ω: angular frequency defined as 2πf [rad/s]; 

 Q: acoustic strength, also called volume velocity, [m3/s]; 

 r: module of the distance between the source location and the investigated point. 

 

It is convenient to refer to jωQ as the volume acceleration, [m3/s2] of the source. 

Referring to Fig. 1. 3 it is possible to notice that Eq.(1. 1) allows also to define through 

Eq.(1. 2) the pressure produced by the source of strength Q in a location B when the 

pressure field is known in the location A and vice versa. 
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The acoustic power emitted by the monopole source of strength Q is quantified in Eq.(1. 3). 
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Thanks to Eq.(1. 1) and Eq.(1. 3) it is also possible to evaluate, through Eq.(1. 4), the 

acoustic power radiated by a monopole source if it is known the pressure field produced by 

the source in the location r. 
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Assuming that Q is the only source active in the acoustic field, from Eq.(1. 4) descends that 

the power level LW of the source is theoretically known once it is known the Sound Pressure 

Level (SPL) at a given distance from the source. Defining in fact the SPL as in Eq.(1. 5), 

the power level of the source can be obtained through Eq.(1. 6) by reworking Eq.(1. 4) in a 

dB scale and setting the reference values of W0 = 1 pW and p0 = 20 μPa. 
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The reported equations are to be considered valid only in the case of ideal monopole 

sources in ideal free-field conditions. In reality the acoustic power radiated by real sources 

should be evaluated through more detailed and refined measurement procedures prescribed 

by the standards (ISO 3741, ISO 3744, ISO 3746, ISO 9614-1/2, etc. [102]).  

In acoustic imaging the ideal monopole radiation model represents a central concept for 

many formulations. In fact, several acoustic imaging problems, and in particular the one of 

interest in this thesis - the direct beamformer and the equivalent source model - have in 

common the assumption that the acoustic field sensed by the microphones belonging to the 

array is caused by a distribution of monopole sources placed in a so-called source region. 

Such problems formulation exploits equations (1. 1)-(1. 6). Some authors extended the 

acoustic imaging formulation to cases of more complex radiating sources such as dipoles 

and quadripoles [36, 103, 104, 105, 106], these cases will not be deeply investigated in this 

thesis. 

 

1.2.2. The direct beamformer and the equivalent sources radiation problem 
 

The problem of the radiation of acoustic sources towards measurement locations where an 

array of microphones is installed will be introduced in this paragraph. As already described 

in paragraph 1.1.1, the configuration of a microphone array pointed towards an acoustic 

scene is the typical experimental setup required for performing any kind of acoustic 

imaging based on simple pressure measurements. The aim of this paragraph is to describe 

the direct and the inverse approach to the investigation of the radiation of sound sources 

through acoustic imaging. In fact, it will be clarified to the reader the difference between 

these two points of view, explaining how the same information available (geometry of the 

problem and measured acoustic pressure at the microphones locations) can be exploited for 

obtaining a direct formulation or an inverse formulation, finally pointing out pros and cons 

of the two choices. 

Fig. 1. 4 reports, through an example, the three steps common to any acoustic imaging 

problem formulation. In our example, in fact, Fig. 1. 4(a) represents a microphone array 

installed for observing the acoustic scene generated by two generic sources, of strength QI 

and QII, radiating towards the array. Fig. 1. 4(b) reports the first assumptions to simplify the 

problem: the sources (initially not known) are assumed to be “simple”, for example 

monopoles. Such sources are assumed to belong to a source region called scan plane and a 

geometrical relationship between the array plane and the source plane is defined. Finally, 

as depicted by Fig. 1. 4(c), a radiation model can be generated thanks to the physical and 

geometrical hypothesis assumed so far. In particular, the scan plane is discretized into a set 

of elementary monopole sources and their radiation towards each microphone of the array 

is obtained. 
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Fig. 1. 4 : problem statement for acoustic imaging. (a): acoustic source radiation towards 

a microphone array. (b) the sources are assumed to be “simple” and belonging to a source 

region called “scan plane”. (c) building the radiation model on the basis of the physical 

information available (geometrical: array position with respect to the scan plane; 

acoustical: far-field, near-field, etc.). 

 

This radiation problem can be formalized as in Eq.(1. 7) in which the so-called radiation 

matrix A allows to determine, at any given frequency, the complex pressure at the 

microphone locations, stored in the vector p, if the characteristics of each monopole that 

discretized the scan plane, represented by the coefficients of the vector a, are known. 

 

 )()()(  paA   (1. 7) 

 

If the elementary monopole sources are characterized by their strength (Qn [m3/s]), the 

elements of the radiation matrix A assume the form of Eq.(1. 8) 
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Moreover it is possible to interpret the phase shift prescribed by Eq.(1. 8) as the time delay, 

Δ𝜏mI=|rm-rI|/c and Δ𝜏mII=|rm-rII|/c, that occurs due to the travelling of the acoustic wave 

from the sources QI and QII to the receivers pm. In our example the ideal formulation of the 

investigated radiation problem yields what reported in Eq.(1. 9). 
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The pressure filed at the array level is ideally produced by two monopolar sources QI and 

QII placed in the corresponding locations indicated by rnI and rnII as in Fig. 1. 4(c). In reality 

the coefficients of the vector a in Eq.(1. 7) are unknown and their determination is not a 

trivial task because it requires the inversion of the problem stated in Eq.(1. 7).  

Such problem can be approached in two manners: inversion of the radiation matrix A 

(inverse methods) or through focused beamforming (direct methods). 

Fig. 1. 5 reports a scheme that explains the approach to the problem through focused 

beamforming.  

 

 

Fig. 1. 5 : scheme explaining the beamforming formulation. 

 

The focused beamforming is an averaging procedure that determines the acoustic 

contribution of the sources sought within the scan plane thanks to mathematical entities 

called steering vectors. The steering vectors w(ω,rn), or wn when the dependency by the 

frequency is made implicit and the relationship with the nth focused scan point rn is 
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synthetically explicated by the subscript n, allow to use the complex acoustic pressure 

sampled at the array level to form a beam that is focused onto each of the n scan points 

through the expression of Eq.(1. 10): 

 

 )(),(  prwb n

H

n  . (1. 10) 

 

This beam-forming effect is obtained by assigning to each steering vector a set of phase 

shifts (or time delays) { ωΔt1n , … , ωΔtmn , … , ωΔtMn } that, properly combined with the 

complex pressures { p1 , … , pM }, emphasizes the sound coming towards the array from the 

position rn and suppresses the sound coming from elsewhere. This is done per each scanned 

point of the scan plane, under the assumption that each elementary monopolar source 

composing the scan plane can be considered uncorrelated from the others. The bn 

coefficients, for all the N scan points, are the elements of the vector b that is often called 

beam pattern, i.e. the set of the N focused acoustic beams. The steering vectors wn can be 

assumed proportional to the columns of the radiation matrix A (Eq.(1. 11) ).  
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Many alternative steering vectors formulations are available in literature. The interested 

reader can refer to [107] for a complete overview. The classic approach is: rescaling the 

element of the radiation matrix ( Eq.(1. 12) ) on their module emphasizing the phase 

relationship between the sound radiated by the nth scan point and the signal sensed at the 

microphones array locations. 
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Defining with Bn , see Eq.(1. 13), as the product of each element of the beam pattern with 

its complex conjugate 
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19 

 

and recalling that the Cross-Spectral Matrix (CSM) between the microphones array signals 

is estimated, by averaging over multiple realizations, through the Hermitian product of the 

complex pressure vector p with itself as shown in Eq.(1. 14): 
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 , (1. 14) 

 

it remains proven, through Eq.(1. 10), the equation Eq.(1. 15): 

 

 wCwC M

H

b  . (1. 15) 

 

The vector B, containing the diagonal elements of the matrix Cb is the acoustic image 

obtained through direct beamforming. Its elements are described in Eq.(1. 13) and have 

unit: [Pa2]. The columns of w (steering matrix) contain the steering vector previously 

defined (Eq.(1. 16)). 
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The method that adopts Eq.(1. 15) for obtaining the acoustic image of the scene observed 

by the microphone array is often called in literature: Conventional Beamforming [26]. Its 

results are often plotted in dB reporting the SPL values obtained beam-forming the 

microphones array information towards each of the scan points used to discretize the source 

region. Notice that this method relies on the assumption that each elementary monopolar 

source in the scan plane has to be considered as uncorrelated from the others and no 

relationship between them is taken into account. Moreover, it is worth to point out that the 

steering vectors allow to map the effect (SPL) of such elementary sources distribution at the 

scan plane and not their actual strength. These assumptions make direct methods on the one 

hand very robust in accomplishing the sources localization task, whereas on the other hand, 

despite theoretically ([108]) absolute levels of the sources strengths can be obtained 

through post-processing of the results of Eq.(1. 15), direct methods yield only qualitative 

indications on the acoustic power radiated by the investigated sources. Furthermore the 

assumption that the elementary monopolar sources belonging to the scan plane are 

uncorrelated, limits the technique in presence of complex acoustic fields in which 

correlated and distributed sources are active.  

The condition of no correlation between the elementary sources of the scan plane is not 

required in the Equivalent Source Method (ESM) formulation. ESM still relies on the 
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discretization of the source region into elementary monopolar sources, but, contrarily to the 

previous category of methods, it aims at estimating the coefficient of the vector a of Eq.(1. 

7) through the pseudo-inversion of the radiation matrix A ( Eq.(1. 17) ). 

 

 pAa   (1. 17) 

 

This inverse methods have the advantage of considering the elementary monopolar sources 

of the scan plane all at once. The phase relationship between them is therefore taken into 

account allowing to better dealing with correlated source distributions. Considering all the 

elementary sources at once has also the advantage that the mutual interaction of the 

acoustic fields produced by each of them at the microphones array locations can be taken 

into account. This will allow to determine the source strength of each of them by fitting in a 

least-squares sense their effect into the acoustic field sampled at the array level. From this 

assumption descends the definition of equivalent sources.  

At this point it should be clear to the reader the marked difference between the beam 

pattern obtained through a direct approach and the equivalent sources distribution obtained 

through inverse methods. In the first case a pressure value, representative of the array 

information beam-steered towards each scan point, is assigned to each elementary source of 

the scan plane, whereas in the second case the strength (or a coefficient proportional to it) 

of an equivalent source is assigned to each scan point. In fact, despite the term “inverse 

beamforming” is widely used in literature, it is actually inappropriate in the case of ESM 

because such techniques do not rely on a beam-steering process, but rather on a least-

squares fitting of the pressure information at the array level. However, for uniformity with 

the literature terminology, in this thesis the wording “inverse beamforming” will be kept 

when referring to existing or novel inverse acoustic imaging methods. 

Despite the two branches of methodologies (inverse and direct approaches) are intrinsically 

different, they both originate from the same acoustic problem described in Eq.(1. 7). This 

suggests to investigate more deeply the mathematical aspects that differentiate the two 

approaches in order to efficiently position strengths and limitations. In order to do so the 

inverse problem formulation of Eq. (1. 17) can be reworked observing that the Moore-

Penrose generalized inverse of the radiation matrix A can be obtained through its Singular 

Values Decomposition (SVD) [109, 110] as shown in Eq.(1. 18): 
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The matrix Σ is populated by the singular values of A.  

Let us define Ca as the CSM between the equivalent sources of the equivalent source 

distribution obtained through Eq.(1. 17): 
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The expression in Eq.(1. 20) is obtained by injecting in Eq.(1. 19) the expressions of a and 

A of Eq.(1. 17) and Eq.(1. 18) respectively and observing that the product ppH equals the 

CSM between the microphones array signals, CM. 
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 (1. 20) 

 

Through this compact expression it becomes evident that the delicacy of the inverse 

methods lies in the nature of the singular values of the radiation matrix A. In particular, the 

situation becomes critical when the non-zero element of Σ range from very small to very 

high values because in that case A is ill-conditioned and/or ill-determined. This problem 

can be mitigated through Truncated SVD  [111] of the matrix A (neglecting the least 

significant elements of Σ during its pseudo-inversion) or by means of other regularization 

strategies (see [45] and Chapter 2). In this latter case the formulation of Eq.(1. 20) changes 

into the one of Eq.(1. 21) 
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where Σ-1 has been replaced by the expression in Eq.(1. 22): 
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 (1. 22) 

 

The coefficient λ2 is the so-called regularization parameter. Several regularization 

strategies for the optimal choice of λ2 have been proposed in literature [45]. In section 2.2 

of Chapter 2 this aspect will be discussed with regard to the possible choices available in 

the case of the adoption of the GIBF algorithm for solving the inverse problem.   

In the case of a focused beamforming formulation, instead, recalling Eq.(1. 15) and 

defining Cb as the CSM between the elements of the beam pattern: 
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Eq.(1. 23) is obtained: 
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where the steering matrix w has been decomposed through singular values factorization: 
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It can be observed that in the case of direct approaches (Eq.(1. 24)) the singular values 

matrix is not inverted.  

In [112], where Dougherty proposed a simplified solution of the generalized inverse 

problem (called GINV) especially tailored for jet noise, based on Eq. (1. 20), it is observed 

that the structures of Eq.(1. 20) and Eq.(1. 24) are so similar to even allow an hybrid 

approach ( Eq.(1. 26) ) in which a compromise between the reciprocal and the original 

value of each singular value of A could be used to fill the non-zero elements of Z[NxM] : 
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However, this hybrid approach as such yields results comparable to the focused 

beamforming (already defined: Conventional Beamforming) CB in which on the one hand 

the spatial resolution is slightly improved by tuning the matrix Z, on the other hand the 

solution completely diverges if Z is not tuned properly.  

The case of the Bayesian approach proposed by Antoni in [49] can be obtained through 

Eq.(1. 27): 
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by putting: 
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and: 
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It is in fact explained in [49] that:  

 

 Ωnoise in Eq.(1. 28) is such that the product β2Ωnoise is the covariant matrix of the 

measurement noise at the microphones of the array with the coefficient β2 

representing the mean energy of such noise. 

 η2 is in this case obtained through the so-called Bayesian regularization as a 

function of the abovementioned coefficient β2 and the mean energy of the source 

field quantified by another parameter, α2, estimated taking into account a priori 

information on the source field. 

 

The structure of Ṽ will not be described here. The interested reader can find the detailed 

description of the method in [48, 49, 51]. Eq.(1. 30) only reports that Ṽ can be considered 

proportional to the eigen-functions V of the matrix A. 

Notice that, as Pereira et Al. observed in [51], the Bayesian formulation in Eq.(1. 27) 

admits the formulation of Eq.(1. 21) as a particular case in which are considered: Ωnoise=I 

(identity matrix), η2= λ2 (i.e. the Bayesian regularization strategy is replaced with other 

approaches [45]) and Ṽ≡V. In [51] the authors compared the two formulations (Eq.(1. 21) 

and Eq.(1. 27)) coming to the conclusion that the Bayesian approach outperforms the other 

(at least in the cases reported in the paper) thanks to the Bayesian regularization 

mechanism. 

 

Inverse methods allow, with a compact formulation, quantitative results, accurate 

localization and the resolution of complex acoustic fields. These methods are moreover 
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easy to extend towards more refined modelling of the radiation properties of the sought 

equivalent sources including multi-pole behavior or other extensions of the free-field 

assumptions (reflections, reverberation, etc.). Besides these advantages, the downside of 

adopting inverse methods consists in the fact that the corresponding inverse problems are 

often severely under-determined and ill-conditioned. These drawbacks may have a dramatic 

impact on the final results if not properly considered and tackled. These aspects will be 

discussed extensively in Chapters 2 and 3.  

Despite the just mentioned risks, the interest towards inverse methods is fully justified by 

their great potential in resolving correlated and uncorrelated sources distribution with high 

spatial accuracy and high dynamic range. Fig. 1. 6 describes a numerical simulation of an 

array of randomly distributed microphones ( Fig. 1. 6(a) ) placed 1 m far from a random 

noise source located in the center of the circle depicted in Fig. 1. 6(b) describing the 

acoustic scene and the considered scan plane. 

 

 

Fig. 1. 6 : simulated beamforming problem for comparing CB and GIBF performance. 

Problem statement. (a): microphones array geometry. (b): Theoretical location of the 

sought random noise source. (c): colour code. The acoustic images are normalized to their 

maximum value and plotted with 10 dB dynamic range. 

 

A comparison between the results obtained with CB, direct method, and GIBF, the inverse 

method that will be studied and enhanced in this thesis, is reported in Fig. 1. 7. It was 

already pointed out that the beam pattern obtained through direct methods and the 

equivalent sources distribution obtained by means of inverse methods have slightly 

different interpretations. In order to directly compare the results of the two methods in 

terms of localization accuracy and dynamic range capabilities, the acoustic images have 

been normalized to their maximum value and plotted in dB with a fixed range of 10 dB.  
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(a) 

 

(b) 

Fig. 1. 7 : comparison of results in the range 250 Hz – 10000 Hz for the acoustic imaging 

problem stated in Fig. 1. 6. (a): Conventional Beamforming (CB) results. (b): Generalized 

Inverse Beamforming (GIBF) results. 

 

The two methodologies have been tested for frequencies ranging from 250 Hz to 10000 Hz. 

It can be noticed that the dynamic range allowed by GIBF is constantly larger than 10 dB 

(it is much larger actually), while it becomes acceptable for CB as from 2000 Hz and it 

becomes again smaller than the 10 dB scale due to the sidelobes introduced by the point 

spread function [101]. 

The literature review regarding the acoustic imaging techniques reported in paragraphs 

1.1.1 and 1.1.2 showed that many alternative methods have been proposed ever since the 

idea of the “acoustic telescope” [10] was applied for the first time to visualize acoustic 

sources. Historically the direct methods were investigated first, targeting qualitative and 

troubleshooting applications, whereas lately the interest towards inverse methods is 

constantly increasing (in parallel with the improvement of the mature direct methods) 

because of their high performance and the possibility of absolute quantitative results. 

However, the optimal method to choose depends on the pursued application and the choice 

of using a direct or an inverse approach for acoustic imaging should be driven by the 

ultimate goal of the analysis. 

 

In this thesis, for example, the main focus will be on inverse methods because novel pre- 

and post- processing techniques to enhance the results of a GIBF algorithm will be 

proposed in Chapter 2, whereas in Chapter 3 and Chapter 4 a novel inverse technique, 

called Clustering Inverse Beamforming, will be introduced and applied in frequency and 

time domain. However it will be also shown that the use of an inverse method is not always 

the most convenient choice. This is the case of Chapter 5, where an acoustic imaging 

methodology for tackling cyclo-stationary noise problems will be described. 
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1.3. Structure of the manuscript 
 

The following paragraphs describe the content of the thesis guiding the reader through its 

structure. 

 

Advanced acoustic imaging in frequency domain 
 

Chapter 2 is dedicated to the description of Generalized Inverse Beamforming (GIBF). This 

approach has been chosen among several alternative techniques based on the so-called 

Equivalent Source Method (ESM) because of its versatility and compatibility with PCA-

based blind source separation (BSS) methods. These methods will be in fact used in this 

thesis for uncorrelated sources separation and for de-noising processing. GIBF utilizes an 

iterative optimization procedure to discard the insignificant equivalent sources from the 

source plane in order to turn the initially under-determined into an over-determined 

equivalent problem reducing numerical issues. 

Three critical aspects of GIBF have been addressed with the following findings:  

- The ill-conditioning problems in GIBF has been studied in a systematic way and 

guidelines for optimal regularization have been given.  

- The ability of the method of decomposing the acoustic image into quantifiable 

uncorrelated sources distributions has been tested and a sufficient criterion to ascertain 

the compatibility between the obtained virtual decomposition of the acoustic image and 

the physical sources actually present has been proposed. 

- Adaptive strategies for performing the iterative optimization procedure to reduce the 

source plane have been proposed. 

Moreover several alternatives for achieving the optimized solution have been introduced 

obtaining a modular approach that allows to combine GIBF with pre- and post- processing 

techniques to improve the solution. 

  

A novel inverse acoustic imaging method, the so-called Clustering Inverse Beamforming 

(CIB), working in frequency domain, will be presented in Chapter 3. CIB is an array-based 

acoustic imaging technique to solve inverse problems formulated by discretizing the source 

region into elementary equivalent sources. It is based on the statistical processing of 

multiple realizations of the acoustic image, related to the investigated source region, 

iteratively obtained solving the corresponding inverse problem on different clusters of 

microphones, taken from the same microphones array. The result of such statistical 

processing is stored in the so-called “clustering mask matrix”. This function is defined in 

the source region where it is interpretable as the confidence level of finding a physical 

source in each location within the domain. The inner statistical nature of such approach 

prevents the occurrence of numerical issues related to the solution of the inverse problem. 

By enabling to focus on those sub-regions most likely to be the sites of physical sources, it 

allows accurate localization and optimal quantification. Moreover, if combined with 

Principal Component Analysis, the method provides a robust criterion for uncorrelated 

noise source separation with no need of reference sensors in the proximity of the 
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investigated object. CIB is applicable to exterior as well as interior acoustic imaging 

problems. It does not require any special geometrical configuration of the microphones 

array. CIB is therefore useful not only for troubleshooting applications, but also for 

accurate NVH analyses. Another remarkable advantage is that it requires a reduced number 

of sensors and tests. Moreover, it allows to design flexible and multi-purpose test setup. 

One example is the use of a randomly distributed microphones array in the car cabin that 

can be used both for interior acoustic imaging and Acoustic Modal Analysis. 

 

Inverse source reconstruction in time domain 
 

CIB has been adopted also as preliminary step for inverse source reconstruction in time 

domain based on far-field measurements. This technique, presented in Chapter 4, is 

particularly suited in those applications that require a detailed knowledge of the main 

sources and the acoustic field produced by them. In NVH such cases are normally tackled 

using experimental technologies such as NAH and Sound Intensity that have the advantage 

of yielding very detailed results but at the cost of an increased time and economical effort 

for their implementation. Moreover these other methods require to measure in the 

proximity of the objects, which is not always possible in industrial applications (i.e. wind 

tunnel measurements). The time domain-based method described in Chapter 4, therefore, 

represents an appealing alternative for source reconstruction with a reduced computational 

and experimental effort.  

 

Decomposition of the acoustic image in the angle domain for the study of 

cyclo-stationary phenomena 
 

Chapter 5 is dedicated to the description and the sensitivity analysis of an acoustic imaging  

technique tailored for cyclo-stationary phenomena. This algorithm is particularly suitable 

for investigating noise problem produced by rotating machineries. In fact it relates the 

pressure field at the array level with the angular evolution of the rotating elements of the 

investigated machine making available an acoustic image representative of the acoustic 

field around the machine at any angular instant within the cycle. The study of sound and 

vibration phenomena related to the engine of a car often needs complex experimental 

setups. The engine has to be instrumented with several sensors requiring several hours (or 

days) of tests. The possibility to relate the identification of the noise sources produced by 

the ICE with the angular position of the rotating elements of the engine and the knowledge 

of the location of such noise sources within the cycle of the ICE, through microphones 

array measurements, gives therefore several advantages. In fact on the one hand it allows to 

understand the causality between the physical phenomena and their acoustic consequences 

and on the other hand it allows to optimize the effort for further more accurate studies 

saving, once again, time and costs.  
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Chapter 2. 

 

Generalized Inverse Beamforming 

 
In inverse beamforming the acoustic field at a calculation plane is obtained by inverting a 

direct radiation problem in which sources are assumed to be distributed over a scan points 

grid and are then radiated towards the microphones positions at the array plane. The 

unknowns are the strengths of each source. The number of unknowns is generally much 

higher than the number of microphones causing difficulties in the generalized inversion of 

the full-size problem. An optimization strategy, proposed for the first time by Suzuki [36] is 

to iteratively reduce the considered scan points discarding the ones that do not really 

participate to the acoustic field because of weaker amplitude. This idea gave birth to the 

Generalized Inverse Beamforming (GIBF) method. 

Suzuki proposed in [105] an improved version of GIBF in which the problem has been 

reformulated to be solved as a L1-norm problem adopting an iteratively re-weighted least 

squares approach. It is based on a weighting matrix applied to the transfer matrix describing 

the propagation of the equivalent sources distributed at the calculation plane. Another GIBF 

formulation based on a weighting procedure has been proposed in [38]. Zavala compared 

several implementations of GIBF in [113] targeting moving sources and aero-acoustic 

source localization [104, 114] applications. The same author deepened also the themes of 

regularization [37] and strength estimation of correlated sources distributions [115]. To 

conclude the overview on the versions of GIBF available in literature, it is worth to mention 

the formulation given by Dougherty in [112] for assessing jet noise problems. The main 

idea is reworking the linear algebra of the problem in order to solve it as a generalized 

version of a direct beamformer solution. The same algorithm has been applied on a recent 

study on jet noise presented in [116].  

In this chapter a GIBF formulation is presented in section 2.1. The regularization problem 

in GIBF has been addressed in a systematic way and guidelines for the selection of the 

optimal regularization strategy will be given in section 2.2. The GIBF algorithm will be 

used in combination with existing and novel PCA-based pre-processing methods aiming at 

improving the calculated acoustic images. In section 2.3 the use of PCA for uncorrelated 

source separation of the GIBF solution, based on the microphones array cross-spectral 

matrix eigen-structure, will be discussed. In sections 2.4 and 2.5 two adaptive pre-

processing methods to discard insignificant equivalent source component of the obtained 

solution will be presented: the first one is based on a PCA of the acoustic image, the other 

one on the solution of an over-determined formulation of the inverse problem. 

The studies presented in this chapter are preparatory to the implementation of the GIBF 

method in the microphone clustering approach that will be introduced in Chapter 3, 

providing the so-called Clustering Inverse Beamforming method.  
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2.1. Formulation 
 

The GIBF algorithm proposed in this thesis works in frequency domain and starts with the 

computation of the Cross-Spectral Matrix (CSM) of the microphone array signals. The 

CSM is an M×M matrix, with M the number of microphones in the array, whose elements 

consist in the cross-spectra between the signals of each pair of microphones of the array. 

The main diagonal of the CSM contains the auto-power spectra of the signals of each 

microphone. In this manuscript the CSM is estimated adopting the Welch’s method: i.e. 

assuming the microphones signals stationary and ergodic in such a way that the cross-

spectra can be estimated by an averaging process over multiple blocks of the microphone 

signals. The eigenvalue decomposition ( Eq.(2. 1) ) of the microphone array CSM CM  

 

 H

M ESEC   (2. 1) 

 

makes it possible to decompose the acoustic field at the array plane in eigenmodes 
)(i

p (Eq.(1. 7) ). E and S represent, respectively, the eigenvectors and the eigenvalues 

matrices of size M×M. They are composed, respectively, by:  

- 
)(i

e , column vector of E, whose elements are: m
ie )( ;   

- 
)(is , diagonal elements of S, eigenvalues of CM. 

The symbol “


” indicates the conjugate (or Hermitian) transpose. Each eigenmode 

corresponds to an uncorrelated source distribution. A theoretical explanation of this 

assumption is given in [9], in [39]  and in [117]. As highlighted in [39], it is recommended 

to calculate the CSM taking, as rule of thumb, at least 10×M averages in order to obtain a 

correct estimation of the Auto-Power Spectra (APS) of the uncorrelated source distributions 

active in the field through eigenvalue decomposition. This topic will be deepened in section 

2.3.1. 
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In Eq.(1. 7), L represents the number of not negligible eigenmodes of CM. Physically, each 

distribution p(i) at the array plane is the result of the sound propagation of the corresponding 

source distribution a(i) located at the calculation plane. Assuming a radiation model suitable 

for monopole sources in free field conditions 
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rmn being the distance between the mth of the M microphones and the nth of the N scan 

points composing the calculation plane, the radiation problem can be formulated as follows: 
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This implies also that the problem can be solved also considering all the not negligible 

eigenvalues of the CSM at once:  

 

 



L

i

i
paAtsa

1

)(
.. . (2. 5) 

 

The inverse problem is solved through the pseudo-inverse of the radiation matrix A. The 

radiation matrix A is generally ill-conditioned, thus a regularization strategy is required. 

The Tikhonov’s approach is exploited for the inversion. Regularization is obtained by 

introducing a parameter (λ2) in the generalized inversion as shown in Eq.(2. 6) where I is 

the identity matrix of size M×M. 
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Several criteria can be adopted to identify the regularization parameter [45]. Among these, 

the quasi-optimality function has resulted to be the most effective in GIBF problems [39]. 

An extensive description of the latter technique is given in section 2.2.  

Suzuki [36] proposed to use an iterative process for improving the identification task. He 

suggested to solve Eq.(2. 6) iteratively for a fixed number of times, updating the problem at 

each iteration and discarding, from the equivalent source solution vector a(i), k=*, the scan 

point showing the weakest amplitude (thus the weakest strength). This operation should 

allow for better posing the inverse problem by discarding the redundant unknowns 

(therefore reducing numerical instabilities) leading to a more accurate identification of the 

source distributions.  

This approach has the limitation that the threshold to be set for truncation is user-

dependent. It could be improved. However it can be considered a solid strategy for 

optimizing the localization and dynamic range of the resulting acoustic image. Moreover it 

has demonstrated to be robust in presence of non-ideal conditions of test. In order to 

ascertain that, the robustness of the algorithm to wrong specifications of the geometry has 

been tested by simulating the most common errors: wrong positioning of the array in the 

space, wrong positioning of the microphones within the array. A simulated sine source at 1 

kHz has been placed at the coordinate [0.1 m,-0.1 m, 0.6 m] of the acoustic scene depicted 

as in Fig. 2. 1(a). In the first analysis the array error in positioning is made varying in the 

range: rideal+δrmis=0.6m ±0.1m with a 0.01 m step for the distance to the target grid and 

Φideal+δΦmis=0°±10° with a step of  0.1° for the error in angle positioning. Results in Fig. 2. 

1(b). In the second case the position of each microphone is made randomly varying within a 
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sphere of radius δρmis=0.01 m. Fig. 2. 1(c).The size of the dots in the maps in Fig. 2. 1(b-c) 

is proportional to the number of occurrences in which the source has been localized in that 

position. In both analyses the localization error is within an area of about 0.05 m radius. 

 

 
  

(a) (b) (c) 

Fig. 2. 1 : robustness of GIBF algorithm to typical misalignments in the geometry. (a) 

Statement of the analysis. (b) Results for the combined misalignments δrmis and δΦmis. (c) 

Results for the combined misalignment δρmis. 
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2.2. Regularization in GIBF 
 

For inverting the ill-conditioned radiation matrix the Tikhonov’s approach is used, as 

depicted in Eq.(2. 6). Several studies have been conducted in literature aiming at defining 

the best procedure of regularization in the case of the several version proposed for assessing 

inverse acoustic imaging problems. 

Regarding GIBF, the first proposal came from Suzuki in [36] where it was suggested to 

choose the regularization parameter λ2 as a fraction ranging from the 0.1 % to the 5% of the 

highest singular value of the matrix AAH (or AHA if dealing with and over-determined 

problem). The same approach was used by Zavala in [103]. Such approach may reveal to be 

oversimplified since the parameter is not updated, therefore not optimized, in the iterative 

process required by the method. The same author proposed in [37] a so-called optimized 

regularization strategy that relies on the minimization, at each iteration, of a cost function 

based on the L1-norm of the residual terms of the iterative inverse solution. This method 

proved to be more accurate in solving the ill-posed problem allowing also a much better 

strength estimation with respect to the previous version. Presezniak, in [38], does not 

specifies the adopted regularization strategy in the so-called Generalized Weighted Inverse 

Beamforming (GWIBF), however in his paper a weighting procedure that helps the matrix 

inversion to be successful is introduced. It is based on the iterative weighted pseudo-inverse 

approach presented in [118] and promises to achieve better dynamic range with respect to 

the GIBF approach as in [37]. Likewise, in [105] Suzuki relates the regularization 

parameter to a weighting diagonal matrix, acting on the radiation matrix A, that is 

optimized at each iteration thanks to a L1 norm-based Iteratively Re-weighted Least Square 

(IRLS) procedure. A similar approach, named “iterative weighted equivalent source 

method” is presented in [52]. Also in the version presented in [112] the regularization 

strategy relies on the tuning of the singular values of the inversed radiation matrix A. 

However the author does not propose a clear strategy to optimize this choice.  

From this overview emerges that, despite the several alternatives available, the 

regularization strategy remains one of the most delicate aspects in the GIBF formulation. In 

the case of other inverse acoustic imaging methods such as IBEM, NAH and ESM in 

formulations alternative to GIBF, the range of alternative regularization strategies adopted 

in literature is considerably more circumscribed since it is mainly dominated by three 

approaches: Generalized Cross-Validation (GCV) [119], L-Curve [120] and the most recent 

Bayesian regularization [49]. Kim and Nelson compared in [42] GCV and L-Curve 

performances when dealing with acoustical inverse problems requiring Tikhonov 

regularization and they concluded that GCV is in general more robust and reliable, 

especially if the problem is severely ill-conditioned. However they also pointed out that L-

Curve performs well in presence of low noise and a better conditioning. A similar 

conclusion was reached in reference [121], but not in all the possible cases. In fact, the 

same paper refers to [122] where the authors proved that the L-Curve strategy outperforms 

GCV in IBEM applications. The GCV and L-Curve strategies performance in dealing with 

under-determined inverse approaches were compared also by Leclère in [32]. The author 

found the two methods are nicely complementary and proposed, in the same article, a 
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combination of the two approaches to optimize the regularization. Besides GCV and L-

Curve another recent technique, named “Bayesian approach” [49] entered the scene. This 

method, already introduced in section 1.2.2 solves the inverse source reconstruction 

problem combining physical and probabilistic information on the investigated acoustic 

scene [50]. In particular, it brings into play any prior information available on the noise 

source. The integration of such information into the mathematical formulation of the 

problem turns out to define a novel strategy for the definition of the regularization 

parameter called “Bayesian regularization” [48, 52, 123]. In this case the choice of the 

optimal regularization parameter is driven by the optimization of a cost function that takes 

into account the measurement noise at the array level and the nature of the sound sources 

sought. In [51] Pereira et Al. compared the Bayesian regularization strategy with the L-

Curve approach proving that the first one outperforms the other. Moreover the authors point 

out that the cost function used for the Bayesian regularization has not more than one 

minimum and for this reason it appears more robust than other options. 

Bearing in mind this panorama of options, a study that aims at finding a robust alternative 

to the state-of-the-art for the regularization strategy of GIBF problems is presented in this 

section. Four options are considered: quasi-optimality function, GCV, L-Curve and 

Lagrange multipliers. The interested reader can find the details about those methods in 

reference [45].  

Since it will be the one used in the applications shown in this thesis, the approach based on 

the so-called quasi-optimality function is shortly described hereafter. Also in this case the 

choice of the regularization factor λ2 is adopted taking advantage of the properties of the 

SVD of A. The candidate regularization factors are chosen among a set of Nr 

logarithmically distributed regularization parameters between the highest and the lowest 

non-zero singular value of the radiation matrix A. 

Let us define also the Singular Value Decomposition of the radiation matrix A as: 
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(2. 7) 

 

The method consists in the minimization of the following quasi-optimality function (Eq.(2. 

13)) (see reference [45]): 
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Notice that the physics of the investigated acoustic problem is present through the used 

microphones array information p(i) . The optimal regularization parameter is therefore λ2: 
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In the GIBF algorithm described above, an optimal regularization parameter (λk
2) is chosen 

at any iteration allowing the solution to be obtained in the form: 
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or, equivalently, as: 
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The four alternative methods (quasi-optimality, GCV, L-Curve, Lagrange) select from a set 

of candidates values the optimal regularization factor as the one that minimizes (the corner 

for the L-Curve) a certain function related to the inverse problem to be solved. Fig. 2. 2 

presents a comparison between the methods in presence of a sinusoidal source at 1 kHz and 

1 Pa amplitude placed at the coordinate: [0.01 m -0.01 m, 0.6 m] in the shown maps.  

 

 
Fig. 2. 2 : comparison of GIBF results with different regularization strategies. 

 

The most effective are the quasi-optimality and GCV functions. The L-Curve still allows 

localizing the source with a less clear pattern. 
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Fig. 2. 3 shows the trend of the chosen regularization factor during the iterative process of 

the GIBF algorithm in the four cases. Quasi-optimality and GCV functions yield a similar 

regularization factor after the first iterations. 

 

 
Fig. 2. 3 : trend of the regularization parameters during GIBF iterations. 

 

As already mentioned, in the inverse acoustic imaging applications reported in this thesis 

the quasi-optimality function will be always utilized except in the case of the section 3.4 of 

Chapter 3 in which, when applying GIBF adopting a rigid scattering spherical array, other 

strategies such as GCV and L-Curve have proven to be more robust. 
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2.3. Uncorrelated noise sources separation in GIBF 
 

The separation of a measured sound field in uncorrelated sources distributions can be very 

useful when dealing with sound source localization problems. In acoustic imaging this is a 

challenging task because the acoustic sources have, besides their time evolution and 

frequency content, also a spatial nature that add an additional complexity to the source 

separation problem. In order to obtain the separation of an acoustic image of the sought 

sound sources into uncorrelated distributions one can use coherence-based methods that 

rely on reference sensors which are physically placed in the proximity of the noise sources 

under study [89, 124]. However this is not always convenient because it requires additional 

sensors and a more complex setup. In some applications, such as wind tunnel aero-acoustic 

testing, the installation of reference sensors is even almost impossible. In order to overcome 

the limitations of this approach, it is possible to resort to Blind Source Separation (BSS) 

techniques. BSS methods have the advantage that they do not necessarily require reference 

sensors. Generally speaking such techniques rely on assumptions capable to describe the 

way the sought uncorrelated sources become the mixture observed by the acoustic array. 

Among the manifold instruments to implement BSS approaches, the PCA of the CSM 

between the signals of the microphones array is one of the most addressed in literature [36, 

39, 46, 107, 116]. The main idea is to enforce the separation of the information available at 

the microphones array level in partial acoustic fields by means of the eigenvalues 

decomposition of the CSM as already introduced in Eq.(2. 1). Besides the advantage of 

being very simple to implement and it does not require any additional information on the 

acoustic field, this approach has the limitation that it does not ensures that the uncorrelated 

sources retrieved are actually corresponding to physical sound sources. Another possibility 

is to perform the PCA of the reconstructed acoustic image and not of the acoustic field 

sampled at the array level [47, 125]. This will allow to separate the acoustic image in the 

contributions of “virtual sources”, but similarly to the previous case, the uniqueness of the 

separation is not granted and some (or all) of the virtual sources may not correspond to 

physical sound sources. In order to find a unique solution Dong et Al. proposed the so-

called principle of “least spatial complexity” [126] and “least spatial entropy” [44] that 

select, among the possible virtual sources, the ones with maximum spatial compactness. 

The same authors, in a recent article [127], state that the PCA is a necessary but not a 

sufficient condition for source separation. In order to provide the sufficient condition a 

criterion that enforces the uncorrelated sources to be also spatially orthogonal is therefore 

given in the paper. 

The use of GIBF, offers the possibility to resolve complex and partially correlated sound 

sources distributions if used in combination with a PCA of the acoustic field [103]. This 

makes it particularly suitable in problems of sound source localization whether many 

causes of noise, uncorrelated each other, are active at the same time [36, 113]. This for 

several reasons: first of all an inverse approach allows defining the most appropriate 

radiation model [103, 106, 112]) for the case in study, allowing also to quantify the strength 

of the noise sources active in the field; moreover the accuracy in localizing point as well as 

distributed noise sources is rather constant in frequency. In this section, the synergy 
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between the PCA-based uncorrelated acoustic sources separation principle and the use of 

GIBF will be tackled. The limitations of the approach will be tested in paragraph 2.3.1. 

Guidelines in terms of optimal processing parameters will be given and limitations in terms 

of the tolerated background noise level and the characteristics of the investigated sound 

field will be pointed out. In paragraph 2.3.2 the absolute quantification of uncorrelated 

sound source distribution will be studied and a sufficient condition, based on the strength 

estimation provided by the eigenvalues of the CSM, will be proposed for discriminating 

between virtual and physical sources distributions obtained in the acoustic images of the 

partial fields decomposed through PCA. 

 

2.3.1. PCA of the CSM for uncorrelated noise source separation 

Let us consider, as in Fig. 2. 4, two uncorrelated sources: s1(t) and s2(t) whose spectra are: 

S1(ω), S2(ω), and two microphones m1 and m2 receiving the abovementioned sources. If 

P1(ω) and P2(ω) are the spectra of the measured signals, the radiation problem can be 

modelled as in Eq.(2. 12) and the CSM between the signals at the microphones of such a 

problem is given by Eq.(2. 13). 

 

 
Fig. 2. 4 : sources (S1 and S2) radiation towards microphones (P1 and P2). 
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Assuming uncorrelated sources, ideally we have that i≠j ⟹ SiSj
* = 0. Moreover: GklGmn

* = 

1 ⇔ k = m ∧ l = n . So: 
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Therefore it is composed by two parts, in this case: one dominated by S1 and the other 

dominated by S2: 
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Recalling that CM is by definition Hermitian, as already explained in section 2.1, Eq.(2. 1), 

the eigenvalue decomposition of the CSM, CM = ESEH, can be obtained, for the very 

specific case just described, in the form: 
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Eq.(2. 12) and Eq.(2. 16) testify, in fact, that under the assumption of uncorrelated 

phenomena, the eigenvalue decomposition of the CSM yields the Auto-Power Spectra 

(APS) of each uncorrelated sources as eigenvalues, while the eigenvectors depend only on 

the propagation model. 

This interesting result, if combined with GIBF using the just described PCA approach as in 

Eq.(2. 4)-(2. 6), can be exploited to: 

- Ascertain the number of uncorrelated sources active in the field. 

- Retrieve their strength by means of their corresponding eigenvalue of the CSM. 

- Filter out the background noise by discarding the lowest eigenvalues of CSM. 

This feature can be in fact exploited for deciding the number and which uncorrelated 

sources to be used to reconstruct the sound field. This operation will tell information also 

about the background noise present in the data and if the number of averages taken for 

computing the CSM is enough for correctly filter it out through the PCA. In order to 

understand the mutual influence of such parameters (number of averages for the CSM 

computation and SNR of the measurement data), a sensitivity analysis has been carried out 

on numerical simulations performed on a virtual problem in which two uncorrelated white 

noise sources (Source#1 and Source#2) are active in the frequency range 200 Hz – 20 kHz. 

An array of 36 microphones is placed at a distance of 0.6 m far from the source plane. The 

geometry of the problem is depicted in Fig. 2. 5. 

The cross-influence of all the combinations of the following parameters on the GIBF 

algorithm has been studied: 

- Number of averages taken for CSM (AVG): 1000,667,500,333,100,50,33,10. 

- Background noise in data (SNRdB): 50,40,30,20,17,10,7,0. 

The signals sample rate is 20480 Hz. The beamforming simulation has been carried out in 

time domain by simulating the delays at the different microphone positions. In all the GIBF 

calculations has been considered a scan points distribution equally spaced in the calculation 

plane with a spatial resolution of 0.01 m. 

The CSM has been calculated keeping a frequency resolution of 10 Hz. This choice is 

driven by an analysis on this parameter which is not reported because did not show clearly 

identifiable trends, but it demonstrated that 10 Hz is a good compromise for strength 
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estimation and calculation time. If not differently specified, the results described below will 

be presented at a frequency of 1 kHz. 

 

 

 

(a) (b) 

Fig. 2. 5 : problem statement. (a) Array geometry. (b) Sources locations and respective 

areas of tolerance. 

 

 

 
Fig. 2. 6 : Eigenvalues trend (AVG vs. SNR) and indicator iorth for two scenarios: (a) 

Strength Source#1 > Strength Source#2, and (b) Strength Source#1 > Strength Source#2. 

 

According to Eq.(1. 7) and Eq.(2. 6), since the solution a(i),k=0 is related to the ith eigenmode 

of the CSM (p(i)), its propagation Aa(i) ,k=0 towards the array is by definition orthogonal to 

any other eigenmode of the CSM. This can be checked exploiting the so-called Modal 

Assurance Criterion (MAC) [128], i.e. producing the MAC matrix, based on the inner 

products between the Aa(i) ,k=0 and p(j) functions. In fact, if there are L relevant sources 

active in the field, it must be: 
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In the ideal case depicted by Eq.(2. 17) the MAC matrix coincide to the identity and its 

determinant is equal to 1. Its determinant becomes < 1 in any other case. This property can 

be used for verifying the results. Let us define the following indicator (in Eq.(2. 18)) whose 

trend is shown in Fig. 2. 6 in the case of two scenarios: one, (a), in which one source’s 

strength is higher than the other, the other, (b), in which the two sources have equal 

strength. 
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Fig. 2. 6 also shows, in two scenarios, the eigenvalues of the CSM ranked in a descended 

order and grouped per SNR and different number of averages showing that, for GIBF 

applications, the number of averages should be at least 10×M (M is the number of 

microphones), for having the main eigenvalues stable for quantification purposes. 

As expected the SNR has a strong influence on the iorth therefore on the solution. 

Uncorrelated sources with different frequency content permit to tolerate slightly more 

severe SNR conditions. 

 

2.3.2. Exploiting the uncorrelated sources APS estimation for the 

interpretation of the acoustic imaging results 

In addition to the correct localization of the sound sources active in the field, and their 

separation in uncorrelated source distributions, it is therefore possible to obtain quantitative 

results from the inverse beamforming solution. This section focuses on a criterion that can 

be exploited for this purpose and to ascertain that each separated virtual uncorrelated source 

distribution actually correspond to its physical counterpart. 

The eigenvalues decomposition of the CSM CM gives an estimation of the APS of the 

uncorrelated source distributions active in the acoustic field under study. In fact, the same 

APS quantitative information can be retrieved by energetically integrating the source 

distribution in the GIBF map. In this way, the APS of the ith uncorrelated source active in 

the field can be obtained using Eq.(2. 19), 
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Where: 

- M is the number of microphones of the array; 

- si ϵS is the ith eigenvalue of the CSM; 

- sM the minimum eigenvalue that can be considered an estimation of the 

background noise; 
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- Rr=(1/4πr)2 is the propagation factor, where r is the distance between the array 

plane and the calculation plane; 

- ρ is the density of the air; 

- Θi is the volume acceleration of the ith source. 

The proposed criterion is based on the assumptions that: 

 

- A source is represented by aggregate groups of monopoles whose patterns are 

detectable through pattern recognition [129, 130, 150]. 

- The monopoles of a pattern have a uniform phase (per frequency line) within the 

pattern. 

 

In order to describe the criterion, let us assume to deal with a source distribution 

represented by two correlated monopole sources respectively placed at (0 m,0.1 m) and (0.1 

m,-0.1 m) and labelled as a(i)(nζ=1) and a(i)(nζ=2) respectively. Let’s also assume that 

a(i)(nζ=3) and a(i)(nζ=4), are numerical issues which are not related with the source 

distribution. Such condition is represented in Fig. 2. 7(a).  

 

 
Fig. 2. 7 : example of application of the criterion of sources labelling and identification. 

 

Assuming that in this case the unit of the coefficients of the distribution a(i) is [m3/s2] it is 

possible to proceed as follows: 

 

1) Localize the K(i) patterns nζ in the GIBF map a(i) and calculate their centroids. 

2) Quantify each pattern’s power through integration in the pattern area of the map: 
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3) Identify the pattern or the set of patterns 
)(i

 that minimizes the check function Π(i): 
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where: 
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The use of this algorithm makes is possible to obtain a reliable labelling and identification 

of the sources (Fig. 2. 7(b)), In the depicted case, the algorithm acts as in Eq.(2. 23). 
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Despite limited by the assumption of monopole source distribution (see also [39]), the 

proposed approach represents an interesting method for correct quantification of equivalent 

sources distributions. A similar method that takes advantage of the Clustering Inverse 

Beamforming formulation is presented in Chapter 3, while an example of application is 

presented below. In this numerical simulation, two uncorrelated sources have been used in 

the geometrical configuration depicted in Fig. 2. 5. In this case Source#1 is a random noise 

in the range 200 Hz – 20 kHz, while Source#2 is a recorded electric engine noise signal. 

The analysis reported in Fig. 2. 8 is limited in the range 800 Hz – 5 kHz.  
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(a) (b) (c) 

Fig. 2. 8 : Interpretation of the acoustic imaging results through uncorrelated APS 

estimation. (a) Retrieved spectra compared with the original signals. (b) Compass 

diagrams reporting the location of the sources retrieved at any frequency line in the range 

800 Hz – 5 kHz. (c) An example of acoustic map at 1 kHz. 

 

Fig. 2. 8 shows how the criterion described in this section helps the user in the 

interpretation of the obtained inverse acoustic image. In this case the results are reported in 

volume acceleration (unit: m3/s2). As it can be noticed, the criterion helps in the presence of 

artifact an unwanted numerical issues. 
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2.4. PCA-based pre-processing for improved solution 
 

This section aims at formulating a generic pre-processing method that, combined with 

existing ESM methods, such as GIBF, optimizes the inverse beamforming solution leading 

to the identification of the source distributions on the calculation plane. The method is 

based on the observation that it is possible to reduce the number of scan points during the 

iteration step, by exploiting the dimensionality reduction capabilities of PCA (see reference 

[131] for an example of application in image processing) if applied on the running matrix 

of scan points. This approach makes it possible to design a criterion for selecting the 

equivalent sources on which to focus during the iteration step for reducing the numerical 

size of the inverse problem and its degree of under-determination. The benefits of this 

approach are: better dynamic range, better separation of the sound field into uncorrelated 

sources distributions, reduced computation effort and improved robustness of the 

regularization strategy. 

The PCA of the CSM is not a sufficient condition for decomposing the investigated 

acoustic field into uncorrelated partial distribution of sources, but it has been demonstrated 

in the previous section that its use greatly improves the solution of GIBF. This is because it 

removes the back-ground noise in the array data, mitigating the issues related to the ill-

conditioning of the inverse problem, and provides an accurate ranking of the sources under 

certain conditions. Moreover it was observed in section 2.3, and it will be reaffirmed 

through examples below, that the discrepancy between the virtual uncorrelated sources 

distributions and the physical ones is mainly due to two factors: numerical issues related to 

the inversion of the problem and leakage of the contribution of one uncorrelated source into 

the acoustic images of the others. The first ones appear in the acoustic images as non-

aggregated and randomly distributed sources, while the seconds occur as aggregated 

patterns in the ideal location of the sources belonging to the other principal components. 

They therefore still keep a physical meaning, contrary to those of the former category. Both 

types of discrepancy are deleterious for the GIBF iterative process that narrows the under-

determined inverse problem down to an optimized over-determined version. This suggests 

to tackle both issues before performing the iterative optimization.  

The iterative optimization approach introduced in section 2.1 starts with a distribution 

(a(i),k=0) of equivalent sources which cover the whole calculation plane. Additionally, the 

inverse problem of Eq.(2. 6) is calculated per eigenmodes, therefore, all the equivalent 

sources should theoretically belong to a unique correlated source distribution related to the 

corresponding eigenvalue (s(i), corresponding in its turn to the p(i) distribution at the 

microphone array plane) of the CSM. This is not the case for the initial solution a(i),k=0, 

assuming that the adopted radiation law ( Eq.(2. 3) ) is correct, when either there is 

uncorrelated background noise due to numerical instabilities or the separation in virtual 

uncorrelated contributions by the eigenvalue decomposition of the CSM does not 

correspond entirely to the actual physical source distributions. While the reduction of the 

number of scan points, as Suzuki [36] suggested, may solve the issue related to numerical 

instabilities, the presence of an anomalous mixture of uncorrelated phenomena in one 

eigenmode can irreparably compromise the quality of the final solution (i.e. the correct 
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identification of the source distributions). This suggests adopting a strategy that is effective 

for tackling both problems, i.e. that is able to refine the separation of the acoustic field in 

uncorrelated phenomena and to avoid the numerical instabilities due to the ill-conditioning 

of the problem. This could be done through a modular approach that couples the BSS of the 

array data into virtual uncorrelated sources distribution through eigenvalues decomposition 

of the CSM with an adaptive pre-processing based on the PCA of the corresponding 

acoustic images before applying the GIBF iterative algorithm or other optimization 

strategies. The idea of the proposed approach is to perform a PCA on the complex ā(i) 

matrix (the superscript k=0 will be, from now on, omitted for making the text more 

readable), which is a mapping of the equivalent source vector on the scan points’ location 

over the calculation plane. In this work the method is described in the case of a square 

calculation plane and the equivalent sources are equally spaced in the two dimensions of 

the plane. This will make the method easier to describe. In this case the ā(i) matrix assumes 

size: ny×nx where nx and ny are given by the discretization of the calculation plane in its two 

dimensions and the product nx·ny equals the number N of equivalent sources that discretize 

the calculation plane. In cases in which the calculation region assumes a different shape, 

even 3D, such complex geometry should be transformed and projected onto a rectangular 

plane discretized with equally spaced equivalent sources before performing the proposed 

PCA-based pre-processing. The assessment of such complex cases goes beyond the 

purposes of this document and will not be discussed below. However such additional 

complexity does not represent a limitation of the proposed technique. 

The PCA approach will reduce the numerical instabilities (de-noising of the ā(i) map) and it 

will decompose the scan points matrix in uncorrelated terms. Indeed, only few principal 

components will be actually related to the source distribution, while the rest of the 

components will describe artefacts and other unwanted features of the retrieved matrix. The 

comparison with PCA performed on an image is straightforward, also because the ā(i) 

matrix can effectively be considered as an image mapping the source distributions. Notice 

that we will refer to ā(i) when describing the 2D matrix reshaped representation of the 

solution (1D) vector ā(i) obtained solving Eq.(2. 6) . 

An adaptive criterion for defining an optimal dynamic range that makes it possible to 

discard, in a single iteration, those scan points that do not contribute to the acoustic field 

and to de-noise the initial solution from unwanted uncorrelated background noise or 

spurious ghost sources will be presented in the next sections. This operation is done on the 

full set of scan points before starting the optimization process. 

For describing the approach, numerical simulations have been performed adopting an array 

(Fig. 2. 9) of 43 randomly distributed microphones. In the simulated scenario two 

uncorrelated band limited (0 Hz – 8 kHz) white noise monopole sources of the same 

strength are placed on a calculation plane 0.6 m far from the array. In such plane the 

coordinates of the source are: [-0.07 m, 0.09 m] for Source#1 and [0.18 m, -0.17 m] for 

Source#2. The calculation plane covers an area of 0.5 m × 0.5 m and it is discretized by 

scan points which are equally spaced with a step of 0.01 m in both the dimensions of the 

plane (nx= ny=51, N= nx ·ny=2601). 
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Fig. 2. 9 : Array of microphones used in the numerical simulation. 

 

2.4.1. Adaptive selection of the main principal components of ā(i) 

A PCA on the ā(i) matrix can be performed by exploiting the SVD factorization, as in Eq.(2. 

24),  
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that reports the singular values (SV) ωj in descending order making explicit that the last SV 

is much smaller than the first one (ωJ << ω1). The columns of Φ (ny×ny) and Ψ (nx×nx) are 

the left-singular vectors and right-singular vectors respectively. The size of Ω is ny×nx , the 

same size of the decomposed matrix. Eq.(2. 24) has been specialized to the case of the 

proposed example nx=ny. However what described below applies also to the most general 

cases. 

When considering the numerical simulation previously presented, where two uncorrelated 

noise sources actively contribute to the sound field, the overall source distribution at the 

calculation plane can be obtained, as a first solution, as reported in Eq.(2. 25). In this 

equation, qc represents the equivalent sources strength distribution at the calculation plane, 

rc is the vector defining the location of each scan point and f expresses the frequency 

dependence. A graphical representation is shown in Fig. 2. 10(a). 
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Performing a PCA on the matrix form of  a, i.e.  ā, by exploiting Eq.(2. 25) will entail the 

first three principal components to be expressed as: 
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A graphical representation of the overall case of Eq.(2. 25) and the components obtained in 

equations from Eq.(2. 26) to Eq.(2. 28) for the virtual test case is reported in Fig. 2. 10(a), 

(b), (c) and (d) respectively. 

Fig. 2. 10 shows that a PCA performed on ā(i=1+i=2) makes it possible to decompose the 

sound field in principal components that are linked to the uncorrelated sources causing the 

sound field. Any uncorrelated background noise is assigned to the lower order principal 

components. Such PCA step therefore produces similar results to those obtained by 

exploiting equations from Eq.(2. 1) to Eq.(2. 6), under the main difference that the analysis 

is performed on the calculation plane domain. Mathematically this means that, for the 

strongest uncorrelated components, āj ~ ā(i) . 

This observation opens up several interesting scenarios. Indeed, one could think to perform 

a further PCA step on each ā(i) matrix, in order to separate the actual information related to 

the presence of a source from any other disturbing information such as numerical issues 
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and/or unwanted anomalous uncorrelated sources leaking in the source distribution 

retrieved from Eq.(2. 6). The benefits of such approach for the ā(i=1) and the ā(i=2) matrices 

are clear when observing Fig. 2. 11 and Fig. 2. 12 respectively. Fig. 2. 11(a) and Fig. 2. 

12(a) report the original ā(i=1) and the ā(i=2) matrices (source distributions at 2 kHz) 

retrieved from Eq.(2. 6) for the two first eigenmodes p(i=1) and p(i=2). 

 

 

Fig. 2. 10 : Sound Pressure Level (SPL) maps @ 2 kHz (dBref=20 Pa) related to the 
0),21(  kii

a solution of Eq.(2. 25). (a) 
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Fig. 2. 11 : SPL maps @ 2 kHz (dBref=20 Pa) related to
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Fig. 2. 12 : SPL maps @ 2 kHz (dBref=20 Pa) related to 
0),2(  ki

a  and its principal 

components: (a) 
)2( ia , (b) 

)2(

1





i

ja  and (c) 
)2(

2





i

ja .  

 

Since the two main SV of the CSM of the numerical simulation proposed, which 

correspond to p(1) and p(2), are treated separately, nothing but the sources centered in [-0.07 

m , 0.09 m] for ā(i=1) and [0.18 m , -0.17 m] for ā(i=2) are supposed to be present in the 

solutions. Nevertheless, although weaker than the main sources, ghost sources and 

numerical issues are recognizable. If not correctly faced, this phenomenon has proved to 

cause errors in the identification of the sources and in the reconstruction of the active 

acoustic field, as discussed in [39] and [132]. In fact the optimization process normally 

utilized in GIBF and described in [39] would be irreparably biased by the presence of such 

numerical issues. By performing a PCA on the ā(i=1) and the ā(i=2) matrices the solutions 

reported in Fig. 2. 11(b-c) and Fig. 2. 12(b-c) are obtained. These figures report, 

respectively for each ā(i) matrix, the first two principal components, 
)(i

ja  j=1,2, obtained 

from the SVD factorization performed on the scan points domain. Fig. 2. 11(c) and Fig. 2. 

12(c) also show that the 
)(

2

i

ja  , i=1, 2 solutions contain information related to the weakest 
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source, i.e. 
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0),1(  kia . The Truncated Singular 

Value Decomposition (TSVD) of the source map, performed as described above, therefore 

provides a more correct starting point for the GIBF iterative optimization process, thus 

making it more robust. 

In order to guarantee a valid identification of the source distributions, a truncation order 

selection method is now required. A robust approach should ground on an adaptive 

criterion that makes it possible to retrieve the truncation order depending on the 

composition of each SV matrix Ω(i). It has been observed in fact that it is possible to 

associate the transition from the amplitude of the SV that bring the information related to 

the source distribution, the relevant SV, and the others that are related to artefacts, 

background noise and leakage of the contribution of other uncorrelated sources active in the 

acoustic scene (as depicted in the example given in Fig. 2. 12), to a sudden change of the 

trend of the SV amplitude if they are ranked in a descending order. However such behavior 

is strongly related to the specific acoustic problem and it is in general not possible to know 

a priori the number of uncorrelated sources which are active in the acoustic scene under 

study, moreover the level of background noise will influence the amplitude of the lowest 

SV. Therefore an adaptive threshold is required. The idea is to link such threshold not only 

to the absolute amplitude of the relevant SV, but also to the relative amplitude with respect 

to the lower ones. The method proposed by the authors uses the minimization of the cost 

function reported in Eq.(2. 29). 
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where j̂  can be expressed as in Eq.(2. 30): 
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In Eq.(2. 30) the SV ωj are normalized to 1 with respect to the sum of the entire set of J 

singular values. They are ranked in descendent order: ω1 > ω2 > ⋯ > ωJ. It will be 

demonstrated below that such a cost functions presents a minimum in correspondence of 

the change of the trend of the SV amplitude at can be used for classifying the set of singular 

values that bring the information related to the wanted source distribution. The proposed 

truncation criterion consists in selecting all the SV with index j < ĵ, where ĵ is expressed 

according to Eq.(2. 31). 

 

 )min()ˆ(..ˆ  jtsj  (2. 31) 
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The factor α used in Eq.(2. 29) is a weight given to the discrete derivative part 

( 1
ˆˆ

 jj  ). For defining its range of variability a Montecarlo simulation has been 

performed by generating distributions of ̂  ordered in a descendent way with J=10. The 

evolution of the distribution of the simulated ̂  has been adapted creating several 

scenarios in which the sudden change of the trend described above, separating the relevant 

SV from the rest, occurs progressively at j=1,2,3,4,5. 105 different cases for each scenario 

have been generated and processed with the Eq.(2. 29) varying the parameter α from 0 to 1 

with steps of 0.1. An example of the generated scenarios and the corresponding cost 

functions is visible in Fig. 2. 13.  

Fig. 2. 14 reports the result of the sensitivity analysis on the parameter α with respect to the 

number of relevant SV in a ̂  distribution. The white area represents the range of values 

assumed by the parameter α for which the cost function has given the correct estimate of 

the number of SV actually identified as “relevant” in the totality of the cases (100% over 

105 samples). 

 

 

Fig. 2. 13 : Example of generated ̂  scenarios with 1,2,3,4 and 5 relevant singular values 

respectively. (a) ̂  distributions. (b) j  cost functions. 

 

It can be noticed that the lower the number of relevant SV, the higher the importance of the 

derivative part in the cost function. From Fig. 2. 14 it can be concluded that the best choice 

is setting parameter α ≥ 0.7. The higher limit of the parameter α is not discussed in this 

document, although it has been noticed (as intuitively predictable) that α ≫ 1 may lead to 

biased results because the proportional part becomes negligible. In this document it is used 

α = 0.7. 

 



53 

 

 

Fig. 2. 14 : Result of the Montecarlo analysis on the parameter α vs. the number of relevant 

singular values of a ̂  distribution. 

 

Fig. 2. 15 shows the relationship between the normalized set of SV (values expressed in 

percentage) of a certain a(i) matrix and the corresponding cost function. 

 

 

Fig. 2. 15 : Selection of the singular values for: (a) a(i=1+i=2),k=0 , (b) a(i=1),k=0 , (c)   a(i=2),k=0 , 

by means of the cost function Γ. The x-axis (singular value index) has been indicated only 

for jj


 . 

 

The cumulative curves of the normalized SV for the cases (a), (b) and (c) are also plotted in 

Fig. 2. 15. These curves estimate the percentage of information (linked to the number of 

SV) kept over the total information contained in the processed matrix. Notice that the value 

of such percentage is rather different in the three cases of our example, meaning that the 

ratio between active noise sources and the background noise is not constant and an adaptive 
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criterion for their separation is actually needed. The cumulative sum of the SV of a matrix 

is a valuable measure of the similarity between the original matrix and its reconstruction 

performed adopting only a subset of its SV. If the inclusion of an additional SV does not 

change significantly the value assumed by the cumulative curve, most likely this SV (and 

the lowest ones) does not bring relevant contribution to the reconstruction of the original 

matrix. The described adaptive process will allow retaining the contribution linked to the 

physical phenomenon, discarding those related to numerical issues and background noise.  

Once the number of principal components to be kept is defined, each resulting matrix 
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has to be processed in order to reduce the number of scan points on the calculation plane, 

thus enhancing the inverse beamforming solution with the remaining equivalent sources. A 

criterion for selecting the part of each ă(i) to be discarded is proposed in the following 

paragraph. It defines an optimal dynamic range between the level of the equivalent sources 

that actually contribute to the sound field and the level of those that can be considered not 

relevant. 

 

2.4.2. The adaptive criterion for defining an optimal dynamic range 

Let us assume ă(i) to be the matrix obtained after the TSVD step described in the previous 

section. A variable δ = δn , where n=1,…,N' and N' are the scan points considered (e.g. 

N'=N for ă(i),k=0), can be defined as reported in Eq.(2. 33): 
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This variable normalizes the equivalent source strengths distribution of the ă(i) matrix to 

one and put it in a dB scale so that δn quantifies the difference of the nth scan point with 

respect to the maximum value. The minus in the formula makes the variable positive. δn is 

defined in the sample space (whose  corresponding continuous variable is δ∈[0,+∞)) of a 

random variable, Δ, that generically assumes the possible values of δ in the set of 

occurrences of the calculation plane. 

The sample distribution obtained through Eq.(2. 33) can be treated statistically by 

computing the associated relative frequency histogram Η. This histogram can be considered 

an estimate of the Probability Density Function (PDF) gΔ ( Eq. (2. 34) ) associated to the 

variable δ. 
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In Eq. (2. 34) δ* represent the discretization bins used for creating the histogram, while N’ 

is the associated total number of occurrences, i.e. the number of scan points, considered. 

This equation can be used for introducing an adaptive criterion being able to determine the 

optimal dynamic range of the ă(i) matrix. In this way a pruning operation on the equivalent 

sources can be performed. An adaptive criterion can be based on the extraction of statistical 

quantities from the PDF gΔ. One possible option is defining the optimal dynamic range 

threshold µ adopting the function of Eq. (2. 35). 
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The idea of Eq. (2. 35) is to relate µ to intrinsic characteristics of the PDF gΔ. For this 

reason the factor β is introduced to take into account scalar parameters which are 

representative of the PDF. It has been observed that very often this distribution resembles a 

multi-modal distribution. It is therefore difficult to refer to analytical models to extract gΔ. 

A non-parametric method based on the Parzen estimation (see references [133, 134]) is 

proposed in order to provide a robust and adaptive method for identifying the β parameter. 

The idea of the Parzen method is estimating the PDF by fitting it with a function designed 

as follows: 
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where K is a function called kernel. It can be suitably chosen under appropriate conditions 

[133] although the default option, also used in this application, is using normal distributions 

as kernel functions. The parameter h is defined as the width of the kernel.  

The choice of the parameter h leads to a more or less smooth fitting of gΔ. There are several 

approaches available in literature for properly selecting this parameter. For theoretical 

insights the interested reader may refer to reference [135]. The simplest approach is 

adopting the formula shown in Eq.(2. 37), which is theoretically correct in the case gΔ is a 

normal distribution, but remains a valid option also in the general case where the nature of 

gΔ is unknown (more details are given in [135]). 
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In this formula N is the number of elements of the distribution and σ is the estimate of its 

standard deviation. 

Fig. 2. 16 gives an example of the application of the Parzen estimation to a case of a normal 

distribution of N elements with expectation value equal to 0 and standard deviation equal to 
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1. In this figure, the histogram, the analytical Gaussian curve and the Parzen estimation of 

the corresponding PDF are compared. It has been therefore shown how the parameter h 

condenses in one scalar number the characteristics of the PDF, whatever shaped it is. 

Setting: 
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  (2. 38) 

 

the μ value can be calculated with Eq. (2. 35). It represents the wanted optimal dynamic 

range. 

The criterion for reducing the number of scan points from the calculation plane can be 

finally formulated as follows: 
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The scan points labelled by all the indices n* satisfying the criterion of Eq.(2. 39), i.e. 

whose amplitude values are beyond the optimal dynamic range defined by µ, are therefore 

discarded and they will not be taken into account in the following processing of the 

calculation plane. The method just described is performed on the results of the PCA step 

(TSVD) discussed in Section 2.4.1. 

 

 

Fig. 2. 16 : example of PDF estimation adopting Parzen method. 

 

Fig. 2. 17 shows results of the application to the ă(i=1+i=2) matrix of the adaptive method for 

the selection of the optimal dynamic range. In our example this matrix contains the 

distribution of two uncorrelated random noise monopole sources (these are marked with a 

cross in the figures). In particular, Fig. 2. 17(b) reports the PDF, constructed as described 

previously, of the matrix graphically shown in Fig. 2. 17(a).  
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Fig. 2. 17 : (a) Kept scan points (black dots) compared to the full size de-noised matrix 

ă(i=1+i=2). (b) Normalized PDF reporting the selected optimal dynamic range and the 

percentage of the scan points kept. 

 

 

Fig. 2. 18 : Kept scan points (black dots) compared to the full size de-noised matrix (left 

size). Normalized PDF reporting the selected optimal dynamic range and the percentage of 

the scan points kept (right side). Results shown in the case of:   ă(i=1) (a-b) and ă(i=2) (c-d). 
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It can be noticed that its shape is right-skewed and it shows a multi- (bi-) modal nature. One 

part of the distribution is related to the sources distribution, the rest is related to the 

background noise (to be discarded). The red part of the area plot of Fig. 2. 17(b) reaches the 

value µ calculated through Eq. (2. 35). The part of the distribution kept for the following 

steps of the iterative optimization procedure, corresponds to the 30% (the black dots in Fig. 

2. 17(a)) of the complete set of equivalent sources covering the entire calculation plane. 

Looking at the cases shown in Fig. 2. 18(a-b) and Fig. 2. 18(c-d), corresponding to the de-

noised matrices ă(i=1) and ă(i=2) respectively, it can be noticed that the graphs labelled with 

(b) and (d) show an evident multi-modal behaviour that can be interpreted as a mixture of 

multiple mono-modal distributions. The part of the PDF that is of interest is related to the 

first distribution. However, it is not easy to extrapolate it from the rest using analytical 

formulations. The use of the proposed method (β factor) demonstrates to be effective in this 

sense. The entire processing from Eq.(2. 33) until Eq.(2. 39) is summarized in the scheme 

of Fig. 2. 20. 

 

 

Fig. 2. 19 : Kept scan points (black dots) compared to the full size de-noised matrix (left 

size) in the case of a manual selection of the parameter µ. Normalized PDF reporting the 

dynamic range value (18 dB) set manually. Results shown in the case of:   ă(i=1) (a-b) and 

ă(i=2) (c-d). 
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It is important to notice that the values of the selected optimal dynamic range and the 

percentage of scan points to be kept are not constant. They rather depend on the specific 

source distribution. Moreover, the method proves to be able to immediately discard the 

unwanted ghost sources still present in the ă(i=1) matrix of equivalent sources. This is not 

merely due to the application of a linear threshold, but it is the result of an adaptive 

criterion, based on physical principles, that takes into account the actual information 

contained in the matrix. In fact, as visible in Fig. 2. 19, another (manual) choice of the 

parameter µ would lead to a not optimal selection of the scan points to be kept. This could 

degrade the quality of the final result because it may introduce artefacts. 
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Fig. 2. 20 : (a) Generating the frequency histogram of the random variable Δ as a function 

of the dynamic range δ. (b) Estimation of the corresponding PDF adopting the Parzen 

method. (c) Use of the width parameter h for designing the adaptive criterion of reduction 

of the calculation plane. (d) Adaptive reduction of the calculation plane. 
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2.4.3. The adaptive criterion as pre-processing step for the iterative 

optimization algorithm 

As already discussed, the first source distributions obtained from the solution of Eq.(2. 6) 

can be improved by performing an iterative optimization step where the weakest equivalent 

sources are excluded in order to provide a new inverse problem formulation. Adopting the 

methods described above, the traditional iterative algorithm of GIBF (see [39]) can be 

modified as follows: 

1) Calculate the initial source vector, a(i),k=0. 

2) Reshape the source vector a(i),k=0 in a matrix form ā(i),k=0 ) resembling the scan 

point distributions on the calculation plane.  

2.1) Perform a PCA on the ā(i),k=0 matrix. 

3) Discard the unwanted principal components of ā(i),k=0 through Eq.(2. 29), 

Eq.(2. 30) and Eq.(2. 31). 

4) Truncate the equivalent source vector a(i),k=0 on the basis of Eq.(2. 39). 

5) Calculate a new source vector: a(i),k=1 with the remaining scan points. 

6) Reorder and truncate (10% is the value proposed by Zavala in [37]. However 

such value can be tuned also in other ways. A good strategy could be relating 

also this parameter to adaptive criteria.) the equivalent source vector a(i),k=1, 

discarding the smallest terms. The number of scan points left is therefore N*. 

7) Calculate a new source vector: a(i),k=2 = {A}+
M,N·· p(i) . 

8) Repeat steps 5) to 7) until a desired number of equivalent sources are reached. 

This improved version has several advantages: reduces the computation effort, improves 

the robustness with respect to the presence of numerical disturbances, it benefits from 

adaptive criteria that make the optimization more reliable. 

 

2.4.4. The adaptive criterion as pre-processing step for inverse 

beamforming solution obtained using Bayesian inference 

The algorithm proposed in section 2.4.3 foresees an iterative process for improving the 

accuracy of the results. Such iterative process is clearly aligned with the spirit of an 

Equivalent Source Method; however its results may be biased by two main factors: 

 The wrong decisions of the user of selecting a too much limited number of 

Equivalent Sources (ES) for describing the acoustic field may lead to a wrong 

reconstruction of the  field itself. 
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 The iterative process is based on the criterion of discarding always the weakest ES 

present in the field. Since this is not performed adaptively (no link with the 

observed physical phenomenon), this criterion may be overly simplistic. 

A way to overcome these problems is providing additional information to be put together in 

the formulation of the inverse problem. Such additional information has to be found in the 

status before the physical phenomenon is observed. In this manner the space of the possible 

solutions will be reduced to one of its subsets and the final solution will be enhanced 

according to principles that are directly linked to the observed physical phenomena. One 

way to do this is formulating the problem in terms of Bayesian inference. The interested 

reader can refer to [48, 50, 51] for examples of applications of the Bayesian statistics to 

inverse acoustic problems. 

In this paragraph the concept of confidence level in the occurrence of a given event 

(presence of a noise source) is introduced. An algorithm combining this vision with the 

adaptive criterion point of view is proposed below.  

Before introducing a possible implementation of such combination between the Bayesian 

and the adaptive vision of the problem, the Bayesian inference will be contextualized in the 

previous formulation in order to rigorously describe the operations to be carried out.  

In particular the well-known rule of Bayes will be adapted to the acoustic imaging problem 

under study by defining the following probabilities at the calculation plane, whose 

geometry is here described by rπ: 
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The quantities represented in Eq.(2. 40) are: 

 )()( SSnr ERP


: Probability that the presence of an non-null equivalent source 

(random variable Es) in rπ(n), matches with the presence of a real source (random 

variable Rs). 

 )()( SSnr REP


: Probability that the presence of a real source in rπ(n), is identified 

by a corresponding equivalent source. 

 )()( Snr RP


: A priori probability of finding a real source in rπ(n). This probability 

depends by several factors intrinsic in the problem under study: geometry, type of 

sources, etc. 

 )()( Snr EP


: Probability of having an equivalent source located in rπ(n) if any 

prior information is available. In our case this probability is trivially equal to 1 in 

rπ(n) for any given n. 
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The denominator of Eq.(2. 40) is always equal to 1 because any scan point location rπ(n) 

considered in the calculation plane has the same probability of being the location of a non-

null equivalent source if any prior information is available. 

Combining the Bayesian and the adaptive vision is therefore possible by characterizing the 

different probabilities by means of the two approaches. This can be done by adopting the 

following algorithm: 

1) Calculate the initial source vector, a(i),k=0. 

2) Reshape the source vector a(i),k=0 in a matrix form ā(i),k=0 ) resembling the scan 

point distributions on the calculation plane.  

2.2) Perform a PCA on the ā(i),k=0 matrix. 

3) Discard the unwanted principal components of ā(i),k=0 through Eq.(2. 29), 

Eq.(2. 30) and Eq.(2. 31). 

4) Truncate the equivalent source vector a(i),k=0 on the basis of Eq.(2. 39). 

5) Assign to each scan point rπ(n) of the calculation plane a probability 

)()( Snr RP


 based on a priori observations. If such observations are not 

available, can be set: nRP Snr  ,1)()(
 and proceed as in the algorithm 

shown in section 2.4.3. 

6) Set a threshold of confidence tc and discard the scan points n* such that: 

cSnr
tRP )(

)( *


. 

7) Calculate a new source vector: 
1),( * ki

a  with the remaining scan points. 

A demonstration of the potential of such approach is given below, where the algorithm is 

applied on experimental data. The main advantage of this approach is that, in presence of 

reliable a priori information, accurate results can be achieved even without further iterative 

optimization processes. However, such iterative optimization is always applicable if more 

accuracy is required. 

The proposed approach should not be confused with the so called Bayesian focusing 

presented in [49]. In fact in that case the Bayesian statistics is directly injected in the 

formulation of the inverse problem allowing the optimal choice of the regularization 

parameter through Bayesian regularization and the power estimation of the field through 

the so-called aperture function. In the proposed algorithm, instead, the Bayesian inference 

is exploited in a modular approach in which a priori spatial information and a posterior 

adaptively obtained information about the sources distribution are nested to give an 

optimized solution. 
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2.4.5. Test of the proposed method on numerical simulations 

In this section results of the use of the proposed adaptive method are presented on the 

numerical simulations already introduced in section 2.4. and Fig. 2. 9. The comparison with 

the method at the state-of-the-art is proposed in terms of accuracy and computational effort. 

With reference to such simulation, the two optimization methods can be compared looking 

at Fig. 2. 21(a-b) and Fig. 2. 21(c-d), representing the final result of the inverse 

beamforming solution obtained respectively with the algorithm proposed in section 2.4.2 

and with the algorithm inspired by Suzuki [36] and described in section 2.1. 

In Fig. 2. 21(c-d), it can be noticed that the two uncorrelated sources are correctly separated 

and localized without any numerical issue. It can be also noticed that the results are 

presented with a dynamic range of 15 dB (which is much higher than the one possible at the 

first step of the optimization problem). 

In Fig. 2. 21(a-b) the solution of the same problem has been reached without applying the 

proposed new adaptive optimization algorithm and it can be noticed the presence of the 

partial leak of one source distribution in the other. 

The computational effort is much reduced by means of the adaptive method proposed 

because it allows focusing at the most important part of the equivalent sources distribution 

at the very first stages of the optimization process, getting more quickly to the desired 

number of equivalent sources to be used for reconstructing the source distribution. In order 

to highlight this aspect, a comparison of the trend of the number of scan points (equivalent 

sources) remaining over the iterative optimization process is shown in Fig. 2. 22 for the 

traditional GIBF iterative optimization algorithm of section 2.1 and for the optimization 

processes with the adaptive pre-processing method for the cases of a(i=1+i=2), a(i=1), a(i=2). 

The initial number of scan points that discretize the calculation plane is the same (N = 

2601) for all the scenarios, while the percentage of scan points discarded at the first 

iteration is: 

- 10% (or other fixed value) as suggested by Zavala in [37]. 

- 70% for the case of a(i=1+i=2) treated with the adaptive method. 

- 80% and 90% respectively for the cases of a(i=1) and a(i=2) processed with the 

adaptive method. 

 

Being adaptive, the proposed pre-processing optimization method adapts the decision of the 

part of the calculation plane to be discarded at the first iteration on the basis of physical 

considerations linked to the type of acoustic field under study (complexity, presence of 

correlated and/or uncorrelated unwanted background noise). 

This latter aspect, allowing reducing the computational effort on equal calculation 

requirements, is particularly interesting if related to cases where inverse beamforming is 

applied iteratively, as for example in the use of the microphone clustering approach, 

described in references [132] and [136], which will be introduced in Chapter 3. 
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Fig. 2. 21 : Optimized inverse beamforming solution using the adaptive method. SPL maps 

@ 2 kHz (dBref = 20 µPa) related to: (a) Solution a(i=1) no adaptive pre-processing. (b) 

Solution a(i=2) no adaptive pre-processing. (c) Solution a(i=1) with adaptive pre-processing. 

(d) Solution a(i=2) with adaptive pre-processing. 

 

 

 

Fig. 2. 22 : Comparison of the trends for the number of remaining of equivalent point 

sources in different cases. 
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2.4.6. Test of the proposed method on experimental data 

The numerical simulation presented so far has been replicated in a real test scenario by 

working with loudspeakers in an anechoic environment. 

Fig. 2. 23 shows the experimental setup and the geometry of the problem. The two sources 

are fed with uncorrelated band limited (2 kHz-8 kHz) broadband noise with the same 

strength. For sake of clarity the representation of Fig. 2. 23(c) will be used for showing the 

results instead of plotting the beamforming maps on top of the picture of the scene. 

In Fig. 2. 24 the optimization process proposed in section 2.4.1 is described. In fact, Fig. 2. 

24(a-b) show the results of applying Eq.(2. 6) to a fully populated radiation matrix {A}M,N. 

A high density of high-amplitude equivalent sources is present in the areas corresponding 

to the actual sources. Nevertheless a relevant distribution of lower-amplitude equivalent 

sources is present also. As already discussed, such ghost patterns are mainly caused by two 

factors: numerical issues due to the inverse solution of a highly undetermined problem, 

presence of mixture of uncorrelated noise sources of similar strength [39]. Such undesired 

phenomena may limit the capability of localization and quantification of the acoustic 

sources acting in the field. Fig. 2. 24(c-d) and Fig. 2. 25(c-d) show that the problem can be 

successfully addressed and solved by the adaptive method described in sections 2.4, 2.4.1 

and 2.4.2. The numerical issues are no longer present in the solution and the equivalent 

sources are distributed only in the areas in which the sources are actually acting. The reader 

should notice, moreover, that the two uncorrelated phenomena are correctly separated. 

Once this result is obtained, the iterative process described in section 2.4.2 can be applied 

reaching, acting in the spirit of an ESM, the desired number of equivalent sources needed 

for describing the acoustic field generated by the identified actual source. 

 

 

Fig. 2. 23 : Experimental setup of beamforming measurements on loudspeakers in anechoic 

conditions. 
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Fig. 2. 24 : Results of the algorithm proposed in section 2.4.2 applied on a real test 

scenario of two uncorrelated random sources of same strength. SPL maps (dBref = 20 µPa) 

presented at 2 kHz. (a-b) Step 1. (c-d) Steps 2-5. (e-f) Steps 6-8. 

 

 

Fig. 2. 25 : Results of the algorithm proposed in section 2.4.2 applied on a real test 

scenario of two uncorrelated random sources of same strength. SPL maps (dBref = 20 µPa) 

presented at 3.5 kHz. (a-b) Step 1. (c-d) Steps 2-5. (e-f) Steps 6-8. 
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This aspect of the method requires a blind involvement of the user, whose decision of the 

number of equivalent sources (or number of iterations) is not hooked to tangible physical 

evidences and this may eventually lead to inaccuracy in the results. 

In section 2.4.4 a method based on the combination of the adaptive pre-processing and the 

Bayesian vision of the problem was presented. This approach is mainly based on the option 

of avoiding the iterative optimization process by substituting it with the adoption of a 

Bayesian inference: i.e. by combining the output of the adaptive processing with an a priori 

confidence level distribution based on information available before performing the 

measurements. In Fig. 2. 24 the entire process is shown on the real test case depicted above 

where two loudspeakers are acting (simultaneously) producing uncorrelated broadband 

noises of the same strength. The result of the adaptive pre-processing method (Fig. 2. 24(a-

b)) is combined with a level of confidence distribution (shown in Fig. 2. 24(c)) which has 

its maximum in the proximity of the center of the two loudspeakers (meaning: maximum a 

priori probability of finding a real source in those corresponding locations). In the proposed 

example, then, the threshold of confidence tc (algorithm described in section 3.4) is set to 

0.9 (meaning 90% level of confidence) and eventually Fig. 2. 24(d-e) show the final results 

where the ultimate solution of the inverse problem is obtained by keeping only the 

intersection of the equivalent sources locations indicated by both the adaptive and the 

Bayesian criteria. 

Notice that, in the case of the very controlled experiment proposed in this paper, accurate 

results are achieved with no need of further iterative optimizations. It is worth to point out 

that the added values brought by the introduction of the adaptive pre-processing method are 

valuable regardless the need to further improving the solution by means of other 

processing. In fact it resulted to be effective mainly in avoiding numerical issues in the 

inverse problem solutions and most of all in allowing a perfect separation of uncorrelated 

noise sources. 
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Fig. 2. 26 : Results of the algorithm proposed in section 2.4.4 applied on a real test 

scenario of two uncorrelated white noise sources of same strength. SPL maps (dBref = 20 

µPa) presented at 2 kHz. (a-b) Steps 1-4. (c) Step 5. (d-e) Step 6-7. 

 

2.4.7. Comparison of the proposed optimization methods 
 

Two inverse beamforming calculation options have been proposed: one adopting an 

iterative optimization process (section 2.4.3) and another one exploiting the Bayesian 

inference concept where no further iterative processing is required (section 2.4.4). Both the 

combinations have shown excellent results on numerical and experimental data, meaning 

that both are applicable and even a combination of the two is possible.  

Where not differently specified, the colour code used for the representation of the acoustic 

images is reported in Fig. 2. 27. 

 

 

 
Fig. 2. 27 : colour code for the representation of the acoustic images. 

 

 

The acoustic images will be represented normalized on their maximum value in a dB scale 

with a dynamic range of 40 dB. The size of the markers in the scatter plots is proportional 

to the value assumed by the equivalent source in the corresponding location. 
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Fig. 2. 28 reports the results obtained with these methods compared to the ones achieved 

with GIBF and no further optimizations. The reported case, experiment with uncorrelated 

random noise sources of the same strength, has been chosen for emphasizing the strengths 

and weaknesses of each approach. In particular it can be noticed that in the worst cases the 

use of GIBF in presence of uncorrelated sources (Fig. 2. 28(a)) may introduce numerical 

issues that can make the correct identification of the sources almost impossible. As already 

explained the advantage of adopting a PCA-based adaptive pre-processing allows 

separating correctly the uncorrelated source distributions (Fig. 2. 28(b)), thus avoiding the 

previously visible numerical instabilities related to the wrong source separation. The 

difference between the results shown in Fig. 2. 24(f) and the ones shown in Fig. 2. 28(b) is 

in the number of iterations taken for reaching the final solution. The exploitation of the 

Bayesian inference concept, without any additional pre-processing, grants sparsity in the 

results as shown in Fig. 2. 28 (c), although it is not able to completely avoid the leakage of 

one uncorrelated source into the distribution of the other. This additional improvement can 

be achieved by combining the two methods (Fig. 2. 28(d)) obtaining a perfect separation of 

the sources, correct localization and optimal ranking and quantification. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 2. 28 : Comparison of methods in the identification of two uncorrelated white noise 

sources active in the experiment of Fig. 2. 23. Calculation frequency: 2 kHz. Principal 

components: i=1 and i=2 for all methods. (a) GIBF without additional processing. (b) 

GIBF and PCA-based adaptive pre-processing. (c) GIBF and Bayesian inference. (d) GIBF 

with PCA-based adaptive pre-processing and Bayesian inference. 
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2.4.8. PCA-based methods and spatially joint and disjoint, uncorrelated 

and correlated sources 
 

The results reported so-far show the potential of the PCA-based methods in separating the 

investigated acoustic field into uncorrelated source distributions. As already pointed out in 

section 2.3, the use of PCA as uncorrelated sources separation technique has also 

downsides mainly related to two aspects: the first one, already discussed, is that it is a 

virtual decomposition that requires additional criteria to ascertain the physical properties of 

the retrieved uncorrelated sources distributions; the second one is the requirement that the 

uncorrelated sources distributions sought in the acoustic field have to be spatially disjoint 

[127]. If, on the contrary, two or more uncorrelated sources are spatially overlapped the 

decomposition yielded by the described PCA-based methods is not optimal. The following 

numerical simulations have been performed in order to understand how severely this could 

affect results of a GIBF algorithm if the equivalent sources distribution is calculated on the 

basis of the eigen-structure of the CSM. In order to do so two uncorrelated random noise 

sources of the same strength have been placed almost in the same location in space as 

depicted by Fig. 2. 29.  

 

 

Fig. 2. 29 : numerical simulation of two uncorrelated sources not spatially disjoint. 

 

 

Fig. 2. 30 : GIBF solution with PCA-based adaptive pre-processing with spatially joint 

uncorrelated sources. Results at (a): 1000 Hz; (b): 2000 Hz; (c) 5000 Hz; (d): 7000 Hz. 
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The GIBF results obtained per principal components, adopting also the previously 

described PCA-based adaptive pre-processing, are reported in Fig. 2. 30 for the frequencies: 

1000 Hz, 2000 Hz, 5000 Hz and 7000 Hz. It is observed the strange case of one principal 

component yielding the correct localization of the obtained “virtual” source distribution, 

whereas the other principal component seems to try to arrange as well as possible the 

corresponding virtual sources distribution in order to match the far-field without 

overlapping, at the source plane, with the other equivalent sources. This example highlights 

that the presence of overlapping uncorrelated sources in the acoustic field under study 

adversely affects the results of GIBF based on PCA pre-processing. Despite such a 

combination of spatially joint uncorrelated sources is not the most frequent in industrial 

applications, this aspect should be carefully considered when exploiting such tools. The 

following numerical simulation has been performed in order to understand the GIBF 

performance when disjoint sources, placed at short distance, can be considered partially 

overlapped as a function of frequency. Several cases have been studied and two of them, 

depicted in Fig. 2. 31, are reported hereafter. 

 

 

Fig. 2. 31 : numerical simulation of two uncorrelated random noise sources, identified in 

grey and black, spatially disjoint with short distance. 
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Fig. 2. 32 : GIBF solution with PCA-based adaptive pre-processing with spatially disjoint 

uncorrelated sources with short distance Δρ = 0.10 m . Results at (a): 1000 Hz; (b): 2000 

Hz; (c) 5000 Hz; (d): 7000 Hz. 

 

In Fig. 2. 32 and Fig. 2. 33 it can be noticed that the two uncorrelated sources start to 

behave as spatially joint at different frequencies depending on their physical spacing. In 

fact the two sources are correctly identified as uncorrelated and disjoint only for 

frequencies greater than 2000 Hz in the case of Δρ = 0.10 m (Fig. 2. 32) and only for 

frequencies greater than 5000 Hz in the case of Δρ = 0.05 m (Fig. 2. 33). 

 

 

Fig. 2. 33 : GIBF solution with PCA-based adaptive pre-processing in presence of spatially 

disjoint uncorrelated sources with short distance Δρ = 0.05 m . Results at (a): 1000 Hz; 

(b): 2000 Hz; (c) 5000 Hz; (d): 7000 Hz. 

 

The limitations just pointed out may insidiously influence the interpretation of the user if 

the results are not critically interpreted. One instrument that the user has to mitigate such 
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risks is to compare the results obtained through GIBF per principal components with the 

ones obtained computing all the main principal components of the CSM at once. In the 

latter case the mutual interaction between the sources active in the field is automatically 

taken into account. In the cases described above, this practice demonstrated to greatly 

improve the results allowing to better identifying the closely spaced, but spatially disjointed 

uncorrelated sources in one acoustic image with the same performance as the one obtained 

in the next example for correlated sources. The examples reported so far, in fact, treated the 

case of uncorrelated broadband noise sources. In the next application will be tested the 

effectiveness of the PCA-based adaptive pre-processing on correlated sources. In this case 

the PCA-based pre-processing will not give its main effect in helping the separation of the 

acoustic image into uncorrelated phenomena, rather in de-noising the initial acoustic image 

and in helping discarding adaptively the insignificant equivalent sources. In this way the 

following GIBF iterative optimization results more robust and more effective. For this 

purpose a numerical simulation with two correlated random noise sources of equal strength 

have been performed. Four different distances, as visible in Fig. 2. 34, have been tested at 

three different calculation frequencies: 1500 Hz, 2000 Hz and 3000 Hz. 

 

 

Fig. 2. 34 : numerical simulations of two correlated random noise sources with equal 

strength placed at progressively closer distance Δρ: geometry of the problem. 

 

The results shown in Fig. 2. 35 demonstrate that the two correlated sources are correctly 

identified as long as their distance is not comparable with half of the wavelength 

corresponding to the calculation frequency. Beyond this limit the two sources are 

interpreted as one located in the middle between the two ideal locations. 

 

This example concludes the demonstration and validation on numerical simulations and 

experimental cases of the PCA-based adaptive pre-processing method for enhancing the 

solution of an inverse beamforming. It has been shown that the proposed approach is 

suitable for better tackling issues typical of inverse acoustic problems such as numerical 

instabilities and ill-conditioning. The method showed a high impact on the quality of the 

final result, proving that also undesired numerical mixtures of uncorrelated source 

distributions can be tackled and avoided with excellent results and less computation effort. 

Two inverse beamforming calculation options have been proposed: one adopting an 

iterative optimization process (paragraph 2.4.3) and another one exploiting the Bayesian 

inference concept where no further iterative processing is required (paragraph 2.4.4). The 

method has been successfully tested with both uncorrelated and correlated sources opening 

up several application scenarios ranging from aero-acoustics to interior noise problems. 
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(a) (b) (c) 

Fig. 2. 35 : GIBF and PCA-based adaptive pre-processing on simulated cases of random 

noise sources of equal strengths placed at decreasing distances (Δρ=0.3m, 0.2m, 0.1m, 

0.05m). Results presented at: (a) 1500 Hz; (b) 2000 Hz; (c) 3000 Hz. 
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2.5. An adaptive criterion for selecting the calculation points  
 

The inverse problem that GIBF try to solve is very under-determined because the scan 

points should cover the entire calculation plane in order to make sure to include the 

source(s) region(s). GIBF aims at iteratively discarding those scan points that are not 

representative of physical sources based on the strength of the corresponding equivalent 

sources. As shown in section 2.4, this iterative discarding procedure can be improved 

adopting adaptive criteria that introduce additional information. In paragraph 2.4.4 a 

method that benefit from an a priori knowledge of the probability of the geometrical 

regions of the calculation plane to be the location of the sought noise sources was 

introduced and its use in synergy with the PCA-based adaptive pre-processing described in 

section 2.4 was discussed. It has been also proven in paragraphs 2.4.6 and 2.4.7 that it can 

improve the localization and quantification results. However in general the a priori 

knowledge about the acoustic field might be very limited and its related geometrical 

information might be not available. In these cases such a priori information could be 

replaced by an a posteriori evaluation of the regions of the calculation plane most likely to 

host a physical acoustic source. The idea of the criterion proposed in this section is  to 

obtain this geometrical information by performing a preliminary ESM analysis of the 

acoustic field by formulating a well-determined problem adopting a number of equivalent 

sources lower than the number of microphones available in the array and refining the 

analysis performing GIBF on a distribution of scan points distributed according to the 

outcome of the previous solution. Fig. 2. 36 and Fig. 2. 37 describe the proposed method 

with an application on the test case already described in paragraph 2.4.6. The corresponding 

algorithm is the following: 

 
1) Formulate and solve an ESM problem adopting a number of equivalent sources 

lower than the number of microphones available. We will call the locations of 

such equivalent sources “anchors”. 

2) Normalize the obtained equivalent sources strengths values to the maximum of the 

distribution. 

3) Select those anchors whose equivalent source strength is above a wanted 

threshold. 

4) Distribute scan points around each anchor according to a wanted pattern. 

5) Apply GIBF on the optimized distribution of scan points. 

 

In our example the result of point 1 and 2 is reported in Fig. 2. 36. It can be noticed the 

equivalent sources with higher strength are located in correspondence of the two 

loudspeakers locations. 
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Fig. 2. 36 : Inverse beamforming solution of the well-determined formulation of the inverse 

problem of two uncorrelated band-passed random noise generated by the two 

loudspeakers. The solution has been calculated adopting 25 equivalent sources using 43 

microphones signals. 

 

  

(a) (b) 

Fig. 2. 37 : adaptive selection of the scan points grid. (a): the crosses mark the anchor 

locations. (b): the black dots map the scan points positioned around each anchor location. 

 
The anchors whose equivalent source strength is above -5 dB have been kept. This will 

select the anchors marked with a cross in Fig. 2. 37(a). Around each anchor a distribution 

of scan points, equally spacing of 0.02m in x and y direction, has been defined created 

within a circular region of 0.08m radius. As visible in Fig. 2. 37(b) such optimized scan 

points distribution allows to focus only on the region where the noise sources are actually 
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present. This will mitigate the unwanted effect of numerical instabilities and inaccuracy 

related to the under-determination of the problem because it relates the mathematical 

solution of the inverse problem to physical information. However the problem remains 

under-determined and ill-conditioned, therefore the strategies described above in this 

chapter are still required to achieve an optimal result ( Fig. 2. 38).  

 

  

Fig. 2. 38 : optimized GIBF solution on the basis of the adaptive scan point selected. 
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Chapter 3. 

 

The microphone clustering approach 

 
The inverse beamforming approach presented in Chapter 2 aims at enhancing the capability 

in resolving complex acoustic fields wherein both correlated and uncorrelated source 

distributions are present. The method presented in the previous chapter consists in a 

modular approach in which several tools can be combined for improving a Generalized 

Inverse Beamforming solution. Such tools are: regularization, PCA of the CSM, iterative 

solution of the inverse problem, pre-processing based on the PCA of the acoustic image at 

the scan plane, exploitation of a priori information, etc. For the sake of a compact 

formulation, the inverse beamforming solution obtained by this entire package of 

combinable techniques will be identified exploiting the operator Υ as follows: 

 

 ...),,(
)()( ii

pAa  . (3. 1) 

 

Recalling that: 

- 
)(i

a  is the solution of the inverse beamforming problem, i.e. the set of coefficients 

related to the Equivalent Sources defined in the scan plane, whose elementary acoustic 

contribution is able to reconstruct the acoustic field sampled at the array level. 

- 
)(i

p  is the vector of the pressure values sampled at the array level. In Chapter 2 it has 

been shown that very often it is obtained by means of a PCA of the CSM. It also 

possible to exploit the complex spectra of the microphone signals provided that they 

need to share a common phase reference. 

- A  is the radiation matrix that defines the propagation of the equivalent sources’ sound 

field from the scan plane level towards the array plane level. 

 

The field ‘ ...’ is left for accounting for any other processing technique compatible with the 

ones already defined. One of those will be described below. 

 In this chapter, in fact, a brand new approach for improving the potential of the just 

recalled inverse beamformer is introduced. The solution Υ(A,p(i)) is optimized using a 

microphone clustering algorithm for reducing numerical instabilities and separating 

uncorrelated contributions. The whole process makes it possible to decompose the acoustic 

field into absolute and quantified contributions of the partial fields produced by the main 

active sources. The idea behind the method is to process the acoustic images iteratively 

obtained performing GIBF on different clusters of microphones taken from the same array. 

The identification of the main source is expected to be similar during all iterations, while 

everything else that is related, for instance, to other numerical issues as ghost images, 
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leakage of one principal component in another, etc., is expected to be different per each 

taken cluster of microphones. By combining such maps, the actual source distribution will 

be highlighted, while any further negative effect is suppressed. It will be shown that this 

method, called Clustering Inverse Beamforming (CIB), allows absolute source 

quantification and identification of correlated and uncorrelated source distributions, without 

any help from any additional reference sensor.  

CIB is therefore a processing technique for improving the results of an inverse beamformer 

based on GIBF. However, its implementation adopting alternative ESM approaches is 

theoretically possible. The crucial aspect in the formulation of the clustering approach is in 

the statistical nature of the data that are manipulated. Such vision has been inspired by the 

statistical nature of the so-called average beamforming method proposed by Castellini et 

Al. in [58, 59] already described in section 1.1 of the introduction. The concept of 

combining different areas of a microphone array has been exploited also in other ways in 

literature. Guidati and Sottek in [137] discuss pros and cons the use of a modular 

microphones array adopting a “flexible” geometry allowing to adjust the aperture of the 

array to the targeted acoustic scene or to combine results of arrays with larger and smaller 

aperture. Such a flexible geometry is exploited and the results reported in the paper on a 

wind tunnel application. Elias proposes in [138] a so-called multiplicative beamforming 

(MBF) whose main purpose is enhancing the SSL solution by suppressing the unwanted 

effects of side-lobes of a direct beamformer. In its original formulation it is conceived for 

cross/star shaped arrays and requires the use of direct beamforming methods. The method 

has been applied, under these assumptions, in flyover applications [139]. A device referring 

to this principle has been patented [140]. The extension of the idea towards interior 

applications is obtained by exploiting the “double-sphere” concept. The two arrays’ 

performances are combined together in the mid-frequency range and exploited to the best of 

their individual potential elsewhere for covering the largest frequency range possible. The 

implementation of these main ideas yields benefits in industrial applications ([53, 139]) 

mainly in terms of localization. The quantification capacity is increased if MBF only if 

combined with further post-processing with inverse methods. Despite a full description of 

the adopted methods seems to be not available in literature, the MBF appears on the one 

hand simple to implement, but on the other hand it presents some severe intrinsic 

limitations such as the difficulties in correctly identifying complex source distributions.  

Contrarily to the reported cases, which share the characteristics of being deterministic and 

of exploiting direct beamforming methods, CIB is an inverse method that combine in a 

statistical formulation the results of ESM algorithm on clusters of data belonging to the 

same microphones array. CIB was presented for the first time in [132] and then extended in 

[136]. The inner statistical nature of CIB makes it versatile because it can be applied using 

any kind of array shape and geometry; moreover CIB is also general because it can be 

applied in exterior as well as interior applications without any change to the processing 

strategy. These characteristics (and the detailed analyses already performed) make this 

method a very appealing solution for advanced SSL applications such as aero-acoustics and 

interior noise identification. 
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The formulation of the method will be reported in section 3.1. Section 3.2 describes three 

alternative implementations, whereas sections 3.3 and 3.4 will report respectively on 

exterior and interior noise automotive applications. 
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3.1. The Clustering Inverse Beamforming formulation 
 

The clustering approach aims at improving the conventional GIBF performances and it is 

based on the principle that the solution of an inverse beamforming problem is strongly 

dependent to the radiation matrix A considered. Indeed, by selecting only certain rows of A, 

i.e. considering a subset - cluster - of microphones among those constituting the whole 

array, the mathematical formulation of the problem changes, while the physical problem 

remains obviously the same. The regularization strategy and the iterative solution of GIBF 

will act differently depending on the radiation matrix considered: in this way, any 

numerical instability that give rise to ghost sources will vary, while the actual sources will 

be constantly identified. 

This evidence is exploited performing the GIBF iterative process Nc times on Nc different 

clusters composed of Nm microphones. The set of GIBF solutions obtained in this way (ã(i)
c  

, c=1, … , Nc ) for each one of the main principal components (or for the overall acoustic 

field if p is used instead of p(i)), will be processed in order to obtain a so-called “clustering 

mask matrix”. This matrix will be used to enhance the capabilities of GIBF to identify the 

main sources active in the acoustic field under study. 

The clusters are more effective if the distribution of their microphones is as much 

homogeneous as possible with respect to the area of the full array. By means of the set of 

solutions ã(i)
c two functions will be obtained: the normalized mean matrix and the 

normalized occurrences matrix. The first one is defined as the averaged map, per principal 

components, of the GIBF acoustic images calculated for each cluster, the second matrix 

emphasizes the effect of the averaging process put in place by the mean matrix whenever 

the number of clusters considered may result exiguous for providing statistical consistency. 

It is obtained adopting the function ε which returns value 1 if its argument is non-zero, 0 

otherwise: 
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The two matrices are then combined in the clustering mask matrix, whose expression, in 

which the mean matrix and the occurrences matrices are Hadamard multiplied, is the 

following: 
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The combined use of the inverse beamformer defined by Eq.(3. 1) (and described in 

Chapter 2) and the exploitation of the microphone clustering approach gives birth to the so-

called Clustering Inverse Beamforming (CIB). In CIB the solution is obtained as a function 

of the acoustic image Υ(A,p(i)) calculated through the inverse beamforming formulation as 

described in Chapter 2 and the mask matrix γ(i) obtained through Eq.(3. 3). This approach is 

formalized in the expression: 

 

 ),,( )()( ii
pAa   (3. 4) 

 

and depicted in Fig. 3. 1. 

 

 
Fig. 3. 1 : Description of the Clustering Inverse Beamforming. 

 

Eq.(3. 4) represents a general formulation of the method. The ways to exploit such 

formulation are manifold and the best approach can be selected according to the specific 

problem under investigation. Before listing some alternative methods, interesting aspects 

related to the effectiveness of the microphone clustering approach deserve to be 

investigated more in detail through the sensitivity analysis reported in the following 

section. 

 

3.1.1. Sensitivity to the number of clusters (Nc) and the number of 

microphones in the cluster (Nm) 

The number of microphones (M) to be included in the array, the minimum number of 

microphones (Nm) that is possible to use without reducing the effectiveness of the 

processing and the number of clusters (Nc) to be chosen play an important role in the CIB 

approach presented in this thesis. This section discusses the sensitivity of the method to 

such variables. The analysis is presented on a simulated beamforming problem with two 
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uncorrelated random noise sources (monopole-like) placed 0.6 m far from the array in free 

field conditions. 

Two types of array, one with 43 ( Fig. 3. 2(a) ) and one with 100 ( Fig. 3. 2(b) ) randomly 

distributed microphones have been used in these analyses. 

 

 
Fig. 3. 2 : problem stating with randomly distributed microphones. (a) M=43. (b) M=100. 

In both cases the sources locations are: Source#1: [-0.07 m , 0.09 m], Source#2: [0.18 m , 

-0.17 m]. 

 

Since the two sources are uncorrelated, their distributions should be retrieved by GIBF 

algorithm in the solutions a(i=1) and a(i=2). The objective of this analysis is to study the effect 

of the parameters M, Nc and Nm on the effectiveness of the clustering approach to avoid 

unwanted numerical issues as the leakage of the source distribution of one solution in the 

other one (see [39]): such effect is obtained by means of the mask matrix γ(i) in Eq.(3. 4). 

Fig. 3. 3 and Fig. 3. 4 report some examples of this analysis. On the left side of the figures 

are reported the mask matrices related to Source#1 and on the right one the ones related to 

Source#2 in different configuration of the parameters M, Nc and Nm. Fig. 3. 3 gives a visual 

comparison of the mask matrices obtained increasing the number of microphones within 

each cluster given and fixed the setting of the other parameters. It can be noticed that the 

increase of Nm makes the mask matrix contribution becoming more uniformly distributed 

around the ideal location of the source and the spots due to numerical instabilities are 

almost no longer present. However, despite much lower than the ideal source location, the 

contribution corresponding to the leakage of the other source becomes more aggregate and 

its pattern more clearly detectable. Despite this is an undesired behaviour, because it 

emphasizes the mutual leakage of principal components, it is in line with the spirit of the 

method. This in fact proves that the statistical nature of the microphone clustering approach 

tends to pull up the deterministic information, filtering out the rest. The mutual leakage of 

the principal components is in fact due to limitations of the PCA processing of the CSM, 

but it is related to physical phenomena. If those physical phenomena are still energetically 

relevant after the PCA, if compared to the main source, they will be captured by the 
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microphone clustering approach. This is not a limitation of the technique: the mask matrix 

is the outcome of a statistical process that makes it possible to interpret γ(i) as a most-

likelihood indicator, i.e. defining γ(i)(n) as the probability that the nth equivalent source 

belongs to a physical source distribution. With such assumption in mind the interpretation 

of the mask matrices of Fig. 3. 3 tells the user that the ideal source locations are always 

identified with “confidence level” ≈1. In the locations corresponding to the mutual leakage 

of principal components such “confidence level” is much poorer. This aspect will be 

exploited and further deepened in section 0. 

 

 
Fig. 3. 3 : Clustering mask matrices (left: γ(i=1), right: γ(i=2)) with different parameters 

settings. (a-b) M=43, Nc = 30, Nm = 5. (c-d) M=43, Nc = 30, Nm = 15. Example of results 

@ 2 kHz. 

 

Fig. 3. 4(a-b) and Fig. 3. 4(c-d) show what happen to the mask matrices when the used 

number of clusters (Nc) is increased from 30 to 100. The effect appears not as evident as the 

one obtained varying the Nm parameter and the visual comparison of the results do not give 

enough detail about the sensitivity of the method to these parameters. 

For a more systematic interpretation of the results of the analysis, a quantitative instrument 

is now introduced. CIB aims at enhancing the source identification capability of GIBF 

mainly by reducing the numerical instabilities linked to the solution of GIBF inverse 

problem. Numerical instabilities result in ghost sources and noise in the acoustic image, 

hence lowering the contrast of the sources with respect to the background of the map. 
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Looking at the acoustic imaging problem from this point of view, CIB improves therefore 

the contrast. 

 

 
Fig. 3. 4 : Clustering mask matrices (left: γ(i=1), right: γ(i=2)) with different parameters 

settings. (a-b) M=100, Nc = 30, Nm = 15. (c-d) M=100, Nc = 100, Nm = 15. Example of 

results @ 2 kHz. 

 

An interesting estimator to prove such concept is the Contrast to Noise Ratio (CNR) [141]. 

The CNR is a well-known parameter in the community of image processing, since it 

expresses the quality of an image in terms of contrast (task related image content vs 

background). It is defined as: 
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where: 

IROIP ,    represents the mean value of the target structure in the Region of Interest 

(ROI); 
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backgroundROIP ,   is the mean value of the image background in the Region Of Interest 

(ROI) – target region excluded; 
2

,IROI    is the variance of the target structure in the Region Of Interest (ROI); 

2

,backgorundROI   is the variance of the target structure in the Region Of Interest (ROI) – 

target region excluded. 

 

Fig. 3. 5 shows a study carried out to test the influence of the parameter Nc by varying the 

number of clusters in the range: {5,30,100,150,200,250,300,500,1000,5000} for a fixed 

number of microphones per cluster (Nm=15). Increasing the number of clusters considered 

in the computation of the mask matrix increases the statistical sample giving more stability 

to the mean matrix. In order to measure such trend, the CNR function has been calculated 

on the mask matrix and the so-called squared mean matrix as a function of Nc. Results are 

presented in semi-logarithmic scale (horizontal axis) for sake of clarity. The trend show in 

Fig. 3. 5(a) confirms, as expected, that: 
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The same observation can be confirmed and further highlighted by plotting the evolution of 

the Root-Mean-Squared Deviation (RMSD, Eq.(3. 7), expressed in percentage with respect 

to the maximum mean deviation that can be obtained, i.e. 1) at varying Nc values. 
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Fig. 3. 5(b) reports the RMSD as a function of Nc showing that it tends to zero when Nc 

becomes very high. The results just obtained confirm also the important role played by the 

occurrences matrix when working with an exiguous number of clusters (↓Nc). In fact such 

matrix allows compensating for the exiguous statistical sample for the computation mean 

matrix keeping the statistical result still meaningful. When Nc increases, instead, the 

information carried by the occurrences matrix becomes redundant in the sense of Eq.(3. 6). 

Numerically speaking it means that the two matrices become more and more similar when 
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Nc increases. This is confirmed by Fig. 3. 6 and Fig. 3. 7 that report mean matrix, 

occurrences matrix and their differences in the case of the identification of Source#1 setting 

Nc=30 and Nc=1000 respectively. 

 

 
Fig. 3. 5 : (a) CNR achievable exploiting the mask matrix and the squared mean matrix 

with different Nc. (b) Root Mean Squared Deviation of the difference between the mask 

matrix (γ(i)) and the squared mean matrix (<a(i)>2) as a function of the Nc parameter. (c) 

CNR of the mask matrix obtained for a fixed Nc , varying the number of microphones in 

each cluster. 
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Fig. 3. 6 : Identification of Source#1. Mean matrix, occurrences matrix and their difference 

in the case of: M=100, Nc=30, Nm=15. 

 

 

 

 
Fig. 3. 7 : Identification of Source#1. Mean matrix, occurrences matrix and their difference 

in the case of: M=100, Nc=1000, Nm=15. 

 

 

 
Fig. 3. 8 : CNR achievable with  γ(i) with different Nm. M=43, Nc=30. 
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What turns out from this study is that the microphone clustering approach is indeed a 

statistical method which stably converges to the desired solution thanks a weighted 

averaging process of the microphone clustering results. The use of the occurrences matrix 

strengthen such statistical formulation making it possible to compensate for a limited 

information (limited number of clusters) providing stability and saving computational costs. 

It is also interesting to show the effect of changing the number of microphones per cluster 

by keeping constant the number of clusters. Fig. 3. 8 reports the CNR dependence from the 

parameter Nm (range: Nm={5,10,12,15,20,25,30}) when the mask matrix is estimated using 

Eq.(3. 3). 

The curve presents a clear convexity and a maximum for Nm=10 in this case. Such 

behaviour can be explained observing that the maximum number of microphones available 

for creating different clusters is 42 (max Nm=M-1). Therefore: on the one hand the 

probability of having consistently different patterns of microphones in each cluster 

increases if the number Nm decreases; on the other hand, too few microphones per cluster 

lead to bigger numerical issues for the solution of the inverse problem. The balance 

between these two opposite effects leads to an optimal value (range) for Nm. 

This sensitivity analysis aimed at illustrating how the three main parameters involved in the 

clustering approach, i.e. M, Nm and Nc, impact on the mask matrix and therefore influence 

the results of the overall source localization approach. The following considerations can be 

derived: 

- The increase of the number M of microphones in the array, as expected, does not 

produce any advantage to the mask matrix for the same values of Nm and Nc, as long as 

a full coverage of the array area is guaranteed. 

- A high number of taken clusters Nc produces a better localization of the source 

distribution. It tends to remove all the numerical artefacts except the leakage of one 

source in the source distribution of the other principal component. This phenomenon is 

significantly attenuated, but not completely removed. 

- The algorithm demonstrated to be robust also when a reduced number of microphones 

within each cluster is considered. A reduction in Nm produces mask matrices with more 

spots due to numerical issues, but minor and randomly distributed in the map, while the 

source localization remains good and the attenuation of the numerical leakage of one 

principal component in the other is even more efficient with respect to the other cases. 

It turns out that the technique is robust and yields good results in all the investigated cases, 

meaning that there is not only one optimal combination of such parameters. They rather can 

be tuned according to the characteristics of the acoustic field under study. 

A big added value of the proposed method is the benefit deriving from the possibility of 

using arrays with limited number of microphones and with no specific geometry. 
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3.2. Exploitation of the microphone clustering principle 
 

Eq.(3. 4) formalized that the CIB solution is obtained as a function of the acoustic image 

calculated through the inverse beamforming formulation as described in Chapter 2 and the 

mask matrix γ(i) obtained through Eq.(3. 3). The idea is, therefore, to combine the statistical 

information carried by the mask matrix with the physical least squares reconstruction of the 

acoustic field obtained through ESM. Notice, however, that the mask matrix contains not 

only accurate information about the localization of the sources, but also about the ranking 

of the equivalent sources belonging to the same distribution. This multiplex nature of γ(i) 

allows manifold exploitations. In the following paragraphs three possibilities will be 

described. 

Dedicated examples on simulated and experimental data will be used for describing and 

highlighting strengths and limitations of the proposed methods. Fig. 3. 9 depicts the 

numerical simulations and experimental setups. 

 

 

Fig. 3. 9 : numerical simulations and experimental setups. (a): 43 randomly distributed 

microphones array geometry. (b): locations of the simulated random noise sources S#1 and 

S#2. (c): experimental test scenario in which two loudspeakers, L#1 and L#2, emit band-

limited random noise (range: 1000 Hz – 12000 Hz).  

 

In the numerical simulations represented by Fig. 3. 9(b) S#1 and S#2 are two uncorrelated 

random noise sources of nominal acoustic power of 41 dB (Wref = 10-12 W). Since the 

Sound Pressure Level (SPL) quantity is more easy to interpret, in Fig. 3. 10(a) is reported 

the amplitude of the spectra of the two sources as the SPL that a microphone placed 0.04 m 

far from each source would ideally record is reported in Fig. 3. 10(a). 

In the experimental scenario two loudspeakers are used to emit a band-limited random 

noise signal in the range 1000 Hz – 12000 Hz. The setup is placed in a semi-anechoic room 

and the geometrical configuration of the sources and the microphones in the array is the 

same as the simulated case: an array of 43 randomly distributed microphones is placed 0.6 

m far from the sources plane and the two sources, L#1 and L#2 in the experimental case, 

S#1 and S#2 in the numerical simulation, are located in: [0.18 m; -0.07 m] and [-0.17 m; 
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0.09 m] respectively. The acoustic power of the loudspeakers in the test conditions was not 

known. In order to obtain quantitative references the speakers have been activated one at 

the time and the acoustic pressure measured at the microphones location has been back-

propagated towards a location placed 0.04 m in front of each loudspeaker. The SPL spectra 

obtained in this way for L#1 and L#2 are reported in Fig. 3. 10(b). 

 

  

(a) (b) 

Fig. 3. 10 : SPL spectra computed at 0.04 m far from the sources. (a): numerical 

simulation. (b) experimental case. 

 

Where not differently specified, the colour code used for the representation of the acoustic 

images and the mask matrices is reported in Fig. 3. 11. 

 

  

(a) (b) 

Fig. 3. 11 : colour code for the representation of: (a) acoustic image; (b) mask matrix. 

 

The acoustic images, Fig. 3. 11(a), will be represented normalized on their maximum value 

in a dB scale with a dynamic range of 40 dB. The size of the markers in the scatter plots is 

proportional to the value assumed by the equivalent source in the corresponding location. 

The mask matrices values range by definition from 0 to 1. In this case the colours reported 

in Fig. 3. 11(b) are used and the size of the markers are proportional to the values assumed 

by the mask matrix in the corresponding location. The acoustic images maps, therefore, will 

allow the ranking of the identified sources, but not their absolute quantification. Whenever 

the quantitative results will be required they will be provided with other graphical 

instruments. Keeping separated the qualitative and quantitative information should help the 

interpretation. In fact the reader should be aware that while a conventional beamforming 

map reports the SPL value “virtually sensed” in each location of the calculation plane 

through a scanning procedure, an acoustic image reports the discretization of the acoustic 

field in elementary sources whose acoustic effect can be estimated only considering all of 

them at once (as described in paragraph 2.3.2 of Chapter 2). This aspect should be 
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considered also in the qualitative ranking of the sources identified in an equivalent sources 

map.  

 

3.2.1. Method 1: mask matrix adopted as spatial filter 

The simplest version of the general function coined in Eq.(3. 4) is the Hadamard product 

between the inverse acoustic image Y(A, p) and the clustering mask matrix γ(i) as shown in 

Eq.(3. 8). In this way the mask matrix acts as a spatial filter on the acoustic image: 

 

   )()(
, ii
pAa  . (3. 8) 

 

This approach has the advantage of being very simple and robust because it does not 

require any additional processing. It has the drawback that the multiplicative effect of the 

function γ(i) makes the quantification less accurate because the strength of the equivalent 

sources are attenuated by the mask matrix whose values range from 0 to 1. Moreover, the 

masking effect is strongly dependent on the mask matrix shape. To give an example a 

comparison of the mask matrix computation with two different processing is reported in 

Fig. 3. 12. In this case the experimental scenario depicted in Fig. 3. 9(c) was chosen 

because in this case the sound is emitted by loudspeakers instead of ideal point sources. 

This makes the modelling in terms of equivalent sources more challenging and the choice 

of the calculation parameters and strategy may strongly influence the final results. 

 

  

(a) (b) 
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Fig. 3. 12 : comparison mask matrices γ(i) computed without, (a), and with, (b), PCA-based 

adaptive pre-processing. 

 

Fig. 3. 12(a) and Fig. 3. 12(b) show the mask matrices γ(1) (top), and γ(2) (bottom) in which 

the clustering solutions c
i

a
)(~

 have been obtained without using the PCA-based adaptive 

pre-processing introduced in Chapter 2, and with this pre-processing technique 

respectively. The second one is sharper that the first one. Their spatial filtering effect 

through the application of Eq.(3. 8) is visible in Fig. 3. 13(a) and Fig. 3. 13(b). The sources 

locations are identified accurately and correctly in both the (a) and (b) cases, while the 

masking effect is obviously more severe when adopting the sharper version of the mask 

matrix. This makes this method more suited for improving the localization of the identified 

noise sources in the acoustic image rather than their quantification. 

 

  

(a) (b) 

Fig. 3. 13 : comparison of the results obtained adopting method 1 (Y(A, p(i))· γ(i) ) computed 

without, (a), and with, (b), PCA-based adaptive pre-processing. 
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3.2.2. Method 2: mask matrix adopted for labelling the acoustic image 

One way to avoid the masking effect of the mask matrix on the final solution is to use γ(i) 

for labelling the inverse acoustic imaging Y(A, p (i)). This can be formalized as in Eq.(3. 9): 

 

   )()(
,, ii

pAfa  . (3. 9) 

 

The underlying idea is to compare the mask matrix map obtained from each principal 

component with the overall acoustic image Y(A, p) (or, alternatively, with its corresponding 

solution Y(A, p (i)) computed per principal component) through pattern recognition. The 

acoustic power of a pattern Wζ in Y(A, p) is labelled as part of the ith source distribution 

whether a pattern γ(i)(nξ) is recognizable in a similar area in the mask matrix. By doing so 

γ(i) is not used just as a mask map: it rather selects, among the sources patterns in the 

acoustic image Y(A, p), those patterns belonging to the same ith principal component. Such 

approach results in the following algorithm: 

 

1) Identify the recognizable patterns in the acoustic image Y(A, p), being Wζ the 

acoustic power (or any other acoustic quantity with the proper adjustments) of the 

ζth pattern using Eq.(2.20). 

2) Assuming nξ  to be the indices of the ξ detectable patterns in the mask matrix, let 

us define η(i)
ξ with the following formula: 

 

 







nn

ii n)()()(
 

(3. 10) 

 

3) Select, in the mask matrix, the patterns according to the following condition: 

 

   )()( max.. iitsnn    , (3. 11) 

 

where α is an arbitrary threshold depending on the characteristics of the acoustic 

field under study. The author suggest to set α=0.5. 

4) Check intersection between the patterns recognized in Y(A, p) and in γ(i) for 

determining the solution a(i): 

 

     


 n

i pAanntsnn ,.. )(    (3. 12) 

 

Fig. 3. 14 shows an example of comparison between the overall map Y(A, p) and γ(i). The 

right arrows in the γ(i) map indicate the γ(i)(nξ) patterns of minor entity that have been 

discarded. In the case of this example, step 4) will yield the a(i) map shown in Fig. 3. 15. 
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(a) (b) 

Fig. 3. 14 : example of comparison of Y(A, p) and in γ(i) for clustering-based sources 

labelling and quantification. (a): step 1) quantification of the identified patterns in the 

overall acoustic image Y(A, p). (b): step 3) selection the mask matrix patterns according to 

Eq.(3. 11). 

 

 

Fig. 3. 15 : step 4) only the patterns corresponding to the criterion given by Eq.(3. 12) are 

included in the result obtained through clustering-based labelling and quantification. 

 

In order to give a practical explanation of the two approaches (method 1 and method 2) 

described so far, an application on a simulated scenario of Fig. 3. 9(b) will be given below. 
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Fig. 3. 16 and Fig. 3. 17 report an example, computed at 2000 Hz, of solution adopting 

GIBF. No PCA-based pre-processing has been used. It can be noticed that the computation 

of the solution per principal component yields a leakage of one uncorrelated source into the 

acoustic image of the other (Fig. 3. 16 (a) and (b)) in correspondence of their ideal location.  

 

 

(a) (b) 

Fig. 3. 16 : solutions obtained with GIBF per principal component @ 2000 Hz without 

using the microphone clustering approach and PCA-based adaptive pre-processing. (a): 

Y(A, p(1)) (b): Y(A, p(2)). 

 

 

Fig. 3. 17 : overall solution (Y(A, p(1)+ p(2)), @ 2000 Hz) obtained with GIBF computing all 

the main principal components at once without using the microphone clustering approach 

and PCA-based adaptive pre-processing. 

 

Despite the two solution obtained: Y(A, p(1)) and Y(A, p(2)) are mathematically orthogonal, 

the user is therefore not able to correctly retrieve the physical location of the two 

uncorrelated sources and it is not even possible to ensure that no numerical issues occurred. 
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One way to obtain a more robust result is computing all the main principal components at 

once ( Y(A, p(1) + p(2)), as reported in Fig. 3. 17 ) so that any mutual interaction (physical or 

mathematical) between the two uncorrelated sources distributions is automatically taken 

into account. In addition to the one just pointed out, this operation has the benefit of firstly 

discarding from the array data all the components which are not related to the main acoustic 

sources (uncorrelated background noise) and secondly to optimally distribute the acoustic 

strength among the sources thanks to the most likelihood nature of the GIBF solution. 

However, the so-called overall solution does not allow to separate the investigated acoustic 

field into uncorrelated distribution. Moreover, in complex scenarios (such as the ones that 

will be reported in paragraphs 0 and 0) numerical issues may pollute the acoustic image.  

Fig. 3. 18 describes how the exploitation of the microphone clustering approach through the 

methods 1 and 2 described above can improve the results. In Fig. 3. 18(a) the clustering 

mask matrices (left: γ(1) and right: γ(2) ) calculated at 2000 Hz are reported, while Fig. 3. 

18(b) and Fig. 3. 18(c) report the result of the application of methods 1 and 2 respectively. 

Method 2 exploits the information carried by the mask matrix for labelling the sources 

retrieved in the acoustic image. In this case it is preferable to use, as acoustic image to be 

labelled, the overall solution in order to make it possible, if needed, an optimal 

quantification. In Fig. 3. 18(c) have been reported also the quantification of the labelled 

patterns in the acoustic image obtained through the algorithm described in section 2.3.2. 
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(a) 

 
(b) 

 
(c) 

Fig. 3. 18 : comparison of method 1 and method 2; example @ 2000 Hz. (a): mask matrices 

γ(1) and γ(2). (b): solutions adopting Eq.(3. 8). Left: Y(A, p(1))· γ(1); right: Y(A, p(2))· γ(2). (c): 

solutions adopting Eq.(3. 9). Left: f(Y(A, p(1) + p(2)), γ(1)); right: f(Y(A, p(1) + p(2)), γ(2)). 
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3.2.3. Method 3: mask matrix as confidence level distribution 

The results shown in Fig. 3. 18 demonstrate that the use of the clustering mask matrix 

enhances an inverse acoustic imaging solution and that it can be exploited in many ways. 

The two methods presented so far have pros and cons: method 1, for example, is robust but 

its masking effect may alter the quantitative results, whereas method 2 does not introduce 

any masking effect, allowing an optimal quantification of the sources identified in the 

acoustic image; however it relies on the recognition of patterns within the acoustic image 

under study. This is a drawback in presence of complex acoustic scenes (an example will be 

given in section 0) because the pattern matching procedure described in paragraph 0 may 

fail. For this reason a third method for exploiting the information carried by the clustering 

mask matrix, which is related to its inner statistical nature, is given in this paragraph. In 

order to do so it is necessary to interpret the mask matrix γ(i)(n) as a function that expresses 

the probability that the nth equivalent source in the scan grid corresponds to a physical 

source distribution in the acoustic image. This probability information is obtained a 

posteriori interpreting the equivalent sources corresponding to the values of the mask 

matrix closer to 1 as the most likely source distribution representative of the investigated 

acoustic scene. 

The idea, formalized as in Eq.(3. 13), is to select in the inverse problem only those 

equivalent sources locations in the scan grid assuming mask matrix values above a wanted 

threshold tL called confidence level. 
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Fig. 3. 19 explains the concept graphically. 

 

)( i
  

)( i

Lt
  

Fig. 3. 19 : the confidence level distribution concept: selecting a confidence level is 

equivalent to consider only the regions of those scan points in which the clustering mask 

matrix value is above a wanted threshold tL. 
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(a) (b) (c) 

Fig. 3. 20 : method 3. Solution obtained adopting equation (3. 13); example @ 2000 Hz. 

Columns: (a), confidence level 20%; (b):confidence level 40%; (c):confidence level 80%. 

 

   

(a) (b) (c) 

Fig. 3. 21 : method 3. (a): 1500 Hz. (b): 3000 Hz. (c) 6000 Hz. Confidence level: 50%. 
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This approach has the advantage of adopting the mask matrix for improving both the 

localization, selecting the equivalent sources close to its local maxima, and the 

quantification task, computing the strength of the equivalent sources only in the regions 

where a physical source is most likely expected. It has the drawback that the threshold tL 

selection is user dependent. This may lead to inaccuracy in the reconstruction of sources 

with complex distributions. 

Fig. 3. 20 reports an example of application of method 3 on the experimental case already 

introduced at the beginning of section 0. In particular it shows the result of the application 

of Eq.(3. 13) when selecting a progressive confidence threshold level tL. For the 

computation, the mask matrices already plotted in Fig. 3. 12(b) have been used.  

Fig. 3. 21 shows the results in the same experimental case for increasing frequencies. The 

confidence level adopted in Eq.(3. 13) is in this case kept constant to the threshold value 

tL=0.5 (50% confidence level). Notice that the ranking of the sources is also correct because 

L#1 is always identified as slightly stronger than L#2 in accordance with the spectra of the 

SPL level of the two sources reported in Fig. 3. 10(b). 

The example just reported shows that method 3 allows for accurate localization and 

quantitative results. In particular numerical issues and artefacts in the acoustic image are 

avoided by computing the acoustic field only adopting the equivalent sources 

corresponding to high values of the mask matrix. The quantification of the patterns 

identified in the acoustic images computed in this way allows a reliable estimation of the 

acoustic power radiated by the identified sources through Eq.(2.19) and Eq.(2.20) and the 

method described in section 2.3.2 of Chapter 2. Fig. 3. 22 reports the quantification results 

in the just treated experimental case in the range 1500 Hz – 12000 Hz.  

  

 

Fig. 3. 22 : SPL spectra estimation at 0.04 m far from the ideal location of L#1 and L#2 of 

the experimental case described in Fig. 3. 9 and Fig. 3. 10(b). The estimation has been 

obtained, in the range 1500 Hz – 8000 Hz through the acoustic power quantification of the 

identified sources. 
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To conclude this paragraph an application of method 3 on an experimental case in which 

the two loudspeakers are fed by the same band-limited random noise voltage signal - same 

amplification settings - is reported in Fig. 3. 23. The acoustic power quantification has been 

performed adopting the algorithm presented in paragraph 2.3.2 of Chapter 2. Despite an 

absolute reference is not available for the strength of the two correlated sources in this 

scenario, it is observed that the equivalent sources are distributed in such a way that the two 

patterns corresponding to the two loudspeaker sources emit a comparable power. The 

discrepancy between the two values (corresponding respectively to SPL values of 70.8 dB 

and 71.6 dB at 0.04 m far from the two sources) can be due, besides the inaccuracy of the 

proposed method, to the physical characteristics of the two speakers. 

 

Fig. 3. 23 : acoustic power quantification. Experimental case: L#1 and L#2 are fed with the 

same band-limited random noise voltage signal. Example of results @ 2000 Hz. 
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3.3. CIB application to an automotive test case 
 

In this section an application on an automotive test case of the advanced methods 

introduced so far is presented. Fig. 3. 24 describes the measurement setup adopted. The 

vehicle is mounted on a double-drum roller bench capable to move both front and rear 

wheels, in a semi-anechoic room. The drums (simulating the contact tire-ground) have been 

equipped with the configuration “slick”, therefore the road profile was not included. The 

measurement campaign was carried out in the frame of an in-door pass-by noise test on a 

prototype of electric vehicle. The acoustic imaging test, the array used (54 microphones) is 

visible in Fig. 3. 24(a), was performed simultaneously to the pass-by noise test. The 

purpose of the acoustic imaging processing shown below is to validate the capability of 

CIB in separating uncorrelated acoustic phenomena and accurately and reliably ranking the 

identified sources in terms of radiating acoustic power. Among the several test conditions, 

two constant speed regimes were selected for the acoustic imaging processing: the first at 

50 km/h and the second at 110 km/h. 

 

  

(a) (b) 

Fig. 3. 24 : test setup. Electric vehicle prototype tested in a semi-anechoic room 

instrumented with a double roller bench for front and rear wheels and for linear array for 

in-door pass-by noise test and a 54 microphones star array for acoustic imaging. (a) a view 

of the vehicle in the instrumented room. (b) the vehicle positioned on the roller bench. 

 

Fig. 3. 25 shows the averaged (over the 54 microphones) Auto-Power Spectrum (APS) 

computed at the array level. It is clearly visible the difference in levels and frequency 

content between the two cases. The APS show the presence of broad-band noise as well as 

tonal components. Three main sources are expected to be responsible of the acoustic field 

generated by the vehicle: front wheels, rear wheels and the noise related to the engine. The 

three components are supposed to be uncorrelated because related to different causes. An 

analysis that allows the separation of the acoustic field in uncorrelated phenomena makes it 

possible to accurately localize them in space and ranking them in terms of the acoustic 

power radiated by each of them. For a deeper insight on the quantification of the acoustic 
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imaging results the reader can refer to [101] for the general theory and to the paragraphs 

2.3.2 and 3.2.3 of this thesis for the implementation using CIB. 

 

 
Fig. 3. 25 : Averaged APS at array location for  speeds: 50 km/h and 110 km/h. 

 

 

   

(a) (b) (c) 

Fig. 3. 26 : example of improved solution adopting CIB. Solution computed at 1700 Hz in 

the scenario @ speed 50 km/h. (a): GIBF solution. (b): clustering mask matrices. (c) CIB 

solution. 
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The complexity of investigated acoustic field may dramatically reduce the accuracy of 

traditional acoustic imaging methods. An example is given in Fig. 3. 26(a) that reports the 

results obtained applying GIBF as formulated and described in sessions 2.1 and 2.2 of 

Chapter 2. It can be noticed that the maps corresponding to the three uncorrelated 

phenomena are polluted by ghost images and numerical issues. It will be shown in this 

paragraph that the use of CIB, through the exploitation of the clustering mask matrix (Fig. 

3. 26(b)) allows to greatly improve the results (Fig. 3. 26(c)) making it possible further 

quantitative evaluations and the labelling and ranking of the identified acoustic sources. 

The PCA-based adaptive pre-processing (theoretical details available in sections 2.3 and 2.4 

of Chapter 2) has been adopted in the computation of the clustering mask matrices. Method 

3, described in paragraph 0, has been chosen for the CIB processing. The colour code 

introduced in Fig. 3. 11 was adopted for the representation of the acoustic imaging results. 

The labelling and quantification of each source distribution has been performed adopting 

the method described in paragraph 2.3.2 of Chapter 2. Fig. 3. 27 shows some examples of 

the labelling and quantification of the identified sources in the two scenarios ( (a) : 50 km/h 

and (b) : 110 km/h) at several frequencies in the range 500 Hz – 5000 Hz. 

 

  

(a) (b) 

Fig. 3. 27 : Labelling and ranking of the identified uncorrelated sources. The z axis 

represents the Acoustic Power of the sources in dB. dBref = 10-12 W. (a) Speed: 50 km/h. (b) 

Speed: 110 km/h. 

 

The labelling and ranking of the uncorrelated sources in the two scenarios allows a deep 

analysis of the three components. For example it shows that at lower speed (scenario (a) : 

50 km/h) the engine contribution is more “audible” in a large frequency range and it is 

dominated by the tire noise only at low frequency. Whereas the case depicted in Fig. 3. 

27(b) shows that the tire noise becomes dominant in the entire frequency range 

investigated. Rear tires become dominant around 1000 Hz, while the front tires are the 

dominant noise sources at low speed and low frequency. 

The labelling analysis is possible thanks to the localization task reported in Table 3. 1 and 

Table 3. 2. Thanks to these maps other information becomes also available. In fact they 

allow an interpretation of the mechanisms of generation and propagation of the identified 

sources. To give some examples: the front tires noise seems to be generated by the trailing 

edge, while for the rear tires the leading edge appears more relevant despite in some cases 

either the contact region and the trailing edge are also interested. Finally it can be noticed 
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that the engine noise radiates towards the exterior of the vehicle through the front wheels 

compartment and through the underbody of the center of the vehicle.  

As already stated, in the scenario at the speed of 110 km/h (Table 3. 2) the front and rear 

tire noise become dominant in the entire frequency range under investigation. The engine 

noise, masked by the tires at low frequency, becomes relevant again at higher frequencies. 

In the results computed at 2290 Hz two noise sources are clearly related to the rear tire. 

Despite belonging to two different principal components, the acoustic power radiate by 

both sources distributions has been accounted to the rear tire in the ranking reported in Fig. 

3. 27(b). The explanations to that phenomenon are twofold. One option is that in this 

specific case the noise generated by the rear tires can be clearly separated into two 

uncorrelated phenomena: one related to leading and trailing edge and one related to the 

contact region of the tire; another possibility is that two of the three uncorrelated source 

distributions are not spatially disjoint. As discussed in paragraph 2.4.8 of Chapter 2, this 

can be an issue when adopting PCA-based methods for source separation. In fact, the 

separation in three virtual sources distributions through PCA yields three orthogonal source 

regions that not necessarily coincide with the physical sources. Besides a critical 

interpretation of the results obtained through PCA-based blind separation in uncorrelated 

phenomena, the use of other criteria, such as the one proposed in [127] (see also section 2.3 

of Chapter 2), or the computation of the GIBF solution considering all the main principal 

components at once, can be beneficial  to ascertain the validity of the decomposition of the 

sought source distribution into uncorrelated components. 

This example demonstrate the potential of the CIB method when applied to automotive 

applications. The method has been applied to a test case regarding the study of the noise 

radiated by the vehicle towards the exterior. However, the accurate identification of the 

exterior sources is key aspect also for investigating the influence on the in-vehicle noise if 

the information available through the just described analysis is complemented with the 

knowledge of the transmissibility properties of the vehicle’s cabin. 
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Table 3. 1: CIB map for the case “Speed 50 km/h” at selected frequencies. Separation in 

uncorrelated phenomena. Acoustic images normalized to the maximum and plotted in dB 

with dynamic range: 40 dB. 

 Front Rear Other 

7
4

0
 H

z 

 

/ / 

1
0

6
0

 H
z 

/ 

  

1
7

0
0

 H
z 

   

2
7

8
0

 H
z 

/ 

  

3
8

5
0

 H
z 

/ / 

 

4
9

3
0

 H
z 

/ / 

 

 



111 

 

 

Table 3. 2 : CIB map for the case “Speed 110 km/h” at selected frequencies. Separation in 

uncorrelated phenomena. Acoustic Power images normalized to the maximum and plotted 

in dB with dynamic range: 40 dB. 
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3.4. CIB for interior sound source localization 
 

In-vehicle SSL is gaining more and more importance in NVH, since a correct identification 

of the noise sources represents the first step towards the improvement of the acoustic 

experience of a passenger. In this section the CIB technique is applied in interior noise 

source identification problems. A new formulation adopting a 3D array of microphones 

randomly distributed in the cavity is presented and compared to a rigid spherical array 

geometry. Experimental results are presented in a car cabin mock-up. Such formulation 

aims at improving results in interior testing applications. Indeed the performance of a SSL 

technique is spoiled by the complexity of the acoustic field characterizing the vehicle cabin. 

Taking into account complex phenomena like multiple reflections, acoustic and vibro-

acoustic modes represents a difficult task, and very often free-field conditions are assumed 

in SSL algorithms. However, such a simplified assumption might drastically decrease the 

accuracy of results in terms of both localization and identification. Many solutions have 

been proposed during the last years to tackle this issue. For instance, Castellini et Al. [58, 

59] proposed to reduce the effect of reflections by measuring with the microphone array 

placed in different positions inside the cabin and then by combining the beamforming 

output obtained from the processing of each measurement position. The approach assumes 

that reflections pattern identified by the array differs from position to position, while the 

actual source pattern remains constant. By combining results of the different tests, 

reflections fade out while actual sources are enhanced. Stationarity of the acoustic field is 

of course the main requirement for the exploitability of the method. Pereira [52] suggested 

to improve the SSL performance in enclosed spaces by extending the ESM formulation [66, 

69, 142] to interior problems and coupling it to spherical arrays. 

The current standard in interior beamforming applications is to use a rigid sphere. However, 

the spherical harmonic expansion formulation, on which both direct and inverse methods 

dealing with scattering arrays are based, and the diameter of the sphere might limit the 

frequency range. There exist both “hardware-based” [53, 67] and “software-based” [55] 

methods to cope with low-frequency extension. However, despite valuable, these methods 

have drawbacks mainly linked to the dimension of the acoustic cavity wherein the test has 

to be carried out. The closeness of the hardware/software microphones to the walls of the 

cavity might seriously affect the accuracy of the approach. A distributed array, i.e. an array 

with microphones randomly distributed inside the cavity, does not suffer of such low 

frequency issues. Moreover, its random nature matches perfectly with CIB. 

The approach presented here can be seen as both an alternative and a complement to the 

aforementioned methods. Indeed the robustness of CIB makes the approach suitable also 

for interior testing despite a free field radiation model is assumed. Moreover, the method is 

versatile and can be exploited with different array geometries, even though some benefits 

can be achieved in vehicle cabins with a distributed microphone configuration. 
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3.4.1. Test campaign 

In order to prove the applicability of the clustering approach for enhancing interior 

beamforming results, a test campaign has been carried out on a simplified car cabin mock-

up adopting a distributed microphone array. A test with a rigid spherical array was also 

carried out in order to prove the applicability of CIB to different array geometries. The 

entire test-rig has been set up into a semi-anechoic room, as visible in Fig. 3. 28, in order to 

avoid any further influence from the surrounding environment. 

 

  

(a) (b) 

Fig. 3. 28 : A picture of the car cabin mock-up with trimming material attached to the 

walls: (a) distributed and (b) spherical array. 

 

The car cabin mock-up consists of an aluminium frame (length × width × max-height : 

1.450m×0.950m×0.700m) filled in with panels of different material: wood for the bottom 

panel, steel for the front vertical panel and PMMA (Polymethyl Methacrylate) for the rest 

of the panels. The trimming layers are removable and consist of pyramidal-shaped 

(0.045m×0.045m×0.060m) absorbing foam (density: 21 kg/m3). 

Two microphone arrays were tested: a distributed array and a rigid spherical array. The 

former consists of 43 microphones randomly distributed over a frame made of aluminium 

rods and plastic wires. The array shape does not spoil its acoustic transparency in the 

frequency range 300 Hz – 10 kHz (frequency range of interest). The position of the 

microphones was randomized adopting two constraints: distance between microphones 

greater than 0.1m; distance of all the microphones from the panels greater than 0.05 m. The 

spherical array hosts 40 microphones distributed on a rigid sphere of diameter 0.20 m. The 

locations of microphones belonging to the two arrays with respect to the mock-up are 

reported in Fig. 3. 29. Despite challenging, the identification of microphones locations 

inside a car cabin has been proved to be feasible in recent papers [143, 144]. The higher 

geometrical complexity in dealing with a distributed array than with a spherical array can 

therefore be overcome using these strategies. 
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(a) (b) 

Fig. 3. 29 : Microphone locations with respect to the car mock-up: (a) distributed and (b) 

spherical array. 

 

Table 3. 3 : Car cabin mock-up in the three configurations tested. 

   

Total trimmed 

ζ=100% 

Car-like 

ζ=73.9% 

Naked 

ζ=0% 

 

The mock-up has been tested under three different configurations, as depicted in Table 3. 3. 

The indicator ζ describes the percentage of the trimmed surface with respect to the total 

surface of the mock-up. The purpose of investigating these configurations was to test CIB 

in acoustic fields ranging from a free-field like (Total Trimmed) to a diffuse-field like 

(Naked) configuration. A configuration resembling a car cabin (Car-like) was also tested. 

All these aspects well reflect in the values of reverberation time (T30 - Fig. 3. 30) measured 

in the three configurations. As expected, the reverberation time is dramatically higher in the 

Naked configuration with respect to the two other cases. It is very interesting to notice that 

reverberation time is almost the same up to around 1500 Hz in the Total trimmed and Car-

like configurations, while for higher frequencies the absorption properties of the trimming 

panels plays a more evident role. 
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Fig. 3. 30 : mock-up reverberation time (T30) estimated for the three configurations tested. 

 

Three different source scenarios were tested in each configuration (Table 3. 4). The source 

position with respect to the mock-up is also reported in Fig. 3. 31. 

 

Table 3. 4 : Description of the tested scenarios. 

Scenario Name Position w.r.t. mock-up 

a Right panel, front bottom Inside 

b Top panel, front middle Outside 

c Left panel, front Outside 

 

When the source is placed outside, noise is radiated towards the interior through the panels 

and panels also act as noise sources. When the source is placed inside the mock-up, mainly 

the acoustic and geometrical properties of the cavity come into play. LMS mid-high 

frequency Q Source was used for generating white noise in the bandwidth 300 Hz – 10 

kHz. 
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Fig. 3. 31 : Source position in the tested scenarios. 

 

 

3.4.2. CIB in the mock-up adopting spherical and distributed arrays 

The main results of the test campaign will be presented referring to the distributed array. 

However, for sake of completeness and to demonstrate the versatility of CIB, some results 

using the rigid spherical array are presented as well in the following. 

Clusters of microphones, being subsets of the microphone array, can be selected randomly 

or under certain constraints. The parameters reported in Table 3. 5 have been adopted for 

the spherical and the distributed array. A random choice of microphones belonging to each 

cluster was performed in both cases. 

 

Table 3. 5 : CIB parameters for spherical and distributed array. 

 Spherical Array Distributed Array 

Number of microphones in each cluster (Nm) 19 15 

Number of clusters (Nc) 30 100 

 

Results will be reported adopting the colour code introduced in Fig. 3. 11. Two different 

methods of implementation of CIB have been tested in this application: method 1 

(paragraph 0) and method 3 (paragraph 0). The processing strategy will be indicated in the 

caption of the figures reporting the results. Method 2 was not used in this application 

because pattern recognition may fail in the complex acoustic field under study, moreover 

the main interest of this study was investigating the localization accuracy and the dynamic 

range capabilities. In this perspective methods 1 and 3 are more suited that method 2. 
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(a) (b) 

Fig. 3. 32 : Configuration: “Total trimmed”. Scenario: a. Frequency: 2.5 kHz. (a) using 

spherical array. (b) using distributed array. Top: no CIB: Υ( A, p(1) ); Middle: mask matrix 

γ(1); Bottom: CIB: method 1. 
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(a) (b) 

Fig. 3. 33 : Configuration: “Total trimmed”. Scenario: a. Frequency: 500 Hz. (a) using 

spherical array. (b) using distributed array. Top: no CIB: Υ( A, p(1) ); Middle: mask matrix 

γ(1); Bottom: CIB: method 1.  

 

Fig. 3. 32 show results in the “Total trimmed” configuration for the “a” scenario, at 2.5 kHz 

for the spherical and distributed array respectively. Results of standard GIBF are also 
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reported for sake of completeness, clearly showing that CIB systematically provides better 

results. The noise source is well located in either cases, but higher dynamic range is 

obtained using CIB. Both the scattering sphere and the distributed array provide similar 

performance in terms of localization and quantification capabilities at 2.5 kHz. Moreover, it 

is interesting to notice that CIB greatly improves results on the rigid sphere. This is also an 

important goal achieved, since the CIB strategy can be really considered a ready to use 

solution in those applications of interior sound source localization already faced with 

scattering spherical arrays. The random array provide more accurate results in the low 

frequency range (500Hz), as can be seen in Fig. 3. 33. This was expected, since the relative 

dimensions of the cavity and the sphere did not allow to use any strategy to extend the 

spherical array performance to lower frequencies. The random array can therefore be 

thought as an alternative to the spherical one whenever solutions for extending the 

performance of the scattering sphere at lower frequency cannot be carried out. From now 

on in this section the presented results are obtained adopting the randomly distributed 

microphones array configuration. From now on only results adopting the method 3 for the 

implementation of CIB will be reported. 

 

   

   

(a) (b) (c) 

Fig. 3. 34 : Configuration: “Total trimmed”. Scenario: a. (a) Frequency: 350 Hz. (b) 

Frequency: 650 Hz. (c) Frequency: 850 Hz. Top: mask matrix γ(1); Bottom: CIB: method 3. 

 

The correct identification of noise sources in the low-frequency range is in fact a 

challenging task. The absorbing efficiency of the trimming material is poor below 1200 Hz 

(see Table 3. 4), the wavelength of the acoustic waves in this frequency range is 
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comparable with the three dimensions of the cavity, and therefore strong reflections and 

acoustic modes of the cavity may result not negligible, also in the “Total trimmed” 

scenario. These aspects are clearly visible in Fig. 3. 34, where CIB results, in terms of mask 

matrices and CIB solutions, are reported for the frequency range 350-850Hz. 

Table 3. 6 reports the results obtained by applying the proposed method the case of scenario 

a in the different configurations. Notice that it this particular scenario, the source is placed 

inside the cabin, therefore there is neither transmission through the cavity walls nor any 

excitation of the mock-up panels. However, strong reflections may take place. In the low 

frequency range, these reflections might appear even more relevant than the actual source. 

This is especially true for the “Naked” configuration. 

 

Table 3. 6 : CIB solutions for source Scenario: a, in all configuration tested. 

 Total trimmed Car-like Naked 

5
0

0
 H

z 

  

/ 

2
0

0
0

 H
z 

  

/ 

4
0

0
0

 H
z 

 

Localization of the source 

successful up to 3500 Hz. / 
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In Scenario b the source was place outside the mock-up. Results reported in Table 3. 7 

clearly highlight this source configuration turned out to provide better results in terms of 

localisation accuracy. The same trend can be noticed in Table 3. 8 regarding results 

obtained for scenario c. 

 

 

Table 3. 7 : CIB solutions for source Scenario: b, in all configuration tested. 

 Total trimmed Car-like Naked 

5
0

0
 H

z 

   

2
0

0
0

 H
z 

   

4
0

0
0

 H
z 

  

Localization of the source 

successful up to 2000 Hz. 
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Table 3. 8 : CIB solutions for source Scenario: c, in all configuration tested. 

 Total trimmed Car-like Naked 

5
0

0
 H

z 

   

2
0

0
0

 H
z 

 

Localization of the source 

successful up to 1400 Hz. 
Localization of the source 

successful up to 500 Hz. 

/ Localization of the source 

successful until 2000 Hz. / / 
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Fig. 3. 35 : Applicability range of CIB for the three mock-up configurations. 

 

 

Fig. 3. 35 summarises the frequency ranges wherein the noise source could be well 

localised for the three scenarios and mock-up configurations. Such experimental tests have 

proved that CIB can be used (with different performances) in reverberant conditions. This 

can be done, starting from a frequency that is dependent on the geometrical dimensions of 

the cabin, without any change to the propagation model. To extend this frequency range to 

lower frequencies the propagation model adopted in the inverse beamforming formulation 

should be refined.  

It has been moreover proven that CIB can be considered a ready to use formulation to be 

exploited with both a rigid scattering spherical configuration of the microphones or a 

randomly distributed geometry. Distributed array might represent a valid alternative 

whenever it is not possible to extend the exploitability of the rigid spherical array (using 

either hardware or software solutions) to the low frequency range. Moreover, the 

distributed array might be useful for joint testing with Acoustic Modal Analysis [96, 98, 

144, 99] applications. 
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Chapter 4. 

 

Inverse source identification in time 

domain 

 
Acoustic imaging techniques allow the user to see what he/she is listening to. This chapter 

aims at proposing an inverse procedure that allows for retrieving the evolution of the noise 

source identified in a beamforming map. Such approach overcomes the limit of frequency 

domain strategies, and opens up different application fields such as auralization, coherence 

analyses, etc… The source localization step is performed in frequency domain with the goal 

of accurately identifying the source coordinates. The corresponding time signals are 

subsequently obtained by convolving in time domain the microphones data with multiple 

input – multiple output impulse responses corresponding to the back-propagating functions 

identifying the receiver-source link. The formulation of the algorithm is presented in this 

chapter and its main strengths and limitations are discussed. Applications are shown in 

simulated and real experiments. 

The proposed technique leverages on the localization step performed in frequency domain 

for reducing the calculation plane to the few points that host the actual sources. In this way, 

the further inverse source identification problem, wherein the corresponding time signals 

are obtained, is no longer underdetermined, since the number of sources active in the field 

is reasonably lower than the number of microphones available in the array. The above 

mentioned Impulse Responses are computed by inverting, in frequency domain, the matrix 

containing the Noise Transfer Functions between the sources’ and the microphones’ 

locations (see references [88] and [145]). The obtained inverse Noise Transfer Functions 

are then inversely Fourier transformed. This set of Impulse Responses intrinsically take into 

account the mutual interaction between the sources, granting an optimal separation of the 

corresponding signals as long as all the main sources active in the field are correctly 

localized and included in the computation. The omission of important contributions could 

in fact badly compromise the correct identification of the other sources (see also [124]). To 

prevent this for happening, the sound source localization results must allow large dynamic 

ranges and accurate calculation of the sources locations. The former aspect is important for 

correctly identifying the weakest sources as well as the strongest ones; the latter is required 

in order to properly select the Noise Transfer Functions to be adopted in the time domain 

source identification step. In order to meet these requirements, the Clustering Inverse 

Beamforming algorithm (CIB) [132, 136] presented in Chapter 3 is exploited for the sound 

source localization task, since this method guarantees indeed accurate localization results 

with large dynamic range also in complex scenarios where multiple correlated and 

uncorrelated sources are active at the same time.  



126 

 

Once the localization task is completed, the identified sources are synthesized and their 

time-domain signals become available. It should be considered, however, that the 

reconstruction of the sources’ corresponding signals from far-field data alone must be 

interpreted in a most likelihood sense because different source distributions can generate an 

identical far field. In order to understand the influence of this potential ambiguity on the 

result of the inverse source identification, a preliminary analysis on a virtual experiment 

will be reported showing, in fact, that this ambiguity is translated in presence of cross-talk 

between the retrieved sources and/or the presence of a consequent noise disturbance in the 

retrieved signals. Nevertheless the same analysis ensured also the robustness of the 

proposed approach in presence of severe SNR conditions and/or complex acoustic fields. 

Moreover the results that will be presented show a promising correspondence between the 

synthesized sources and the corresponding reference signals demonstrating the applicability 

of the method both in presence of correlated sources, where also the time delay between the 

signals plays a role, and uncorrelated ones.  

The exploitation of these ideas enables the user to obtain a realistic estimation of the time 

evolution of the main acoustic sources under investigation by means of far-field 

measurements only. This can be a unique advantage in many applications such as aero-

acoustics, condition monitoring, etc. 
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4.1. Description of the methodology 
 

The proposed method requires initial source localization in frequency domain and 

consequent inverse source identification in time domain. The already described CIB 

method will be adopted for the source localization task by locating the sought sources 

through the identification of the local maxima of the mask matrix. Hereafter a theoretical 

description of the time domain estimation of the sources is reported. 

The inverse source identification step is allows for retrieving the time signals of the main 

noise sources active in the acoustic scene observed with the microphones array. As already 

mentioned the main idea is convolving the microphones signals with inverse impulse 

responses. Those are calculated by inverse Fourier transforming (symbol: ) a set of MIMO 

estimated inverse Noise Transfer Functions (NTF) modelled in frequency domain. Those 

are obtained by inverting per frequency line the direct radiation model (A in Eq.(1. 3)) 

including the candidate N source locations and the M microphones locations.  Since the 

matrix A is in general not square, a pseudo-inversion is required. Moreover the system may 

be ill-conditioned and require regularization. For deepening this aspect the interested reader 

may refer to [45]. This process allows obtaining the inverse impulse response hn,m(t) 

between each of the mth microphones locations and each of the nth sources locations. 

 

 )(}{ ,,
1 thAF mnmn 

 (4. 1) 

 

A is the radiation matrix whose elements describe the radiation model adopted. In case of 

free-field propagation, each element of the A matrix can be expressed as:  
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where the subscripts m and n represent the mth microphone (over M) and nth calculation 

point (over N) respectively and rmn represents the distance between the geometrical 

positions of these two points. The coefficient A* in Eq.(4. 2) depends on the unit of acoustic 

quantity related to the sought sources qn. If qn are the strengths of the sources ([m3/s]), 

A*=jωρ. 

It is very important to notice that, by doing so, the contribution of all the candidate sources 

is considered together at the same time. This, in one hand, ensures the correct identification 

of correlated as well as uncorrelated source and provides the best source separation possible 

because it includes in the model the cross-talk between the sources. In the other hand that 

means also that all the main acoustic sources should be taken into account. If this is not the 

case a wrong estimation of all the remaining source signals may most likely occur. 

Once the set of inverse impulse responses is available, each source signal can be retrieved 

adopting Eq.(4. 3) which is valid for source n out of the N active in the acoustic scene. 
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In order to ensure that all the main sources are taken into account in the computation, an 

efficient sound source localization strategy is required. In this chapter the already described 

CIB algorithm will be used. This method in fact: ensures high accuracy in localization 

almost independently from the frequency range; it moreover allows to correctly identifying 

correlated sources as well as uncorrelated sources with a large dynamic range. The latter is 

needed for localizing the weakest sources as well as the strongest ones. 
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4.2. Preliminary analysis on simulated data 
 

Before applying the just described inverse source identification method on real data, a 

preliminary study on a simulated scenario has been carried out with the goal of 

understanding the influence of two potential sources of inaccuracy: the presence of 

different SNR conditions and the cross-talk between the two sources due to their closeness. 

Such study has been conducted by considering the beamforming problem depicted in Fig. 

4. 1. The source localization step is assumed ideal in this analysis. 

 

 

Fig. 4. 1 : simulated scenarios with a randomly distributed linear array (10 microphones) 

and sources placed at different distances. 

 

 

Fig. 4. 2 : example of identification in presence of severe SNR conditions. 
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Two sources (one 1 kHz sine tone and one white noise band-pass filtered between 0.1-2 

kHz) are placed 0.6 m far from a randomly distributed linear array of 10 microphones. The 

distance between the two sources has been varied between 0.02 m and 0.5 m. The SNR 

between the microphones clean signal and the added Gaussian background noise has been 

varied between 25 and 50 dB. Fig. 4. 2 shows one example of results in which the effect of 

background noise is visible.  

Analysing Fig. 4. 2 it is possible to observe that the presence on measurement noise in the 

microphones is not the only cause of inaccuracy in the retrieved signals. Cross-talk between 

the sources always occurs and its influence becomes dramatic when the sources become 

closely spaced (distance < 0.18 m). 

 

 

Fig. 4. 3 : Influence of the SNR at microphones location (measurement noise) on the SNR 

obtained in the retrieved sources signals. Results reported as a function of the distance 

between the sources. 

 
In the next section the method is applied on real test cases. Two different measurement 

campaigns will be presented in which the strengths and limitation of the technique in 

presence of correlated and uncorrelated sources are respectively evaluated. 
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4.3. Correlated sources 
 

With this validation case two conditions will be tested: the case in which two correlated 

sources are generated simultaneously by two different devices and the case in which a 

second correlated source takes place due to the presence of a reflecting surface. In the first 

case, Fig. 4. 5(a), although correlated, the two signals’ signature can be different since they 

are generated by two different physical devices, while in the other case the main difference 

between the two signals is the phase shift occurring due to the different travelled path. 

 

 

Fig. 4. 4 : Measurement setup for correlated sources identification. 

 

The tests have been performed in a semi-anechoic room, adopting a microphone array of 36 

microphones distributed over a pattern of three concentric circles (LMS HDCam36). Two 

high frequency referenced sources in the range 2 kHz – 20 kHz have been used. Two 

perpendicular reflecting walls have been used for producing reflections.   

 

  

(a) (b) 

Fig. 4. 5 : (a) Scenario A, two correlated sources. (b) Scenario B, one source and a 

reflective wall. 

 

Fig. 4. 4 shows the setup. Microphone array: LMS HDCam36. Sources: LMS High 

Frequency Q Sources (prototype). The origin of the axis coincides with the center of the 

array which lies in the xy plane. The microphone array points towards –z direction. In all 

the cases shown in this section the two sources are correlated random noises in the 

bandwidth 2 kHz – 20 kHz. Table 4. 1 recaps the two configurations. 
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As shown in Fig. 4. 5(b) absorbing material has been added (in scenario B) for selectively 

avoiding (damping as much as possible) reflections produced by the horizontal wall. In the 

case of scenario A the two walls have been removed. 

 

Table 4. 1 : Tested scenarios for correlated sources identification. 

Scenario Source#1 Source#2 Vertical wall Horizontal wall 

A     

B    (absorbing material) 

 

 

4.3.1. Two differently generated correlated sources (Scenario A) 
 

Fig. 4. 6 shows the results of the localization step for the scenario depicted in Fig. 4. 5(a). 

At this stage of the process the sources are identified among a set of candidate elementary 

sources (in blue in the picture). The clustering mask matrix presents local maxima in the 

proximity of the ideal position of the sources. The red diamond marker indicates the local 

maximum. 

 

 

Fig. 4. 6 : Source localization in Scenario A. Frequency range: 3 – 3.1 kHz. 

 

This allows selecting the coordinates of the candidate sources to be identified and at the 

same time turns the previous undetermined inverse acoustic problem into a well determined 

one since the number of candidate sources becomes sufficiently lower than the number of 

available sensors.  

Fig. 4. 7 compares the obtained signals (in red) with the reference ones (in black) both in 

time and in frequency domain. The results obtained in this scenario testify that the method 

is able to retrieve the two sources active in the acoustic field. The accuracy drops for 

frequencies greater than 10 kHz. 
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(a) (b) 

  

(c) (d) 

Fig. 4. 7 : scenario A. Comparison with the reference signals in time and  frequency 

domain. (a) and (c) Source#1. (b) and (d) Source#2. 
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4.3.2. Main source and its reflection (Scenario B) 
 

Fig. 4. 8 shows the results of the localization step for the scenario depicted in Fig. 4. 5(b). 

The blue dots represent the scanned grid of target points. The red diamond markers 

represent the coordinates of the retrieved sources that will be identified. 

 

 

Fig. 4. 8 : Scenario B. CIB for accurate source localization. Frequency range: 3 – 3.1 kHz. 

 

 

In this case the source localized on the vertical wall is the reflection of Source#1. In order 

to obtain the reference signal for comparison, a microphone has been placed in 

correspondence of the theoretical position of such reflection. Such position has been 

calculated based on geometrical considerations and validated by the beamforming analysis 

shown in Fig. 4. 9.  

 

 

 

Fig. 4. 9 : Conventional beamforming analysis for placing reference microphone in 

correspondence of the reflection. 

 

The result of the inverse source identification step is reported in Fig. 4. 10 for this scenario. 

In the sub-cases (b) and (d) of Fig. 4. 10 the match is not optimal, but it is mainly due to the 

inaccuracy of the used reference signal for the reflection on the vertical wall. 
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(a) (b) 

  

(c) (d) 

Fig. 4. 10 : scenario B. Comparison with the reference signals in time and frequency 

domain. (a) and (c) Source#1. (b) and (d) Source#2. 
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4.3.3. Comparison of the two cases 
 

Reconstruction of source distribution, and their corresponding signals, from far-field data 

alone is ambiguous since different source distributions can generate an identical far field. 

From this point of view, the retrieved source distribution and source signals must be 

interpreted in a most likelihood sense. This considered, the retrieved sources are supposed 

to be able to reconstruct the acoustic far field. In order to prove this assumption, the two 

inverse-identified sources have been propagated towards the location of one of the 

microphones of the array. The spectra of the obtained signal and the microphone’s one are 

compared in Fig. 4. 11. 

 

 

Fig. 4. 11 : Scenario A and B. Mic#1 (array) spectrum vs. propagation of the retrieved 

sources towards the microphone location. 

 

 

Fig. 4. 12 : Cross-correlation function between the retrieved signals in scenario A and B. 
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The comparison between the results obtained for scenario A and for scenario B allows to 

certify also that the proposed method does automatically take into account the phase 

relationship (time delay or “distance”) between the sources.  

This aspect has been investigated by retrieving the distance between the sources by means 

of cross-correlation. The two cross-correlation functions are reported in Fig. 4. 12.  

Table 4. 2 reports that: 

- For scenario A, since the Source#1 and Source#2 are acting simultaneously (with no 

phase shift), as expected, despite the distance between the two sources is 0.927 m, the 

two retrieved signals present a phase shift quantifiable in ~0.03 m.  

- In the case of scenario B, the second source is the reflection of Source#1 on the vertical 

wall. Therefore between the two sources there must be a phase shift corresponding to 

the distance covered by the sound emitted by Source#1 before impinging on the wall. 

The value retrieved in this case is indeed 1.006 m which is very well comparable with 

the theoretical value (1.088 m) calculated from the geometry. 

 

 

Table 4. 2 : Source#1 and: Source#2 in Scenario A; its reflection on the wall in scenario B. 

Time delays and covered distances calculated by cross-correlation and considering speed 

of sound: 342 m/s. 

      d12 [m]  

Scenario x [m] y [m] z [m] Reflection Geometry Reference Calculated 

A 0.7 -0.002 -0.863  0.927 < 0.03 < 0.03 

B -0.85 -0.014 -0.86  1.088 1.022 1.006 

 



138 

 

 

4.4. Uncorrelated sources 
 

The following test is used to study the case of two uncorrelated sources simultaneously 

acting in an acoustic field. The main difference w.r.t. the previous case is that the two 

signals do not have any deterministic phase relationship. 

 

 
 

(a) (b) 

Fig. 4. 13 : setup identification of uncorrelated sources. 

 

Two calibrated volume velocity sources have been positioned as in Fig. 4. 13(b) on a 

vehicle and measured by using an array of 45 microphones. The two sources (LMS Mid-

High Frequency Q Sources) emit two uncorrelated white noises filtered in the band 200 Hz 

– 10000 Hz. One of the two sources is placed at the tip of the left side mirror of the car. The 

other source is placed 40 cm distant from the previous one, on the left side window, in the 

proximity of the B-pillar. The array (LMS HDCam45) is placed 1m far from the vehicle 

(Fig. 4. 14). 

 

 

Fig. 4. 14 : identification of uncorrelated sources. Geometry of the problem. 

 



139 

 

Fig. 4. 15 shows the localization of the two sources adopting CIB and in particular 

assigning to the two sources the coordinates corresponding to the local maxima of the 

overall clustering mask matrix. Notice that in the case of the source placed on the tip of the 

rear mirror, labelled with the number 2, the local maximum of the clustering mask matrix 

correctly occurs in the corresponding point representative of this component. 

 

 

 

Fig. 4. 15 : CIB localization results. Frequency range: 2 – 2.1 kHz. 

 

The Fig. 4. 16 (a)-(b) and (c)-(d) pairs report the comparison between the calculated source 

signals and the corresponding reference signals both in time and in frequency domain. In 

this case the sources’ volume accelerations are compared (direct output of the calibrated 

sources). It is observed an overestimation of the low frequency content in the case of source 

2. Fig. 4. 16 (e) and (f) report the clustering mask matrices corresponding to the two 

uncorrelated source distributions obtained by means of CIB. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 4. 16 : inverse identification of the sources. (a) and (b): comparison of measured and 

calculated time signals (volume acceleration). (c) and (d): comparison of the 

corresponding spectra. (e) and (f) localization and separation of the two uncorrelated 

source distributions (frequency range: 2 – 2.1 kHz). 

 

 

Fig. 4. 17 : Mic#1 (array) spectrum vs. propagation of the retrieved sources at microphone 

location. 
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The spectrum of the propagation of the sources towards the location of one of the 

microphones compared with the spectrum of the signal of the microphone in the same 

location is shown in Fig. 4. 17. The good match confirms that the retrieved source 

distribution is indeed able to generate the measured far-field. 

 
 



142 

 

 



143 

 

Chapter 5. 

 

Acoustic imaging in the angle domain 

 
A relevant cause of discomfort in a vehicle cabin environment is: engine noise. The noise 

produced by an Internal Combustion Engine (ICE) can be divided into two components: the 

combustion part, related to combustion process itself, and the mechanical part, which is 

mainly due to the mechanisms that compose the engine. Such type of noise sources have 

been deeply studied during the last two decades and several solutions have been adopted for 

tackling the engine noise problems. This made it possible the advent of more and more 

quiet engines and more and more isolated vehicle cabins thanks to the reduction of the 

combustion noise. Despite very beneficial, this reduction made other sources, such as the 

mechanical noise, which were normally masked by the others, audible again. For tackling 

such new problems it is useful to understand the mechanism of noise generation by relating 

the mechanical ICE sources to specific parts of the engine’s operation cycle. A 

methodology named “angle domain Sound Source Localization (SSL)” will be presented in 

this section. This approach assumes the noise sources produced by an engine to be “cyclo-

stationary” [146]. This means  that the statistical properties of the acoustic and vibration 

signals produced by the engine are considered periodic in the sense that the random process 

defined by the signal observed at a given position in the cycle is stationary. The cycle is 

defined as the angle interval between two identical configurations of the mechanical 

system. The developed method consists in performing acoustic imaging on array data 

which are processed by “synchronous averaging”. This processing makes it possible to 

relate the available acoustic information with the angular position of the rotating elements 

of the engine obtaining an acoustic map reporting the noise sources at any instant of the 

operating cycle. Similar approaches have been used for condition monitoring of rotating 

machinery and some examples are reported in [147, 148]. 
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5.1. Description of the methodology 
 

In this paragraph an algorithm that relates the computed acoustic images with the angular 

evolution of the device under investigation will be proposed. The ambition is obtaining a 

tool that allows for understanding the causes of the cyclo-stationary noise sources occurring 

during the functioning of rotating machinery with special focus on impulsive events such as 

injection noise and piston slap in ICE. 

 

 

Fig. 5. 1 : a typical application of angle domain SSL is ICE analysis. The array measured 

signals have to be combined with angular information obtained through a tacho sensor. 

 

Given an array dataset, whose microphones signals are pm(τ), m = 1, …, M, the angle 

domain SSL algorithm requires the information about the angular evolution of the cyclo-

stationary event that is responsible for the main acoustic sources sought in the field. This 

information consists in the rotational speed ω(τ) of the rotating element on which to focus 

the analysis.  

The proposed method is based on the following assumptions: 

- The acoustic field sampled by the microphone array is cyclo-stationary, therefore it 

exists a cyclical pattern in the array and in the tacho signals that is repeated over time. 

- The abovementioned property makes it possible the so-called synchronous averaging to 

relate the available acoustic information with the angular position of the rotating 

elements under investigation. 

- The synchronous averaging has also the effect of removing the random fluctuations of 

the microphones signals and this allows the computation of the Cross-Spectral Matrix 

(CSM) between the microphones signals without averaging the spectra over several 

realizations, taking advantage of the synchronous averaging instead. 

 

The angle domain SSL algorithm works as follows: 

 

1. Resampling from time to angle domain.  

Knowing the rotational speed as a function of time ω(τ), the angular evolution β(τ) of 

the element of interest becomes available making it possible to express the 

microphones signals in the angle domain: pm(β(τ)). The microphones signals are then 

resampled in order to have them available at a fixed angular increment dβ. The 
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corresponding equally spaced axis is called β* and the microphones signals in this 

domain: pm(β*). 

 

2. Averaging quantities in angle domain. 

In the angle domain β* every cycle performed by the device under study will last a 

fixed number of samples (angular intervals) identifying a generalized angular evolution 

ε, representative of the entire cycle. For example, if the cycle of an ICE takes 720 deg 

(4π rad) to be completed, the equally spaced angular evolution is: ε = 0, …, 4π. The 

angular increment dβ is determined by the resampling performed at point 1. Depending 

on the duration of the microphones signals, Nε repetition of the cycle are available in 

the data. Identifying each repetition of the cycle in the microphones signals with the 

index n, the averaging process is given by Eq.(5. 1): 
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The rotational speed evolution is also cyclo-stationary. In fact, all the rotational 

phenomena that do not have a random cause will occur with the same pattern at every 

repetition of the cycle. A good example of this are the torsional vibrations of a rotating 

shaft. Their pattern is constant from cycle to cycle. Therefore, an averaging process in 

the angle domain can be used also on the rotational speed pursuing at keeping only the 

cyclo-stationary evolutions: 
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3. Selecting the angle interval (gate: Δε). 

The purpose of the angle domain SSL processing is obtaining an acoustic image at any 

angular position of the rotating element representative of the cyclo-stationarity of the 

device under investigation. In order to do so, only the information corresponding to the 

wanted angular position should be selected for the following acoustic imaging 

(beamforming) processing. This is obtained by gating the averaged cycle obtaining the 

dataset: )(~ mp , m =  1, …, M, as visible in Fig. 5. 2. 

 

Fig. 5. 2 : example of gate selection, in the angle domain, from the average cycle. 
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The same gating procedure, applied to the averaged rotational speed, yields: ῶ(Δε). 

 
4. Resampling from angle to time domain. 

For computing the acoustic images corresponding to the selected angular interval Δε, 

the microphones array signals should be transformed to the time domain again. This is 

done thanks to the knowledge of the angular evolution within the selected cycle: 

 

 Mmpftp mm ,..,1,))(~,)(~()(~    (5. 3) 

 

5. Acoustic imaging. 

Thanks to the information in time domain obtained by means of Eq.(5. 3), the 

computation of a Cross-Spectral Matrix CM between the microphones array signals is 

finally possible allowing acoustic imaging. For obtaining such acoustic image three 

options are possible: 

 Delay & Sum in time domain [151]. 

 Focused beamforming in frequency domain (direct method); 

 Equivalent Source Method (inverse method). 

In this document the focused beamforming in frequency domain will be used. 

 

The angle domain SSL algorithm, therefore, consists of a pre-processing of the array data 

through synchronous averaging followed by a beamforming analysis on special frequency 

domain data. Such data are in fact obtained processing short signals obtained from a gated 

averaged cycle in the angle domain and subsequently resampled and transformed to time 

domain. The data obtained in this way are then combined for the calculation of the CSM. 

This task is complicated by the type of signals to be processed. In particular: 

- The gated time signals are not stationary, instead they are impulsive. 

- Since the gated time signals correspond in general to a relatively short angular interval 

Δε, their duration is also very short. The small number of samples in time results in a 

poor frequency resolution. This can be an issue for the beamforming analysis. 

- Being the CSM a statistical entity it requires a proper averaging process to be correctly 

estimated. Any parameter or function computed from a random variable will have its 

own sampling distribution. Only an estimate of such parameter or function can be 

computed from a finite realization.  In the angle domain SSL algorithm the averaging 

processing occurs in the angle domain and not on the frequency domain spectra. The 

equivalence between the two procedures is not always granted. In fact temporal 

averages and ensemble (over many realizations) averages are only asymptotically 

equivalent and only for ergodic signals [149]. 

With these critical aspects in mind some sensitivity studies have been carried out to identify 

strengths and weaknesses of the method. This analysis will allows also to define the 

optimal settings for an effective use of the algorithm. 
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5.2. Sensitivity study on the beamforming analysis of 

impulsive events 
 

In this section it will be shown that the SPL level that the user obtains with angle domain 

SSL are tricky to interpret because the acoustic phenomena are caused by transient events. 

In order to make the quantitative results of the beamforming map more reliable, the 

impulsiveness of the data should be properly taken into account. As pointed out earlier, in 

an angle domain SSL analysis the investigated phenomena are often impulsive, therefore 

the energy of the event is concentrated in a short time (or angle) laps. From this point of 

view a short timeframe of observation is preferable. In fact its increase may be even 

harmful because it could include phenomena not related with the sought impulsive event. 

Conversely a short duration of the processed (gated) time/angle signals implies an exiguous 

number of samples, therefore a poor frequency resolution.  

 

 

Fig. 5. 3 : Impulsive event preceded and followed by an increasing number of zero-padded 

values. Sampling frequency: 200 kHz. 

 

The influence of such opposite aspects on the beamforming processing has been studied by 

simulating a 2D beamforming experiment in which an impulsive source placed in the 

coordinate [0,0] is propagated towards a linear array of 50 randomly distributed 

microphones placed 1 m far from the source plane. Five different cases have been simulated 

in which the duration of the signals has been systematically increased by introducing zero-

padded values before and after the same impulsive event. Fig. 5. 3 reports the specs of each 

scenario: the signals are labelled with letters from a (shortest signal) to e (longest signal). 
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The RMS value of the signal in the five cases has been reported. It can be noticed that, 

despite the impulsive event is always the same, the RMS value obtained decreases 

increasing the number of samples because of the augmented number of zeros in the signal. 

Fig. 5. 4(a) compares the spectra of the five impulsive signals. The decrease of the 

amplitude is in this case not only due to the increase of the number of spectral lines, but 

also to the lack of energy due to the increased number of zero-padded samples. This implies 

that the maximum values, corresponding to the theoretical source location, decreases in the 

beamforming map (fixed frequency range: 1000 Hz – 2000 Hz) from case “a” to case “e” as 

reported in Fig. 5. 4(b). A third evidence of the observed lack of energy at the increase of 

the number of samples is given by the energy computation (quantification).  

 

  

(a) (b) 

Fig. 5. 4 : beamforming analysis on an impulsive event with different number of samples. 

(a): Spectra of the signals a, b, c, d and e. (b): 1D conventional beamforming result in the 

frequency range 1000 Hz – 2000 Hz adopting a linear array of 50 randomly distributed 

microphones. The source is placed in the 0 m position. The maximum value of the 

beamforming map decreases when the number of samples of the signal increases. 

 

 

Fig. 5. 5 : energy computation in the same frequency range for the cases a, b, c, d, e. 

 

The observed inverse proportionality can be mathematically explained. In order to do so let 

us consider the signal x(t) represented in Fig. 5. 6. 
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Fig. 5. 6 : impulsive signal characterized by a total length TR and an impulsive part of 

length T. 

 

Being x(t) an impulsive signal it has a finite energy and its power is zero: 
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This allows the calculation of the Cn Fourier coefficients (treating the impulsive event as 

periodic) to be expressed as follows: 
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That, compared to the Fourier transform expression (treating the signal as transient) of 

Eq.(5. 6), 

 

 










 

2

2

22 0)()()(

T

T

tnfifti dtetxdtetxfX


 (5. 6) 

 

yields the wanted relationship between the actual frequency content of the signal and the 

calculated Fourier coefficient at any discrete frequency line (nf0) as described in Eq.(5. 7). 
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The proportionality described by Eq.(5. 7) explains the trend shown in Fig. 5. 5. The lesson 

learned by this analysis demonstrate that the quantitative results obtained by an angle 
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domain SSL analysis must be particularly critically interpreted: in order to have a reliable 

ranking between the identified sources, the width of the gate used for the processing must 

be properly taken into account. 

 

 

Fig. 5. 7 : beamforming analysis on an impulsive event with different number of samples. 

Linear array of 50 randomly distributed microphones at 1 m far from the source placed in 

0 m position.. Comparison of methods: CB, GINV, GIBF, CIB in the frequency range 1000 

Hz – 2000 Hz. Results normalized to the maximum and plotted in dB for comparison. 

 

The particular nature of the signals typically encountered in the targeted applications 

suggests also to carefully select the acoustic imaging technique. In fact the poor frequency 

resolution and the particular averaging procedure followed in the execution of the angle 

domain SSL algorithm, may be insidious for the proper computation of the CSM, required 

for the acoustic imaging step. Therefore, the choice between direct and inverse approaches 

is in this case more difficult, because it is made seeking the compromise between the 

robustness in reliably computing transient signals with poor frequency resolution, on the 

other hand the need for sufficient spatial resolution and dynamic range to ease the 

interpretation of the acoustic images obtained over the angular evolution of the investigated 

machine. A comparison of the performance of different acoustic imaging algorithms 
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already described in this document is reported in Fig. 5. 7: Conventional Beamforming 

(CB), Generalized Inverse (GINV) ([112] hybrid formulation adopting Eq.(1.26) in Chapter 

1), Generalized Inverse Beamforming (GIBF) and Clustering Inverse Beamforming (CIB). 

The application case is the same as before: source placed in location 0 m, line array of 50 

randomly distributed microphones placed 1 m far from the source. The adopted source 

signals are reported in the first row of graphs in Fig. 5. 7. It is observed that CB and GINV 

yield similar results. It was noticed that different tunings of the Z matrix in the GINV 

formulation (see Eq.(1.26) in Chapter 1) provided a slightly increased spatial resolution, but 

at the cost of a reduction of the dynamic range (increase of the sidelobes). GIBF yields 

excellent spatial resolution and dynamic range, but its performance are severely depending 

on the frequency resolution adopted for the computation. CIB is slightly more robust in this 

sense, but still suffers of the same limitation. 

In this application direct methods appear more stable, at the cost of a limited spatial 

resolution and dynamic range. It is the vice versa for the case of inverse methods. The latter 

in fact have demonstrated to outperform CB, but at the risk of instable results. For the sake 

of a more robustness, this application will be therefore tested adopting CB in the following 

sensitivity analysis.  
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5.3. Sensitivity analysis of the proposed angle domain SSL 

algorithm 
 

Several parameters may influence the results of an angle domain SSL analysis. In this 

section a simulated experiment has been used for understanding which are the most critical 

parameters and what is their influence on the final outcome of the analysis. In order to do 

so a cyclo-stationary problem has been simulated in which 4 cylinders act cyclically 

emitting an impulsive signal with the sequence 1 – 2 – 3 – 4. The idea is to mimic the 

behaviour of a 4 cylinders ICE injection (and combustion) noise taking as angular reference 

its main shaft. The entire cycle is set to have an angular duration of 720 degrees (2 

revolutions). The cylinders events are separated 180 deg from each other. The first cylinder 

acts at 40 deg. The geometry of the problem is described in Fig. 5. 8 for what concerns the 

source region. The sources have been propagated in time domain towards a 36 microphones 

array placed 0.6 m far from the source region. The sources signals (y1(t), y2(t), y3(t) and y4(t) 

in Fig. 5. 9) have been generated according to the angular evolution described by the signal 

β(t). In the angular evolution of the engine shaft have been simulated constant rotational 

speed conditions ω0 polluted by distortions Δω due to the second order torsional fluctuation 

of the shaft very typical in common four-stroke ICE. 

 

 

Fig. 5. 8 : geometry of the simulated problem. 

 

 

Fig. 5. 9 : simulation strategy. The impulsive event cyclically occurring at each cylinder 

has been generated and “polluted” by introducing the distortions due to the rotational 

speed fluctuations. 
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Seven scenarios have been simulated varying the impulsiveness of the injection component, 

the presence of the combustion noise and the mean rotational speed. The characteristics of 

each scenario are summarized in Fig. 5. 10. 

 

 

Fig. 5. 10 : Simulated scenarios. Several cyclo-stationary signals have been used tuning the 

rotational speed, the impulsiveness of the signal and the presence of a low frequency event 

(simulating the combustion event) happening concomitantly with the more impulsive one 

(simulating the injection event). 

 

 

Fig. 5. 11 : Processing cases. Width of the gate has been varied in the range 5 deg – 40 deg 

and two different windows have been tested. 
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The impulsive injection components have been simulated with durations of 1 deg, 5 deg, 10 

deg and 20 deg. The combustion events, when present, have been simulated with duration 

of 180 deg. Three different rotational speeds have been tested: 1200 rpm, 3000 rpm and 

6000 rpm. 

Each scenario has been therefore processed with the angle domain SSL algorithm adopting 

every time eight different settings of the width of the gate and type of window parameters. 

The several processing results have been labelled with codes ranging from A1 up to G8 as 

described in Fig. 5. 11. Four widths of the gates have been adopted: 5 deg, 10 deg, 20 deg 

and 40 deg. Two types of windows have been tested: the Hanning window and the Tuckey 

window, constant and equal to 1 in the central part. The advantage of this latter shape 

should be that it tends to not suppress the impulsive event if it does not fall in the middle of 

the considered block. 

 

Fig. 5. 12, Fig. 5. 13, Fig. 5. 14 and Fig. 5. 15 show some examples of angle domain SSL 

results. Acoustic images, obtained processing the gated information as described in section 

5.1, are reported every 30 degrees of rotation of the simulated shaft. The acoustic images 

are SPL maps with dynamic range of 8 dB. The dB scale is fixed and its maximum is the 

maximum SPL value detected in all the beamforming maps of the analysis. It can be 

noticed that the cylinders event, in the sequence 1-2-3-4, are correctly identified at the 

corresponding angular position. The four cases reported demonstrate that the method is able 

to correctly identify the four cyclo-stationary sources in the correct location at the correct 

angular position. The presence of a low frequency component (cases D and F) may cause 

the presence of artefacts in the acoustic images as visible in Fig. 5. 13. However their level 

is much lower than the actual sources’ level, in fact they disappear in correspondence of the 

cylinder events. Nevertheless it remains an issue for the algorithm and may reduce it 

robustness. To mitigate this problem the user can pre-process the data with an high-pass 

filter (risking to remove important parts of the signals) and/or increase the width of the gate 

for the angle domain SSL analysis. 

The algorithm proved to be less sensitive to the increase of the rotational speed as it is 

possible to notice by comparing Fig. 5. 12, Fig. 5. 14 and Fig. 5. 15. In fact the only 

undesired effects are visible in Fig. 5. 15 where artefacts are present right after the end of 

some cylinder events. In all the cases reported below the Hanning window has been used. 

Results adopting the Tuckey window will not be shown, but only commented at the end of 

this paragraph. 
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Fig. 5. 12 : simulation 4 cylinders cyclo-stationary events: B3. Rotational speed: 1200 rpm, 

injection: 10 deg, gate: 20 deg. 

 

 

Fig. 5. 13 : simulation 4 cylinders cyclo-stationary events: D3. Rotational speed: 1200 

rpm, injection: 5 deg, combustion: 180 deg, gate: 20 deg. 
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Fig. 5. 14 : simulation 4 cylinders cyclo-stationary events: E3. Rotational speed: 3000 rpm, 

injection: 5 deg, gate: 20 deg. 

 

 

Fig. 5. 15 : simulation 4 cylinders cyclo-stationary events: G3. Rotational speed: 6000 

rpm, injection: 5 deg, gate: 20 deg. 
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Despite very easy to interpret, the acoustic images do not allow a measurable comparison 

between all the produced cases. The results have been therefore synthesized adopting two 

indicators: the localization indicator and the dynamic range indicator. Each ideal cylinder 

location have been associated to a corresponding region of interest visible in Fig. 5. 16(a). 

The localization indicator graph keeps track of the maximum SPL value registered within 

each cylinder area as a function of the angular position (acoustic images have been 

calculated every 3 deg: 0, 3, 6, …, 90, 93, …, 717). The dynamic range indicator graph 

reports the difference between the higher localization curve and the one immediately lower 

as a function of the angular position. 

 

 

Fig. 5. 16 : (a): regions of interest. (b): the localization indicator graph. Abscissa: the 

angular position; ordinate: maximum SPL value in the region of interest. (c) : the dynamic 

range indicator graph. Abscissa:  the angular position; ordinate: difference between the 

higher localization curve and the one immediately lower. 

 

Fig. 5. 17 and Fig. 5. 18 report a comparison of the cases in which the angular width of the 

impulsive injection event varies from 1 deg up to 10 deg. The comparison shows how 

results change in terms of localization and dynamic range when adopting gates with 

different angular widths. 
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Fig. 5. 17 : localization indicator traced for impulsive events of different angular duration 

(A: 1 deg, B: 5 deg, C: 10 deg), processed adopting gates of different widths. Hanning 

window. 

 

 

Fig. 5. 18 : dynamic range indicator traced for impulsive events of different angular 

duration (A: 1 deg, B: 5 deg, C: 10 deg), processed adopting gates of different widths. 

Hanning window. 
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The two indicators show that the injection events are correctly localized and in the correct 

angular positions. In order to have a good dynamic range the width of the gate should be 

comparable with the width of the investigated impulsive event. The optimal condition is 

reached when the gate’s width is twice the impulse angular width. In this case in fact the 

maximum SPL value detected is the same for the four cylinders (see cases B2 and C3 of 

Fig. 5. 17) denoting an optimal ranking of the sources (they are of the same strength). The 

optimal cases are reported in Fig. 5. 19. An increase of the width of the gate ensures a 

larger dynamic range, but at the cost of a lower angular resolution (cases A4, B4 and C4 of  

Fig. 5. 17 and Fig. 5. 18). 

 

 

Fig. 5. 19 : optimal gate setting corresponding to the impulsiveness of the signal. Rule of 

thumb: the gate should have an angular width two times larger than the duration of the 

sought impulsive events. 

 

The same trends observed in the just described comparison can be observed in Fig. 5. 20 

and Fig. 5. 21 where the processing with different gate widths have been tested in cases in 

which the impulsive event has the same angular width (5 deg), but the nominal rotational 

speed is changed: 1200 rpm for cases B, 3000 rpm for cases E, 6000 rpm for cases G. 

Comparing the localization and dynamic range indicators for the cases B2, E2, G2 (where 

the gate’s width, 10 deg, is optimal because twice the impulsive event’s width, 5 deg) it can 

be noticed that the main influence of an increased rotational speed is a reduced angular 

resolution as denoted by the larger width of the indicators’ peaks in correspondence of the 

angular positions where a cylinder event occurs. 
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Fig. 5. 20 : localization indicator traced for impulsive events of equal angular duration, but 

evolving with different rotational speeds (B: 1200 rpm, E: 3000 rpm, G: 6000 rpm), 

processed adopting gates of different widths. Hanning window. 

 

 

Fig. 5. 21 : dynamic range indicator traced for impulsive events of equal angular duration, 

but evolving with different rotational speeds (B: 1200 rpm, E: 3000 rpm, G: 6000 rpm), 

processed adopting gates of different widths. Hanning window. 
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Fig. 5. 22 : localization indicator traced for impulsive events of equal angular duration, 

with and without an associated low frequency combustion event, processed adopting gates 

of different widths. Hanning window. 

 

 

Fig. 5. 23 : dynamic range indicator traced for impulsive events of equal angular duration, 

with and without an associated low frequency combustion event, processed adopting gates 

of different widths. Hanning window. 
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Fig. 5. 22 and Fig. 5. 23 report respectively the localization and dynamic range indicator 

traced for impulsive events of equal angular duration, with and without a concomitant low 

frequency combustion event, processed adopting gates of different widths. As already 

reported commenting Fig. 5. 13 the presence of a concomitant low frequency combustion 

event may be a source of inaccuracy. In fact it tends to introduce artefacts in the acoustic 

image if the gate’s width is shorter than the angular duration of the low frequency event. In 

a few words we could conclude that it is not possible to focus at the same time on events of 

large and narrow angular width. As shown by the graphs corresponding to the processing 

cases D3 and D4 in Fig. 5. 22 and Fig. 5. 23 the countermeasure to improve the results is 

increasing the width of the gate. 

 

 

Fig. 5. 24 : influence of different widths of the gate on the main parameters of interest in an 

angle domain SSL analysis. 

 

 

 

Fig. 5. 25 : ranking of the most relevant  parameters influencing angle domain SSL. 

 

In angle domain SSL the user is mainly interested in identifying signals with an impulsive 

pattern which is repeated in a cyclo-stationary way. This property requires special care in 

handling the signals both in time/angle and in frequency domain. For this reason the 

influence of all the parameters related to the length of the treated signals has been 
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investigated: impulsiveness, gate, rpm (influencing the number of samples per angular 

unit), with the following results: 

 

- The optimal proportion between impulsiveness and angular window of observation is a 

factor 2. This means that for observing an impulsive phenomenon lasting 5 deg, the 

best option is using a gate of 10 deg. 

- The dynamic range increases proportionally to the width of the gate at the cost of a 

lower angular resolution. 

- The presence of a low frequency background happening with the wanted impulsive 

event (i.e. combustion event) makes the identification less accurate. For balancing it, 

larger gates are needed. 

- The increase or the rotational speed (RPM) tends to reduce the angular resolution and 

to degrade the quantitative results, but it does not influence the achievable dynamic 

range. 

- The use of a Tuckey Window slightly increases the angular resolution, but at the cost 

of “tail effects” at the beginning and the end of the detected impulsive event. 

 

Fig. 5. 24 summarizes the points listed above, while Fig. 5. 25 ranks the sensitivity of the 

method to the four investigated parameters. The sensitivity analysis has in fact provided a 

role of thumb that ensures the optimal performance of the techniques if the angular width of 

the gate is set two times larger than the angular width of the sought impulsive event. 

Moreover, another consequence of this fact is that the gate acts as a sort of lens that allows 

the user focusing on events of a wanted impulsiveness. The sensitivity analysis has shown 

that the method can be successfully applied also in presence of high rotational speeds. 

Despite it has not broadly discussed in this paragraph, the use of a Tuckey window resulted 

not beneficial. In addition to these aspects, the authors recommend to select with particular 

accuracy the sampling frequency balancing the need for a sufficient amount of samples for 

working with short signals and the potential issues related to resampling. The quality of the 

tacho signal is another key factor. A good accuracy in the measurement of the angular 

evolution of the rotating element under analysis certainly improves the quality of the 

results. 

 

To conclude this chapter let us observe that despite the analysis performed in section 5.2 

discouraged the adoption of inverse methods because less stable than direct methods, 

although better performing, the implementation of CIB into the angle domain SSL 

algorithm’s structure is straightforward and the choice of using it depends essentially by the 

type of sources signals under investigation. 
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Chapter 6. 

 

Conclusions 

 
The main results achieved in the development of advanced acoustic imaging methods 

working in frequency, time and angle domain, for localizing exterior sources affecting in-

vehicle noise, interior noise sources and component noise, in vehicles NVH, have been 

reported in this document. Despite special attention has been dedicated to automotive 

applications, the proposed techniques are general and ready-to-use in several NVH cases. 

This multi-domain framework has been designed so that frequency-based, time-based and 

angle-based techniques can be chosen according to the specific NVH problem that should 

be tackled.  

A novel inverse acoustic imaging method, the so-called Clustering Inverse Beamforming 

(CIB), working in frequency domain, has been invented, validated and positioned with 

respect to the state-of-the-art. The method has proven to give accurate and reliable results 

both in academic and in industrial experimental test cases. CIB allows accurate localization, 

a reliable ranking of the identified sources and their separation into uncorrelated 

phenomena. It is therefore useful not only for troubleshooting applications, but also for 

accurate NVH analyses. Another remarkable advantage is that it requires a reduced number 

of sensors and tests. In several cases, it avoids the use of reference sensors installed close to 

the investigated object. Moreover, it allows designing flexible and multi-purpose test setup. 

One example is the use of a randomly distributed microphones array in the car cabin that 

can be used both for interior acoustic imaging and Acoustic Modal Analysis.  

CIB has been adopted also as preliminary step for inverse source reconstruction in time 

domain based on far-field measurements. This technique is particularly suited in those 

applications that require a detailed knowledge of the main sources and the acoustic field 

produced by them. The time domain-based method described in this document, therefore, 

represents an appealing technique for source reconstruction with a reduced computational 

and experimental effort. This opens up interesting scenarios in which the time domain 

source reconstruction results are used as input for further analyses. The study of sound and 

vibration phenomena related to the engine of a car often needs complex experimental 

setups. The engine has to be instrumented with several sensors requiring several hours (or 

days) of tests. The possibility to relate the identification of the noise sources produced by 

the ICE with the angular position of the rotating elements of the engine and the knowledge 

of the location of such noise sources within the cycle of the ICE, through microphones 

array measurements, gives therefore several advantages. In fact, on the one hand it allows 

to understand the causality between the physical phenomena and their acoustic 

consequences, on the other hand, it allows to optimize the effort for further and more 

accurate studies, thus saving, once again, time and costs.  
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The angle domain SSL algorithm has been developed for this purpose. The sensitivity 

analysis presented in this work has proven its robustness on simulated data. Validations of 

experimental industrial cases have been already successfully performed and will be 

documented in future publications. The angle domain SSL algorithm is suitable also for 

condition monitoring applications and even a combined use with the previously described 

time domain-based inverse source reconstruction is possible. 

In conclusion, the proposed multi-domain acoustic imaging approaches represents a 

complete package of technologies for the assessment of advanced NVH analyses with a 

reduced time and economical effort. This authentic breakthrough in the exploitation of 

advanced acoustic imaging solutions may represent the beginning of a new generation of 

experimental techniques for supporting the design of the new generation of ground, marine 

and air transportation vehicles. 
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6.1. Critical aspects 
 

The advanced version of GIBF proposed in this thesis in combination with the developed 

PCA-based adaptive pre-processing algorithms greatly enhances the potential of this 

inverse acoustic imaging technique both in exterior and in interior noise applications. In 

fact, this package of methodologies proved to be effective in fairly regularizing the inverse 

acoustic problem, optimizing the equivalent sources distribution calculation by adaptively 

discarding insignificant components and providing sufficient criteria to ascertain that the 

retrieved source distributions correspond to the sought physical sources. The PCA-based 

pre-processing resulted beneficial in uncorrelated source separation and de-noising of the 

array data. However, the proposed solutions have demonstrated also limitations. In fact, 

blind source separation techniques relying on PCA processing of the acoustic data recorded 

with array-based methods yield a virtual decomposition of the sampled acoustic field that 

not always correspond to the sought physical phenomena. This is the case when 

uncorrelated sources distributions are partially joint in space. This issue has been analysed 

observing a dependency to the analysed frequency. A role can be derived: the proposed 

PCA-based technique allows to successfully separate uncorrelated noise sources that are 

disjoint with a distance greater than half the wavelength of the analysed frequency. In this 

latter case the method yields correct separation into uncorrelated sources distribution. The 

proposed sufficient criterion for matching virtual and physical source distributions is based 

on pattern recognition of features in the calculated acoustic image therefore compact 

sources distributions are more easily identified. Spatially distributed sources make the 

pattern recognition a more challenging task requiring more refined methodologies that have 

not been discussed in this document. 

 

The Clustering Inverse Beamforming algorithm proved to be a promising tool for noise 

source identification in frequency domain with accurate localization and high dynamic 

range. It relies on the information carried by the so-called clustering mask matrix. This 

matrix is a function, which is defined in the source region, that assigns to the scan points 

related to each equivalent source a value ranging from 0 to 1. These values can be 

interpreted as the confidence level of finding a physical source in the proximity of that 

location. Several exploitations are possible and its effectiveness has been proven for 

exterior and interior noise problem on several numerical and experimental validation cases. 

Further criteria should be introduced to make the setting of the required parameters 

(number of microphones per cluster, number of clusters, etc.) adaptive. Moreover, the 

clustering mask matrix entity appears nicely compatible with the concept of “aperture 

function” adopted in the Bayesian formulation of the ESM problem. This suggest the 

investigation of further synergies and the extension of CIB towards other ESM approaches 

(in this thesis it was presented in combination with GIBF). 

 

The reconstruction of the time-domain evolution of the noise sources active in the acoustic 

scene is obtained in two steps. A preliminary source localization in the frequency domain, 

exploiting the properties of the clustering mask matrix, is performed first to transform the 
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formulation of the initially under-determined inverse acoustic problem under study into an 

equivalent over-determined version. Finally, such over-determined problem is solved in 

time domain. The method has proven to be effective in presence of correlated as well as 

uncorrelated sources and it was pointed out that the main causes of a not ideal 

reconstruction of the sources are the cross-talk and the presence of background noise. It is 

important to point out two other limitations of the technique. The first is that the 

reconstruction of the sources is granted only in terms of their far-field effect; this could be a 

limitation in situation in which the not-radiating part of the acoustic excitation produced by 

the source is relevant to the noise problem under study. The second aspect is that the 

proposed approach does not model accurately the radiation of distributed sources. This 

aspect certainly requires further investigations. 

 

The proposed angle domain sound source localization algorithm allows obtaining the 

acoustic image of the sound source produced by a rotating machinery as a function of the 

angular evolution of its rotating elements. In order to do so, it requires an ordinary array-

based measurements setup and the availability of the main shaft rotational speed 

information. Direct methods proved to be more robust than inverse approaches in this 

application. Therefore the methodology was presented adopting CB as acoustic imaging 

method. In such applications, acoustic imaging faces the additional challenges related to the 

poor frequency resolution of the information available (due to the intrinsic working 

principle of the algorithm) and to the presence of impulsive patterns in the processed 

microphones acoustic signals. It was analysed that these two aspects affect the quantitative 

part of the identification and the achievable dynamic range. Guidelines for the minimization 

of the issues related to these aspects have been suggested. In the version presented in this 

document the approach grants only qualitative results and the accuracy in sources ranking is 

reduced if the studied signals contain impulsive patterns. Guidelines on how to mitigate 

these risks have been proposed providing theoretical evidences. The method has been 

validated on simulated cases and, although not reported in this thesis for confidentiality 

issues, applications on real test cases have been already successfully carried out. However, 

the method still needs to be improved through a more extensive experimental validation. 
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6.2. Recommended future work 
 

Clustering Inverse Beamforming is a promising acoustic imaging technique. Its ability of 

resolving complex acoustic fields and its compatibility with any kind of array 

configuration, makes this approach suitable for challenging industrial applications such as 

aero-acoustic array measurements and interior noise source identification. In the first case, 

an extension of the radiation model is most probably required for taking into account the 

effect of the mean flow and other complexities such as the presence of rigid walls in the 

case of closed test section wind tunnels. CIB is a ready-to-use technique also in the case of 

the exploitation of 3D configurations of the array and/or the source region. In the case of 

interior applications the performance already described in this thesis appear to be 

improvable by exploiting as much as possible the versatility in using the most suitable 

microphones array configuration. 

 

As already mentioned in section 6.1 the concept of clustering mask matrix appears nicely 

compatible with the concept of “aperture function” in Bayesian focusing. In fact, despite 

the big difference between these two entities is that the aperture function is based on a 

priori information about the source field, while the clustering mask matrix is the statistical 

result of multiple realizations of a most likelihood fitting of the source region, they share 

the intrinsic property of a probability density function distribution of finding a physical 

source in a certain location within the source region. This sisterhood between the two 

entities suggests a similar use of the clustering mask matrix in a Bayesian approach. 

 

The time domain-based method described in this document represents an appealing 

alternative for source reconstruction with a reduced computational and experimental effort 

and with no need of reference sensors. This opens up interesting scenarios for cases in 

which acoustic imaging quantitative results can be used as virtual sensors. One fascinating 

case is the possibility of defining an acoustic imaging-based Transfer Path Analysis model 

suitable for aero-acoustic applications. This will allow considering the wind noise-related 

problems since the very early stages of the development of the vehicle improving its sound 

quality performance. Another interesting perspective is the intersection between time-

domain and angle-domain information. This is a unique combination in applications, such 

as condition monitoring, characterized by cyclo-stationary phenomena. In this case the 

angle domain SSL results should be adopted as pre-processing step for the consequent time 

domain reconstruction of the identified sources. This implies several challenges mainly 

related to the fact that the noise sources locations are typically not constant over the angular 

evolution of the rotating machinery.  
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Nomenclature 
 

Acronyms 

 

NVH Noise Vibration and Harshness 

TPA Transfer Path Analysis 

AMA Acoustic Modal Analysis 

ICE Internal Combustion Engine 

NAH Near-field Acoustic Holography 

IBEM Inverse Boundary Element Method 

CB Conventional Beamforming 

CSM Cross-Spectral Matrix 

NNLS Non Negative Least Squares 

FFT Fast Fourier Transform 

ESM Equivalent Source Method 

GIBF Generalized Inverse Beamforming 

FRF Frequency Response Function 

IFRF Inverse Frequency Response Function 

SSL Sound Source Localization 

HELS Helmholtz Least Squares 

iPTF inverse Patch Transfer Function 

ASQ Airborne Sound Quantification 

NTF Noise Transfer Function 

SPL Sound Pressure Level 

SVD Singular Value Decomposition 

TSVD Truncated Singular Value Decomposition 

GINV Generalized Inverse acoustic problem 

CNR Contrast to Noise Ratio 
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Symbols valid in all the chapters 

 

Constants and counters 

 

M Number of microphones. 

N Number of scan points. 

L Number of not negligible eigenmodes of the CSM. (L<M). 

J Total number of principal components of the acoustic image. 

Nc Number of clusters. 

Nm Number of microphones per cluster. 

i Counter of the ith eigenmode of the CSM.  

j Counter of the jth principal component of the acoustic image. In Chapter 1 it 

represents the imaginary identity 1 . 

k Counter of the iterations for GIBF optimization.  

Nk Number of scan points left after truncation at kth iteration. 

l Counter of the candidate regularization parameters for Quasi-optimality function. 

m Counter of the mth microphone or any quantity that goes from 1 to M. 

n Counter of the nth scan point or any quantity that goes from 1 to N. 

nx Number of columns of the rectangular planar scan grid. 

ny Number of rows of the rectangular planar scan grid. 

ρ Density of the air. 

 

Variables and operators 

 

...
H

 
operator Hermitian conjugate operator. 

...

 

operator Moore-Penrose pseudo-inverse operator. 

  operator Convolution operator. 

{...}
1

F


 
operator Inverse Fourier transform. 
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 f  operator Function of… 

),(
)(i

pA  operator Operator representing the solution of the Equivalent 

Source problem formulated through the radiation matrix 

A , the data 
)(i

p  and including regularization and GIBF 

iterative optimization. 

f  scalar Frequency. [Hz] 

rR  scalar Propagation factor. 

A  
[M×N] Radiation matrix. 

mnnm AorA ,}{  scalar Element (m,n) of the radiation matrix. 

mnr
 

scalar Distance between the mth microphone and the nth scan 

point. 

U  [M×M] Left singular matrix of the Singular Values factorization of 

the radiation matrix. 

m
u

 
[M×1] mth column vector of U. 

V  [N×N] Right singular matrix of the Singular Values factorization 

of the radiation matrix. 

nv  [N×1] nth column vector of V. 

  [M×N] Singular Values matrix of the radiation matrix. 

mm  scalar mth singular value of Σ. 

MC  
[M×M] Cross-Spectral Matrix (CSM) of the microphones array 

signals. 

I  [M×M] Identity matrix. 
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Symbols valid in Chapter 1 

 

Constants and counters 

 

c  Speed of sound. [m/s] 

k  Wavenumber. [rad/m] 

 

Variables and operators 

 

Q  scalar Strength of the monopole source. [m3/s]. 

W scalar Acoustic power [W]. 

0p  scalar Reference value for the acoustic pressure: 20 μPa. 

0W  scalar Reference value for the acoustic power: 1 pW. 

0  scalar Reference surface value: 1 m2. 

bC  [N×N] Cross-Spectral Matrix between the elementary sources 

scanned by a direct beamformer. 

aC  [N×N] Cross-Spectral Matrix between the equivalent sources of 

an ESM solution. 

b  [N×1] Beam pattern. The elements of b are: bn. 

B  [N×1] Direct beamforming acoustic image. [Pa2] 

 
Symbols valid in Chapter 2 , Chapter 3 and Chapter 4 

 

Constants and counters 

 

c  Counter of the number of clusters. 

l  Counter of the number of candidate regularization parameters. 

 

Variables and operators 

 

E  [M×M] Eigenvectors matrix of the CSM factorization. 

)(i
e  [M×1] ith eigenvector of the CSM factorization. 
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m
ie )(  scalar mth element of e(i). 

S  [M×M] Eigenvalues matrix of the CSM factorization. 

)(is  scalar ith eigenvalue of the CSM. 

P  [M×M] Full eigenmodes matrix of the CSM factorization. 

LP  [M×L] Eigenmodes matrix of the CSM factorization truncated to 

the L not negligible eigenmodes of the CSM. 

)(i
p  [M×1] ith eigenmode of the CSM factorization. 

m
ip )(  scalar mth element of p(i)

. 

)(i
a  

[N×1] Linear combination of Equivalent Sources concerning the 

ith eigenmode of the CSM. 

*),( ki
a  

[Nk×1] Linear combination of Equivalent Sources concerning the 

ith eigenmode of the CSM at the kth iteration of the GIBF 

optimization. The size Nk changes according to the 

truncation operation. 

2  
scalar Regularization parameter. 

l
2  

scalar Candidate regularization parameter for quasi-optimality 

function. 

)( 2
lQ   

scalar lth value of the quasi-optimality function. 

m
 

scalar Strength of the mth source. 

c
i

a
)(~

 
[N×1] Linear combination of Equivalent Sources concerning the 

ith eigenmode of the CSM obtained adopting the cth cluster 

of microphones. 

(arg)  
operator Operator of binarization: 

0)0(arg,1)0(arg  
. 

)(i  
[N×1] Clustering mask “matrix” concerning the ith eigenvector 

of the CSM factorization. 

)(ia  
[ny×nx] Matrix form of the linear combination of Equivalent 

Sources concerning the ith eigenmode of the CSM. 

  [ny×ny] Left singular matrix of the Singular Values factorization of 

the matrix form of the linear combination of Equivalent 

Sources that we can define also “solution matrix” and/or 

acoustic image. 

  [nx×nx] Right singular matrix of the Singular Values factorization 
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of the “solution matrix”. 

  [ny×nx] Singular Values of the “solution matrix”. 

j
 

scalar jth Singular Value of the “solution matrix”. 

j̂
 

scalar Normalized jth Singular Value of the “solution matrix”. 

)21(

1





ii

ja
 

[ny×nx] jth Principal Component of the “solution matrix” 

concerning the i eigenmodes of the CSM considered 

together. 

  scalar Weighting factor. 

  [1×(J-1)] Cost function for adaptively select the number of SV of 

the solution matrix to be taken into account in the PCA. 

j


 
scalar Index of the normalized Singular Value corresponding to 

the minimum of the cost function Γ. 

)(ia


 
[ny×nx] Compressed solution matrix: “solution matrix” concerning 

the i eigenmode/es of the CSM after PCA-based adaptive 

truncation of ā(i). 

n  
[1×N] Dynamic range distribution of the compressed matrix. 

  variable Random variable corresponding to the values δn (it defines 

its sample space). 

g  
function Probability Density Function of the random variable Δ. 

*  
variable Discretization of the values assumed by δ, the continuous 

statistical variable, defined in the sample space, associated 

to Δ. 

*
H

 
function Histogram of the values δn with discretization δ*. 

  scalar Weighted expectation value of the variable Δ. 

  
scalar Weighting factor. 

D  function Parzen estimate of the Probability Density Function gΔ. 

K  function Kernel adopted for the Parzen estimation. 

h  scalar Width of the kernel. 

  scalar Standard deviation of the distribution of values δn. 

*n  
scalar Indices of the scan points to be discarded according to the 

adaptive method. 
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Symbols valid in Chapter 5 

 

Constants and counters 

 

N  Number of realization of the generalized angular cycle. 

n  Counter of the number of cycles. 

 

Variables and operators 

 

  variable Generalized angular evolution. [rad] 

d  scalar Angular increment. [rad] 

mp~  
variable Synchronous averaged pressure signal of the mth 

microphone. [Pa] 

  variable Rotational speed. [rad/s] 

~  variable Synchronous averaged rotational speed signal. [rad/s] 

  scalar Selected angular interval (gate). [rad] 

t  
scalar Time interval corresponding to the selected angular interval 

(gate) after resampling. [s] 

E  scalar Energy of a generic impulsive signal x(t). 

P  scalar Power of a generic impulsive signal x(t). 

T  scalar Total duration of the signal x(t). [s] 

RT  scalar Duration of the impulsive part of the signal x(t). [s] 

nC  scalar nth Fourier coefficient of signal x(t). 

0f  scalar Frequency resolution of the discrete Fourier Transform. [Hz] 

X  variable Fourier transform of the generic impulsive signal x(t). 
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