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Abstract 

 
Present contribution discusses the application of soft sensing in the process industry, as an 

indirect monitoring technique for the on-line assessment of non-accessible process variables. 

A relevant application case is presented which involves clinker sintering, a low-efficient, 

high-energy intensive process with strong environmental impact: the soft-sensing approach 

is firstly tested in the conventional thermal system, then it is addressed an innovative heating 

module based on the application of high-power, mono-modal microwaves to the material 

under processing. 

The work is focused over the development of physical models for the indirect evaluation of 

the critical process variables. The integration of the computation routines with the data 

provided by the sensors of the monitoring architectures is also addressed, as well as possible 

optimization strategies for improving the reliability of the tools. 

A stochastic method based on an adaptive Monte Carlo procedure is implemented, for 

assessing the propagation of the input uncertainties through the mathematical model of the 

soft sensor. An innovative numerical framework provides a lower-bound estimation of the 

uncertainty introduced by the model itself. Successively, the overall uncertainty of the soft 

sensor is calculated as the composition of the different contributes. 
The soft sensors are tested in the real-time monitoring of thermal and chemical variables of 

the processes considered. The indirect estimations of the target variables are compared with 

direct measurements, showing deviations in the order of 1%. Computation routines ensure 

fast executions, thus improving the exploitability of the tools. Results confirm the good 

performances of the soft sensors in the on-line monitoring of non-accessible variables. The 

intrinsic robustness makes them a potential back-up of direct sensors, ready to intervene when 

a breakdown of the hardware counterpart occurs, and before this affects the process.  
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Introduction 

 
In the process industry disposing of accurate measurements of critical variables at the 

appropriate sampling frequency is fundamental in order to take proper control actions. On 

this regard, hardware devices may not satisfy fundamental requirements, mainly in terms of 

reliability and performances. In either case on-line control and optimization schemes cannot 

be implemented. 

Recently, new indirect measurement approaches based on soft sensing have gained relevance 

in the field of process monitoring, whereas technical or economic aspects make hardware 

devices unsuitable. In this sense, disposing of theoretical models based on the 

phenomenological knowledge of the process and/or on regression analyses of the historical 

data, allows the full exploitation of a large number of values measured continuously as they 

may represent input signals for the soft sensor. At the same time, soft sensing opens the way 

to a wide range of applications, among which on-line monitoring, process fault detection, 

identification of broken sensors and back up of the hardware equipment. 

Present contribution discusses the general application of soft sensing in the process industry. 

An application case is presented, regarding the clinker production process. Indeed, this 

process is deeply affected by a dramatic lack of direct measurements on critical variables, as 

a consequence of technical difficulties (aggressive environment, physical inaccessibility, 

moving parts, etc.). Lack of measurements prevents the achievement of a full understanding 

of the process thus resulting in non-optimized operation. Soft sensing could represent a 

valuable tool for filling this gap of knowledge and producing new efficiency-oriented control 

strategies, which is an actual issue for whole the global cement industry. 

The manuscript is organized as follows: 

I. Section 1 introduces the topic of soft sensing. In subsection 1.1 a literature survey 

is reported, concerning the application of indirect measurement techniques to the 

monitoring of industrial processes: the development approach of a soft sensor is 

discussed; potentialities and weaknesses are identified; further, a wide range of 

applications is reported. Subsection 1.2 describes the concept of soft sensor, and 

provides deep focus on both its metrological and theoretical aspects. Subsection 1.3 

points out the differences between a soft sensor and the hardware counterpart; it 

deals with the distinction between the theoretical model supporting a soft sensor and 

the transduction function of a measurement device. Subsection 1.4 is concerned over 

possible methods for esteeming the uncertainty of a soft sensor, which is a topic not 

faced yet. 

II. Section 2 introduces the clinker production process. Particular focus is dedicated to 

the kiln system, a high-energy intensive, low-efficient sintering stage with strong 

environmental impact. Subsection 2.1 deals with the conventional thermal process, 

whilst subsection 2.2 is focused over an innovative heating cavity developed in the 

EU FP7 project DAPhNE (grant agreement n° 314636), which is based on 

microwaves application. 

III. In section 3 soft sensing is applied to the conventional heating stage. The indirect 

estimation of critical process variables, otherwise not directly accessible, is found 
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to be in good agreement with real data; besides, it represent valuable information to 

be used in the development of new optimization-oriented control strategies. 

IV. In section 4 the accuracy of the soft sensor is esteemed by studying the propagation 

of the input uncertainties through the mathematical model; further, an innovative 

modellistic framework is used for quantifying the approximation introduced by the 

simplifying assumptions of the theoretical part. 

V. In section 5 an analogous monitoring approach is proposed for the new DAPhNE 

module. The possibility for intervening in the design of the whole monitoring 

architecture has been fully exploited for integrating the new tool with the rest of the 

hardware devices. 
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Section 1 – Soft sensing 

 
1.1 – Literature survey 
 

In the last two decades, soft sensors have established themselves as a valid alternative to 

traditional approaches for monitoring critical process variables, whereas technical or 

economic aspects make direct measurements unfeasible. According to Kadlec [1], “industrial 

processing plants are usually heavily instrumented with a large number of sensors. The 

primary purpose of the sensors is to deliver data for process monitoring and control. But 

approximately two decades ago researchers started to make use of the large amounts of data 

being measured and stored in the process industry, by building predictive models based on 

this data. In the context of process industry, these predictive models are called “soft sensors”. 

This term is a combination of the words “software”, because the models are usually computer 

programs, and “sensors”, because the models are delivering similar information as their 

hardware counterparts”. 

According to Mohler [2], “control systems and optimization procedures require regular and 

reliable measurements at the appropriate frequency […]. The quality measure may only be 

available as a laboratory analysis or very infrequent on-line measurement”. Lack of 

appropriate on-line instrumentation and unreliability of on-line instruments are mentioned as 

possible causes which may prevent the achievement of good measurements. In either case 

on-line control or optimization schemes cannot be implemented. As stated in [2], “the 

application of soft sensors for estimating hard-to-measure process values is extremely 

interesting in the process industry, where there are usually a large number of values measured 

continuously and they may serve as input signals for the soft sensor. They can work in parallel 

with real sensors, allowing fault detection schemes devote to the sensor’s status analysis to 

be implemented. Also, they can take the place of sensors which have been taken off for 

maintenance, to keep control loops working properly and to guarantee product specification 

without undertaking conservative production policies, which are usually too expensive”. In 

its literature survey, Kadlec [1] identifies a broad range of tasks were a soft sensor could be 

effectively exploited. In this sense, “the original and still most dominant application area of 

soft sensors is the prediction of process variables which can be determined either at low 

sampling rates or through off-line analysis only. Because these variables are often related to 

the process output quality, they are very important for the process control and management. 

For these reasons it is of great interest to deliver additional information about these variables 

at higher sampling rate and/or at lower financial burden, which is exactly the role of the soft 

sensors […]. Other important application field of soft sensors is fault detection […]”; on this 

regard “once a fault sensor is detected and identified, it can be either reconstructed or the 

hardware sensor can be replaced by another soft sensor, which is trained to act as a back-up 

soft sensor of the hardware measuring device. If the back-up sensor proves to be an adequate 

replacement of the physical sensor, this idea can be driven even further and the soft sensor 

can replace the measuring device also in normal working conditions. The software tool can 

be easier maintained and is not subject to mechanical failures and therefore such a 

substitution can provide a financial advantage for the process owner”. 
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Kadlec [1] distinguishes two types of soft sensors, “namely “model-driven” and “data-

driven” soft sensors. Firsts are also called white-box models because they have full 

phenomenological knowledge about the process background. In contrast to this purely data-

driven models are called black-box techniques because the model itself has no knowledge 

about the process and is based on empirical observations of the process […]. Model-driven 

soft sensors are primarily developed for the purpose of planning and development of the 

process plants. These soft sensors are based on equations describing the chemical and 

physical principles underlying the process. A typical example is using mass-preservation 

principles, exothermal equation, energy balances, reaction kinetics in the form of reaction 

rate equations for this purpose. The drawback of this type of soft sensors is that their 

development requires a lot of process expert knowledge. This knowledge is not always 

available […]. Another problem is that the models often describe a simplified theoretical 

background of the process rather then the real-life conditions of the process which is 

influenced by many factors out of the scope of the model-driven soft sensor. Additionally, 

the model-driven soft sensors usually focus on the description of the optimal steady-state of 

the process and are thus not suitable for the description of any transient states […]”. On the 

other hand, “data-driven models are based on the data measured within the processing plants 

[…]. The most popular modelling techniques applied to data-driven soft sensors are the 

Principal Component Analysis, Partial Least Squares, Artificial Neural Networks, Neuro-

Fuzzy Systems and Support Vector Machines”. 

 

1.1.1 – Data-driven soft sensors 
 

Linear Regression models have been applied in a wide range of cases: here they provide a 

straightforward modeling of the target values, which are expressed as linear combinations of 

the input variables. Casali et al. [3] propose an ARMAX-type stepwise regression model for 

modeling the particle size in a grinding plant.  Park [4] applies a Locally Weighted 

Regression together with non-linearity handling pre-processing of the input data; the model 

is applied to two industrial cases (toluene composition in a splitter column and diesel 

temperature estimation in a crude oil column). 

Artificial Neural Networks (ANNs) are widely exploited in the field of machine learning. In 

the context of soft sensors development, Qin [5] applies Multilayer Perceptron (MLP) to the 

description of a batch refinery process. Radhakrishnan [6] provides an extensive discussion 

of application aspects of MLP to steel industry data modelling, for prediction of hot metal 

quality. MLP is applied in [7] and [8], respectively for esteeming sugar quality and predicting 

butane and stabilized gasoline concentrations of a distillation column. In [9] MLP is applied 

to the detection of typical faults in a fluid catalytic cracking reactor. In [10] an approach for 

soft sensor development based on MLP is applied to an industrial drier process. In [11] the 

performances of two ANN variants, namely the MLP and the Radical Basis Function 

Network (RBFN), are compared to a Support Vector Regression model, in the context of fed-

batch bioreactors. A RBFN-based soft sensor is tested in [12], for modeling a membrane 

separation process. Recurrent Neural Network (RNN) is applied in [13], [14] and [15], 

respectively for predicting the degree-of-cure in an epoxy/graphite fiber composites 

production process, the biomass concentration in bioprocesses and the melt-flow length for 
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filling of molds in a injection molding process. Application of RNN in a dynamic 

environment is reported in [16]. 

A further method commonly applied to soft sensing is Principal Component Analysis 

(PCA)/Partial Least Squares (PLS)-based regression. In [17] a PCA-based preprocessing of 

input data removes co-linearity and allows the possibility of reconstructing sensor fault. The 

soft sensor is tested in the monitoring of air emission. A recursive version of the PLS 

algorithm (namely Exponentially Weighted PLS) is applied in [18] to the simulation of a 

continuous stirred tank reactor and a industrial flotation circuit. An application of PLS to the 

prediction of the octane number in a refinery process is discussed in [19]. Zamprogna et al. 

[20] are dealing with application aspects of the PCA and PLS to the modelling of batch 

processes. A PCA-based soft sensor for predicting concentrations of free lime and NOX in a 

cement kiln is presented in [21]. In [22], [23], [24] and [25] PCA and PLS-based techniques 

are tested in the monitoring of batch and semi-batch processes. Li et al. [26] deal with the 

application of the PCA and related methods to the monitoring of a rapid thermal annealing 

process. A multi-step Fisher Discriminant Analysis-based approach for detecting process 

fault is reported in [27]. In [28] a complex soft sensor for the detection and isolation of 

process faults is devised which is based on PCA, RBFN and Self Organizing Map. 

Applications of PCA in sensor fault detection and reconstruction are reported in [29], [30], 

[31] and [32]. 

Support Vector Machines (SVM) are emerging in the field of machine learning. Yan et al. 

[33] apply SVR to the estimation of the freezing point of light diesel oil in a fluid catalytic 

cracking unit. A further application of SVM for developing soft sensors dedicated to the 

monitoring of industrial processes is discussed in [34]. 

Another very popular and successful family of approaches applied to soft sensing are neuro-

fuzzy models (ANFIS) which combine the advantages of ANNs and Fuzzy Inference 

Systems (FIS). In [35] Merikoski implements a soft sensor based on an ANFIS model for 

predicting rubber viscosity. Another ANFIS-based soft sensor is presented in [36]: here data 

is preprocessed using PCA transformation which helps dealing with co-linearity and at the 

same time limits the size of the input space; the soft sensor is applied to the prediction of 

polymeric-coated substrate anchorage which is an important quality measure of the process 

product. In [37] and [38] the performances of a neuro-fuzzy soft sensor are tested, 

respectively, in the prediction of the freezing point of light diesel fuel in a fluid catalytic 

cracking unit and in the control of a penicillin production batch process. In [39] an extended 

Takagi-Sugeno model is tested in the prediction of the quality of crude oil distillation in a 

refinery process. 

 

1.1.2 – Model-driven soft sensors 
 

Model-driven soft sensors are widely spread in the context of process fault detection. 

According to [40], “fault detection problems require two steps. The first step generates 

inconsistencies between the actual and expected behavior. Such inconsistencies, also called 

“residuals”, are artificial signals reflecting the potential faults of the system. The second step 

chooses a decision rule for diagnosis. The check for inconsistency needs some form of 

redundancy. There are two types of redundancies, hardware redundancy and analytical 

redundancy. The former requires redundant sensors […]. However, its applicability is limited 
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due to the extra cost and additional space required. On the other hand, analytical redundancy 

is achieved from the functional dependence among the process variables and is usually 

provided by a set of algebraic or temporal relationships among the states, inputs and the 

outputs of the system”. These relationships are obtained based on a physical understanding 

of the process. In a chemical engineering process, mass, energy and momentum balances as 

well as constitutive relationships (such as equations of state) are used in the development of 

model equations. Comprehensive discussions on both artificial redundancy and 

discrimination methods applied to fault detection can be found in [41][42][43][44][45]. 

In the context of process monitoring, hybrid models are significantly widespread: in these 

models the greater accuracy of a data-driven soft sensor can be effectively exploited in 

conjunction with the typical robustness of a model-driven one. In [46] an MLP is compared 

to model-driven approaches based on an adaptive observer technique and Kalman filter, on 

a test case involving the estimation of fermentation batch processes; whilst complexity of the 

development and the amount of a priori knowledge are recognized as limiting factors of the 

model-based approach, on the other hand the applicability of the MLP is limited due to the 

changing dynamics of the particular batch runs. In [47] a test case involving a biochemical 

batch process is used for comparing a model-driven soft sensor with either an MLP or an 

RBFN. Meleiro et al. [48] are presenting a grey-box soft sensor which delivers necessary 

information for self-tuning an adaptive controller of a fermentation process.  The soft sensor 

is an MLP which is trained using simulated data based on a phenomenological model. 

 

1.2 – The concept of soft sensing 
 

Next part of this contribution will be focused on model-driven soft sensors; these will be 

simply addressed as soft sensors. 

A soft sensor is the synthesis of two different parts, which are complementary, namely: a) 

the metrological one, which includes the direct monitoring of accessible variables by using 

dedicated hardware sensors; b) the theoretical one, which consists of a deterministic model 

providing a correlation between the target variable and the measurements available at plant 

level. This model will be addressed as “correlating model”. 

When developing a soft sensor these two parts should be considered as strictly correlated, 

even if they may seem separate each from other. in fact, the more the measurements are 

“close” to the target variable, the easier it will be developing an accurate correlating model. 

The simple case reported in Figure 1 can be considered an example of a soft sensor 

development. Here the target variable is the temperature T1 of the bottom surface s1: if the 

only measurements available consist of T3 and Q3, respectively the temperature and the heat 

flux through the top surface s3, then the model should account for the heat conduction through 

t1 and t3 and the convective and radiative heat exchanges through t2; on the other hand, if 

direct measurements T2 and Q2 (respectively the temperature and the heat flux through the 

surface s2) are made available, then only the heat conduction through t1 should be considered. 

As pointed out in the previous example, direct measurements could be effectively exploited 

for providing boundaries to the correlating model, thus reducing its complexity and at the 

same time increasing the accuracy. Anyhow it should be considered that an excessively-

pushed metrological part may compromise the potential benefits of soft sensing, in terms of 

cost and reliability. 



 7 

If a soft sensor is intended to provide an alternative to the counterpart hardware sensors, its 

capability of self-interfacing to the rest of the monitoring architecture should be assessed. 

This aspect is particularly critical when the soft sensor is specifically developed for 

overcoming the bottleneck represented by a long response time of the hardware equipment 

(e.g. a chemistry analyzer). The response time of a soft sensor is determined by the model, 

in particular its computation routine. In this sense extremely complex and omni-

comprehensive models may be effective in providing reliable and detailed outputs, but they 

are generally relegated to the role of stand alone tools. On the other hand, disposing of 

simplified but still accurate models opens the way to a wide range of on-line applications. 

 

 
Figure 1. The concept of soft sensing. 
 

1.3 – Soft sensors vs. hardware sensors 
 

Even if the difference between soft and hardware sensors may seem evident, actually it is 

less obvious then it could be imagined. This is due the frequent difficulty of providing a clear 

and objective distinction between the transduction function of a sensor and the correlating 

model used in soft sensing. Indeed, in both cases we are dealing with functions which are 

responsible for converting inputs into output data. 

Currently, a generally accepted definition which objectifies the difference does not exist. It 

might be thought the specific feature of a transduction function is that it is based on a physical 

law. As a few examples: eq. 1 reports the Seeback effect, which is used in thermocouples, 

and relates the output voltage V to the difference of temperature of the hot junction respect 

to the cold one (S denotes the calibration factor); eq. 2 shows the Stefan-Boltzmann law for 

infrared measurement devices, where the radiation intensity P is expressed as a function of 

the temperature T (A,  and  denote respectively the area of the surface, the Stefan-

Boltzmann constant and the emissivity); the transduction function of a heat flux meter is 

reported in eq. 3, where the output voltage V is related to the het flux Q through an intrinsic 

feature of the instrument Ksesn. 

 

T1

T2

T3 Q	3

Q	2

t1

t2

t3

s1

s3

s2
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𝑽 = 𝑺 ∙ 𝛁𝑻 (1) 

𝑷 = 𝑨 ∙ 𝜺 ∙ 𝝈 ∙ 𝑻𝟒 (2) 

𝑽 = 𝑸 ∙ 𝑲𝒔𝒆𝒏𝒔 (3) 

 

This definition stands when the correlating model is a data-driven one; but it fails when 

referring to deterministic models, which are based on physical laws themselves. On this 

regard, we can refer to the example reported in Figure 1: here the correlating function 

expressing T1 as a function of T2 and Q2 is the one reported in eq. 4. 

 

𝑻𝟏 = 𝑻𝟐 + 𝑸𝟐 ∙
𝒕𝟏

𝑲𝒘𝒂𝒍𝒍

 (4) 

 

The expression represents a physical law, besides it requires the calibration of the Kwall 

parameter, same as it happens with the Ksens parameter for the heat flux meter. Differences 

between a correlating model and a transduction function are pointed out hereafter: 

I. In the transduction function the output is directly related to the input. This may be 

untrue in the case of a correlating model, whose output could be a physical quantity 

that is completely different respect to the inputs. As an example, in [49] it is 

developed a soft sensor for predicting the fuel consumption and the exhaust 

emissions of a diesel engine, using real time values of: intake manifold air 

temperature; intake manifold boost pressure; fuel rack position; engine coolant 

temperature; exhaust gas temperature; engine speed; fuel rail temperature and 

pressure. 

II. The transduction function acts upstream the digitalization. The correlating function 

gets digital inputs, and elaborates them on the basis of calculation routines which 

are external to the instrument. 

III. A correlating model may receive more inputs and elaborates them into one or more 

outputs. A transduction function converts one input into one output. 

IV. A correlating function may not be based on a physical law, instead it could be 

developed on the basis of fuzzy or regression approaches, artificial neural networks, 

etc. 

The previous points should clarify the difference between a transduction function and a 

correlating model. Nevertheless, it may be useful to consider the correlating function as an 

integrating part of the transduction chain. So it is possible to easily extend some relevant 

features of a measurement device also to soft sensors. In section 1.4. some considerations 

will be pointed out regarding the uncertainty of a soft sensor. 
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1.4. – Estimation of the uncertainty of a soft sensor 
 

Estimation of the uncertainty of a soft sensor is a topic which has not been faced yet. 

Nevertheless, when soft sensing is applied to the monitoring of process variables, a 

quantification of the accuracy is fundamental. In the next part of this section a method for 

assessing the uncertainty of a soft sensor is discussed. 

The method considers the correlating model as an integrating part of the transduction chain, 

thus it influences the overall uncertainty of the soft sensor. For sake of clarity, it can be 

considered the example depicted in Figure 2. Here the correlating model receives n 

measurements i1…in in input, which are characterized by the respective uncertainties ui1…uin; 

at the same way the model accounts for m parameters p1…pm, characterized by the 

uncertainties up1…upm, respectively; Y denotes the output of the model and it is affected by 

the uncertainty uy, which is the sum of two contributes: 

1. Propagation of the input uncertainties ui1…uin and up1…upm through the correlating 

model. This contribution is discussed in subsection 1.4.1. 

2. The uncertainty introduced by the simplifying assumptions of the mathematical 

model. Subsection 1.4.2. deals with this part. 

These two contributes can be combined, in order to obtain the overall uncertainty of the soft 

sensor. 

 

 
Figure 2. Input uncertainties of the correlating model. 
 

1.4.1 – Propagation of input uncertainties through the 
correlating model 
 

Propagation of the uncertainties through the mathematical model can be esteemed according 

to the recommendations of the Guide to the expression of uncertainty in measurement (GUM) 

[53]. In particular, the Supplement 1 to the GUM “is concerned with the propagation of 

probability distributions through a mathematical model of measurement as basis for the 

evaluation of uncertainty of measurement, and its implementation by a Monte Carlo method 

[…]. The described Monte Carlo method is a practical alternative to the GUM uncertainty 

framework. It has value when: a) linearization of the model provides an inadequate 

representation; b) the probability density function (PDF) for the output quantity and the 

p1

i2

in

Correlating	model
Y

i1

p2 pm
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associated standard uncertainty provided by the GUM uncertainty framework might be 

unreliable […]. This Supplement provides a general numerical approach, consistent with the 

broad principles of the GUM for carrying out the calculations required as part of an 

evaluation of measurement uncertainty. The approach applies to arbitrary models having a 

single output quantity where the input quantities are characterized by any specified PDFs 

[…]. This Supplement can be used to provide the PDF for the output quantity from which a) 

an estimate of the output quantity, b) the standard uncertainty associated with the estimate, 

c) a coverage interval for that quantity, corresponding to a specified coverage probability can 

be obtained”. Guidelines for the implementation of an adaptive Monte Carlo procedure are 

provided, “which involves carrying out an increasing number of Monte Carlo trials until the 

various results of interest have stabilized in a statistical sense. A numerical result is deemed 

to have stabilized if twice the standard deviation associated with it is less than the numerical 

tolerance associated with the standard uncertainty”. The adaptive Monte Carlo procedure is 

reported in Appendix A.1. 

 

1.4.2 – Uncertainty introduced by the correlating model 
 

Soft sensors are generally based on simplified models. Typically, these are lumped element 

models which are able to provide a quite accurate representation of the system, but at the 

same time ensure short computation times. An estimation of the uncertainty introduced by 

the different simplifying assumptions is fundamental for quantifying the overall accuracy of 

the soft sensor. 

In a lumped element model, variables that are spatially distributed are approximated using 

discrete elements. In the example of Figure 3a an envelope A contains two different phases 

B and C, whereof B is heated by an electric resistance R providing the total heating power 

QR. The system can be well described by using three lumped elements, connected each other 

by thermal resistances (see Figure 3b). It is evident that in the lumped model the spatial 

variance of T is completely lost, thus it introduces an uncertainty of representation. The 

lower-bound of this uncertainty can be esteemed via an off-line comparison with a spatially-

distributed model, to be used as reference (the method does not account for the uncertainty 

of the reference model). 

 

 
a) 

 
b) 

Figure 3. Distributed vs. lumped element model. 
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Section 2 – Clinker production process 

 
Cement constitutes basic material for building and civil engineering applications. Portland is 

the most common type of cement, and it is obtained by grinding a mixture of gypsum and 

clinker. Clinker is composed by lumps or nodules, usually 3-25 mm in diameter, 3.1 g/cm3 

mass density, produced by sintering limestone and clay during the cement kiln stage. The 

composition of the final clinker is the product of several chemical reactions involving the 

starting materials (raw meal), and occurring in a wide range of temperatures. Main reactions 

involved in clinker sintering are reported hereafter. Table 1 indicates the typical composition 

of final clinker, data from [54]. 

 

𝟐𝐂𝐚𝐎 + 𝐒𝐢𝐎𝟐 → 𝐂𝟐𝐒 (Belite) (5) 

𝟑𝐂𝐚𝐎 + 𝐀𝐥𝟐𝐎𝟑 → 𝐂𝟑𝐀 (Aluminate) (6) 

𝟒𝐂𝐚𝐎 + 𝐀𝐥𝟐𝐎𝟑 + 𝐅𝐞𝟐𝐎𝟑 → 𝐂𝟒𝐀𝐅 
(Ferrite) 

(7) 

𝐂𝐚𝐎 + 𝐂𝟐𝐒 → 𝐂𝟑𝐒 (Alite) (8) 

 

In order to regulate the hydration process, a quantity (typically 5 %) of calcium sulfate 

(usually gypsum or anhydrite) is added to clinker, and the mixture is finely ground to form 

the final cement powder. This is achieved in a cement mill. The grinding process is controlled 

to obtain a powder with a broad particle size range, in which typically 15 % by mass consists 

of particles below 5 m diameter, and 5 % of particles above 45 m. Portland cement cab be 

marketed as pure, otherwise it can be mixed with other constituents expected by technical 

standards. Mixing is performed during cement milling, adding the other constituents to 

clinker and gypsum. 

 

Phase Mass fraction (%) 

C3S 58.6  4.0 

C2S 23.3  2.8 

C4AF 14.1  1.4 

C3A 2.3  2.1 

Table 1. Chemical composition of clinker. 

 

Global production of Portland cement is continuously increasing, despite a general slowing 

of the advanced economies: forecasts by the Portland Cement Association for US cement 

consumption [55] indicate expectations for a 7.5 % growth in 2015, and 7.9 % in 2016. 
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Clinker pyro-process is a high-energy intensive and low-efficient process, with a strong 

environmental impact. Constantly increasing fuels prices, besides always more demanding 

environmental regulations, are therefore pushing world cement producers to improve their 

processes and to continuously verify that these processes are run under optimized conditions 

[56][57][58][59][60][61]. Continuous improvement of the technology installed is a 

mandatory issue in order to keep economical competitiveness and enhance the process 

efficiency: in this context, the EU FP7 project DAPhNE (grant agreement n° 314636) brings 

together three manufacturing sectors including the clinker production, with common 

problems in relation to the energy consumption of their firing stages, seeking common 

solutions via the implementation of high-temperature microwave technologies based on self-

adaptive control and innovative monitoring systems. 

Section 2.1. introduces the conventional thermal process for clinker production; section 2.2. 

deals with the new microwave process.  
 

2.1 – Conventional thermal process 
 

EU cement production is distributed into 320 plants of which about 70 are grinding plants 

(i.e. no equipped with kilns). Only very few kilns have a capacity of less than 500 tones per 

day. Typical size of a modern installation is about 3000 tones per day. 

Clinker manufacturing process progressively switched from “wet” systems (the leading 

technology in the 70’s) to “dry” ones with the intermediate steps of the “semi-wet” and “semi-

dry” processes. The main advantage of a modern dry process over a traditional wet system is 

the far lower fuel consumption, which is a consequence of the higher efficiency of the dry 

kiln. 

The physical nature of the available raw materials influences the choice of the technological 

process, but today wet process is preferable only under very specific raw materials and 

process conditions. As a matter of fact, about 78 % of the current EU’s cement production is 

from dry-process systems. Thus, the next discussion is focused on a typical dry process, 

whose operations are described hereafter. 

 

2.1.1 - Quarrying 
 

Raw materials are extracted from quarries which, in most cases, are located close to the 

cement plant. Raw materials for cement manufacture is a rock mixture which is about 80 % 

limestone (which is rich in CaCO3) and 20 % clay minerals (a source of silica, alumina and 

Fe2O3). 

Other raw materials may be used, such as shells or chalk, as a substitutes of limestone, and 

shale or slate, instead of clay minerals. 

Corrective materials such as bauxite, iron ore or sand may be required to adapt the chemical 

composition to the requirements of the process and product specifications. 
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2.1.2 – Raw mixture preparation 
 

Raw mixture preparation consists of a grinding operation, that is performed inside raw mills. 

Here the raw materials are fed together, then rocks are dried ground together until the desired 

particles size distribution is obtained (Table 2). 

 

Lower size 0.1 m 

Mean size 8-12 m 

Higher size 200-250 m 

Table 2. Particles size distribution of raw meal. 

 

Grinding is performed inside a raw mill, according to the following steps: 

I. Metering and proportion. The raw materials are dosed, in order to obtain the desired 

composition. 

II. Grinding and drying. Drying is performed using heat recovery from the exhaust 

gases provided by the kiln system. 

III. Separation. Here large particles are removed by means of an air separator, so that 

they can be sent back to mill for further grinding. 

After being ground, the raw meal is sent to the clinkering stage. 

 

2.1.3 - Clinkering 
 

As already mentioned, dry kilns are the most efficient, for this reason they have become the 

standard in cement production. This kind of kilns requires an ancillary equipment consisting 

of the following parts: 

I. Preheater. It was introduced in order to increase the efficiency of the kiln. The key 

component of the gas-suspension preheater is the cyclone. A cyclone is a conical 

vessel into which dust-bearing gas stream is passed tangentially, producing a vortex 

within the vessel. The gas exits the vessel through a co-axial “vortex-finder”. The 

solids are thrown to the outside edge of the vessel by centrifugal action, and leave 

through a valve in the vertex of the cone. The number of cyclones stages used in 

practice varies from 1 to 6. 

II. Precalciner. It was developed in the 70’s, and has subsequently become the 

equipment of choice for new large plants worldwide. The precalciner basically 

consists in a development of the suspension preheater: considering that the amount 

of fuel that can be burned in the kiln is directly related to the size of the kiln, if part 

of the fuel necessary to burn the raw mix is burned outside the kiln, the output could 

be increased by injecting extra fuel into the base of the preheater. So a precalciner 

consists of specially designed combustion chamber at the base of the preheater, into 

which pulverized coal is injected. The ultimate development is the “air-separate” 

precalciner, where the hot combustion air arrives directly from the cooler, bypassing 

the kiln. Typically, 60-75 % of the fuel is burned in the precalciner. In these systems, 

the feed entering the rotary kiln is 100 % calcined. The kiln has only to raise the 

feed to sintering temperature. 
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III. Rotary kiln. After exiting the precalciner, the raw meal enters the cold end of the 

rotary kiln. Whilst moving towards the hot end, material gets heat by contact with 

both a hot gas phase and the rotating wall. Raw meal is sintered to clinker at 

temperatures between 1400 and 1450 °C. Chemical reactions involved are 

summarized hereafter: 

 900 to 1050 °C: CaO starts reacting with SiO2 to form belite. 

 1300 to 1450 °C: partial (20-30 %) melting takes place, and belite reacts 

with calcium oxide to form alite. Alite is the characteristic constituent of 

Portland cement and it is thermodynamically unstable below 1250 °C, but 

can be preserved in a metastable state at room temperature by fast cooling. 

On slow cooling it tends to revert to belite. 

 The partial melting causes the material to aggregate into lumps or nodules, 

typically of diameter 1-10 mm, which constitute the final clinker. 

A typical modern installation is about 50 m long. Retention time of the material is 

around 20 minutes. The movement of the material towards the outlet is helped by 

the rotation and a slight inclination of the kiln. Filling level is maintained around 15 

%. A multi-channel burner is located at the hot end of the kiln. Typical fuel is 

carbon; alternative fuels or mixes are also possible. Primary air is injected through 

the burner, with fuel particles in suspension. A second air flow coming from the 

heat recovery of the cooling stage, which is called secondary air, enters the kiln 

through the hot end; injection temperature is around 1000 °C, and helps the fuel to 

auto-ignite. Fuel combustion rises the temperature of the gas flow up to about 2000 

°C. The gas flow moves countercurrent respect to the material bed. It exchanges 

heat with both the material and the wall, and finally is conveyed inside the 

precalciner. Typical temperature profiles for a short dry kiln are reported in Figure 

4. 

IV. Cooler. The hot clinker falls into a cooler which recovers most of its heat, and cools 

the clinker to around 100-200 °C, at which temperature it can be conveniently 

conveyed to storage. 

 

2.1.4 – Cement grinding 
 

Ball mills are commonly used for grinding cement clinker. A ball mill basically consists of a 

large rotating drum containing grinding media, normally steel balls. As the drum rotates 

(around one revolution per second), the motion of balls crushes the clinker. The drum is 

generally divided into two or three chambers, with different size grinding media. As the 

clinker particles are ground down, smaller media are more efficient at reducing the particle 

size still further. Gypsum is ground together with the clinker in order to control the setting 

properties of the cement. 
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Figure 4. Temperature profiles in short-dry kilns [62]. 

 

2.2 – New microwave heating stage 
 

In the new DAPhNE process the clinkering operation is performed inside a microwave 

applicator. The new technology has shown marked potentialities, both in terms of efficiency 

and reduction of polluting emissions. Also, the new heating stage allows for fast processing 

of the material, and may produce a relevant increase of the production capacity if scaled-up 

to industrial level. 

The project has resulted in the implementation of a demonstrator with lab-scale capacity (10 

kg/h). Here a high-power (10 kW), 910 MHz magnetron sends microwaves to a mono-modal 

resonant cavity, whose design is sketched in Figure 5. A ceramic tube is located inside the 

cavity. Its rotation, together with a slight inclination, allows the fed material moving from 

one end towards the other. When moving inside the tube, material absorbs microwaves. The 

rate of microwaves absorption is proportional to the loss factor of the material. Temperature 

dependency of the raw meal loss factor is reported in Figure 6. Several water circuits and a 

chiller avoid overheating of the instrumentation (magnetron, waveguide and cavity walls). A 

venting system removes the CO2 produced by the CaCO3 decomposition from the inside of 

the tube. This action is fundamental in order to avoid plasma formation, which would reduce 

the process efficiency. The new microwave heating stage is ideally located between the 

grinding and cooling operations. It replaces the whole kiln and provides heating of the raw 

meal from room temperature up to sintering. 

As it can be noted, the loss factor increases with temperature. In particular, it shows an abrupt 

jump at 900 K. Therefore, the heating rate tends to increase when the temperature of the 

material goes up. This implies and intrinsic instability of the microwave process, and hot 

spots may appear suddenly if proper control actions are not undertaken. 
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Figure 5. Microwave cavity. 

 

 

 
Figure 6. Loss factor vs. temperature. 
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Section 3 – Soft sensing for conventional 

rotary kilns 

 
Cement production is a high energy-intensive process, which is characterized by low 

efficiency and high environmental impact in terms of emissions. According to [63], “cement 

manufacturing is the third largest energy consuming and CO2 emitting sector, with an 

estimated 1.9 Gt of CO2 emissions from thermal energy consumption and production 

processes in 2006”. Among the different stages constituting the cement production process, 

the one that impacts more heavily on both efficiency and emissions is clinker sintering, where 

the raw meal is heated from room temperature up to about 1450 °C. In [64] it is presented a 

energy audit on a 600 ton-clinker/day dry kiln: conclusions show that about 40 % of the total 

input energy is lost through hot flue gas (19.15 %), cooler stack (5.61 %) and kiln shell (15.11 

% convection plus radiation). 

World cement producers are currently facing constantly increasing fuels prices, besides 

always more demanding environmental regulations. Therefore, the improvement of process 

efficiency is a very actual topic for the cement industry. In this sense, multiple solutions have 

been proposed: they range from economies of scale, where size of the plant is increased in 

order to improve the competitiveness both in terms of costs and energy performances, to the 

continuous innovation of the technology installed. According to [63], “if Best Available 

Technologies can be adopted in all cement plants, global energy intensity can be reduced by 

1.1 GJ/t-cement, from its current average value of 3.5 GJ/t-cement. This would result in CO2 

savings of around 119 Mt”.  

Technology innovation surely is essential for achieve better competitiveness. However, it is 

also complementary, and does not exclude, a continuous improvement of the knowledge 

related to the process. Indeed, efficiency-oriented operation strategies cannot disregard a 

complete and deep knowledge of the phenomena involved in the process itself. When 

referring to cement kilns for clinker sintering, it must be addressed a process that is highly 

complex for several reasons: a) it is characterized by multi-stage chemical reactions; b) there 

are radiative, convective and conductive heat exchanges, occurring in a wide range of 

temperatures; c) the process includes solid, liquid and gaseous phases, as well as powder 

phase. Moreover, there are several technical difficulties (moving parts, aggressive 

environment, etc.) that prevent to measure many process variables in a direct way. These 

whole aspects prevent an in-depth understanding of the process itself, so it has been usually 

approached as a black box, where process related control strategy mainly relies on the 

experience of the operator and/or on fuzzy approaches [65][66][67][68]. 

Within this context, the development of comprehensive and accurate numerical models that 

are able to describe all the thermo-chemical phenomena involved during clinker production 

is gaining importance. Kilns for clinker pyro-processing have been extensively studied. CFD 

turbulent models provide detailed representation of flame and aerodynamic phenomena 

inside the freeboard region [69][70][71][72][73][74][75][76][77]. Discrete Element Method 

models based on a Lagrangian approach are able to capture the behavior of a material bed 

being in powder state [78]. Boateng [79] proposed a quasi-3D model for the description of 
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thermal exchanges between the freeboard region and the material bed. Boateng’s model, 

which was obtained by incorporating a 2D representation of the bed’s transversal plane into 

a 1D plug flow model, was developed without accounting for chemical conversions of phase 

changes inside the material. A 1D model describing thermal exchanges and chemical 

conversion was developed by Spang [80]. Mujumdar [81] presented a model integrating two 

separate parts: a CFD approach was used for describing the freeboard region, whilst a 1D 

thermo-chemical model provided a representation of the solid material. Mastorakos [82] 

proposed an interesting approach, where an iterative procedure was exploited for achieving 

a comprehensive solution of the kiln’s behavior. Predictions showed consistency with 

measurements in a full-scale plant, despite several simplifying assumptions were made. 

Previous models, despite representing powerful tools for achieving deep knowledge of the 

process itself, may be considered as stand-alone tools with limited exploitation possibilities, 

because of extremely long computational times. On the other hand, the integration of 

theoretical tools to the monitoring and control architecture would result into obvious 

advantages: indeed, disposing of innovative soft sensors for esteeming critical and non-

accessible process variables may lead to new optimization-oriented control approaches, 

where process efficiency is maximized in the respect of quality targets for the product. 

Next part of this section describes an innovative monitoring approach for cement kilns based 

on soft sensing. The proposed soft sensor is based on a lumped element model (LEM) of the 

kiln. The model estimates the thermal and chemical variables from the operating set point of 

the kiln. The model is designed to provide predictions of a stationary behavior, and also 

forecasts of a transient response to one or more changes of the operation parameters. 

Computation times are extremely reduced. Therefore, the tool can be effectively exploited in 

on-line monitoring applications. 

The LEM accounts for heat and mass balance equations, besides one equation describing fuel 

combustion. Critical parameters of the model have been adjusted using a multi-objective 

optimization strategy based on the application of a Genetic Algorithm (GA) inside the 

MATLAB environment. The optimization has been conduced using predictions from a 

comprehensive CFD-FEA model as reference. The reference model has been developed 

using the COMSOL Multiphysics framework, then validated by comparing its predictions 

with real data. After the optimization, the LEM has shown good accuracy. At the same time 

its computation requirements are compatible with real-time applications. 

Next part of this section is organized as follows: a) subsection 3.1. describes the real kiln 

considered in the test case; b) subsection 3.2. introduces the CFD-FEA model; c) subsection 

3.3. faces the development of the LEM and its optimization; d) subsection 3.4. is focused 

over the results. 

 

3.1 – The real kiln 
 

The kiln considered is a short dry one for clinker production (length 54 m, external radius 

2.3 m, internal radius 2.1 m) installed in the production plant. The kiln can process up to 140 

T/h (total mass flow) of material. 

The material enters the kiln almost completely calcined at a temperature of 950 °C, then it is 

heated up to a maximum temperature of 1450 °C. This temperature is reached in the so-called 

sintering zone. Secondary air (i.e. air coming from the heat recovery circuit) enters the kiln 
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a rate of 80 m3/s and at a temperature of 1300 °C. Primary air is injected at ambient 

temperature through a multi-channel burner, at a flow rate of 5700 m3/h. Pulverized coal 

(7300 kg/h total mass flow) is transported in suspension with the primary air. The kiln is 

operated at a slight depression of -20 mmH2O respect to the atmospheric pressure, thus 

forcing gas extraction and conveying towards the precalciner. The kiln is rotated at 3.5-4.2 

rpm (rotational speed range) and it is titled at a 2 deg angle (relative angle between the kiln 

axis ant the horizontal plane). The filling level is 15 % and the retention time (i.e. the time 

spent by the material inside the kiln while moving towards the outlet) is 20 min. 

Table 3 reports thermo-physical properties of both the fuel and the material bed. The 

chemical composition of the fresh raw meal (i.e. the raw meal at ambient temperature, before 

entering the precalciner) is reported in Table 4. All data mentioned have been collected from 

the real cement production plant. The following measurements have been also made available 

for assessing the correctness of the model developed: maximum, minimum and average 

temperature of the external shell of the kiln; maximum temperature of the material bed in the 

sintering zone; temperature of the material bed at the outlet of the kiln; flame temperature; 

average speed of the gas inside the kiln. These variables  are reported in Table 5. 

 

Thermal conduction material bed 1.4 W/mK 

Bulk density material bed 700 kg/m3 

Specific heat material bed 0.25 kCal/gK 

Bulk density fuel 1 T/m3 

Heat of combustion fuel 2.6e7 J/kg 

Table 3. Thermo-physical properties of fuel and the material bed. 

 

 Mass fraction (%) 

SiO2 14 

Al2O3 2.68 

Fe2O3 2 

CaO 43 

MgO 2.6 

Loss on Ignition 34.5 

Table 4. Chemical composition of fresh raw meal. 
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Maximum T external shell 329 °C 

Minimum T external shell 194 °C 

Average T external shell 271 °C 

T material sintering 1450 °C 

T material out 1300 – 1400 °C 

T flame 1800 – 2100 °C 

Average speed gas 12 – 17 m/s 

Table 5. Measurements. 

 

3.2 – CFD-FEA model 
 

The kiln has been modelled using the COMSOL Multiphysics framework, which allows to 

efficiently integrate the different physics involved in the clinker production process. 

Geometry of the kiln is shown in Figure 7. 

 

 
Figure 7. Geometry of the kiln. 

 

Quadratic elements were used for a mapped wall mesh. Tetrahedral elements were used for 

meshing the material bed and the freeboard domain, with a progressive mesh refinement 

towards the area of the burner. The final mesh accounts five hundred thousand nodes. The 

accuracy of the model was verified by checking the convergence of the maximum 

temperature of the material (Tmax) after progressive mesh refinements. Mesh elements on a 

vertical cross-section of the kiln are shown in Figure 8. 

The final model was obtained by integrating the following analyses: a) a CFD analysis of the 

freeboard domain; b) transport and diffusion of pulverized fuel with the primary air; c) fuel 

oxidation; d) propagation of radiation inside the freeboard domain; e) conductive, convective 

and radiative heat exchanges between the freeboard region, the wall and the material bed; f) 

conductive heat transfer inside the wall and the material bed; g) chemical conversion of the 

material bed. Each analysis is discussed in detail in the following subsections. A full list of 

symbols is provided in Appendix A.2. 
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Figure 8. Mesh elements on a vertical cross-section. 

 

3.2.1 – CFD analysis of the freeboard region 
 

The freeboard region is described with a non-isothermal, k –  turbulent model. The energy 

equation accounts for a source term, Qf, that represents the heat generated by the fuel 

oxidation. Equation 9 reports the analytical expression of Qf: 

 

𝑸𝒇 = ∆𝒉𝒇 ∙ 𝑹𝒇 ∙ 𝒄𝒇 (9) 

 

In eq. 9, hf represents the enthalpy of the reaction, Rf the rate of the reaction, and cf the mass 

concentration of fuel. The analytical expression of Rf is discussed in subsection 3.2.3. 

The following boundary conditions are considered: a) a total mass flow of 80 m3/s of 

secondary air at a temperature of 1000 °C in the A1 section (see Figure 7); b) an absolute 

pressure of 1.008e5 Pa in the A2 section. 

The burner is modelled with three channels. The external channel provides the axial air, and 

it is characterized by an axial tilt, with respect to the kiln rotation axis, of 5 deg. The 

intermediate channel is orthogonal to the axis of the kiln and provides the transport air, i.e. 

the air with fuel particles in suspension. The internal channel shows an axial tilt of -3 deg 

with respect to the axis of the kiln and it provides the swirl air. The primary air enters the 

three channels at ambient temperature and at a total flow rate of 5700 m3/h. The swirl air 

exhibits a tangential velocity component in the circumferential direction of 100 m/s, which 

corresponds to a 150 rpm rotational speed of the burner.  
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3.2.2 – Transport and diffusion of pulverized fuel with the 
primary air 
 

Fuel transport is described by eq. 10: 

 

𝛁 ∙ (−𝑫𝒇 ∙ 𝛁𝒄𝒇) + 𝒖𝒈 ∙ 𝛁𝒄𝒇 = 𝑹𝒇 (10) 

 

In eq. 10 cf is the mass fraction of fuel, ug is the velocity field of the freeboard domain, Df is 

the diffusivity and Rf is the rate of the reaction. 

Fuel enters the kiln at a flow rate of 7300 kg/h, through the inlet section of the carrier air. A 

zero x-gradient condition for cf is imposed in the A2 section. 

 

3.2.3 – Fuel oxidation 
 

The model representing fuel oxidation is the one proposed by Spang [80]. Here the rate of 

oxidation Rf’ of a single particle is described by eq. 11: 

 

𝑹𝒇
′ = 𝒌𝒇 ∙ 𝒅𝑶 ∙ 𝑪𝑶𝟐 (11) 

 

Where CO2 is the O2 concentration; dO is the sub-fraction of CO2 being effectively available 

at the surface of the particle; kf is the rate constant, whose temperature dependency is 

expressed according to the Arrhenius formulation reported in eq. 12: 

 

𝒌𝒇 = 𝑨𝒇 ∙ 𝒆𝒙𝒑(
−𝑬𝒇

𝑹𝒈 ∙ 𝑻𝒈

) (12) 

 

In eq. 12, Af is the pre-exponential factor, Ef the activation energy, Rg the gas constant and Tg 

the temperature field of the freeboard domain. The analytical expression of dO is obtained 

from a 1D diffusion model and it is reported in eq. 13: 

 

𝒅𝑶 =

𝟑𝑫𝑶

𝒓𝒇
𝟐 ∙ 𝒌𝒇

𝟑𝑫𝑶

𝒓𝒇
𝟐 ∙ 𝒌𝒇

+ 𝟏
 (13) 

 

In eq. 13, rf is the radius of the particle and DO the diffusion constant of oxygen. A more 

exhaustive discussion about the 1D diffusion model is reported in [80]. 

The total rate of reaction Rf is a function of Rf’ and the fuel-to-air ratio ; its final expression 

is reported in eq. 14: 
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𝑹𝒇 = 𝑹𝒇
′ ∙ 𝜶 = 𝑹𝒇

′ ∙
𝑭𝒇 ∙ 𝝆𝒈 ∙ 𝑴𝑪

𝑭𝒈 ∙ 𝝆𝒇

 (14) 

 

Where MC is the molecular weight of fuel; Ff, f, Fg and g are the mass flow and the density 

of fuel and air, respectively. 

 

3.2.4 – Propagation of radiation inside the freeboard region 
 

The radiative intensity I(,s) at position s and direction  is expressed by eq. 15: 

 

𝛀 ∙ 𝛁𝑰(𝛀, 𝒔) = 𝒌 ∙ 𝑰𝒃(𝑻𝒈, 𝒏) − 𝜷 ∙ 𝑰(𝛀, 𝒔) +
𝝈𝒔

𝟒𝝅
∫ 𝑰(𝛀, 𝒔) ∙ 𝝓(𝛀′, 𝛀) ∙ 𝝏𝛀

𝟒𝝅

𝟎

 (15) 

 

Where k,  and s are the absorption, extinction and scattering coefficients of the gas media, 

respectively. Ib(Tg,n) is the blackbody radiation intensity, which is a function of both the 

temperature and the refractive index n of the medium. 

 

3.2.5 – Radiative, convective and conductive heat 
exchanges between the freeboard gas, the material bed and 
the wall 
 

The convective heat exchange coefficient is expressed by the Nusselt number Nu of the CFD 

domain (eq. 16): 

 

𝑵𝒖 =
𝒉 ∙ 𝒅

𝒌𝒈

 (16) 

Where h is the convective thermal transmittance, d the characteristic length and kg the thermal 

conductivity of the fluid. Nu is calculated from the Reynolds and Prandtl numbers of the CFD 

domain. 

The net radiative heat exchange between the exposed surfaces of the internal wall and the 

material bed is also accounted. 

The conductive heat exchange between the material bed and the wall is calculated assuming 

a 200 W/m2K heat exchange coefficient, as indicated in [83][84]. 

 

3.2.6 – Heat conduction inside the wall and the material bed 
 

The heat equation involving the wall and the material bed is reported in eq. 17: 
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𝝆𝒔,𝒘 ∙ 𝒄𝒔,𝒘 ∙ (
𝝏𝑻𝒔,𝒘

𝝏𝒕
+ 𝒖𝒔,𝒘 ∙ 𝛁𝑻𝒔,𝒘) = 𝒌𝒔,𝒘 ∙ 𝛁𝟐𝑻𝒔,𝒘 + 𝑸𝒔 (17) 

 

In eq. 17, s,w, cs,w, ks,w are the mass density, the specific heat and the thermal conductivity of 

the material bed and the wall, respectively; u is the velocity field. The wall domain rotates at 

3.8 rpm, while the material bed undergoes a translational speed (along the kiln) of 45 mm/s. 

Such translational speed corresponds to a retention time of 20 minutes. The source term Qs 

represents the heat absorbed or generated by the chemical conversions inside the material 

bed. 

The thermo-physical properties characterizing the material bed are reported in Table 3. Wall 

properties are taken from a typical brick refractory. 

A temperature of 950 °C is imposed in the A3 section. A zero x-gradient condition for Ts is 

imposed in the A4 section. The external shell of the kiln dissipates heat towards the 

environment (temperature of the environment is 20 °C). An emissivity value of 0.9 is 

assumed for the external surface of the kiln, whilst the convective heat exchange coefficient 

is set to 10 W/m2K. 

 

3.2.7 – Chemical conversion of the material bed 
 

Chemical conversion inside the material bed is calculated according to the set of eqs. 69 to 

77, which are reported in Appendix A.2. The initial mass fractions for the chemical species 

are obtained from Table 4 by subtracting the Loss on Ignition to the total mass; the values 

thus estimated are reported in Table 6. Equations from 69 to 77 are solved through an external 

routine (developed in MATLAB) coding the iterative procedure represented in Figure 9. 

Here an initial solution Sol1 is obtained from COMSOL, by assuming a zero heat source 

Qs,0 inside the material bed; a MATLAB solver for ordinary differential systems (ode23) 

provides the solution Chem1 of eqs. from 69 to 77 assuming the temperature field Ts,1 from 

Sol1; the heat source Qs,1 is calculated according to eq. 78; Sol2, assuming the heat source 

Qs,1, is then estimated. All these steps are iterated until the relative variation of Qs,i with 

respect to Qs,i-1 is lower then a predefined threshold (1e-3). 

 

 
Figure 9. Iterative routine for calculating chemical conversion. 
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 Mass fraction (%) 

SiO2 21.37 

Al2O3 4.09 

Fe2O3 3.05 

CaO 65.65 

MgO 3.96 

Table 6. Initial mass fractions. 

 

3.3 – Lumped element model 
 

Rotary kilns are heat exchangers, where the material bed moves counter-current to the gas of 

the freeboard region. A lumped element-based description of the whole system can be 

achieved by assuming four different nodes representing, respectively, the external wall, the 

internal wall, the freeboard gas and the material bed. 

The heat balances for each node are reported in eqs. 18 to 31. In these equations Qf represents 

the heat produced inside the gas from fuel combustion; the rate of combustion Rf is calculated 

according to the same 1D diffusion model used in [80] (eq. 22); Qc represents the heat 

generated/absorbed inside the material bed by exothermic and endothermic chemical 

conversions. Qc can be expressed by knowing the reactions involved in clinker sintering, 

besides their enthalpies and rates (see Table 7). Equations 23 to 31 represent mass balances 

for fuel and solid species. Saeman equation [85] provides correlation of the filling level with 

the operative parameters of the kiln (i.e. rotating speed, tilt angle and mass flow). Detailed 

expressions of the different terms appearing in eqs. 18 to 31, besides a full list of symbols, 

are reported in Appendix A.3. 

 

𝝆𝒈𝒄𝒈𝑨𝒈𝒗𝒈 ∙
𝝏𝑻𝒈

𝝏𝒙
= 𝑸𝒇 + 𝒉𝒈𝒘(𝑻𝒘 − 𝑻𝒈) + 𝒉𝒈𝒔(𝑻𝒔 − 𝑻𝒈) (18) 

𝝆𝒔𝒄𝒔𝑨𝒔 ∙ (
𝝏𝑻𝒔

𝝏𝒕
+ 𝒗𝒔

𝝏𝑻𝒔

𝝏𝒙
) = 𝑸𝒄 + 𝒉𝒔𝒘(𝑻𝒘 − 𝑻𝒔) + 𝒉𝒈𝒔(𝑻𝒈 − 𝑻𝒔) (19) 

𝝆𝒘𝒄𝒘𝑨𝒘𝒊 ∙
𝝏𝑻𝒘𝒊

𝝏𝒕
= 𝒉𝒈𝒘(𝑻𝒈 − 𝑻𝒘𝒊) + 𝒉𝒔𝒘(𝑻𝒔 − 𝑻𝒘𝒊) +

𝒌𝒘

𝒓𝒆 − 𝒓𝒊

(𝑻𝒘𝒆 − 𝑻𝒘𝒊) (20) 

𝝆𝒘𝒄𝒘𝑨𝒘𝒆 ∙
𝝏𝑻𝒘𝒆

𝝏𝒕
=

𝒌𝒘

𝒓𝒆 − 𝒓𝒊

(𝑻𝒘𝒊 − 𝑻𝒘𝒆) + 𝒉𝒆𝒏𝒗(𝑻𝒆𝒏𝒗 − 𝑻𝒘𝒆) (21) 
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𝝏𝑪𝒇

𝝏𝒙
= −

𝑹𝒇

𝒗𝒈

 (22) 

𝝏𝑪𝑪𝒂𝑪𝑶𝟑

𝝏𝒕
= −𝒗𝒔

𝝏𝑪𝑪𝒂𝑪𝑶𝟑

𝝏𝒙
− 𝑹𝑪𝒂𝑪𝑶𝟑 (23) 

𝝏𝑪𝑪𝒂𝑶

𝝏𝒕
= −𝒗𝒔

𝝏𝑪𝑪𝒂𝑶

𝝏𝒙
+

𝑴𝑪𝒂𝑶

𝑴𝑪𝒂𝑪𝑶𝟑

𝑹𝑪𝒂𝑪𝑶𝟑 − 𝟐
𝑴𝑪𝒂𝑶

𝑴𝑪𝟐𝑺

𝑹𝑪𝟐𝑺 − 𝟑
𝑴𝑪𝒂𝑶

𝑴𝑪𝟑𝑨

𝑹𝑪𝟑𝑨

− 𝟒
𝑴𝑪𝒂𝑶

𝑴𝑪𝟒𝑨𝑭

𝑹𝑪𝟒𝑨𝑭 −
𝑴𝑪𝒂𝑶

𝑴𝑪𝟑𝑺

𝑹𝑪𝟑𝑺 

(24) 

𝝏𝑪𝑺𝒊𝑶𝟐

𝝏𝒕
= −𝒗𝒔

𝝏𝑪𝑺𝒊𝑶𝟐

𝝏𝒙
−

𝑴𝑺𝒊𝑶𝟐

𝑴𝑪𝟐𝑺

𝑹𝑪𝟐𝑺 (25) 

𝝏𝑪𝑨𝒍𝟐𝑶𝟑

𝝏𝒕
= −𝒗𝒔

𝝏𝑪𝑨𝒍𝟐𝑶𝟑

𝝏𝒙
−

𝑴𝑨𝒍𝟐𝑶𝟑

𝑴𝑪𝟒𝑨𝑭

𝑹𝑪𝟒𝑨𝑭 −
𝑴𝑨𝒍𝟐𝑶𝟑

𝑴𝑪𝟑𝑨

𝑹𝑪𝟑𝑨 (26) 

𝝏𝑪𝑭𝒆𝟐𝑶𝟑

𝝏𝒕
= −𝒗𝒔

𝝏𝑪𝑭𝒆𝟐𝑶𝟑

𝝏𝒙
−

𝑴𝑭𝒆𝟐𝑶𝟑

𝑴𝑪𝟒𝑨𝑭

𝑹𝑪𝟒𝑨𝑭 (27) 

𝝏𝑪𝑪𝟐𝑺

𝝏𝒕
= −𝒗𝒔

𝝏𝑪𝑪𝟐𝑺

𝝏𝒙
+ 𝑹𝑪𝟐𝑺 −

𝑴𝑪𝟐𝑺

𝑴𝑪𝟑𝑺

𝑹𝑪𝟑𝑺 (28) 

𝝏𝑪𝑪𝟑𝑨

𝝏𝒕
= −𝒗𝒔

𝝏𝑪𝑪𝟑𝑨

𝝏𝒙
+ 𝑹𝑪𝟑𝑨 (29) 

𝝏𝑪𝑪𝟒𝑨𝑭

𝝏𝒕
= −𝒗𝒔

𝝏𝑪𝑪𝟒𝑨𝑭

𝝏𝒙
+ 𝑹𝑪𝟒𝑨𝑭 (30) 

𝝏𝑪𝑪𝟑𝑺

𝝏𝒕
= −𝒗𝒔

𝝏𝑪𝑪𝟑𝑺

𝝏𝒙
+ 𝑹𝑪𝟑𝑺 (31) 

 

The mathematical system accounts for a total of 14 variables, and provides a lumped element-

based description of the thermal and chemical phenomena involved in clinker sintering. 

The numerical solution of the system involving eqs. from 18 to 31 is obtained through an 

iterative routine, which ensures a fast and robust (i.e. convergence for a wide range of input 

parameters) execution. Two numerical methods, specifically developed for handling steady 

and transient problems, have been developed. A detailed description of both is reported 

hereafter. 
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Reaction 
Enthalpy 

(J/kg) 

Pre-exp. 

(1/s) 

Act. En. 

(J/mol) 

𝑪𝒂𝑪𝑶𝟑 → 𝑪𝒂𝑶 + 𝑪𝑶𝟐 1.66e6 4.55e31 7.81e5 

𝟐𝑪𝒂𝑶 + 𝑺𝒊𝑶𝟐 → 𝑪𝟐𝑺 -6.03e5 4.11e5 1.93e5 

𝟑𝑪𝒂𝑶 + 𝑨𝒍𝟐𝑶𝟑 → 𝑪𝟑𝑨 -3.7e4 8.33e6 1.94e5 

𝟒𝑪𝒂𝑶 + 𝑨𝒍𝟐𝑶𝟑 + 𝑭𝒆𝟐𝑶𝟑 → 𝑪𝟒𝑨𝑭 -1.09e5 8.33e8 1.85e5 

𝑪𝟐𝑺 + 𝑪𝒂𝑶 → 𝑪𝟑𝑺 -4.48e5 1.33e5 2.56e5 

Table 7. Reactions involved in clinker sintering [80]. 

 

3.3.1 – Steady simulation 
 

In the steady problem all the spatial derivatives in eqs. 18 to 31 are set to zero. As a 

consequence, eqs. 20 and 21 become algebraic equations. The numerical problem thus turns 

out in a Boundary Value Problem (BVP) [86], associated with a set of 12 first-order, non-

linear Ordinary Differential Equations (ODEs). The following aspects contribute to make the 

achievement of a numerical solution tricky: a) non-linearity of the heat balance equations; b) 

strong coupling between the heat and mass balance equations; c)the problem is a BVP one, 

and its numerical solution is more complicated with respect to an Initial Value Problem (IVP) 

[86]. 

The numerical solution is obtained by dividing the initial system into two different 

subsystems: a) the thermal system, which accounts for the heat balances (eqs. 18 to 21) and 

the fuel mass balance (eq. 22); b) the chemical system, which includes the mass balance 

equations for all the solid species (eqs. 23 to 31). The chemical system is an IVP because all 

the boundary conditions (BCs) are defined at the kiln inlet (x=0). On the contrary, the thermal 

system represents a BVP because eq. 19 requires a BC at x=0, whilst the BCs for eqs. 18 and 

22 are imposed at x=L, being L the kiln otlet. However, the thermal system can be 

reformulated as an IVP with all the BCs defined at x=L by using the shooting method [86] 

on eq. 19; its application is described hereafter. 

 

{

𝒅𝑻𝒔

𝒅𝒙
= 𝒇(𝑻𝒔, 𝒙)

𝑻𝒔(𝟎) = 𝑻𝒔,𝒊𝒏

⟶ {

𝒅𝑻𝒔

𝒅𝒙
= 𝒇(𝑻𝒔, 𝒙)

𝑻𝒔(𝑳) = 𝜶
 (32) 

 

The shooting method replaces the Dirichlet BC at z=0 with a guess, the  term, at x=L. The 

 term is calculated as the term that minimizes the following condition: 

 

𝜶 = 𝒂𝒓𝒈𝒎𝒊𝒏𝜶[𝒂𝒃𝒔(𝑻𝒔(𝜶)|𝒙=𝟎 − 𝑻𝒔,𝒊𝒏)] (33) 
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The application of the shooting method to eq. 19 is graphically depicted in Figure 10: here it 

can be well appreciated the variation of the thermal solution when changing the guess on the 

temperature of the material at the outlet of the kiln (Ts,out). 

 

 
Figure 10. Application of the shooting method. 

 

The numerical solution of the whole system (thermal plus chemical) is obtained through the 

following steps: 

I. Qc, Ts, Tg, Twi and Twe are set to zero; this represents the initialization step. 

II. The thermal system is addressed at first, by assuming Qc as a known parameter. The 

thermal system is therefore decoupled from the chemical one. The shooting method 

is applied to eq. 19, then the numerical solution is obtained with a MATLAB 

solver for IVPs (ode23). 

III. Ts, Tg, Twi, Twe are updated according to the solution of the thermal problem. 

IV. The chemical system is then addressed, by assuming the thermal profiles as known 

parameters. The chemical system is therefore decoupled from the thermal one, and 

the numerical solution is obtained with a MATLAB solver for IVPs (ode23). 

V. Qc is updated according to the chemical solution. 

Steps II to V are iterated until the Root Mean Square Vector Difference (RMSVD) between 

solutions n and n-1 is smaller than a predefined threshold (1e-3). 

The steady solver has been successfully tested at different operating conditions. Correctness 

of the solution has been verified by comparing it with another obtained with a MATLAB 

BVP solver (bvp4c), see Figure 11 for comparison (convergence of bvp4c has been possible 

only by providing an initial guess consisting of the solution obtained with the present 
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routine). Computational time for steady solution is lower than 1.5 s on a i5 Dual Core 8 Gb 

RAM PC. 

 

 
Figure 11. Temperature profiles from iterative routine (continuous line) and bvp4c (dots). 

 

3.3.2 – Transient simulation 
 

A Finite Difference Method (FDM) [86] for discretizing the spatial derivatives is exploited 

for solving the transient problem. The system obtained after the application of the FDM is a 

set of 14*N1 (being N1 the number of evaluation points) ordinary differential equations, which 

constitute an IVP in time domain. The initial state is obtained from the steady solver, and 

then a MATLAB solver for IVPs (ode23) performs integration in time domain. Attention 

must be paid in order to meet the Courant-Fridrichs-Lewy (CFL) condition [87]: a maximum 

time step must be imposed according to N1. Computational time is strictly related to N1, as 

the latter influences both the dimension of the system and the maximum admissible time step. 

Indeed, when considering a discretization in one hundred lines, transient simulation over a 

3600 s time period requires less then 10 s on a i5 Dual Core 8 Gb RAM PC, which can be 

considered a short time when compared to the typical time scales of a process deviation. 
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3.3.3 – GA-based optimization 
 

The LEM developed does not provide a mathematical representation of the aerodynamic 

phenomena inside the freeboard region. Thus an analytical calculation of the gas velocity, 

besides convective heat exchange coefficients, is not possible. However, a comparison of 

LEM results with the reference CFD-FEA prediction could be effective in providing an a-

posteriori estimation of the aforementioned parameters. 

For this purpose, the MATLAB GA-optimization environment has been used for driving 

the adjustment of these parameters. The optimization step aimed at minimizing several 

objective functions, by varying the input parameters reported in Table 8. The objective 

functions are defined for each variable yLEM of the LEM, and they represent the RMSVD 

calculated respect to the correspondent variable of the CFD model yCFD. The analytical 

expression is reported in eq. 34: 

 

𝑹𝑴𝑺𝑽𝑫𝒚 = √
∑ (𝒚𝒊,𝑳𝑬𝑴 − 𝒚𝒊,𝑪𝑭𝑫)

𝟐𝑵𝟐
𝒊=𝟏

𝑵𝟐

 (34) 

 

Being N2 the number of equal spaced evaluation points along the x coordinate. The main 

parameters of the GA-optimization are reported in Table 9, while the projection of the final 

Pareto front on a two objectives-plane is shown in Figure 12. 

 

 Min Max 

vg 11 m/s 15 m/s 

Convgs 10 W/m2K 200 W/m2K 

Convgw 10 W/m2K 200 W/m2K 

Table 8. Variation ranges for the input parameters. 

 

Solver MATLAB GA algorithm 

Crossover function Scattered 

Mutation function Gaussian 

Population size 20 

Table 9. Parameters of the GA optimization. 

 

Among the solutions constituting the Pareto front, the solution providing the absolute 

minimum for the deviation between the temperature profiles of the material bed was chosen. 

The correspondent values for vg, Convgw and Convgs are 14 m/s, 40 W/m2K and 40 W/m2K, 

respectively. 

Figure 13 shows the LEM steady solution after the optimization. A comparison of the LEM 

solution with the reference CFD-FEA prediction is shown in Figure 14. Figure 13a shows the 



 31 

temperature profiles of the material bed, the freeboard gas, the internal wall and the external 

wall. Figure 13b shows the fuel concentration, i.e. the fuel mass flow normalized respect to 

the initial mass flow at x=L. Figure 13c and Figure 13d show the profiles of the initial and 

final chemical species, respectively. A direct comparison between the LEM predictions and 

measurements from the real plant is reported in Table 10: an overall agreement in the order 

of 1 % can be noticed; mass fraction values of 55 % for C3S and 20 % for C2S for the final 

clinker composition are consistent with the typical fractions indicated by literature [54]. 

 

 
Figure 12. 2D-projection of the Pareto front. 

 

 Measured Simulated 

Maximum T external shell 329 °C 333 °C 

Minimum T external shell 194 °C 205 °C 

Average T external shell 271 °C 275 °C 

T material sintering 1450 °C 1448 °C 

T material out 1300 – 1400 °C 1409 °C 

T flame 1800 – 2100 °C 1900 °C 

Table 10. LEM steady solution compared to measurements. 
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a) 

 
b) 

 
c) 

 
d) 

Figure 13. LEM steady solution after optimization. 

 

The lumped element model is provided with a Graphical User Interface (GUI) for the 

operator. Appendix A.4 reports a “Read me” file for its installation and use. 
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Figure 14.. Temperature profiles – comparison between LEM prediction and CFD-FEA 

model. 

 

3.4 - Results 
 

3.4.1 – CFD-FEA model 
 

This section discusses the results of the CFD-FEA simulation. A comparison between 

simulated data and information retrieved from the real plant is also provided. 

Figure 15 shows the x-direction velocity field of the freeboard region on a xy-cross sectional 

plane. The streamlines in the area near the burner are shown in Figure 16. The swirl air 

exhibits a strong out-of-plane velocity component impressed by the rotation of the burner, 

which is highly effective in increasing the rate of mixing between the carrier air and the 

secondary air, thus improving the efficiency of the combustion. Close to the burner, the 

primary and the secondary air show different magnitudes of speed. Moving towards the other 

end of the kiln the primary air progressively decreases its speed, and the x-component of the 

velocity field sets up to an average value of 15 m/s, which is in good agreement with field 

data (12-17 m/s). 
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Figure 15. x-direction velocity field (m/s) – freeboard region. 

 
Figure 17 shows the fuel concentration in the area close to the burner. The fuel enters the kiln 

through the carrier air, and then the gas transports it. Whilst moving inside the kiln, the 

temperature of the fuel is increased by heat exchange with the secondary air, until it reaches 

auto-ignition. The preheating of the fuel up to the auto-ignition condition is improved by the 

turbulent regime near the burner. Indeed, this regime enhances the heat redistribution 

between primary and secondary air. After auto-ignition, the fuel starts reacting with the free 

oxygen. The exothermic reaction increases the temperature of the gas up to 2013 °C. After 

that, the fuel concentration coherently goes to zero, as a consequence of its consumption 

during the oxidizing reaction. 

Figure 18 and Figure 19 present the temperature distribution inside the freeboard region. The 

flame in the sintering zone of the kiln, which starts when the fuel reaches auto-ignition, is 

clearly visible. Temperature of the secondary air and the flow rate of the primary air influence 

the position of the ignition point: indeed, these aspects affect the preheating rate of the fuel 

when it enters the kiln. Simulation indicates a flame temperature of 2013 °C, which fits in 

the range of temperatures observed in the real kiln (1800-2100 °C). The high flame 

temperature entails strong radiation in the sintering zone, thus increasing the heating rate of 

the material in this part of the kiln. Moving towards the other end of the kiln, the gas 

exchanges heat with the material bed and the wall. Therefore, the gas temperature reduces. 
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The gas exits the kiln at a temperature of about 1200 °C, then it is moved towards the 

precalciner. 

The temperature distribution of the material bed is shown in Figure 20. It is interesting to 

analyze the temperature profiles (i.e. cross-sectional average temperature vs. x-position) for 

the gas, the wall and the material bed (see Figure 21). The material exhibits a continuous 

heating when it moves along the kiln, as a consequence of the heat exchange with the gas and 

the wall; in particular, the rotating wall provides a fundamental heat-exchange contribution, 

by receiving heat from the freeboard gas and releasing it to the material bed through the 

contact area. The material reaches a maximum temperature of 1445 °C in the sintering zone, 

where the flame provides strong radiation. When moving towards the exit of the kiln, the 

temperature of the material decreases to 1398 °C. Again, results of the simulation are 

consistent with data from the real kiln (see Table 5). 

Figure 22 shows the chemical profiles (i.e. mass fractions vs. x-position) of C2S, C4AF, C3A 

and C3S along the kiln. The mass fractions for C2S and C3S (the two major components) at 

the outlet are consistent with data from literature [54]. 

 

 
Figure 16. Streamlines – burner area. 
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Figure 17. 𝑙𝑜𝑔 (

𝐶𝑓

𝐶𝑓_𝑖𝑛𝑙𝑒𝑡
) – burner area. 
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Figure 18. Temperature field (K) – freeboard region. 
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Figure 19. Temperature field (K) – burner area. 
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Figure 20. Temperature distribution of the solid material (K) 

. 
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Figure 21. Temperature profiles. 
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Figure 22. Chemical profiles. 

 

3.4.2 – Optimized lumped element model 
 

Forecasts of a kiln’s behavior are important in order to anticipate possible deviations from 

steady state operation under nominal conditions. Having a tool that is able to provide accurate 

predictions of the kiln’s behavior in response to changes of certain operative parameters thus 

becomes extremely useful. For such reason the LEM performances on transient predictions 

were tested in several working conditions. 

An example is reported in Figure 23, where the kiln response after increasing the fuel flow 

from 1.5 kg/s to 2.5 kg/s (the air flow has been proportionally increased also, to keep the 

same stoichiometric ratio) is shown on an observing period of 3600 s. Results show two 

effects: a) the first is a slight increase of the flame temperature, which passes from 1830 °C 

to 1901 °C; b) the second is a shift of the sintering zone, which moves towards the kiln inlet; 

it is therefore clear that the chemical reactions are anticipated. The maximum temperature of 

the material increases from 1370 °C to 1535 °C; as a consequence, the chemical composition 

of clinker shows a reduction of non-reacted CaO to almost 0 %, whilst C3S passes from 28 

% to 64 % and C2S content is reduced from 40 % to 13 %. It is worth noting the trend shown 

by the temperature of the gas exiting the kiln as the mass flows of both air and fuel increase. 

Considering the nominal flow rates characterizing the simulation reported in 3.3.3 and the 

flow rates of the present simulation, which are across the nominal ones, it can be noted that 

the temperature of the exiting gases progressively increases by passing from 1152 to 1317 

°C. This phenomenon indicates a reduction of the heat exchange efficiency between the 
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freeboard gas and the material bed, thus resulting in a worsening of the energy performances 

of the process. 

 

 
a) 

 
b) 

 
c) 

 

Figure 23. Step response after increasing the fuel flow. 

 

Figure 24 shows the kiln response after a reduction of the mass flow of raw meal (from 140 

to 112 T/h), during a 3600 s simulation period. The material increases its temperature up to 

1600 °C and therefore the weight fraction of C3S in clinker increases up to 69 %, whilst C2S 

and unreacted CaO are reduced to respectively 10 % and 0 %. Unlike the previous simulation, 

this time the sintering zone does not move. 

The next simulation considers a more drastic reduction of mass flow respect to the previous 

case (from 140 to 90 T/h). Kiln response on a 3600 s period is shown in Figure 25. The 

maximum temperature of the material rises up to 1680 °C. As a consequence, unreacted CaO 

is reduced to almost 0 %, whilst final mass fractions of C2S and C3S become 8 % and 71 % 

respectively. 

In Figure 26 the same reduction of mass flow is compensated by adjusting the rotating speed 

of the kiln (from 4 to 3.2 rpm) so the retention time remains unchanged (20 min); also fuel 

and air flows are proportionally reduced. It can be noted that the temperature profile of the 

material is maintained quite constant during the whole transient period, until the new steady 

state is reached. Therefore, also chemical profiles remain almost unchanged. 

The next two simulations are steady analyses where the gas emissivity g and the gas-solid 

convective heat exchange coefficient are changed. Figure 27 shows the effect of an increase 

of the convective heat exchange by a factor of ten. Increasing the convective heat exchange 

improves the overall efficiency of the kiln: this is clear when observing the temperature of 
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the exiting gases, which decreases from 1245 to 1143 °C. The maximum temperature of the 

material increases up to 1664 °C. Also the chemical composition of clinker changes: 

unreacted CaO is reduced to about 0 %, whilst the weight percentages of C3S and C2S 

become 69 % and 9 % respectively. Figure 28 shows results of a simulation run after reducing 

the gas emissivity from 0.2 to 0.05. Again, a reduction of the gas emissivity entails a 

worsening of the kiln efficiency, so the temperature of the exiting gases increases up to 1358 

°C. The maximum temperature of the material bed decreases to 1342 °C. The weight 

percentages of C3S and C2S become respectively 31 % and 37 %. Changing the emissivity 

is more incident in the sintering zone of the kiln, where the gas temperature is much higher 

than in the other areas. 

 

 
a) 

 
b) 

 
c) 

 

Figure 24. Step response after reducing the mass flow of raw meal to 112 T/h. 
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a) 

 
b) 

 
c) 

 

Figure 25. Step response after reducing the mass flow of raw meal to 90 T/h. 
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a) 

 
b) 

 
c) 

 

Figure 26. Step response after reducing the mass flow of raw meal to 90 T/h. Rot. Speed and 

fuel flow are adjusted 

. 
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a) 

 
b) 

 
c) 

 

Figure 27. Convective heat exchange – lines are for section 3.3.3 prediction, dots for 

increased value. 
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a) 

 
b) 

 
c) 

 

Figure 28. Emissivity – lines are for section 3.3.3 prediction, dots for reduced value. 
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Section 4 – Estimation of the uncertainty 

of the soft sensor 

 
This section addresses the problem of the estimation of uncertainty of the virtual sensor. 

Estimation of the accuracy is conduced according to the method discussed in section 1.4. The 

section is organized as follows: a) in subsection 5.1 the propagations of the input uncertainties 

through the lumped element model are estimated according to the guidelines reported in the 

GUM [53]; b) subsection 5.2 introduces the XDEM framework, i.e. a Lagrangian approach 

that allows for an extremely accurate representation of material in powder state; c) subsection 

5.3 discusses the application of XDEM to the prediction of the thermochemical phenomena 

involving the material bed of the kiln considered; d) subsection 5.4 presents the XDEM 

results. In particular, it is pointed out the capability of XDEM for providing accurate 

predictions of the “in-plane” segregation phenomena involving both thermal and chemical 

variables, which are neglected in the lumped model; e) in subsection 5.5 the results are 

elaborated in order to get a quantitative estimation the uncertainty introduced by the lumped 

model. 

 

4.1 – Propagation of the input uncertainties 
 

The propagation of the input uncertainties was assessed following the guidelines reported in 

the GUM [53]. The maximum temperature of the material Tmax was considered as the output 

of the instrument (indicated with y in the following in order to be consistent with the GUM 

notation); the choice was justified because of the great impact this variable has on the quality 

of the final clinker product. 

A mono-variant sensitivity analysis has been performed on the different inputs of the LEM: 

a normal probability distribution (standard deviation set equal to 3 % of the mean value) was 

associated to each test variable. The sensitivity analysis identified the inputs whose 

uncertainty affects the most the accuracy of the output, i.e.: a) the specific heat of the material 

bed; b) the fuel flow; c) the enthalpy of combustion of the fuel; d) the mass flow of the 

material bed. The correspondent uncertainties on y (uy) are reported in Table 11. 

 

Input uy 

Enthalpy of combustion 36.4 °C 

Fuel flow 36.1 °C 

Specific heat 21.1 °C 

Mass flow 12.0 °C 

Table 11. Mono-variant sensitivity analysis. 
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These parameters have been assumed as the variables to be considered in Monte Carlo 

simulations aimed at assessing the uncertainty associated to y. The adaptive procedure 

reported in Appendix A.1 was adopted, which considers carrying out an increasing number 

of Monte Carlo trials until the result of interest has stabilized in a statistical sense. Figure 29 

shows the standard deviations s associated with yest, uy, ylow and yhigh (respectively, the 

estimate of y, the associated uncertainty and the left- and right-hand endpoints of the coverage 

interval) whilst Monte Carlo iterations are proceeding. 

 

 
Figure 29. Standard deviations vs. iterations. 

 

Four Monte Carlo simulations have been run using the different input distributions reported 

in Table 00, where the final uncertainties associated to y are also reported. Results show a 

linear propagation of the uncertainty through the model. 

 

 u/ of input parameters uy 

MC 1 3.3 % 61.7 °C 

MC 2 1.65 % 31.0 °C 

MC 3 0.825 % 15.5 °C 

MC 4 0.4125 % 7.8 °C 

Table 12. MC simulations. 
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4.2 – Extended Discrete Element Method 
 

XDEM is a numerical framework, where a DEM approach is exploited for resolving particles 

dynamics and heat exchanges between particles, whilst a Eulerian approach based on CFD 

equations is used for representing the fluid domain. One-dimensional models provide a 

description of the heat and mass transports inside each particle. Coupling between DEM and 

CFD is achieved by introducing heat and mass transfers at the fluid-particles interfaces. 

Besides, Darcy’s law accounts for the pressure drop of the fluid while passing through the 

particles. Indeed, the integrated DEM-CFD environment allows for addressing numerous 

challenges in engineering, e.g. drug production, agriculture and food processing industries, 

mining, construction and agriculture machinery, metal manufacturing, energy production and 

system biology. XDEM has already been applied to the prediction of thermochemical 

phenomena involved in different industrial processes [88][89][90][91], where it is stressed 

the excellent agreement of the prediction of CaCO3 decomposition under non-steady thermal 

conditions [92]. 

This section provides a description of the XDEM framework. The DEM approach handling 

the powder phase is presented at first, followed by a description of the CFD approach 

managing the fluid domain. The coupling of DEM with the CFD approach is discussed at 

last. 

 

4.2.1 – DEM approach for the powder phase 
 

4.2.1.1 – Particles dynamics 
 

In XDEM the trajectory of each particle i is calculated deterministically by applying 

Newton’s law of motion, as indicated as follows: 

 

𝒅(𝒎𝒊 ∙ 𝒗⃑⃑ 𝒊)

𝒅𝒕
= 𝑭⃑⃑ 𝒊 (35) 

𝒅(𝑰𝒊 ∙ 𝝎⃑⃑⃑ 𝒊)

𝒅𝒕
= 𝑴⃑⃑⃑ 𝒊 (36) 

 

Where mi, Ii, vi and i are the mass, the moment of inertia, the velocity and the angular 

velocity of the particle i, respectively. Fi is the resultant of the forces and Mi is the resultant 

of the moments of forces. 

In general, a particle is subject to volume forces (electromagnetic, electrostatic, gravitational, 

etc.) and contact forces due to the mechanical interaction with its neighbors or boundaries. 

Equation 37 reports the expression of the normal component fn of the contact force; the shear 

component f is expressed by eq. 38. 
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𝒇𝒏,𝒊𝒋,𝒕 = 𝑲𝒏 ∙ 𝜹𝒏,𝒊𝒋,𝒕
𝟑/𝟐

 (37) 

𝒇𝝉,𝒊𝒋,𝒕 = 𝒇𝝉,𝒊𝒋,𝒕−𝟏 + 𝑲𝝉 ∙ (𝜹𝝉,𝒊𝒋,𝒕 − 𝜹𝝉,𝒊𝒋,𝒕−𝟏) (38) 

 

In both, eq. 37 and eq. 38, i and j are the indices of two particles in contact, n and  are the 

normal and the tangential overlaps, respectively, t refers to the time step. Kn and K are 

calculated according to the Hertz and Coulomb models, respectively. 

Equation 35 and eq. 36 are integrated in the time domain; then the positions of the particles 

are updated. A proper evaluation of the contact forces requires an extremely high time 

resolution. Therefore, also simulations over a short time period generally require an 

extremely high number of integration steps. The intrinsic heaviness of this kind of processing 

becomes more relevant as the number of particles increases. Simplifications like periodic or 

symmetric boundaries can be assumed for limiting the total number of particles involved in 

a simulation. Nevertheless, the optimization of the algorithms employed for neighbors’ 

detection and for time integration should be a mandatory issue. 

 

4.2.1.2 – Conductive and radiative heat exchanges between the particles 
 

In XDEM each particle i exchanges heat with every other particle j and/or boundaries that 

are comprised inside the respective cutoff distances for conduction and radiation. Conductive 

and radiative heat exchanges are calculated according to 

 

𝒒̇𝒊,𝒄𝒐𝒏𝒅 = ∑
𝟏

𝟏
𝝀𝒊

+
𝟏
𝝀𝒋

∙
𝑻𝒊 − 𝑻𝒋

𝚫𝒙𝒊𝒋

𝑵

𝒋=𝟏

 (39) 

𝒒̇𝒊,𝒓𝒂𝒅 = ∑𝑽(𝒊→𝒋) ∙ 𝝈 ∙ (𝑻𝒊
𝟒 − 𝑻𝒋

𝟒)

𝑴

𝒋=𝟏

 (40) 

 

where N and M are the total number of particles comprised inside the cutoff distances for 

conduction and radiation, respectively;  is the Stefan-Boltzmann constant; V(ij) is the 

reciprocal view factor and xij the distance between the particles i and j;  is the thermal 

conductivity. 

 

4.2.1.3 – Heat and mass transport inside the particles 
 

XDEM considers a particle as composed by solid, liquid and gaseous phases. The particle is 

assumed in thermal equilibrium: this means the different phases have the same temperature 

distribution. This assumption is based on the assessment of the ratio of heat transfer by 

conduction to the rate of heat transfer by convection expressed by the Peclet number, as 

described in [93] and [94]. Heat and mass transports along the radial direction of the particle 
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are described by a set of one-dimensional and transient differential equations for conservation 

of chemical species, momentum and energy, as well as the state equations. 

Equation 41 expresses the mass conservation of a solid or liquid specie i; the mass 

conservation of a gaseous specie is reported in eq. 42. In eq. 41 and eq. 42 k,i is the 

production or consumption rate consequent to the chemical conversion k. 

 

𝝏𝝆𝒊

𝝏𝒕
= ∑𝑴𝒊 ∙ 𝛀𝒌,𝒊

𝒌

 (41) 

𝝏𝝐𝒑 ∙ 𝝆𝒊

𝝏𝒕
+

𝟏

𝒓

𝝏

𝝏𝒓
(𝒓 ∙ 𝝆𝒊 ∙ 𝒖𝒈) =

𝟏

𝒓

𝝏

𝝏𝒓
(𝑫𝒊 ∙ 𝝐𝒑 ∙

𝝏𝝆𝒊

𝝏𝒓
) + 𝝐𝒑 ∙ ∑𝑴𝒊 ∙ 𝛀𝒌,𝒊

𝒌

 (42) 

 

The conservation of momentum of the gas phase is reported in eq. 43, and it is obtained by 

applying the Darcy’s law: 

 

−
𝝏𝝐𝒑 ∙ 𝒑𝒈

𝝏𝒓
=

𝝁𝒈 ∙ 𝝐𝒑

𝑲𝒑

∙ |𝒖⃑⃑ 𝒈| (43) 

 

Where Kp identifies the so-called permeability coefficient, which characterizes the 

morphology of the porous particle. 

The energy equation is based on the homogeneous model for a porous medium as described 

by Faghri [95] and written as reported in eq. 44, where eff is the effective thermal 

conductivity, whose calculation is described in [93]. 

 

𝝏(𝝆𝒑 ∙ 𝒄𝒑 ∙ 𝑻𝒑)

𝝏𝒕
=

𝟏

𝒓

𝝏

𝝏𝒓
(𝒓 ∙ 𝝀𝒆𝒇𝒇 ∙

𝝏𝑻𝒑

𝝏𝒓
) + ∑𝛀𝒌 ∙ 𝑯𝒌

𝒌

 (44) 

 

Finally, a prefect gas model for the gaseous phase is assumed. State equations are reported 

as follows, for sake of completeness: 

 

𝒑𝒈 = 𝝆𝒈 ∙ 𝑹𝒈 ∙ 𝑻𝒑 (45) 

𝒉𝒈 = 𝒄𝒈 ∙ 𝑻𝒑 (46) 

 

Rg is the specific gas constant, hg denotes the enthalpy. 

The following boundary conditions are imposed to eq. 42 and eq. 44: 

 



 53 

−𝝀𝒆𝒇𝒇

𝝏𝑻𝒑

𝝏𝒓
|
𝒓=𝟎

= 𝟎 (47) 

−𝑫𝒊

𝝏𝝆𝒊

𝝏𝒓
|
𝒓=𝟎

= 𝟎 (48) 

−𝝀𝒆𝒇𝒇

𝝏𝑻𝒑

𝝏𝒓
|
𝒓=𝑹𝒑

= 𝒒̇𝒑,𝒄𝒐𝒏𝒅 + 𝒒̇𝒓𝒂𝒅 + 𝜶𝒑 ∙ (𝑻𝒑 − 𝑻𝒇) (49) 

−𝑫𝒊

𝝏𝝆𝒊

𝝏𝒓
|
𝒓=𝑹𝒑

= 𝜷𝒑 ∙ (𝝆𝒊 − 𝝆𝒇,𝒊) (50) 

 

Where Rp is the radius of the particle and p and p denote the heat and mass transfer 

coefficients between the particle and the CFD domain respectively. Qp,cond and qp,rad are the 

conductive and radiative heat exchanges with neighbors, and are calculated according to eq. 

39 and eq. 40, respectively. 

 

4.2.1.4 – Chemical conversions 
 

The rate of a reaction k is expressed according to the molar concentrations Ci of the reactants 

and the rate constant Kk. The analytical expression of k is reported in eq. 51, while eq. 52 

provides the temperature dependency of Kk. 

 

𝜴𝒌 = 𝑲𝒌 ∙ ∏𝑪𝒊

𝒊

 (51) 

𝑲𝒌 = 𝒂 ∙ 𝒆𝒙𝒑(
−𝑬𝒂

𝑹𝒈𝒂𝒔 ∙ 𝑻𝒑

) (52) 

 

A is the pre-exponential factor, Ea is the activation energy and Rgas is the gas constant. 

 

4.2.2 – CFD approach for the fluid domain 
 

The fluid domain is solved using a model developed for flows through a porous media. A 

porous media is characterized by its porosity b, i.e. the ratio between the void space and total 

volume of the media. The model provides a description of the flow where the variables are 

averaged on a coarser level, with respect to the sizes of the individual channels of the tortuous 

void space. To that purpose, a Representative Elementary Volume (REV), which respects the 

condition of eq. 53, is introduced. 
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𝑳𝒇 ≪ 𝑳𝑹𝑬𝑽 ≪ 𝑳 (53) 

  

In eq. 53 L is the characteristic length of the problem, LREV the linear dimension of the REV 

and Lf the length scale associated with void dimension. Variables of the fluid domain are 

averaged over the REV (<> symbol in the following equations). 

Mass conservation for a specie i is reported in eq. 54, where mf,i is a source/sink term 

accounting for the mass transfer between the particles and the CFD domain. 

 

𝝏

𝝏𝒕
(𝝐𝒃 ∙ 〈𝝆𝒇,𝒊〉) + 𝛁⃑⃑ ∙ (𝝐𝒃 ∙ 〈𝝆𝒇,𝒊〉 ∙ 〈𝒖⃑⃑ 𝒇〉) = 𝒎̇𝒇,𝒊 (54) 

 

The conservation of momentum is based on Darcy’s law, and writes: 

 
𝝏

𝝏𝒕
(𝝐𝒃 ∙ 〈𝝆𝒇〉 ∙ 〈𝒖⃑⃑ 𝒇〉) + 𝛁⃑⃑ ∙ (𝝐𝒃 ∙ 〈𝝆𝒇〉 ∙ 〈𝒖⃑⃑ 𝒇 ⊗ 𝒖⃑⃑ 𝒇〉)

= 𝛁⃑⃑ ∙ (𝝐𝒃 ∙ 〈𝝉⃑ 𝒇〉) −
𝝁𝒇

𝑲𝒃𝒆𝒅

∙ 𝝐𝒇
𝟐 ∙ 〈𝒖⃑⃑ 〉 − 𝑪𝒃𝒆𝒅 ∙ 〈𝝆𝒇〉 ∙ 𝝐𝒃

𝟑 ∙ |〈𝒖⃑⃑ 𝒇〉|

∙ 〈𝒖⃑⃑ 𝒇〉 

(55) 

 

Where Kbed and Cbed are calculated according to the characteristics of the packed bed, more 

details are reported in [92]. 

The energy conservation is reported hereafter, where qf is a source/sink term accounting for 

the heat transfer between the particles and the CFD domain. 

 
𝝏

𝝏𝒕
(𝝐𝒃 ∙ 〈𝝆𝒇〉 ∙ 〈𝒉𝒇〉) + 𝛁⃑⃑ ∙ (𝝐𝒃 ∙ 〈𝝆𝒇〉 ∙ 〈𝒖⃑⃑ 𝒇 ∙ 𝒉𝒇〉)

= 𝛁⃑⃑ ∙ (𝒒⃑⃑ ′′) +
𝝏𝒑𝒇

𝝏𝒕
+ 〈𝒖⃑⃑ 𝒇〉 ∙ 𝛁〈𝒑𝒇〉 + 𝒒̇𝒇 

(56) 

 

Equation 57 and eq. 58, which are valid under the perfect gas assumption, complete the 

mathematical model. 

 

〈𝒑𝒇〉 = 〈𝝆𝒇〉 ∙ 𝑹𝒈 ∙ 〈𝑻𝒇〉 (57) 

〈𝒉𝒇〉 = 𝒄𝒇 ∙ 〈𝑻𝒇〉 (58) 
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4.2.3 – DEM-CFD coupling 
 

XDEM performs a time-domain integration of the aforementioned equations: in particular, 

at each time step the positions of the particles are updated using the dynamics module; 

subsequently, the porosity of the bed is calculated; finally, heat and mass exchanges between 

the CFD domain and the particles are calculated according to: 

 

𝒒̇𝒇 = ∑〈
𝑨𝒋

𝑽𝑹𝑬𝑽

∙ 𝜶 ∙ (𝑻𝒋 − 𝑻𝒇)〉

𝑵

𝒋=𝟏

 (59) 

𝒎̇𝒇,𝒊 = ∑〈
𝑨𝒋

𝑽𝑹𝑬𝑽

∙ 𝜷𝒊 ∙ (𝝆𝒋,𝒊 − 𝝆𝒇,𝒊)〉

𝑵

𝒋=𝟏

 (60) 

 

Where N is the total number of particles inside the REV; Aj is the surface area of the particle 

j. VREV is the volume of the REV,  and i are the heat and mass transfer coefficients between 

the CFD domain and the particle j. The transfer coefficients are calculated according to the 

Nusselt, Reynolds and Sherwood numbers of the fluid domain, as stated as follows: 

 

𝜶 = 𝑵𝒖 ∙
𝝀𝒇

𝑫𝒑

 (61) 

𝜷𝒊 = 𝑺𝒉 ∙
𝑫𝒊

𝑫𝒑

 (62) 

  

Where the diameter of each particle is represented by the Dp term. 

Heat and mass transfers are represented by source/sink terms in the Navier-Stokes equations, 

whilst for each particle they provide the boundary conditions for the one-dimensional heat 

and mass transport equations. 

 

4.3 – XDEM model 
 

The XDEM framework was exploited for a comprehensive simulation involving the particles 

constituting the material bed of the real kiln. During their transit through the kiln, these 

particles undergo thermal exchanges with both the rotating wall and the counter-current gas 

flow. The heat redistribution inside the material bed is deeply affected by the material powder 

state, in particular by the in-plane recirculation impressed by the rotating wall. Temperature 

of the particles drives their chemical conversion, until the final clinker is obtained. Table 7 

summarizes the reactions considered in the present study with their kinetic parameters and 

enthalpies obtained from [80]. 
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In order to make the problem addressable from a computation point of view, two periodic 

boundaries orthogonal to the axis of the kiln, spaced of 0.4 m, have been introduced. The 

simulation domain consists of the thin slice comprised between the two planes, and it is 

shown in Figure 30. A total of 4000 particles have been introduced, providing the filling level 

indicated. The particles movement within the yz-plane, which is impressed by the rotation of 

the wall, has been simulated using the dynamics module. The retention time has been ensured 

by assuming a particles speed of 0.045 m/s in the x direction. Adiabatic conditions have been 

imposed at the two periodic boundaries. 

 

 
Figure 30. Simulation domain (particles are not in scale). 

 

4.4 - Results 
 

Figure 31 shows the velocity of each particle while the kiln is rotating, in a state of motion 

that can be assumed as steady. The rolling mode of the material bed is evident from the 

observation of Figure 31. Indeed, as typical to such kind of particles movement, two different 

zones can be identified: the passive region, where particles act almost as a rigid body 

following the rotation of the wall, with a speed that linearly decreases when moving towards 

the center; the active layer on the top, where particles slip over the free surface of the material 

bed. As a results of the velocity field, a continuous recirculation of the external particles takes 

place, whilst the internal particles tend to be trapped in the bulk zone of the material bed. The 

simulation can be compared with analytical models for a rolling mode-operated kiln, as the 

one discussed in [96]. When applying the model presented in [96] to the present case a 

thickness of the active layer of 0.16 m, and an average speed of the particles inside the active 

layer of 0.9 m/s are found. Results of the simulation performed using the XDEM framework 

(0.19 m for the thickness, 0.8 m/s for the average speed) are in good agreement with the 

analytical values. 

CFD-DEM coupling is shown in Figure 32, which presents both the heat transfer (a) and the 

porosity (b) fields of the simulation domain. 
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Figure 31. Velocity field 
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a) Heat transfer coefficient 

 
 

b) Porosity 

 

Figure 32. CFD-DEM coupling. 
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The thermochemical results of the simulation are presented in the next part of this section. 

Three simulation time frames, which correspond to different positions inside the kiln (Figure 

33), are considered: 1 minute after the material enters the kiln; 10 minutes, which corresponds 

at the time instant when the material is almost at the middle length of the kiln; 20 minutes, 

i.e. when the material exits the kiln. 

 

 
Figure 33. Positions vs. time. 

 

Figure 34, Figure 35 and Figure 36 show the temperature distribution of the particles, on a 

yz analysis plane. At t=1 min the temperature is still close to the 1223 K initial value; at t=10 

min the material reaches an average temperature of 1425 K; at t=20 min the average 

temperature is equal to 1687 K and is in good agreement with measurements from the 

production plant (1673 K). The effect of the velocity field is evident in the temperature 

distribution of the material bed. Particles on the top, which are directly exposed to the gas, 

show higher temperatures. The bulk particles (i.e. the particles trapped in the internal part of 

the material bed) are at lower temperature, because they get heat only by conduction from 

the outer particles. 

Figure 37, Figure 38 and Figure 39 show the mass fraction of CaO on a yz analysis plane. 

CaO decomposition is accelerated in the outer particles, which are at higher temperature with 

respect to the others. Whilst at 1 minute the chemical composition is almost uniform, at 10 

minutes a slight gradient inside the material bed is evident. Similarly, at 20 minutes some 

unreacted CaO is still present inside the bulk particles. 

Figure 40 and Figure 41 show the spatial distributions at 20 minutes for C2S and C3S (i.e. 

the major components of the final clinker), respectively. Both species show specular 

distributions, with higher rates of conversion in the outer particles. Mean values (0.15 for 

C2S and 0.60 for C3S) are in good agreement with the typical clinker composition as reported 

in [54]. 

t"="1"min"t"="10"min"t"="20"min"
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Figure 34. Temperature distribution – t=1 min. 
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Figure 35. Temperature distribution – t=10 min. 
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Figure 36. Temperature distribution – t=20 min. 
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Figure 37. CaO distribution – t=1 min. 
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Figure 38. CaO distribution – t=10 min. 
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Figure 39. CaO distribution – t=20 min. 
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Figure 40. C2S distribution – t=20 min. 
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Figure 41. C3S distribution – t=20 m 

 

4.5 – Uncertainty introduced by the model 
 

Considering the XDEM results, it can be concluded that the major contribution to the 

uncertainty introduced by the lumped model is the missed representation of the y-z 

segregation phenomena: the LEM does not reproduce the y-z variance of its thermal and 

chemical variables. Nevertheless, this phenomenon is recognized as relevant for the quality 

of the finale product [97]; its quantification is fundamental, and the information should be 

integrated in the output of the soft sensor as a “band of variance”. 

To that scope, it is interesting to observe the probability distribution of the temperatures of 

the different particles in the XDEM results. Indeed, the standard deviation associated to every 

distribution gives an indication about the thermal homogeneity inside the material bed. The 

probability distributions at the three target times are presented in Figure 42. The standard 

deviation continuously increases from 0.96 K at 1 minute to 5.1 K at 20 minutes. In Figure 

43 the trend of the standard deviation during the whole length of the retention time is 

integrated in the output of the soft sensor. 

The lower-bound for the overall uncertainty of the soft sensor uoverall can be calculated as the 

composition of the uncertainty propagated upropagated with the one introduced by the model 

umodel: 
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𝒖𝒐𝒗𝒆𝒓𝒂𝒍𝒍 = √𝒖𝒑𝒓𝒐𝒑𝒂𝒈𝒂𝒕𝒆𝒅
𝟐 + 𝒖𝒎𝒐𝒅𝒆𝒍

𝟐  (63) 

 

 
Figure 42. Probability distributions of temperature. 
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Figure 43. Temperature vs. time. 
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Section 5 – Soft sensing for the new 

microwave heating stage 

 
The new DAPhNE furnace suffers of the same critical issues of conventional kilns for what 

concerns process monitoring. In fact, the direct measurement of the thermal variables inside 

the microwave cavity is a tricky issue. Contact sensors would act as antennas if placed inside 

the strong electromagnetic field of the cavity. Nevertheless, an indirect estimation of thermal 

and chemical variables that characterize the processed material is fundamental if it is intended 

to operate the cavity according to optimization-oriented strategies with the constraint of 

respecting, or even enhancing, the quality targets of the final product. 

Therefore, an indirect monitoring strategy has been developed for the new microwave-based 

heating stage, adopting a similar approach to the one referring to the conventional process. 

In the present case, the possibility of intervene in the design of the new monitoring 

architecture has been fully exploited for reducing the complexity of the theoretical model.  

The dissertation is organized according to the following points: a) the monitoring architecture 

of the new DAPhNE module is described in subsection 5.1; b) the lumped element model 

supporting the soft sensor is introduced in subsection 5.2; c) subsection 5.3 discusses the 

input measurements of the soft sensor, with a particular focus over the infrared measurements 

for temperature monitoring; d) subsection 5.4 presents the outputs of the virtual sensor during 

one of the first tests of the demonstrator. 

 

5.1 – Monitoring architecture of the new DAPhNE 
module 
 

Figure 44 shows the monitoring architecture of the new DAPhNE module, which is 

responsible for providing a continuous assessment of different process variables. Field 

sensors provide 4-20 mA analog outputs, which are acquired by the PLC. On its turn, the 

PLC is connected via PROFINET to a field PC, which is responsible for: a) providing a 

Graphical User Interface (GUI); b) storing historical data into a database which is accessible 

by remote users. Also different stand-alone tools access the PLC, among which: a) the stand-

alone tool for MW Control and Regulation, to be used for adjusting the resonant frequency 

of the cavity, in order to maximize the microwaves absorption and so the efficiency; b) the 

soft sensor for the indirect assessment of thermal and chemical variables of the material. 
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Figure 44. DAPhNE monitoring infrastructure. 

 

5.2 – Lumped element model 
 

Respect to the case discussed in section 3.3 the lumped model is more simplified: 

1. It disappears the heat balance over the gas phase: here microwaves provide a bulk 

heating of the material. So no exothermic reactions inside the gas phase are 

involved. Moreover, the heat exchange of the material bed with the gas phase is 

considered as negligible, because no forced convection takes place inside the tube. 

2. Temperature of the wall is not calculated from a heat balance, but it is directly 

measured on the external shell (subsection 4.3.3). Further, considering the small 

thickness of the tube, the temperature of the internal surface in direct contact with 

the material can be assumed as equal to that measured on the external shell. 

3. Finally, the only chemical reaction considered is the CaCO3 decomposition, because 

it is expected the material does not exceed the maximum temperature of 1000 °C. 

For this reason, the model includes only mass balances for CaCO3 and CaO.  

 The mathematical system is reported in eqs. 64 – 66. Thermal conduction has been accounted 

on the heat equation. A full list of symbols is reported in Appendix A.5. 

 

𝝆𝒔𝒄𝒔𝑨𝒔 ∙ (
𝝏𝑻𝒔

𝝏𝒕
+ 𝒗𝒔

𝝏𝑻𝒔

𝝏𝒛
) = 𝑸𝒄 + 𝑷𝑨 + 𝒉𝒔𝒘(𝑻𝒘 − 𝑻𝒔) + 𝑨𝒔 ∙ 𝒌 ∙

𝝏𝟐𝑻𝒔

𝝏𝒛𝟐
 (64) 
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𝝏𝑪𝑪𝒂𝑪𝑶𝟑

𝝏𝒕
= −𝒗𝒔

𝝏𝑪𝑪𝒂𝑪𝑶𝟑

𝝏𝒛
− 𝑹𝑪𝒂𝑪𝑶𝟑 (65) 

𝝏𝑪𝑪𝒂𝑶

𝝏𝒕
= −𝒗𝒔

𝝏𝑪𝑪𝒂𝑶

𝝏𝒛
+

𝑴𝑪𝒂𝑶

𝑴𝑪𝒂𝑪𝑶𝟑

𝑹𝑪𝒂𝑪𝑶𝟑 (66) 

 

PA indicates the absorbed power; it is calculated from direct measurements made available 

from the field sensors (subsection 4.3). The hsw coefficient has been calibrated thorough a 

comparison with a electromagnetic-thermal model developed by Istituto Superior Técnico 

(IST), on a 2.45 GHz resonant cavity. Resultant value that minimizes the difference between 

the two sets of predictions is 500 W/m2K. Figure 45 shows the temperature profiles provided 

by the soft sensor and the IST model on the virtual cavity: 

 

 
Figure 45. Calibration of the hsw coefficient using IST model as reference. 

 
The soft sensor gathers real-time data from the PLC, through an OPC-server-client polling 

architecture. The following variables are acquired: 

1. Temperature from infrared pyrometers pointing at the external surface of the tube. 

Tw is calculated as the average of the three measurements (subsection 4.3.3). 

2. Temperature of the material at the inlet of the cavity, measured by a contact element. 

It constitutes the boundary condition Ts,in for the heat balance equation. 

3. Mass flow set on the feeder. It provides vs. 
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4. Power generated P, from a power analyzer (subsection 4.3.1). 

5. Power components Pa and Pb, from the HiPoM (subsection 4.3.2). 

After being acquired, measurements are averaged on 60 s time period. Then the calculation 

routine provides a forecast of the transient behavior for the next 60 s. After that, 

measurements are updated. The final state constitutes the initial state for the next forecast. 

The soft sensor is also equipped with a Graphical User Interface (GUI) developed to guide 

the operator in running a full test. The GUI consists in five main parts (see Figure 46): 

1. OPC client section (cyan): by clicking on the “Connect” button the software 

connects to the OPC server, while pressing the “Disconnect” button disconnects the 

software from the OPC server; 

2. Test settings section (green): the user can select if running a test on either metakaolin 

or clinker. Once selected the material, the user should press the “Start test” button 

in order to let OPC client-server communication and soft sensor run; 

3. Monitoring data section (orange): the table shows time-averaged data collected 

from the OPC server. 

4. Plots section (yellow): the two graphs show temperature of the material and CaCO3 

mass fraction along the tube. 

5. Communication section (purple): the software gives to the user information 

regarding the status of the connection. 

 

 
Figure 46. Graphical User Interface. 

 

5.3 – Input measurements 
 

Field sensors provide the soft sensor with direct measurements of the following variables: a) 

electrical absorbance, which is important also for evaluating Key Performance Indicators; b) 

temperature of the tube; c) absorbed and back-reflected fractions of the total incident power 

on the cavity: this measurement is made available by the Impedance Power Matching 
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(HiPoM) tool and it constitutes a fundamental input for the soft sensor. Each measurement 

will be addressed with more focus in the following subsections. 

 

5.3.1 – Electrical absorbance 
 

Several power analyzers provide continuous monitoring of the electrical consumptions of the 

microwave generator and the chiller, besides other auxiliaries. These variables are stored in 

a historical database. A dedicated tool accesses the database by remote, then calculates Key 

Performance Indicators for the process. 

Electrical absorption of the microwave generator provides the instantaneous electromagnetic 

power sent to the cavity via the waveguide P. 

 

5.3.2 – Absorbed and back-reflected power 
 

The HiPoM is a tool developed by Università Politècnica de València; it provides continuous 

monitoring of the total incident Pt, absorbed Pa and back-reflected Pb power components (see 

Figure 47). 

 

 
Figure 47. Incident, absorbed and back-reflected power components. 

 

The accuracy of the device in assessing these quantities is unknown: as a consequence, 

readings provided for Pt, Pa and Pb may be inconsistent with the total power P indicated by 

the power analyzer. Nevertheless, the relative fractions of the absorbed and back-reflected 

powers respect to the total incident can be assumed as sufficiently accurate. 

Therefore, data from HiPoM are processed together with measurements from the power 

analyzer. The quantities PA and PB are calculated according to eqs. 67 and 68, and they 

represent accurate estimations of the instantaneous power components absorbed and back-

reflected from the cavity, respectively. 

 

𝑷𝑨 = 𝑷 ∙
𝑷𝒂

𝑷𝒕

 (67) 

Resonant	cavity
Waveguide

Pt
Pa

Pb
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𝑷𝑩 = 𝑷 ∙
𝑷𝒃

𝑷𝒕

 (68) 

  

The trend of the fraction Pa/Pt during a typical operation of the cavity is reported in Figure 

48: 

 

 
Figure 48. Absorbed to incident power ratio. 

 

The efficiency of microwaves absorption is maintained high during the first period of 

operation, when a control action is undertaken. After, Pa decreases. 

 

5.3.3 - Temperature 
 

Thermal measurements inside the cavity are performed using three infrared pyrometers 

pointing at the external surface of the ceramic tube that contains the material. The 

measurement setup is shown in Figure 49: 
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Figure 49. Measurement setup. 

 
The optical accesses consist of three holes through the cavity wall and the insulating layer. 

Diameter of the holes is 10 mm: such value represents a compromise between the requirement 

for an optical access wide enough to avoid any interference with the measurement beam, and 

the necessity of preventing microwaves leakage. 

Pyrometers have been selected according to the following specifications: 

1. Measurement range from room temperature up to 1000 °C. The maximum 

temperature of the material is not expected to exceed this value. 

2. Small measurement beam, for ensuring its passage through the optical accesses. No 

physical interference between the measurement beam and the holes in the refractory 

layer should happen. 

3. Sensitivity spectrum matching the high-emissivity spectra of alumina (i.e. the 

material to be used for the container tube). 

It has been done a preliminary literature survey, in order to identify the emissivity 

behavior of this material. Figure 50 is an example of the data retrieved. 

 

 
Figure 50. Alumina emissivity spectrum [98]. 
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A high-emissivity coating (AREMCO 840-CHiE Coat-ceramic based) has been 

identified, for increasing the emissivity of the surface. The emissivity spectrum of 

this coating is  shown in Figure 51. 

 

 
Figure 51. Coating emissivity spectrum at 300 °C. 

 

Figure 52a and Figure 52b are referred to a high-temperature test on alumina 

samples, with (b) and without (a) the high-emissivity coating applied. Here 

measurements provided by a long-IR pyrometer (emissivity set to 1) are compared 

to those obtained with a contact element. As it can be noted, when the coating is 

applied the problems related with emissivity setting are overcame. 

 

 
a) 

 
b) 

Figure 52. IR measurements with (b) and without (a) the high-emissivity coating. 
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A surface emissivity estimation test has been performed, in order to set the proper 

emissivity correction for alumina whenever the coating cannot be applied. The 

experimental setup is shown in Figure 53. Here the specimen is placed on a metallic 

support located inside a coil. The metal is inductively heated up to 1200 °C with a 

ramp of 1 °C/min, then maximum temperature is maintained for about 10 minutes. 

The alumina sample is heated by conduction from the support, and during the 

heating period its temperature is monitored using one contact element and one long-

IR pyrometer. Temperature data recorded by the two sensors are shown in Figure 

54. The temperature offset of the pyrometer respect to the thermocouple indicates 

an emissivity of 0.48, which is considerably different respect to the value indicated 

by literature [98]. 

 

 
Figure 53. Experimental setup for the estimation of emissivity. 

 
According to the previous specifications, three pyrometers Lumasense IMPAC IN 5/9 Plus 

have bee selected. They show the following features: 

1. Measurement range from 0 up to 1500 °C. 

2. A measurement spot of 4.5 mm at a distance of 280 mm. 

3. A narrow sensitivity spectrum in the long-IR (8 – 9.7 m). 

Pyrometers have been installed in the demonstrator during preliminary tests. The devices are 

mounted on a supporting frame, outside the cavity. A laser beam helps achieving the 

alignment of the measurement spot with the optical access. Pyrometers are powered using a 

20 V DC voltage supply; the 4-20 mA output signal is sent to the PLC. The temperature 

reading during operation of the cavity is shown in Figure 55. The information is acquired by 

the soft sensor. 
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Figure 54. Measurements from pyrometer and contact sensor. 

 

 
Figure 55. Temperature measurements during operation. 
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5.4 - Results 
 

The soft sensor has been tested during a preliminary trial of the demonstrator, the 15th of July 

2015. 

Direct measurements of the maximum temperature of the material inside the cavity have been 

performed, in order to gather comparative data for validating the new monitoring approach. 

To that purpose, an IR camera has been placed outside the cavity, pointing at the exit of the 

tube and with optical access to the inside. Figure 56 shows a sample of the thermal sequence 

recorded during the test of the demonstrator. The temperature of the material is considerably 

higher then the rest of the tube, so the hottest spot (area of maximum temperature) can be 

tracked quite easily. Figure 57 reports the average on the 100 hottest pixels vs. time, which 

can been assumed as the maximum temperature of the material. Emissivity correction has not 

been introduced, since the material is in powder state and therefore high emissivity values 

are expected. 

 

 
Figure 56. Thermal image from the outside of the cavity. 
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Figure 57. Maximum temperature of the material vs. time. 

 
Measurements gathered during the 67 min testing period have shown the following trends: 

I. Electric power. The power analyzer has provided an overall 10 kWh consumption 

during the test. Energy consumption is uniformly distributed during the whole time. 

This entails a 9 kW incident power, from magnetron startup until shutdown. Half of 

the total incident power has been sent to the cavity; the other half has been dissipated 

on a water load. 

II. HiPoM. Absorbed and back-reflected power components have shown significant 

oscillations during the test period. 

III. Temperature of the tube. It rises as material starts heating up, then cools down after 

magnetron shutdown. 

IV. Maximum temperature of the material. This measurement has been provided by the 

IR camera for a short period after magnetron shutdown. Measurements have not 

been performed during microwaves application because of the presence of high-

temperature plasma, which could have damaged the sensor. Further, measurements 

have been interrupted after the temperature went below the 400 °C minimum range 

of the sensor. 

Prediction of the soft sensor for the maximum temperature of the material during the whole 

test period is shown in Figure 58, together with measurements from the IR camera: 
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Figure 58. Prediction from the soft sensor and direct measurement from the IR camera for 

the maximum temperature of the material. 

 

Despite high uncertainty still affecting some measurements, two conclusions can be drawn: 

I. The soft sensor shows adequate accuracy. Its estimations are in good agreement with 

data gathered by the IR camera. 

II. According to the predictions from the soft sensor and measurements from the 

pyrometers, the following thermal behavior of the cavity can be deduced (Figure 

59): immediately after magnetron startup the electromagnetic field produces a fast 

bulk heating of the material (heating1), which rises its temperature above over 100 

°C respect to the tube. Subsequently, a slower heating of the whole system (material 

and tube) starts (heating2), where the temperature of the material follows that of the 

tube unless a constant offset. After magnetron shutdown the heat source goes to 

zero, thus the temperature gap between the material and the tube is rapidly reduced 

(cooling1). During the rest part of the cooling period, temperature of the material 

closely follows that of the tube. 

Therefore, it can be concluded that an indirect assessment of the temperature of the 

material can be effectively achieved from an accurate measurement of the 

temperature of the tube, unless a constant offset for the period when the magnetron 

is turned on. This offset can be estimated by knowing the instantaneous absorbed 

power and the heat transfer coefficient between the wall and the material bed. 
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Figure 59. Thermal behavior of the cavity. 
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Concluding Remarks 

 
In the present contribution an innovative monitoring approach based on soft sensing has been 

proposed for the process industry. An application case involving the clinker production 

process has been discussed. 

First part of the activity has faced the development of a simulative CFD-FEA model, which 

provides an accurate representation of several aspects involved in the kiln operation, i.e.: the 

turbulent aerodynamic field in the proximity of the multi-channel burner; the gas flowing 

inside the kiln; fuel combustion; conductive, convective and radiative heat exchanges 

between the different domains; chemical conversion of the material bed. The model has been 

subsequently validated. The omni-comprehensive predictions have shown adequate accuracy 

respect to an experimental data set from the real plant. Subsequently, a second theoretical 

representation of the same kiln has been conduced using a simpler model based on lumped 

elements. Critical parameters of the lumped model have been adjusted using a multi-objective 

optimization strategy based on the application of genetic algorithms. Predictions from the 

CFD-FEA model have been used as a reference during optimization. Further activity has 

dealt with the development of a calculation routine, which allows for exploiting the lumped 

model in predictions of the kiln’s behavior on a stationary state, besides forecasts of the 

transient response after changing one or more operative parameters. Finally, a graphical user 

interface has been implemented. The soft sensor has shown marked potentialities when tested 

in on-line applications: extremely reduced calculation times make it a more exploitable tool 

respect to stand-alone models. Its reliability opens the way to several applications, among 

which indirect monitoring of non-accessible variables and development of new control 

strategies. 

The same monitoring approach has been proposed for a second sintering stage developed 

inside the EU FP7 project DAPhNE (grant agreement n° 314636) and based on a mono-

modal, high-power, microwave applicator. The possibility for intervening in the preliminary 

design of the monitoring architecture has been fully exploited in order to achieve the 

complete integration of the new tool to the rest of the hardware devices. First part of the 

activity has been focused over the development of direct monitoring strategies, addressed at 

the assessment of electrical and thermal variables at field level. A second lumped model has 

been developed for the microwave module, accounting for the new bulk heating. The model 

has been connected to the control PLC through an OPC-server-client polling architecture: it 

gathers real-time data from the field devices and provides transient forecasts at a regular time 

base. The soft sensor has been validated during a preliminary test of the new module. Field 

measurements from an IR camera have been used for validating its estimates. The new tool 

has shown good accuracy; its predictions have helped the understanding of the thermal 

behavior of the whole system during a typical operation. 

Final part of the work has faced the unpublished problem of the estimation of uncertainty of 

the soft sensor. To that scope, a stochastic method based on the adaptive Monte Carlo 

procedure prescribed by the GUM (Guide to the Expression of Uncertainty in Measurements) 

has been applied for esteeming the propagation of input uncertainties through the 

mathematical model. Finally, an innovative modeling framework has been used for 
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quantifying the uncertainty introduced by the simplified representation provided by the 

lumped model. 
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Appendix A.1 – adaptive Monte Carlo 

procedure 

 
Hereafter the adaptive Monte Carlo method. Its objective is to provide a) an estimate y of the 

output quantity Y, b) an associated standard uncertainty u(y) and c) the endpoints ylow and 

yhigh of a coverage interval for Y corresponding to a stipulated coverage probability such that 

each of these four values can be expected to meet the numerical tolerance required. 

1. Set ndig to an appropriate small positive integer, representing the number of 

significant decimal digits regarded as meaningful in the numerical value of y; 

2. Set: 

𝑴 = 𝐦𝐚𝐱⁡(𝑱, 𝟏𝟎𝟒) 

Where J is the smallest integer greater than or equal to 100/(1-p), being p the 

coverage probability; 

3. Set h=1, denoting the first application of MCM in the sequence; 

4. Carry out M Monte Carlo trials, using input probability distributions; 

5. Use the M model values y1…yM so obtained to calculate y(h), u(y(h)), 𝒚𝒍𝒐𝒘
(𝒉)

 and 𝒚𝒉𝒊𝒈𝒉
(𝒉)

, 

as an estimate of Y, the associated standard uncertainty, and the left- and right-hand 

endpoints of a 100p % coverage interval, respectively, for the hth member of the 

sequence. 

6. If h=1, increase h by one and return to step 4. 

7. Calculate the standard deviation sy associated with the average of the estimates 

y(1)…y(h) of Y, given by: 

𝒔𝒚
𝟐 =

𝟏

𝒉(𝒉 − 𝟏)
∑(𝒚(𝒓) − 𝒚)

𝟐
𝒉

𝒓=𝟏

 

Where: 

𝒚 =
𝟏

𝒉
∑𝒚(𝒓)

𝒉

𝒓=𝟏

 

8. Calculate the counterpart of this statistic for u(y), ylow and yhigh; 

8. Use all h x M model values available so far to form u(y); 

9. Calculate the numerical tolerance  associated with u(y); 
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10. If any of 2sy, 2su(y), 2sylow and 2syhigh exceeds , increase h by one and return to step 

4; 

11. Regard the overall computation as having stabilized, and use all the h x M model 

values obtained to calculate y, u(y) and a 100p % coverage interval. 
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Appendix A.2 – CFD-FEA model for the 

conventional rotary kiln 

 

 

Chemical conversions: 
 

𝜕𝐶𝐶𝑎𝐶𝑂3

𝜕𝑡
= −𝑢𝑠 ∙

𝜕𝐶𝐶𝑎𝐶𝑂3

𝜕𝑧
− 𝑅𝐶𝑎𝐶𝑂3

 (69) 

𝜕𝐶𝑎𝑂

𝜕𝑡
= −𝑢𝑠 ∙

𝜕𝐶𝑎𝑂

𝜕𝑧
+

𝑀𝐶𝑎𝑂

𝑀𝐶𝑎𝐶𝑂3

∙ 𝑅𝐶𝑎𝐶𝑂3
− 2

𝑀𝐶𝑎𝑂

𝑀𝐶2𝑆

∙ 𝑅𝐶2𝑆 − 3
𝑀𝐶𝑎𝑂

𝑀𝐶3𝐴

∙ 𝑅𝐶3𝐴

− 4
𝑀𝐶𝑎𝑂

𝑀𝐶4𝐴𝐹

∙ 𝑅𝐶4𝐴𝐹 −
𝑀𝐶𝑎𝑂

𝑀𝐶3𝑆

∙ 𝑅𝐶3𝑆 

(70) 

𝜕𝐶𝑆𝑖𝑂2

𝜕𝑡
= −𝑢𝑠 ∙

𝜕𝐶𝑆𝑖𝑂2

𝜕𝑧
−

𝑀𝑆𝑖𝑂2

𝑀𝐶2𝑆

∙ 𝑅𝐶2𝑆 (71) 

𝜕𝐶𝐴𝑙2𝑂3

𝜕𝑡
= −𝑢𝑠 ∙

𝜕𝐶𝐴𝑙2𝑂3

𝜕𝑧
−

𝑀𝐴𝑙2𝑂3

𝑀𝐶4𝐴𝐹

∙ 𝑅𝐶4𝐴𝐹 −
𝑀𝐴𝑙2𝑂3

𝑀𝐶3𝐴

∙ 𝑅𝐶3𝐴 (72) 

𝜕𝐶𝐹𝑒2𝑂3

𝜕𝑡
= −𝑢𝑠 ∙

𝜕𝐶𝐹𝑒2𝑂3

𝜕𝑧
−

𝑀𝐹𝑒2𝑂3

𝑀𝐶4𝐴𝐹

∙ 𝑅𝐶4𝐴𝐹 (73) 

𝜕𝐶𝐶2𝑆

𝜕𝑡
= −𝑢𝑠 ∙

𝜕𝐶𝐶2𝑆

𝜕𝑧
+ 𝑅𝐶2𝑆 −

𝑀𝐶2𝑆

𝑀𝐶3𝑆

∙ 𝑅𝐶3𝑆 (74) 

𝜕𝐶𝐶3𝐴

𝜕𝑡
= −𝑢𝑠 ∙

𝜕𝐶𝐶3𝐴

𝜕𝑧
+ 𝑅𝐶3𝐴 (75) 

𝜕𝐶𝐶4𝐴𝐹

𝜕𝑡
= −𝑢𝑠 ∙

𝜕𝐶𝐶4𝐴𝐹

𝜕𝑧
+ 𝑅𝐶4𝐴𝐹  (76) 

𝜕𝐶𝐶3𝑆

𝜕𝑡
= −𝑢𝑠 ∙

𝜕𝐶𝐶3𝑆

𝜕𝑧
+ 𝑅𝐶3𝑆 (77) 
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Being: 

 

𝑅𝐶𝑎𝐶𝑂3
= 𝑘𝐶𝑎𝐶𝑂3

∙ 𝐶𝐶𝑎𝐶𝑂3
 Rate of CaCO3 decomposition 

𝑅𝐶2𝑆 = 𝑘𝐶2𝑆 ∙ 𝐶𝐶𝑎𝑂
2 ∙ 𝐶𝑆𝑖𝑂2

 Rate of C2S formation 

𝑅𝐶4𝐴𝐹 = 𝑘𝐶4𝐴𝐹 ∙ 𝐶𝐶𝑎𝑂
4 ∙ 𝐶𝐴𝑙2𝑂3

∙ 𝐶𝐹𝑒2𝑂3
 Rate of C4AF formation 

𝑅𝐶3𝐴 = 𝑘𝐶3𝐴 ∙ 𝐶𝐶𝑎𝑂
3 ∙ 𝐶𝐴𝑙2𝑂3

 Rate of C3A formation 

𝑅𝐶3𝑆 = 𝑘𝐶3𝑆 ∙ 𝐶𝐶𝑎𝑂 ∙ 𝐶𝐶2𝑆 Rate of C3S formation 

𝑘𝐶𝑎𝐶𝑂3
= 𝐴𝐶𝑎𝐶𝑂3

∙ 𝑒𝑥𝑝 (
−𝐸𝐶𝑎𝐶𝑂3

𝑅𝑔 ∙ 𝑇𝑠

) Rate constant of CaCO3 decomposition 

𝑘𝐶2𝑆 = 𝐴𝐶2𝑆 ∙ 𝑒𝑥𝑝 (
−𝐸𝐶2𝑆

𝑅𝑔 ∙ 𝑇𝑠

) Rate constant of C2S formation 

𝑘𝐶4𝐴𝐹 = 𝐴𝐶4𝐴𝐹 ∙ 𝑒𝑥𝑝 (
−𝐸𝐶4𝐴𝐹

𝑅𝑔 ∙ 𝑇𝑠

) Rate constant of C4AF formation 

𝑘𝐶3𝐴 = 𝐴𝐶3𝐴 ∙ 𝑒𝑥𝑝 (
−𝐸𝐶3𝐴

𝑅𝑔 ∙ 𝑇𝑠

) Rate constant of C3A formation 

𝑘𝐶3𝑆 = 𝐴𝐶3𝑆 ∙ 𝑒𝑥𝑝 (
−𝐸𝐶3𝑆

𝑅𝑔 ∙ 𝑇𝑠

) Rate constant of C3S formation 

 

Heat from chemical conversion: 
 

𝑄𝑠 =
𝑀

𝑢𝑠

∙ (∆ℎ𝐶𝑎𝐶𝑂3
∙ 𝑅𝐶𝑎𝐶𝑂3

+ ∆ℎ𝐶2𝑆 ∙ 𝑅𝐶2𝑆 + ∆ℎ𝐶4𝐴𝐹 ∙ 𝑅𝐶4𝐴𝐹 + ∆ℎ𝐶3𝐴 ∙ 𝑅𝐶3𝐴

+ ∆ℎ𝐶3𝑆 ∙ 𝑅𝐶3𝑆) 

(78) 
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Symbols: 
 

C2S Belite 

C3A Aluminate 

C4AF Ferrite 

C3S Alite 

M Mass flow raw meal 

Mi Molar mass of i-specie 

Ci Mass concentration of i-specie 

Ri Rate of i-reaction 

Ai Pre-exponential factor of i-reaction 

Ei Activation energy of i-reaction 

hi Enthalpy of i-reaction 
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Appendix A.3 – LEM model for the 

conventional rotary kiln 

 

 

Heat exchange coefficients: 
 

ℎ𝑔𝑤 = (2𝜋 − 𝑝) ∙ 𝑟𝑖𝑛𝑡 ∙ [𝐶𝑜𝑛𝑣𝑔𝑤 + 𝜖𝑔𝜖𝑤(𝑇𝑔
2 + 𝑇𝑤𝑖

2 )(𝑇𝑔 + 𝑇𝑤𝑖)] (79) 

ℎ𝑠𝑤 = 𝑝 ∙ 𝑟𝑖𝑛𝑡 ∙ [𝐶𝑜𝑛𝑣𝑠𝑤 + 𝜖𝑠𝜖𝑤(𝑇𝑠
2 + 𝑇𝑤𝑖

2 )(𝑇𝑠 + 𝑇𝑤𝑖)] (80) 

ℎ𝑒𝑛𝑣 = 𝑝 ∙ 𝑟𝑖𝑛𝑡 ∙ [𝐶𝑜𝑛𝑣𝑒𝑛𝑣 + 𝜖𝑤𝑒(𝑇𝑤𝑒
2 + 𝑇𝑒𝑛𝑣

2 )(𝑇𝑤𝑒 + 𝑇𝑒𝑛𝑣)] (81) 

 

Rate of combustion: 
 

𝑅𝑓 = 𝑅𝑓
′ ∙

𝐹𝑓 ∙ 𝜌𝑔 ∙ 𝑀𝑐

𝐹𝑔 ∙ 𝜌𝑓

 (82) 

 

Being: 

 

𝑅𝑓
′ = 𝑘𝑓 ∙ 𝑑𝑂 ∙ 𝐶𝑂2

 Rate of combustion of a single particle 

𝑑𝑂 =

3𝐷𝑂

𝑟𝑓
2𝑘𝑓

3𝐷𝑂

𝑟𝑓
2𝑘𝑓

+ 1
 Fraction of free oxygen available for reaction 

𝑘𝑓 = 𝐹𝑓 ∙ 𝑒𝑥𝑝 (
−𝐸𝑓

𝑅𝑔𝑇𝑔

) Rate constant of combustion 

 

Rates of conversions: 
 

𝑅𝐶𝑎𝐶𝑂3
= 𝑘𝐶𝑎𝐶𝑂3

∙ 𝐶𝐶𝑎𝐶𝑂3
 (83) 

𝑅𝐶2𝑆 = 𝑘𝐶2𝑆 ∙ 𝐶𝐶𝑎𝑂
2 ∙ 𝐶𝑆𝑖𝑂2

 (84) 
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𝑅𝐶4𝐴𝐹 = 𝑘𝐶4𝐴𝐹 ∙ 𝐶𝐶𝑎𝑂
4 ∙ 𝐶𝐴𝑙2𝑂3

∙ 𝐶𝐹𝑒2𝑂3
 (85) 

𝑅𝐶3𝐴 = 𝑘𝐶3𝐴 ∙ 𝐶𝐶𝑎𝑂
3 ∙ 𝐶𝐴𝑙2𝑂3

 (86) 

𝑅𝐶3𝑆 = 𝑘𝐶3𝑆 ∙ 𝐶𝐶2𝑆 ∙ 𝐶𝐶𝑎𝑂 (87) 

 

Being: 

 

𝑘𝐶𝑎𝐶𝑂3
= 𝐹𝐶𝑎𝐶𝑂3

∙ 𝑒𝑥𝑝 (
−𝐸𝐶𝑎𝐶𝑂3

𝑅𝑔𝑇𝑠

) Rate constant of CaCO3 decomposition 

𝑘𝐶2𝑆 = 𝐹𝐶2𝑆 ∙ 𝑒𝑥𝑝 (
−𝐸𝐶2𝑆

𝑅𝑔𝑇𝑠

) Rate constant of C2S formation 

𝑘𝐶4𝐴𝐹 = 𝐹𝐶4𝐴𝐹 ∙ 𝑒𝑥𝑝 (
−𝐸𝐶4𝐴𝐹

𝑅𝑔𝑇𝑠

) Rate constant of C4AF formation 

𝑘𝐶3𝐴 = 𝐹𝐶3𝐴 ∙ 𝑒𝑥𝑝 (
−𝐸𝐶3𝐴

𝑅𝑔𝑇𝑠

) Rate constant of C3A formation 

𝑘𝐶3𝑆 = 𝐹𝐶3𝑆 ∙ 𝑒𝑥𝑝 (
−𝐸𝐶3𝑆

𝑅𝑔𝑇𝑠

) Rate constant of C3S formation 

 

Heat sources: 
 

𝑄𝑓 = ∆𝐻𝑓 ∙ 𝑅𝑓 ∙ 𝐶𝑓 (88) 

𝑄𝑐 =
𝑀

𝑣𝑠

∙ (∆ℎ𝐶𝑎𝐶𝑂3
∙ 𝑅𝐶𝑎𝐶𝑂3

+ ∆ℎ𝐶2𝑆 ∙ 𝑅𝐶2𝑆 + ∆ℎ𝐶4𝐴𝐹 ∙ 𝑅𝐶4𝐴𝐹 + ∆ℎ𝐶3𝐴

∙ 𝑅𝐶3𝐴 + ∆ℎ𝐶3𝑆 ∙ 𝑅𝐶3𝑆) 

(89) 
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Saeman equation: 
 

𝜕ℎ

𝜕𝑧
=

3𝑡𝑎𝑛𝜃 ∙ 𝑀

4𝜋𝑛𝜌𝑠

[𝑟2 − (ℎ − 𝑟)2]−
3
2 −

𝑡𝑎𝑛𝛽

𝑐𝑜𝑠𝜃
 (90) 

 

Symbols: 
 

Tg Temperature freeboard gas 

Ts Temperature material bed 

Twi Temperature internal wall 

Twe Temperature external wall 

Cf Fuel concentration 

CCaCO3 Mass fraction CaCO3 

CCaO Mass fraction CaO 

CSiO2 Mass fraction SiO2 

CAl2O3 Mass fraction Al2O3 

CFe2O3 Mass fraction Fe2O3 

CC2S Mass fraction belite – (CaO)2SiO2 

CC4AF Mass fraction ferrite – (CaO)4Al2O3Fe2O3 

CC3A Mass fraction aluminate – (CaO)3Al2O3 

CC3S Mass fraction alite – (CaO)3SiO2 

Ag,s,wi,we Cross-sectional areas 
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g,s,w Mass densities 

cg,s,w Specific heat capacities 

vg,s Velocities 

Fi Pre-exponential factors 

Ei Activation energies 

hi Enthalpies 

Convi Convective heat exchange coefficients 

i Emissivities 

M Mass flow raw meal 

Rg Gas constant 

 Stefan-Boltzmann constant 

DO Diffusivity of oxygen 

rf Radius of fuel particles 

rint Kiln internal radius 

rest Kiln external radius 

Tenv Temperature environment 

p Filling angle 

h Bed depth 
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n Kiln rotating speed 

 Kiln tilt angle 

 Dynamic angle of response material 
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Appendix A.4 – GUI for the conventional 

rotary kiln 
 

 

Installation 

 

1. Get an Internet connection. 

2. Extract “CementKilnSimulatorInstaller.zip” 

3. Move to folder: “CementKilnSimulatorInstaller/” 

4. Execute “CementKilnSimulator.exe” as Administrator. 

5. Follow installation instructions. 

6. When you asked, DON’T add shortcut to Desktop: 

 

 
 

7. When installation is completed, move to installation folder e.g. “C:\Program Files\ 

UNIVPM\ CementKilnSimulator\” 

8. Move to “application\” subfolder. 

9. Create manually a shortcut to “CementKilnSimulator.exe” on Desktop. 

10. Always run as Administrator from shortcut on Desktop. 

 

Guide 

 

1. First screen at the opening: 
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Five areas inside the GUI: 

1. Study settings. 

2. Prompt. 

3. Inputs for geometry. 

4. Inputs for operative parameters. 

5. Area for plots. 

 

 

2. Choose between Stationary or Transient analysis: 
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Stationary analysis calculates steady state response of the kiln for a set of operative 

parameters. Transient analysis calculates step response of the kiln for one or more 

changes of the operative parameters. 

 

3. Stationary and Transient analysis: 

Stationary analysis 

User can specify kiln’s length and radii. Values must be inserted in the 

correspondent boxes: 

 
 

Operative parameters can be inserted in the “Initial set point” column. Every 

parameter must be expressed according to the units indicated in the GUI. 
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Transient analysis 

Two different set points (Initial set point, Final set point) must be indicated: 

 

 
 

Also a “Time duration” must be choose: 
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Transient analysis provides step response of the kiln between the two set points, for 

the specified “Time duration”. 

 

4. When simulations are completed, solutions can be plotted and/or saved: 

 

 

Plots represent temperature and chemical profiles along the kiln’s length; for 

transient solution plots are animated, and they show evolution of profiles during 

time. Through “Animation rate” pushbutton user can specify velocity of animations: 
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Stationary and Transient solutions are saved in .csv extension: 

 

 

For Transient solution several spreadsheets are created, one for each time step of 

integration. More information about data format can be found inside spreadsheets. 
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Appendix A.5 – LEM model for the new 

DAPhNE module 

 

 

Symbols: 
 

Ts Temperature material 

Tw Temperature wall 

s Mass density material 

Cs Specific heat material 

As Cross-sectional area material 

vs Axial speed material 

QC Heat from chemical conversion 

PA Absorbed power 

hsw Heat exchange coeff. Material – wall 

k Thermal conductivity material 

CCaCO3 Mass fraction CaCO3 

CCaO Mass fraction CaO 

RCaCO3 Reaction rate 

MCaCO3 Molar mass CaCO3 

MCaO Molar mass CaO 
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